
Handling Sporadic Tasks in Off-line Scheduled Distributed Real-Time Systems

Damir Isović and Gerhard Fohler
Department of Computer Engineering

Mälardalen University, P.O. Box 883, 721 23 V¨asterȧs, Sweden
fdic,gfrg@mdh.se

Abstract

Many industrial applications mandate the use of a time-
triggered paradigm and consequently the use of off-line
scheduling for reasons such as predictability, certification,
cost, or product reuse. The construction of an off-line
schedule requires complete knowledge about all temporal
aspects of the application. The acquisition of this informa-
tion may involve unacceptable cost or be impossible. Often,
only partial information is available from the controlled en-
vironment.

In this paper1, we present an algorithm to handle event-
triggered sporadic tasks, i.e., with unknown arrival times,
but known maximum arrival frequencies, in the context of
distributed, off-line scheduled systems. Sporadic tasks are
guaranteed during design time, allowing rescheduling or
redesign in the failure case. At run-time, the sporadic tasks
are scheduled dynamically, allowing the reuse of resources
reserved for, but not consumed by the sporadic tasks. We
provide an off-line schedulability test for sporadic tasks and
apply the method to perform on-line scheduling on top of
off-line schedules. Since the major part of preparations
is performed off-line, the involved on-line mechanisms are
simple. The on-line reuse of resources allows for high re-
source utilization.

1. Introduction

Off-line scheduling is mandated by a number of indus-
trial applications. Predictability, cost, product reuse, and
maintenance are examples for reasons advocating a time-
triggered approach. The off-line construction of schedules,
however, requires complete knowledge about application
characteristics before the run-time of the system. Often,
such comprehensive information is inaccessible due to high
cost of acquisition or unavailability. Rather, incomplete

1In proceedings of 11th EUROMICRO conference on real-time sys-
tems, York, UK

characteristics are available. One typical, partially known
property is the arrival time of activities. Instead of exact ar-
rival patterns, bounds on the arrival frequencies are known,
e.g., derived from a model of a physical process. One such
limit is theminimum inter-arrival time between subsequent
instances of tasks. Tasks for which it is known are called
sporadic tasks [13].

The use of off-line scheduling for sporadic tasks is prob-
lematic; they can be transformed into pseudo-periodic tasks
[13], but with potentially prohibitive overhead.

An on-line algorithm for scheduling sporadic tasks with
shared resources in hard real-time systems has been pre-
sented in [10]. Scheduling of sporadic requests with pe-
riodic tasks on anearliest-deadline-first (EDF) basis [12]
has been presented in [17]. Handling of firm aperiodic re-
quests using a Total Bandwidth Server has been presented
in [15]. On-line guarantees of aperiodic tasks in firm pe-
riodic environments, where tasks can skip some instances,
have been described in [5]. Systems containing hard real-
time sporadic tasks have been analyzed for their worst case
behavior in [2].

These algorithms above perform on-line guarantees.
When a set of sporadic tasks arrives at run-time to the sys-
tem, a scheduler performs an acceptance test. The test suc-
ceeds if each sporadic task in the set can be scheduled to
meet its deadline, without causing any off-line guaranteed
periodic tasks or previously accepted non-periodic tasks to
miss its deadline, else it is rejected. A disadvantage with
this approach is that if the set has been rejected, it is too late
for countermeasures.

An off-line guarantee algorithm for sporadic tasks based
on bandwidth reservation has been presented in [3] for sin-
gle processor systems.

In this paper, we present a method providing an off-
line feasibility test for sporadic tasks on top of an off-line
scheduled, distributed periodic task set with general con-
straints, e.g., precedence; rescheduling or redesign can be
performed, should the test fail. Given the deadline, maxi-
mum frequency and execution time for each task in the spo-
radic task set, we can create a worst case load pattern. Then,

we try to guarantee this worst case sporadic demand within
the periodic schedule before the system starts its execution.
We have to account for arrivals at any time; it is, how-
ever, sufficient to investigate only some selected points in
time. Our method is based on theslot shifting [8] method,
which provides for the combination of off-line and on-line
scheduling. After a static schedule for the distributed pe-
riodic tasks has been created off-line in a first step, the
amount and distribution of unused resources and leeways
in it is determined. These are then used to incorporate ape-
riodic tasks into the schedule by shifting the off-line sched-
uled tasks’ execution, without violating their feasibility. An
on-line mechanism is used to guarantee and schedule ape-
riodic tasks. Using the on-line scheduling algorithm of slot
shifting, the resources reserved for, but not consumed by
sporadic tasks can be reused. Should sporadic tasks arrive
at less than their guaranteed maximum frequency, their re-
sources can be reclaimed, e.g., for aperiodic tasks. Further-
more, the on-line algorithm of slot shifting has been modi-
fied to schedule guaranteed sporadic requests.

