Handling Sporadic Tasksin Off-line Scheduled Distributed Real-Time Systems

Damir Isovc and Gerhard Fohler
Department of Computer Engineering
Malardalen University, P.O. Box 883, 721 2aatéas, Sweden
{dic,gfrf@mdh.se

Abstract

Many industrial applications mandate the use of a time-
triggered paradigm and consequently the use of off-line
scheduling for reasons such as predictability, certification,
cost, or product reuse. The construction of an off-line
schedule requires complete knowledge about all temporal
aspects of the application. The acquisition of this informa-
tion may involve unacceptable cost or be impossible. Often,
only partial information is available from the controlled en-
vironment.

In this paper?, we present an algorithm to handle event-
triggered sporadic tasks, i.e., with unknown arrival times,
but known maximum arrival frequencies, in the context of
distributed, off-line scheduled systems. Sporadic tasks are
guaranteed during design time, allowing rescheduling or
redesign in the failure case. At run-time, the sporadic tasks
are scheduled dynamically, allowing the reuse of resources
reserved for, but not consumed by the sporadic tasks. We
provide an off-line schedul ability test for sporadic tasks and
apply the method to perform on-line scheduling on top of
off-line schedules. Snce the major part of preparations
is performed off-line, the involved on-line mechanisms are
simple. The on-line reuse of resources allows for high re-
source utilization.

1. Introduction

characteristics are available. One typical, partially known
property is the arrival time of activities. Instead of exact ar-
rival patterns, bounds on the arrival frequencies are known,
e.g., derived from a model of a physical process. One such
limit is the minimum inter-arrival time between subsequent
instances of tasks. Tasks for which it is known are called
sporadic tasks [13].

The use of off-line scheduling for sporadic tasks is prob-
lematic; they can be transformed into pseudo-periodic tasks
[13], but with potentially prohibitive overhead.

An on-line algorithm for scheduling sporadic tasks with
shared resources in hard real-time systems has been pre-
sented in [10]. Scheduling of sporadic requests with pe-
riodic tasks on arearliest-deadline-first (EDF) basis [12]
has been presented in [17]. Handling of firm aperiodic re-
guests using a Total Bandwidth Server has been presented
in [15]. On-line guarantees of aperiodic tasks in firm pe-
riodic environments, where tasks can skip some instances,
have been described in [5]. Systems containing hard real-
time sporadic tasks have been analyzed for their worst case
behaviorin [2].

These algorithms above perform on-line guarantees.
When a set of sporadic tasks arrives at run-time to the sys-
tem, a scheduler performs an acceptance test. The test suc-
ceeds if each sporadic task in the set can be scheduled to
meet its deadline, without causing any off-line guaranteed
periodic tasks or previously accepted non-periodic tasks to
miss its deadline, else it is rejected. A disadvantage with
this approach is that if the set has been rejected, it is too late
for countermeasures.

Off-line scheduling is mandated by a number of indus- A, off-line guarantee algorithm for sporadic tasks based

trial applications. Predictability, cost, product reuse, and 5, pandwidth reservation has been presented in [3] for sin-
maintenance are examples for reasons advocating a time—g|e processor systems.

triggered approach. The off-line construction of schedules, In this paper, we present a method providing an off-
however, requires complete knowledge about application line feasibility test for sporadic tasks on top of an off-line

charr]actenstlchs be_forg :che r“t"_““”_"e_ of the s_):)sl,te?. to 1:[:?nr’]scheduled, distributed periodic task set with general con-
such comprehensive information IS Inaccessible due o nig straints, e.g., precedence; rescheduling or redesign can be

cost of acquisition or unavailability. Rather, incomplete performed, should the test fail. Given the deadline, maxi-
1in proceedings of 11th EUROMICRO conference on real-time sys- MuMm frequency and execution time for each task in the spo-
tems, York, UK radic task set, we can create a worst case load pattern. Then,

we try to guarantee this worst case sporadic demand within2.2. Off-line periodic schedule
the periodic schedule before the system starts its execution.

