
Querying Automotive System
Models and Safety Artifacts
with MMINT and Viatra

Alessio Di Sandro, Sahar Kokaly, Rick Salay, Marsha Chechik
{adisandro, skokaly, rsalay, chechik}@cs.toronto.edu

University of Toronto

MASE, Sep 15 2019, Munich, Germany

Automotive domain complexity

● Increasing number of
interconnected
electronic and
software components

● ISO 26262 functional
safety standard:
analyze hazards and
provide evidence that
the system being
designed is safe

2

Automotive models

● Taming the domain
complexity with
models
○ heterogeneous
○ large
○ interconnected

3

Automotive models

● Taming the domain
complexity with
models
○ heterogeneous
○ large
○ interconnected

● System models
○ SM, AD, ER, CD,

Simulink

3

Automotive models

● Taming the domain
complexity with
models
○ heterogeneous
○ large
○ interconnected

● System models
○ UML models,

Simulink models,
etc.

● ISO 26262 safety artifacts

○ FMEA, FTA, HAZOP, Safety Case, etc.

3

MMINT

● Interactive
framework for model
management using
Eclipse EMF

● Megamodels:
collection of models
connected by
relationships

● Megamodel editor
○ create/import models and relationships
○ invoke operations

https://github.com/adisandro/MMINT
4

Lane Management System (LMS)

● Driver assistance system to keep the vehicle within a lane
● Takes control of braking and steering
● Safety critical, subject to the ISO 26262 standard

5

LMS megamodel

6

LMS megamodel

7

Extracting info from megamodels

● Megamodels
can easily grow
in size

● Like databases,
they contain
organized data
(models and
relationships)

Need a way to query the
information required!

8

Query engine requirements

Generic

1. Navigation inter-model and intra-model
2. Handle heterogeneous models in the same query
3. Get a particular result or all results from a query
4. Select query inputs and display results in a megamodel
5. Scale with big models

Implementation-specific

1. Integration with Eclipse EMF
2. APIs to programmatically load and invoke queries

9

OCL

● OMG standard
● Default query and

constraint
language in
Eclipse EMF

● Declarative
syntax, functions
with inputs and
outputs, explicit
collection of
results

https://www.eclipse.org/ocl 10

Viatra

● Incremental
query engine
based on the
Rete algorithm

● Graph pattern
based language
(VQL)

● Prolog-like, pattern arguments can be used as inputs or
outputs, implicit collection of results

https://www.eclipse.org/viatra
11

Comparison between OCL and VQL

Generic

1. Navigation inter-model and intra-model

 OCL VQL

 ✔ ✔

12

Comparison between OCL and VQL

Generic

1. Navigation inter-model and intra-model
2. Handle heterogeneous models in the same query

 OCL VQL

 ✔ ✔
 ✔ ✔

12

Comparison between OCL and VQL

Generic

1. Navigation inter-model and intra-model
2. Handle heterogeneous models in the same query
3. Get a particular result or all results from a query

 OCL VQL

 ✔ ✔
 ✔ ✔
 ✔(sep) ✔

12

Comparison between OCL and VQL

13OCL VQL

Comparison between OCL and VQL

● OCL requires multiple queries
to achieve the same flexibility
of a single VQL query

13

Comparison between OCL and VQL

Generic

1. Navigation inter-model and intra-model
2. Handle heterogeneous models in the same query
3. Get a particular result or all results from a query
4. Select query inputs and display results in a megamodel

 OCL VQL

 ✔ ✔
 ✔ ✔
 ✔(sep) ✔
 ✔ ✔

14

Comparison between OCL and VQL

Generic

1. Navigation inter-model and intra-model
2. Handle heterogeneous models in the same query
3. Get a particular result or all results from a query
4. Select query inputs and display results in a megamodel
5. Scale with big models

 OCL VQL

 ✔ ✔
 ✔ ✔
 ✔(sep) ✔
 ✔ ✔
 ✘[1,2] ✔

[1] G. Bergmann, Á. Horváth, I. Ráth, D. Varró, A. Balogh, Z. Balogh, and A. Ökrös, “Incremental evaluation of
model queries over EMF models”, MODELS 2010, Oslo, Norway, October 3-8, 2010
[2] Z. Ujhelyi, G. Szoke, Á. Horváth, N. I. Csiszár, L. Vidács, D. Varró, and R. Ferenc, “Performance
comparison of query-based techniques for anti-pattern detection”, Information & Software Technology, vol.
65, pp. 147–165, 2015