The method presented in this paper allows for the han-
dling of distributed periodic tasks with general constraints,
such as precedence, based on the time-triggered paradigm,
together with the event-triggered scheduling of guaranteed
sporadic tasks and online aperiodic tasks, possibly reclaim-
ing resources.

The rest of this paper is organized as follows: First, a
description of system and task model is given in section 2,
and a brief summary of the slot shifting method in section
3. The off-line guarantee test for the sporadic tasks is pre-
sented in section 4, followed by the online mechanisms in
section 5. An example in section 6 illustrates the discussed
mechanisms. Finally, section 7 concludes the paper.

2. System description and task model

The system is considered to bedistributed, i.e., one that
consists of several processing and communication nodes
[16].

2.1. Time model

We assume a discrete time model [11]. Time ticks are
counted globally, by a synchronized clock with granularity
of slot length, and assigned numbers from 0 to1. The time
between the start and the end of a sloti is defined by the
interval [slotlength � i; slotlength � (i + 1)]. Slots have
uniform length and start and end at the same time for all
nodes in the system. Task periods and deadlines must be
multiples of the slot length.

2.2. Off-line periodic schedule

A schedule is a sequence ofn slots. For static schedules
the number of slots is typically equal to theleast common
multiple (LCM) of all involved periods.

2.3. Task model

All tasks in the system are fully preemptive and com-
municate with the rest of the system via data read at the
beginning and written at the end of their executions.

Periodic tasks execute their invocations within regular
time intervals. A periodic taskTP is characterized by its
maximum execution time (MAXT) [14], period (P) and
relative deadline of (Dl).
The kth invocation ofTP is denotedT k

P and is character-
ized by its earliest start time (est) and absolute deadline
(dl). The absolute deadline of thek th invocation ofTP is
equal to the sum of the earliest start time of its preceding
invocation and the relative deadline.

Aperiodic tasks are invoked only once. Their arrival
times are unknown at design time. A hard aperiodic task
TA has the following set of parameters: the arrival time (a),
maximum execution time and relative deadline. Soft aperi-
odic tasks have no deadline constraints.

Sporadic tasks arrive to the system at random points in
time, but with defined minimum inter-arrival times between
two consecutive invocations. We do not know when they
arrive to the system, but we do know their maximum fre-
quency. A sporadic taskTS is characterized by its relative
deadline, minimum inter-arrival time (�) and maximum ex-
ecution time.
The attributes above are known before the run-time of the
system. The additional information that becomes available
on-line, upon the arrival time of thek th invocation is its
arrival time and its absolute deadline.

3. Integrated off-line and on-line Scheduling

In this section, we briefly describe the slot shifting
method which we use as a basis to combine off-line and
on-line scheduling. It provides for the efficient handling and
possibly on-line guarantee of aperiodic tasks on top of a dis-
tributed schedule with general task constraints. Slot shifting
extracts information about unused resources and leeway in
an off-line schedule and uses this information to add tasks
feasibly, i.e., without violating requirements on the already
scheduled tasks. A detailed description can be found in [8].

3.1. Off-line preparations

First, an off-line scheduler [4] creates scheduling tables
for the periodic tasks. It allocates tasks to nodes and re-
solves precedence constraints by ordering task executions.

Start-times and deadlines The scheduling tables list
fixed start- and end times of task executions, that are less
flexible than possible. The only assignments fixed by spec-
ification, however, are the initiating and concluding tasks
in the precedence graph, and, as we assume message trans-
mission times to be fixed here2, tasks sending or receiving
inter-node messages. These are the only fixed start-times
and deadlines, all others are calculated recursively, as the
execution of all other tasks may vary within the precedence
order, i.e., they can be shifted.

Intervals and spare capacities The deadlines of tasks are
then sorted for each node and the schedule is divided into
a set ofdisjoint execution intervals for each node. Spare
capacities are defined for these intervals.

Each deadline calculated for a task defines the end of an
interval Ii, end(Ii). Several tasks with the same deadline
constitute one interval.

The spare capacities of an intervalIi are calculated as
given in formula 1:

sc(Ii) = jIij�

X

T2Ii

MAXT (T)+min(sc(Ii+1); 0) (1)

The length ofIi minus the sum of the activities assigned to
it is the amount of idle times in that interval. These have
to be decreased by the amount “lent” to subsequent inter-
vals: Tasks may execute in intervals prior to the one they
are assigned to. Then they “borrow” spare capacity from
the “earlier” interval.