We have to account for arrivals at any time; it is, how- A schedule is a sequencemslots. For static schedules

ever, sufficient to investigate only some selected points in the number of slots is typically equal to theast common
time. Our method is based on tHet shifting [8] method, multiple (LCM) of all involved periods.

which provides for the combination of off-line and on-line

sphgduling. After a static schedule.for _the di_stributed Pe- 5 3 Task modd

riodic tasks has been created off-line in a first step, the

amount and distribution of unused resources and leeways _ .

in it is determined. These are then used to incorporate ape- AI_I tasks_m the system are fully pret_amptlve and com-
riodic tasks into the schedule by shifting the off-line sched- mur_uca_te with th(_a rest of the system via data_ read at the
uled tasks’ execution, without violating their feasibility. An beginning and written at the end of their executions.
on-line mechanism is used to guarantee and schedule ape-

riodic tasks. Using the on-line scheduling algorithm of slot Periodic tasks execute their invocations within regular
shifting, the resources reserved for, but not consumed bytime intervals. A periodic tas’p is characterized by its
sporadic tasks can be reused. Should sporadic tasks arrivenaximum execution timeM/ AXT) [14], period °) and

at less than their guaranteed maximum frequency, their re-relative deadline ofl).

sources can be reclaimed, e.g., for aperiodic tasks. Further-The k" invocation ofT'» is denotedl't and is character-
more, the on-line algorithm of slot shifting has been modi- ized by its earliest start time=§t) and absolute deadline
fied to schedule guaranteed sporadic requests. (dl). The absolute deadline of thig€" invocation of T'p is

The method presented in this paper allows for the han- €qual to the sum of the earliest start time of its preceding
dling of distributed periodic tasks with general constraints, invocation and the relative deadline.
such as precedence, based on the time-triggered paradigm,
together with the event-triggered scheduling of guaranteed poperjodic tasks are invoked only once. Their arrival
;poradictasks and online aperiodic tasks, possibly reclaim-times are unknown at design time. A hard aperiodic task
Ing resources. T4 has the following set of parameters: the arrival tinag (
The rest of this paper is organized as follows: First, a maximum execution time and relative deadline. Soft aperi-
description of system and task model is given in section 2, odic tasks have no deadline constraints.
and a brief summary of the slot shifting method in section
3. The off-line guarantee test for the sporadic tasks is pre-
sented in section 4, followed by the online mechanisms in
section 5. An example in section 6 illustrates the discussed
mechanisms. Finally, section 7 concludes the paper.

Sporadic tasks arrive to the system at random points in
time, but with defined minimum inter-arrival times between
two consecutive invocations. We do not know when they
arrive to the system, but we do know their maximum fre-
guency. A sporadic tasKs is characterized by its relative
2. System description and task model deaqnnel, minimum inter-arrival time\] and maximum ex-

ecution time.

The attributes above are known before the run-time of the

The system is considered to Histributed, i.e., one that system. The additional information that becomes available

_ _ , ON¢ n A i o> ove
consists of several processing and communication node<®n-line, upon the arrival time of the™* invocation is its
[16]. arrival time and its absolute deadline.

21 Time mode 3. Integrated off-line and on-line Scheduling

In this section, we briefly describe the slot shifting
We assume a discrete time model [11]. Time ticks are method which we use as a basis to combine off-line and

counted globally, by a synchronized clock with granularity on-line scheduling. It provides for the efficient handling and
of slot length, and assigned numbers from 8d4oThe time possibly on-line guarantee of aperiodic tasks on top of a dis-
between the start and the end of a slit defined by the tributed schedule with general task constraints. Slot shifting
interval [slotlength « i, slotlength = (i + 1)]. Slots have extracts information about unused resources and leeway in
uniform length and start and end at the same time for all an off-line schedule and uses this information to add tasks
nodes in the system. Task periods and deadlines must bdeasibly, i.e., without violating requirements on the already
multiples of the slot length. scheduled tasks. A detailed description can be found in [8].

