You are required to read and agree to the below before accessing a full-text version of an article in the IDE article repository.

The full-text document you are about to access is subject to national and international copyright laws. In most cases (but not necessarily all) the consequence is that personal use is allowed given that the copyright owner is duly acknowledged and respected. All other use (typically) require an explicit permission (often in writing) by the copyright owner.

For the reports in this repository we specifically note that

  • the use of articles under IEEE copyright is governed by the IEEE copyright policy (available at http://www.ieee.org/web/publications/rights/copyrightpolicy.html)
  • the use of articles under ACM copyright is governed by the ACM copyright policy (available at http://www.acm.org/pubs/copyright_policy/)
  • technical reports and other articles issued by M‰lardalen University is free for personal use. For other use, the explicit consent of the authors is required
  • in other cases, please contact the copyright owner for detailed information

By accepting I agree to acknowledge and respect the rights of the copyright owner of the document I am about to access.

If you are in doubt, feel free to contact webmaster@ide.mdh.se

Transformation of component models to real-time models

Fulltext:


Publication Type:

Licentiate Thesis

Publisher:

Mälardalen University Press


Abstract

Industry is constantly looking for new developments in software for use in increasingly complex computer applications. Today, the development of component-based systems is an attractive area for both Industry and Academia. The systems we focus on in this thesis are embedded computers, in particular those in automotive systems. A modern car incorporates several embedded computers that control different functions of the car, e.g., anti-spin and anti-lock breaks.The main purpose of this thesis is to investigate how component technologies for use in embedded systems can reduce resource usage without compromising non-functional requirements, such as timeliness.The component-technologies available have not yet been used extensively in the vehicular domain. To understand why this is the case we have conducted a survey and performed evaluations of the requirements of the vehicular industry with respect to software and software development. The purpose of the evaluation was to provide a foundation for defining models, methods and tools for component-based software engineering.The main contribution of this work is the implementation and evaluation of a framework for resource-efficient mappings between component-models and real-time systems. Few component technologies today consider the mapping between components and run-time tasks. We show how effective mappings can reduce memory usage and CPU-overhead. The implemented framework utilizes genetic algorithms to find feasible, resource efficient mappings. We show how component-models designed for resource constrained safety-critical embedded real-time systems can use powerful compile-time techniques to realize the component-based approach and ensure predictable behaviour.Further, we propose a resource reclaiming strategy for component-based real-time systems, to decrease the impact of pessimistic execution time predictions. In our approach, components run in different quality levels as unused processor time is accumulated.

Bibtex

@misc{Fredriksson717,
author = {Johan Fredriksson},
title = {Transformation of component models to real-time models},
number = {47},
month = {April},
year = {2005},
publisher = {M{\"a}lardalen University Press},
url = {http://www.es.mdh.se/publications/717-}
}