You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Assessing the Significant Impact of Concept Drift in Software Defect Prediction

Authors:

Md Alamgir Kabir , Jacky Keung , Kwabena Ebo Bennin , Miao Zhang

Publication Type:

Conference/Workshop Paper

Venue:

IEEE Computer Society Conference on Computers, Software and Applications


Abstract

Concept drift is a known phenomenon in software data analytics. It refers to the changes in the data distribution over time. The performance of analytic and prediction models degrades due to the changes in the data over time. To improve prediction performance, most studies propose that the prediction model be updated when concept drift occurs. In this work, we investigate the existence of concept drift and its associated effects on software defect prediction performance. We adopt the strategy of an empirically proven method DDM (Drift Detection Method) and evaluate its statistical significance using the chi-square test with Yates continuity correction. The objective is to empirically determine the concept drift and to calibrate the base model accordingly. The empirical study indicates that the concept drift occurs in software defect datasets, and its existence subsequently degrades the performance of prediction models. Two types of concept drifts (gradual and sudden drifts) were identified using the chi-square test with Yates continuity correction in the software defect datasets studied. We suggest concept drift should be considered by software quality assurance teams when building prediction models.

Bibtex

@inproceedings{Kabir 6541,
author = {Md Alamgir Kabir and Jacky Keung and Kwabena Ebo Bennin and Miao Zhang},
title = {Assessing the Significant Impact of Concept Drift in Software Defect Prediction},
month = {July},
year = {2019},
booktitle = {IEEE Computer Society Conference on Computers, Software and Applications},
url = {http://www.es.mdu.se/publications/6541-}
}