3.1. Off-line preparations o Y se(l;), ¢ < i < I, end(l;) < dI(Ta) A
end(I;1+1) > di(Ta), sc(I;) > 0, the positive spare
First, an off-line scheduler [4] creates scheduling tables capacities of alfull intervals between anddl(T4),
for the periodic tasks. It allocates tasks to nodes and re- and

solves precedence constraints by ordering task executions.)
e min(sc(ly1),dl(T4)—start(I;+1)), the spare capac-

ity of the last interval, or the execution neediof be-

Start-times and deadlines The scheduling tables list fore its deadline in this interval, whichever is smaller.

fixed start- and end times of task executions, that are less

flexible than possible. The only assignments fixed by spec- i the sum of all three is larger thaW AXT(T4), T4 can
iﬁcation, however, are the Inltlatlng and ConCIUding tasks be accommodated, and therefore guaranteed_ Upon guaran-
in the precedence graph, and, as we assume message trangse of a task, the spare capacities are updated to reflect the
mission times to be fixed hefetasks sending or receiving decrease in available resources. This guarantee algorithm is
inter-node messages. These are the only fixed start-times) (), N being the number of intervals. It is shown in [7],
and deadlines, all others are calculated recursively, as thehat this acceptance test has equivalent results — but with
execution of all other tasks may vary within the precedence simpler run-time handling — as to the ones presented in [9]
order, i.e., they can be shifted. and [6], which are optimal for single processors.

Intervalsand sparecapacities The deadlines _Of ta}s.ks ar'® * On-line scheduling On-line scheduling is performed lo-
then sorted for each node and the schedule is divided intog4)y for each node. If the spare capacities of the current in-
a set ofdisjoint execution intervals for each node. Spare (onq)5(1.) > 0, EDF is applied on the set of ready tasks.
capacities are defined for these intervals. se(I.) = 0 indicates that a guaranteed task has to be exe-
_ Each deadline calculated for a task defines the end of ang, e or else a deadline violation in the task set will occur.
interval I;, end(1;). Several tasks with the same deadline gy aperiodic tasks, i.e., without deadline, can be executed
constitute one interval. immediately ifsc(I.) > 0. After each scheduling decision,

_ The spare capacities of an inten&lare calculated as g gpare capacities of the affected intervals are updated.
given in formula 1:

se(l;) = |I;|— Z MAXT(T)+min(sc(Iiy1),0) (1) 4. Acceptance test for a set of sporadic tasks

Tel;

The length ofl; minus the sum of the activities assigned to I_nr:msfsectlon wef will mt(ri(_)ducekan onfr;Ilne gL_laran_t(;ae alk;
it is the amount of idle times in that interval. These have 90Nt for a set of sporadic tasks. The set Is said to be

to be decreased by the amount “lent” to subsequent inter- €25 br:e(\j/w;[h trllle aILegdy ;cheduleg task set g |th|s possu:rylled
vals: Tasks may execute in intervals prior to the one they to schedule all tasks in the sporadic set such that no sched-

are assigned to. Then they “borrow” spare capacity from ul_ed perlod|cta_sk MISSES _|ts deadllne._

the “earlier” interval. Firstly, the off-line periodic schedule is created and ana-
lyzed for slot shifting. Secondly, the set of sporadic tasks is
tried to fit into the periodic schedule, by investigating only
selected time slots. If the sporadic set is not accepted, it is
up to designer to redesign the system, i.e., reschedule peri-

eodic tasks or change the sporadic set.