3.2. On-Line mechanisms

During system operation, the on-line scheduler is in-
voked after each slot. It checks whether aperiodic tasks have
arrived, performs the guarantee algorithm, and selects a task
for execution. This decision is then used to update the spare
capacities. Finally the scheduling decision is executed in
the next slot.

Guarantee Algorithm Assume that an aperiodic taskTA

is tested for guarantee. We identify three parts of the total
spare capacities available:

� sc(Ic)t, the remaining spare capacity of the current in-
terval,

2We apply the same mechanisms to the network as well, i.e., shifting
messages, as detailed in [8].

�
P

sc(Ii); c < i � l; end(Il) � dl(TA) ^
end(Il+1) > dl(TA); sc(Ii) > 0, the positive spare
capacities of allfull intervals betweent anddl(TA),
and

� min(sc(Il+1); dl(TA)�start(Il+1)), the spare capac-
ity of the last interval, or the execution need ofTA be-
fore its deadline in this interval, whichever is smaller.

If the sum of all three is larger thanMAXT (TA), TA can
be accommodated, and therefore guaranteed. Upon guaran-
tee of a task, the spare capacities are updated to reflect the
decrease in available resources. This guarantee algorithm is
O(N), N being the number of intervals. It is shown in [7],
that this acceptance test has equivalent results – but with
simpler run-time handling – as to the ones presented in [9]
and [6], which are optimal for single processors.

On-line scheduling On-line scheduling is performed lo-
cally for each node. If the spare capacities of the current in-
tervalsc(Ic) > 0, EDF is applied on the set of ready tasks.
sc(Ic) = 0 indicates that a guaranteed task has to be exe-
cuted or else a deadline violation in the task set will occur.
Soft aperiodic tasks, i.e., without deadline, can be executed
immediately ifsc(Ic) > 0. After each scheduling decision,
the spare capacities of the affected intervals are updated.

4. Acceptance test for a set of sporadic tasks

In this section we will introduce an off-line guarantee al-
gorithm for a set of sporadic tasks. The set is said to be
feasible with the already scheduled task set if it is possible
to schedule all tasks in the sporadic set such that no sched-
uled periodic task misses its deadline.
Firstly, the off-line periodic schedule is created and ana-
lyzed for slot shifting. Secondly, the set of sporadic tasks is
tried to fit into the periodic schedule, by investigating only
selected time slots. If the sporadic set is not accepted, it is
up to designer to redesign the system, i.e., reschedule peri-
odic tasks or change the sporadic set.

4.1. Sporadic set

All tasks in the sporadic set are assumed to be invoked
with their maximum frequency, creating the worst case sce-
nario for the scheduler. If the deadline of a sporadic task
can be guaranteed for the release with their maximum fre-
quency, then all subsequent deadlines are guaranteed. Ex-
amples of this approach are given in [1]. The minimum
time difference between successive releases of a sporadic
task is its minimum inter-arrival time. It has been shown
[2] that a sporadic task which is released with its maximum
frequency behaves exactly like a periodic task with period

start(I) end(I)tc

sc=5

Figure 1. Example of a critical slot.

equal to its minimum inter-arrival time. Now we know the
deadline, the maximum execution time and the ’period’ of
each sporadic task in the set and we can use that information
to try to guarantee the set for its worst load pattern.

4.2. Critical slots

One way of investigating if the sporadic set fits into the
periodic schedule is to investigate if it fits at each time slot
of the periodic schedule, but this is impractical. It is suffi-
cient to investigate only some selected points in time, called
critical slots (tc). There is only one critical slot per inter-
val3 , and if the sporadic set can be guaranteed at the critical
slot, it will be guaranteed at every other slot within the same
interval.
The worst case for arrival of the sporadic set to an intervalI

is the slot where the execution of the sporadic tasks can be
delayed maximally by the execution of the off-line sched-
uled tasks. This gives:

Proposition 1 Critical slot tc for an intervalI is calculated
as:

tc(I) = start(I) + sc(I)

as depicted in figure 1. If a sporadic taskTS can be guar-
anteed at the critical slot, it will be guaranteed at each other
slot within the same intervalI :

8t 2 I; TS guaranteed at tc) TS guaranteed at t

Proof. Let:

tc(I) = start(I) + sc(I) - the critical slot ofI .
t 2 I; t 6= tc - some other slot inI .

Assume the following is correct:

Assumption 1. There is a slot t in interval I such that a
sporadic task TS can be guaranteed at the critical slot tc,
but not at t:

9t 2 I; (TS guaranteed at tc) ^ (TS:guaranteed at t)

Let Æ denote the difference between spare capacities
available forTS at tc and t, i.e., the amount of spare ca-
pacity that we may get or lose by shifting the arrival time of

3Intervals are calculated as described in section 3.

