You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Afra: An Eclipse-Based Tool with Extensible Architecture for Modeling and Model Checking of Rebeca Family Models

Authors:

Ehsan Khamespanah , Marjan Sirjani, Ramtin Khosravi

Publication Type:

Conference/Workshop Paper

Venue:

International Conference on Fundamentals of Software Engineering


Abstract

Afra is an Eclipse-based tool for the modeling and model checking of Rebeca family models. Together with the standard enriched editor, easy to trace counter-example viewer, modular temporal property definition, exporting a model and its transition system to some other formats facilities are features of Afra. Rebeca family provides actor-based modeling languages which are designed to bridge the gap between formal methods and software engineering. Faithfulness to the system being modeled, and the usability of Rebeca family languages help in ease of modeling and analysis of the model, together with the synthesis of the system based on the model. In this paper, architectural decisions and design strategies we made in the development of Afra are presented. This makes Afra an extensible and reusable application for the modeling and analysis of Rebeca family models. Here, we show how different compilers can be developed for the family of languages which are the same in general language constructs but have some minor differences. Then we show how the model checking engine for these different languages is designed. Despite the fact that Afra has a layered object-oriented design and is developed in Java technology, we use C++ codes for developing its model checking for the performance purposes. This decision made the design of the application even harder.

Bibtex

@inproceedings{Khamespanah6870,
author = {Ehsan Khamespanah and Marjan Sirjani and Ramtin Khosravi},
title = {Afra: An Eclipse-Based Tool with Extensible Architecture for Modeling and Model Checking of Rebeca Family Models},
booktitle = {International Conference on Fundamentals of Software Engineering},
url = {http://www.es.mdu.se/publications/6870-}
}