3.2. On-Line mechanisms

During system operation, the on-line scheduler is in-
voked after each slot. It checks whether aperiodic tasks hav
arrived, performs the guarantee algorithm, and selects a task .
for execution. This decision is then used to update the spare+1- SPoradic set

capacities. Finally the scheduling decision is executed in _ _ _
the next slot. All tasks in the sporadic set are assumed to be invoked

with their maximum frequency, creating the worst case sce-
nario for the scheduler. If the deadline of a sporadic task
| can be guaranteed for the release with their maximum fre-
guency, then all subsequent deadlines are guaranteed. Ex-
amples of this approach are given in [1]. The minimum
e sc(I.):, the remaining spare capacity of the currentin- time difference between successive releases of a sporadic
terval, task is its minimum inter-arrival time. It has been shown
2\We apply the same mechanisms to the network as well, i.e., shifting [2] that & sporadic task which is released with its maximum
messages, as detailed in [8]. frequency behaves exactly like a periodic task with period

Guarantee Algorithm Assume that an aperiodic ta%k;
is tested for guarantee. We identify three parts of the tota
spare capacities available:

sc=5 Ts fromt. tot. Assumption 1 states thal can be guaran-
teed att. but not att, which means that there is more spare
capacity available at. than att and we lose spare capacity
start(l) t end(l) if we shift. This implies thab is negative:
§<0 2)

Figure 1. Example of a critical slot. I . .
9 P There are two possibilities for the arrival of the sporadic

taskTs, t = A(Ts), before or after the critical slat.:
equal to its minimum inter-arrival time. Now we know the _ _ _
deadline, the maximum execution time and the "period’ of Case 1. ¢ > t., Ts arrives aftert., as depicted in
each sporadic task in the set and we can use that informatiorfigure 2.
to try to guarantee the set for its worst load pattern.
ytog P scheduled or guaranteed tasks
4.2. Critical dots l Ts
A

One way of investigating if the sporadic set fits into the |
periodic schedule is to investigate if it fits at each time slot start(l) t. ot end(l)
of the periodic schedule, but this is impractical. It is suffi-
cient to investigate only some selected points in time, called
critical dots (¢.). There is only one critical slot per inter- Figure 2. Tg arrives after t..
val®, and if the sporadic set can be guaranteed at the critical
slot, it will be guaranteed at every other slot within the same The requirement fofl's to be accepted is that the spare
interval. capacity available fof's at its arrival time has to be greater
The worst case for arrival of the sporadic set to an intefval or equal to the maximum execution timeD§.
is the slot where the execution of the sporadic tasks can belLet « and 5 denote the change of spare capacity caused
delayed maximally by the execution of the off-line sched- by shifting in the arrival and deadline, resp., interval as
uled tasks. This gives: depicted in figure 3:

e « - the difference in spare capacity of the arrival inter-
val caused by shifting the arrival time @% from ¢, to
t.

Proposition 1 Critical slott,. for an intervall is calculated
as:

t.(I) = start(I) + sc(I)
as depicted in figure 1. If a sporadic tagk can be guar- e /3 - the difference in spare capacity of the deadline in-

anteed at the critical slot, it will be guaranteed at each other ~ terval caused by shifting the deadlineZo.
slot within the same intervdl:

This gives:
Vt € I,Ts guaranteed at t. = Ts guaranteed at t d=o+p (3)
Shifting the arrival time ofl's from ¢. to t means that the
Proof. Let: deadline ofT's is shifted to the right. In the arrival interval,

I..rival, Slots fromt, to ¢ are reserved for the execution

t.(I) = start(l I) -the critical slot off. . -
(I) = start(I) + sc(l) " of the scheduled periodic tasks, giving= 0. In the dead-

tel,t#t - some other slot if. S . .

7 te line interval,l jcqq1ine, Shifting the deadline df's may only
Assume the following is correct: increase the portion of available spare capacities in that in-
Assumption 1. Thereisa dlot ¢ in interval I such that a E(;r\;al(.))Thls gives thab has to be greater or equal to zero

sporadic task T's can be guaranteed at the critical dot ¢..,

n : . .
but not at ¢ The maximum value o occurs when the deadline @fg

3t € I, (Ts guaranteed at t.) A (Ts—~guaranteed at t) does not intersect with any other activity, that is, execution
of some other task. In other word$,= ¢ — ¢. > 0. If so,
Let 6 denote the difference between spare capacitiesthen:
available forTs at t. andt, i.e., the amount of spare ca- d=a+#>0,(a=0,8>0) (4)
pacity that we may get or lose by shifting the arrival time of - gthenwise, ifdl(Ts) occurs during the execution of some

3Intervals are calculated as described in section 3. other task, the worst case scenario is that we do not get any

Torrival Lieadiine

Lo |2

1 .. Ly

oot dit,)di(t)
shift =

Figure 3. Arrival time of T's shifted to the right.

new resources fdfg, that is:
§=a+B=0,(a=08=0) (5)

(4) A (5) gives:
d>0

which is contradictory t@2), making assumption 1 false.