TS from tc to t. Assumption 1 states thatTS can be guaran-
teed attc but not att, which means that there is more spare
capacity available attc than att and we lose spare capacity
if we shift. This implies thatÆ is negative:

Æ < 0 (2)

There are two possibilities for the arrival of the sporadic
taskTS , t = A(TS), before or after the critical slottc:

Case 1: t > tc, TS arrives aftertc, as depicted in
figure 2.

start(I) end(I)tc t

scheduled or guaranteed tasks

TS

Figure 2. TS arrives after tc.

The requirement forTS to be accepted is that the spare
capacity available forTS at its arrival time has to be greater
or equal to the maximum execution time ofTS.
Let � and� denote the change of spare capacity caused
by shifting in the arrival and deadline, resp., interval as
depicted in figure 3:

� � - the difference in spare capacity of the arrival inter-
val caused by shifting the arrival time ofTS from tc to
t.

� � - the difference in spare capacity of the deadline in-
terval caused by shifting the deadline ofTS.

This gives:
Æ = �+ � (3)

Shifting the arrival time ofTS from tc to t means that the
deadline ofTS is shifted to the right. In the arrival interval,
Iarrival, slots fromtc to t are reserved for the execution
of the scheduled periodic tasks, giving� = 0. In the dead-
line interval,Ideadline, shifting the deadline ofTS may only
increase the portion of available spare capacities in that in-
terval. This gives that� has to be greater or equal to zero
(� � 0).

The maximum value ofÆ occurs when the deadline ofTS

does not intersect with any other activity, that is, execution
of some other task. In other words,� = t � tc > 0. If so,
then:

Æ = �+ � > 0; (� = 0; � > 0) (4)

Otherwise, ifdl(TS) occurs during the execution of some
other task, the worst case scenario is that we do not get any

Iarrival Ideadline

� �

tc t dl(tc)dl(t)
shift)

Figure 3. Arrival time of TS shifted to the right.

new resources forTS , that is:

Æ = �+ � = 0; (� = 0; � = 0) (5)

(4) ^ (5) gives:
Æ � 0

which is contradictory to(2), making assumption 1 false.

Case 2: t < tc, TS arrives beforetc, as depicted in
figure 4.

start(I) end(I)tct

TS

Figure 4. TS arrives before tc.

Now we shift the arrival time ofTS to the left, that is before
the critical pointtc. This is shown in figure 5.

Iarrival Ideadline

� �

tct dl(tc)dl(t)
(shift

Figure 5. Arrival time of TS shifted to the left.

Let � and� denote the same as in case 1. Shifting the
arrival time ofTS results in a positive� that is equal to the
difference betweentc andt, i.e.,� = tc � t > 0. In the
deadline interval, the amount of lost spare capacities caused
by shifting can maximally be the same as the amount
of gained spare capacities in the arrival interval, giving
�worst = ��. This implies:

Æ = �+ � = �+ (��) = 0; (� = �worst) (6)

In a more optimistic scenario, we can even lose less spare
capacities in the deadline interval than we get in the arrival

interval, that is� < �. In that case, we get:

Æ = �+ � > 0; (j�j < �) (7)

(6) ^ (7) implies:
Æ � 0

which is contradictory to(2). This implies the assumption
1 doesn’t hold for case 2.
Assumption 1 doesn’t hold either for case 1 or case 2.
Therefore proposition 1 is true. This concludes the proof.

Critical points are calculated off-line for each interval, and
only those points are checked for the feasibility of the spo-
radic task set.

4.3. Off-line feasibility test for sporadic tasks

The feasibility test for the set of sporadic tasks works by
creating a worst case load demand of the sporadic tasks as
described in section 4.1. We assume that all sporadic tasks
arrive with their maximum frequency and test if the demand
created can be accommodated into the static schedule at all
critical slots. Here follows the off-line guarantee algorithm
for a set of sporadic tasksS:

Let:
i = index ofIarrival
k = index ofIdeadline
sca = available sc for a sporadic taskTS

from a(TS) to dl(TS)
R = an array containing slots reserved for

previously guaranteed sporadic tasks
initR() = initiatesR to empty set
countR(x; y) = returns number of reserved slots

between slotx and sloty.
reserveR(n; d) = reservesn slots as close tod as

possible (as late as possible)

1: 8tc
2: initR()
3: 8TS 2 S

4: 8T
n
S2 LCMS

5: sca(T
n
S)=

Pk�1

j=i+1 sc(Ij)

6: +min(sc(Ik); dl(T
n
S)� start(Ik))

7: �countR(a(T n
S); dl(T

n
S))

8: if (sca(T
n
S) �MAXT (TS))

9: then reserveR(MAXT (TS); dl(T
n
S))

10: else abort (set rejected)

Comments:
1: Investigate every critical slot.
2: No slots reserved yet.
3: Guarantee every sporadic taskTS in the set.

