You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Stealthy Attack on Algorithmic-Protected DNNs via Smart Bit Flipping

Publication Type:

Conference/Workshop Paper

Venue:

International Symposium on Quality Electronic Design


Abstract

—Recently, deep neural networks (DNNs) have been deployed in safety-critical systems such as autonomous vehicles and medical devices. Shortly after that, the vulnerability of DNNs were revealed by stealthy adversarial examples where crafted inputs—by adding tiny perturbations to original inputs—can lead a DNN to generate misclassification outputs. To improve the robustness of DNNs, some algorithmic-based countermeasures against adversarial examples have been introduced thereafter. In this paper, we propose a new type of stealthy attack on protected DNNs to circumvent the algorithmic defenses: via smart bit flipping in DNN weights, we can reserve the classification accuracy for clean inputs but misclassify crafted inputs even with algorithmic countermeasures. To fool protected DNNs in a stealthy way, we introduce a novel method to efficiently find their most vulnerable weights and flip those bits in hardware. Experimental results show that we can successfully apply our stealthy attack against state-of-the-art algorithmic-protected DNNs.

Bibtex

@inproceedings{Mousavi6494,
author = {Seyedhamidreza Mousavi},
title = {Stealthy Attack on Algorithmic-Protected DNNs via Smart Bit Flipping},
month = {April},
year = {2022},
booktitle = {International Symposium on Quality Electronic Design},
url = {http://www.es.mdh.se/publications/6494-}
}