Case 22 t < t., Ts arrives beforet., as depicted in
figure 4.

Ts

—

start(l) ¢ t.

end(l)

Figure 4. Tg arrives before t..

Now we shift the arrival time of s to the left, that is before
the critical pointt.. This is shown in figure 5.

Torrival Lieadiine
hal j_ﬁl
s X
bt dit)di(t.)
< shift

Figure 5. Arrival time of Ts shifted to the left.

Let o« and 5 denote the same as in case 1. Shifting the

arrival time ofT's results in a positivex that is equal to the
difference between, andt, i.e.,a = t. — t > 0. In the

deadline interval, the amount of lost spare capacities caused’
by shifting can maximally be the same as the amount 8
of gained spare capacities in the arrival interval, giving 9

Buworst = —a. This implies:

6:a+62a+(—a)20,(5:5worst) (6)

interval, that is3 < «a. In that case, we get:
d=a+p>0,(8 <a) (@)

(6) A (7) implies:
§>0

which is contradictory td2). This implies the assumption

1 doesn't hold for case 2.

Assumption 1 doesn’t hold either for case 1 or case 2.

Therefore proposition 1 is true. This concludes the proof.
([l

Critical points are calculated off-line for each interval, and
only those points are checked for the feasibility of the spo-
radic task set.

4.3. Off-line feasibility test for sporadic tasks

The feasibility test for the set of sporadic tasks works by
creating a worst case load demand of the sporadic tasks as
described in section 4.1. We assume that all sporadic tasks
arrive with their maximum frequency and test if the demand
created can be accommodated into the static schedule at all
critical slots. Here follows the off-line guarantee algorithm
for a set of sporadic tasks:

Let:

) = index of I, rival

k = index of I jeqdiine

SCq = available sc for a sporadic tagk
froma(Ts) todl(Ts)

R = an array containing slots reserved for
previously guaranteed sporadic tasks

initR() = initiates R to empty set

= returns number of reserved slots
between slot: and sloty.

reserveR(n, d) = reserves: slots as close td as

possible (as late as possible)

countR(z,y)

Vt.
initR()
Vs €S
VT%e LCMs
sca(T8)= Y521y sel;)
+min(sc(Iy), dl(TE) — start(1y))
—countR(a(Tg),dl(TE))
if (sca(TZ) > MAXT(T))
then reserveR(MAXT(Ts),dl(Tg))
else abort (set rejected)

o hRrwNE

Comments:
1: Investigate every critical slot.

In a more optimistic scenario, we can even lose less spare2: No slots reserved yet.
capacities in the deadline interval than we get in the arrival 3: Guarantee every sporadic taBk in the set.

4: Guarantee every invocatidry; of T's. 5.1. Maintenance of spare capacities
5: Calculate sc available fdFs from its arrival until its

deadline. ltis equal to the sum of sc for all full intervals The decision of the scheduler is now used to update spare
betweenl,,,ivq and thel geqqiine Of TS, increased by capacities, depending on which type of task was selected for
6: the remaining sc of thé;.,qi:ne available untildl(T'g), execution:

decreased by

7: the amount of sc reserved for other, previously guaran- ® Aperiodic execution: one slot of the spare capacities

teed sporadics that intersect witl§. is used to execute a slot of dynamic task. The spare
8: If the available sc is greater or equal to the maximum capacity of the current interval has to be decremented
execution time ofl's, then by one.

9: reserve slots needed fO¢ as close to its dl as possible,
and continue.

