You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

STRETCH: Virtual Shared-Nothing Parallelism for Scalable and Elastic Stream Processing

Fulltext:


Publication Type:

Journal article

Venue:

IEEE Transactions on Parallel and Distributed Systems

DOI:

10.1109/TPDS.2022.3181979


Abstract

Stream processing applications extract value from raw data through Directed Acyclic Graphs of data analysis tasks. Shared-nothing (SN) parallelism is the de-facto standard to scale stream processing applications. Given an application, SN parallelism instantiates several copies of each analysis task, making each instance responsible for a dedicated portion of the overall analysis, and relies on dedicated queues to exchange data among connected instances. On the one hand, SN parallelism can scale the execution of applications both up and out since threads can run task instances within and across processes/nodes. On the other hand, its lack of sharing can cause unnecessary overheads and hinder the scaling up when threads operate on data that could be jointly accessed in shared memory. This trade-off motivated us in studying a way for stream processing applications to leverage shared memory and boost the scale up (before the scale out) while adhering to the widely-adopted and SN-based APIs for stream processing applications. We introduce STRETCH, a framework that maximizes the scale up and offers instantaneous elastic reconfigurations (without state transfer) for stream processing applications. We propose the concept of Virtual Shared-Nothing (VSN) parallelism and elasticity and provide formal definitions and correctness proofs for the semantics of the analysis tasks supported by STRETCH, showing they extend the ones found in common Stream Processing Engines. We also provide a fully implemented prototype and show that STRETCH’s performance exceeds that of state-of-the-art frameworks such as Apache Flink and offers, to the best of our knowledge, unprecedented ultra-fast reconfigurations, taking less than 40 ms even when provisioning tens of new task instances.

Bibtex

@article{Gulisano6500,
author = {Vincenzo Gulisano and Hannaneh Najdataei and Yiannis Nikolakopoulos and Alessandro Papadopoulos and Marina Papatriantafilou and Philippas Tsigas},
title = {STRETCH: Virtual Shared-Nothing Parallelism for Scalable and Elastic Stream Processing},
volume = {33},
number = {12},
pages = {4221--4238},
month = {June},
year = {2022},
journal = {IEEE Transactions on Parallel and Distributed Systems},
url = {http://www.es.mdh.se/publications/6500-}
}