14

Comparison between OCL and VQL

Generic

1. Navigation inter-model and intra-model
2. Handle heterogeneous models in the same query
3. Get a particular result or all results from a query
4. Select query inputs and display results in a megamodel
5. Scale with big models

Implementation-specific

1. Integration with Eclipse EMF
2. APIs to programmatically load and invoke queries

 OCL VQL

 ✔ ✔
 ✔ ✔
 ✔(sep) ✔
 ✔ ✔
 ✘[1,2] ✔

 ✔ ✔
 ✔ ✔

[1] G. Bergmann, Á. Horváth, I. Ráth, D. Varró, A. Balogh, Z. Balogh, and A. Ökrös, “Incremental evaluation of
model queries over EMF models”, MODELS 2010, Oslo, Norway, October 3-8, 2010
[2] Z. Ujhelyi, G. Szoke, Á. Horváth, N. I. Csiszár, L. Vidács, D. Varró, and R. Ferenc, “Performance
comparison of query-based techniques for anti-pattern detection”, Information & Software Technology, vol.
65, pp. 147–165, 2015

14

Viatra integration in MMINT

● Query Abstraction
Layer (QAL)
programming
interface
a. select query

inputs graphically
b. select query
c. dispatch

query+inputs to
specific engine

d. return query
results as EMF
objects

● Viatra QAL implementation
● VQL library

○ extract megamodel navigation
○ users can focus on the

automotive questions
15

Example: querying the LMS megamodel

The safety engineers are evaluating a change in the safety
case

16

Example: querying the LMS megamodel
The safety engineers
are evaluating a
change in the safety
case

17

Example: querying the LMS megamodel

Safety case for LMS:

● Uses Goal Structured Notation (GSN)
● Structured argument that the LMS is safe to operate,

supported by evidence
● Top level goal gets decomposed into solution leaves

18

Example: querying the LMS megamodel

The safety engineers are evaluating a change to the Goal G6 in
the safety case

19

Querying the LMS
megamodel

connectedModelElems

● Which system elements are
directly connected to G6?

20

Querying the LMS
megamodel

connectedModelElems

● Which system elements are
directly connected to G6?

allConnectedModelElems

● Which system elements are
directly and indirectly
connected to G6?

20

Querying the LMS
megamodel

connectedModelElems

● Which system elements are
directly connected to G6?

allConnectedModelElems

● Which system elements are
directly and indirectly
connected to G6?

(Opposite direction works too:
change in a system model,
which goals are affected?)

20

MMINT demo

21

Conclusion

● Developed tool support for automotive model
management with integrated querying

● Identified query engine requirements and compared
between OCL and VQL
○ VQL is easier to use and faster

● Showcased three scenarios using the LMS example from
industry

● Challenges:
○ creating a Query Abstraction Layer to plug in arbitrary

languages
○ creating a query library for common tasks

22

Future work

● Expand the LMS megamodel with more safety-related
artifacts (e.g., hazard analysis, FTA, test results, etc.) and
write queries on top of them

● Evaluation of effectiveness and usability
● Expand library of megamodel queries
● Display results graphically
● Experiment with live queries

23

Thank you!

MMINT: https://github.com/adisandro/MMINT

Alessio Di Sandro, Sahar Kokaly, Rick Salay, Marsha Chechik
{adisandro, skokaly, rsalay, chechik}@cs.toronto.edu

University of Toronto

MASE, Sep 15 2019, Munich, Germany 24

Comparison between OCL and VQL

● Test the scalability requirement #4
● OCL QAL implementation
● 3 example scenarios

a. safety case change
b. identify medium risk elements:

(hazards with Automotive Safety Integrity Level == B)

c. identify highly interconnected elements:

(elements with #connections > 5)

25

Comparison between OCL and VQL

● Execution times for 3 example scenarios:

● Threats to validity:
○ limited expertise with OCL and VQL queries
○ only 3 scenarios

Scenario OCL time (s) VQL time (s)

1 0.411 0.686

2 2.220 0.830

3 32.996 0.599

26