10: If not enough spare capacity, abort the guarantee algo-
rithm and report that the guaranteeing failed.

e Periodic execution: Executing a static task only swaps
spare capacities. Depending on the interval to which
the executed task belongs to, the current intefyabr
a subsequent ong, j > i is affected. The amount of
total spare capacities is unchanged.

5. On-line mechanism

e Sporadic execution: The spare capacity of the current

. . : . interval is decremented by one.
During the system operation, the on-line scheduler is in-

voked after each slot. It checks whether new dynamic tasks e No execution: One slot of spare capacity is used with-
have arrived during the last slot. When a set of sporadic out dynamic processing. Spare capacity has to be
tasks arrives to the system, the ready set of slot shifting is decremented by one.

expanded by sporadic tasks that are ready to execute. Soft
aperiodic tasks can be executed if the spare capacity of the6
current interval is greater than zero, and there are no ready
sporadic tasks.

Example

Assume the following periodic tasks with execution

Let: times and precedence constraints as described in figure 6.
t = current time
se(I)y = spare capa_city of the current Task MAXT dI
interval at timef. PGy PG, 3 &5
R(t) = the ready set that consists of all periodic @ @ T, 1 8
and guaranteed sporadic tasks that have T3 1 9
earliest start time less or equal to the T, 1 9
current time. @ @ @ -2 9
dI(PGo) =9 dI(PG1) =9

We identify the following cases:

1. R(t) = {}: There are no tasks ready to be executed, Node 0 Ty | |Ta| T
the CPU remains idle. 0 123 456 789

15|13

1 2 3 4 5 6 7 8 9

2. R(t) # {} A 3T4, T4 soft aperiodic: Node 1 |

(@) sc(I)r > 0ATTs € R(t), Ts sporadic= exe-
cuteT’s. Figure 6. Example Tasks and Schedule.
(b) sc(I)y > 0A-3Ts € R(t) = executel 4.
We calculate intervals and spare capacities, as described in

(¢) se(l), = 0 a periodic task from ready set has to 3.1, and critical slots as described in 4.2:

be executed. Zero spare capacities indicate that

adding further activities will result in a deadline Interval Node start end sc t.
violation of the guaranteed task set. I 0 0 5 3 3

o L 0 5 9 1 6

3. R(t) # {} N —3T4, T4 soft aperiodic: The task of I 1 6 8 1 7
ready set with the shortest deadline is executed. I 1 8 9 0 8

I() Il IO Il
Node 0 2t | 4 Ts Node0 21 [T
01 2 @ 4 5 & 7 8 9 01 2 @ 4 5 &6 @& 8 9
L| I, L|I;
NOde 1 T T T T T T T2 T?) NOde 1 T T T T T T T4!T2 T?)
01 2 3 4 5 6 @& @& 9 01 2 3 4 5 @& 7 & 9
Figure 7. The schedule with intervals. Figure 9. The schedule after redesign.
Intervals with their assigned tasks and critical slots are 11 : sc(l1) = 1+1=2 Iy: sc(lz) =1-1=0
depicted in figure 7. Now assume a sporadic Set= te(ly) = 5+2=7 te(I) = 6+0=6

{51(1.,5), 52(3,10)} where the first parameter is maximum e try to guarante& on node 0 again, but this time one
execution time and the other one the minimum inter-arrival critical point has changed:; we got 7 instead for 6:

time at node 0. If we assume that sporadic tasks arrive with

their maximum frequencies, then the deadline of each invo- L] = | s | s | 8 | 9 |
cation is equal to the release of the next invocation. Now [| tc | Task [Inv. [sca [>(?) | R |
we apply the off-line guarantee algorithm on each task in 3| S 1 2 | >1=>T {6}

the sporadic se§. First, we try to guarante§,; andsS, at 2 3 [>1=>T {6,11}
critical slot 3, and if they can be guaranteed, we proceed S2 1 13 |>3=T] {569101}
with investigation of slot 6. The LCM o8 is 10, which L T S I = = {11}
means thab; is invoked twice ands; once before the pat- 2 2 | 21=T 111,19

tern is repeated. We now illustrate the guarantee test for 52 L 8 [23=T]{91011141p
S andS,. Numbers above columns represent steps in the

guarantee algorithm described in 4.3 (see figure 8 in paral- I I Iy I
o (o P 6 [S Fla [T

T 0 11 LI
4567@9101112|j31415151713

o

: | D [o [=] °

[|
[te [Ts [Inv. [sca | >MAXT(?) [R] |

3¢S |1 |1 >21=T {5} a) Critical slot 3
2 | 3 >S1=> T | (517
So 1 2 >3= 1 abort
Iy I Iy I
Next sch. instance
Io I I I Ty [T | S5 [si] I [si[si] Ts
reserve reserve 0o 1 2 3 4 5 s[4 ® '9 10 11[J 138 14 15 16 J17 18
[T [Si[T] 75 ISt T | || T
0 !l I2 I4 5 IG I7 E 9 I10 Ill I12 GS 14 I15 I16‘17 18
NS , b) Critical slot 7

not enough sc for Sa

Figure 10. Guaranteeing after redesign.
Figure 8. Steps in guarantee algorithm.
The sporadic set is guaranteed at both critical slots and we

The sporadic set cannot be guaranteed at critical slot 3.can accept it.

What we can do now is to redesign the system and try again.Next follows the description of on-line execution (as de-
Since we support distributed systems, we could reallocatescribed in section 5) on node 0 for the periodic and spo-
some of the periodic tasks from node 0 to node 1, or al- radic tasks described above, extended with one soft aperi-
locate some of sporadics on node 1. In this example, we odic task,4; (2, 2), where the first parameter is arrival time,
decide to schedule the periodic tda&kon node 1 instead of ~ and the other one is execution time. Assufarrives at
node 0. The new periodic schedule is depicted in figure 9. slot 3. R(¢) containts tasks that are ready to execute in slot
Intervals remain the same, spare capacities and critical slotst. The execution trace is depicted in figure 11 (“case” refers
have to be recalculated féy andls: to the cases described in 5):

Acknowledgements

[t] R(t) | case | exe. | C |
0 {T1,Ts} 3 T, unchanged The authors wish to thank the reviewers for their fruitful
1 {T,,T5} 3 Ty unchanged comments which helped to improve the quality of the paper.
2 {Ts, A1}, 2b | Ay | sc(lp) decreased Further thanks go to Jukkaaki-Turja and Bgin Lindberg
3| {T5,51,52, A1} | 2a | St | sc(lp) decreased for their careful reviewing and stimulating discussions.
4 {T5,S2, A1} 2a | Sy | sc(Ip) decreased
5 {T5,S2,A1} 2a | Sy | sc(Iy) decreaseg References
6 {T5, A} 2b | Ay | sc(l1) decreased
7 {Ts} 3 Ts unchanged [1] N. Audsley, A. Burns, M. Richardson, and A. Wellings.
8 {Ts, S?} 2c | T; unchanged Deadline monotonic scheduling theoWRTP’ 92. Preprints
of the IFAC Workshop. Pergamon Press, U.K, 1992.
[2] A. Burns, N. Audsley, M. Richardson, and A. Wellings.
Next sch. Hard real-time scheduling: the deadline monotonic ap-
I I instance proach.Praoc. of the IFAC/IFIPV\brkshc_Jp, UK, 199_2.
[3] G. Buttazzo, G. Lipari, and L. Abeni. A bandwidth reser-
T |A1 |Si| 9 |A1| Ts vation algorithm for multi-application systemBroc. of the
Node 0 F—r——t——1—"—+——1—~~ - Intl. Conf. on Real-time Computing Systems and Applica-

tions, Japan, 1998.
[4] G. C. Buttazzo.Hard Real-time Computing Systems: Pre-
Figure 11. On-line execution on node 0. dictable Scheduling Algorithms and Applications. Kluwer
Academic Publishers, 1997.
[5] M. Caccamo and G. C. Buttazzo. Exploiting skips in peri-
odic tasks for enhancing aperiodic responsiven&ssc. of
the 18th Real-Time Systems Symposium, USA, Dec. 1997.
[6] M. Chetto and H. Chetto. Scheduling periodic and sporadic
In this paper, we presented an algorithm to handle event- tasks in a real-time systermf. Proc. Letters, Feb. 1989.
triggered sporadic tasks, i.e., with unknown arrival times, [7] G. Fohler. Flexbility in Satically Scheduled Hard Real-
but known maximum arrival frequencies, in the context Time Systems. ~ PhD thesis, Technische Univeeditwien,
of time-triggered, distributed schedules with general con- 8] Austria, Apr. 1994,

. .) . G. Fohler. Joint scheduling of distributed complex periodic
straints. The sporadic tasks are guaranteed during design " * an4 hard aperiodic tasks in statically scheduled systems. In

7. Conclusion

time, allowin'g rescheduling or redesign in the case of fail- Proc. 16th Real-time Systems Symposium, Pisa, Italy, 1995.

ure. At run-time, resources reserved for sporadic tasks can [9] M. Garey., D. Johnson, B. Simons, and R. Tarjan. Schedul-

be reclaimed and used for efficient aperiodic task handling. ing unit-time tasks with arbitrary release times and dead-
Our algorithm is based on the slot shifting method, lines. IEEE Trans. on Soft. Eng., May 1981.

which provides for the combination of time-triggered off- [10] K. Jeffay. Scheduling sporadic tasks with shared resources
line schedule construction and on-line scheduling of aperi- "\rl'ortirg;riﬁlr}gte ng' St;”;ls”? efggcz’f Comp. Sdi., Univ. of
odic activities. It analyzes constructed schedules for unused, ; b X '

) : ; ;] H. Kopetz. Sparse time versus dense time in distributed real
resources and leeway in task executions first. The run-time time systems.n Proc. of the Second Int. Workshop on Re-

scheduler uses this information to include aperiodic tasks, sponsice Comp. Sys., Saitama, Japan, Oct. 1992.

shifting other task executions ("slots”) to reduce response [12] C. Liu and J. Layland. Scheduling algorithms for multi-
times without affecting feasibility. It can also be used to programming in hard real-time environmenlourn. of the
perform online guarantees. ACM, 20, 1, Jan. 1973.

[13] A. Mok. Fundamental Design Problems for the Hard Real-

We provided an off-line schedulability test for sporadic .
Time Envs. PhD thesis, MIT, May 1983.

tasl§s based on slot shifting. It cpnstructs a Wor_st case sce—[14] P. Puschner and C. Koza. Calculating the maximum execu-
nario f.or'the arnva! of the sporadic task set and tries tq guar- tion time of real-time programsRT Systems Journal, 1989.
antee it in the off-line schedule. The guarantee algorithm is [15] M. Spuri, G. C. Buttazzo, and F. Sensini. Robust aperiodic

applied at selected slots only. At run-time, it uses the slot scheduling under dynamic priority systenis.Proc. of the
shifting mechanisms to feasibly schedule sporadic tasks in IEEERTSS Dec. 1995. _
union with the off-line scheduled periodic tasks, while al- [16] J. Stankovic, K. Ramamritham, and C.-S. Cheng. Evaluation
lowing resources to be reclaimed for aperiodic tasks. of a flexible task scheduling algorithm for distributed hard

; ; ; ; 3 real-time systemd EEE Trans. on comp., 34(12), Dec 1995.
Since the major part of preparations is performed off [17] T. Tia, W. Liu, J. Sun, and R. Ha. A linear-time optimal

line, the involved on-line mechanisms are simple. Furt_h_er- acceptance test for scheduling of hard real-time tadkgt.
more, the reuse of resources allows for high resoure utiliza- of Comp. c., Univ. of Ilinois at Urbana-Champaign, 1994.
tion.