4: Guarantee every invocationT n
S of TS.

5: Calculate sc available forTS from its arrival until its
deadline. It is equal to the sum of sc for all full intervals
betweenIarrival and theIdeadline of T n

S , increased by
6: the remaining sc of theIdeadline available untildl(T n

S),
decreased by
7: the amount of sc reserved for other, previously guaran-
teed sporadics that intersect withT n

S .
8: If the available sc is greater or equal to the maximum
execution time ofTS , then
9: reserve slots needed forT n

S as close to its dl as possible,
and continue.
10: If not enough spare capacity, abort the guarantee algo-
rithm and report that the guaranteeing failed.

5. On-line mechanism

During the system operation, the on-line scheduler is in-
voked after each slot. It checks whether new dynamic tasks
have arrived during the last slot. When a set of sporadic
tasks arrives to the system, the ready set of slot shifting is
expanded by sporadic tasks that are ready to execute. Soft
aperiodic tasks can be executed if the spare capacity of the
current interval is greater than zero, and there are no ready
sporadic tasks.

Let:
t = current time
sc(I)t = spare capacity of the current

interval at timet.
R(t) = the ready set that consists of all periodic

and guaranteed sporadic tasks that have
earliest start time less or equal to the
current time.

We identify the following cases:

1. R(t) = fg: There are no tasks ready to be executed,
the CPU remains idle.

2. R(t) 6= fg ^ 9TA; TA soft aperiodic:

(a) sc(I)t > 0 ^ 9TS 2 R(t); TS sporadic) exe-
cuteTS .

(b) sc(I)t > 0 ^ :9TS 2 R(t)) executeTA.

(c) sc(I)t = 0: a periodic task from ready set has to
be executed. Zero spare capacities indicate that
adding further activities will result in a deadline
violation of the guaranteed task set.

3. R(t) 6= fg ^ :9TA; TA soft aperiodic: The task of
ready set with the shortest deadline is executed.

5.1. Maintenance of spare capacities

The decision of the scheduler is now used to update spare
capacities, depending on which type of task was selected for
execution:

� Aperiodic execution: one slot of the spare capacities
is used to execute a slot of dynamic task. The spare
capacity of the current interval has to be decremented
by one.

� Periodic execution: Executing a static task only swaps
spare capacities. Depending on the interval to which
the executed task belongs to, the current intervalI i, or
a subsequent oneIj ; j > i is affected. The amount of
total spare capacities is unchanged.

� Sporadic execution: The spare capacity of the current
interval is decremented by one.

� No execution: One slot of spare capacity is used with-
out dynamic processing. Spare capacity has to be
decremented by one.

6. Example

Assume the following periodic tasks with execution
times and precedence constraints as described in figure 6.

Node 0

Node 1

0 1 2 3 4 5 6 7 8 9

T1 T4 T5

0 1 2 3 4 5 6 7 8 9

T2 T3

T1

T2 T3

PG0

dl(PG0) = 9

T4

T5

PG1

dl(PG1) = 9

Task MAXT dl
T1 2 5
T2 1 8
T3 1 9
T4 1 9
T5 2 9

Figure 6. Example Tasks and Schedule.

We calculate intervals and spare capacities, as described in
3.1, and critical slots as described in 4.2:

Interval Node start end sc tc

I0 0 0 5 3 3
I1 0 5 9 1 6
I2 1 6 8 1 7
I3 1 8 9 0 8

Node 0

Node 1

0 1 2 3 4 5 6 7 8 9

T1 T4 T5

0 1 2 3 4 5 6 7 8 9

T2 T3

I0 I1

I2I3

Figure 7. The schedule with intervals.

Intervals with their assigned tasks and critical slots are
depicted in figure 7. Now assume a sporadic setS =
fS1(1; 5); S2(3; 10)gwhere the first parameter is maximum
execution time and the other one the minimum inter-arrival
time at node 0. If we assume that sporadic tasks arrive with
their maximum frequencies, then the deadline of each invo-
cation is equal to the release of the next invocation. Now
we apply the off-line guarantee algorithm on each task in
the sporadic setS. First, we try to guaranteeS1 andS2 at
critical slot 3, and if they can be guaranteed, we proceed
with investigation of slot 6. The LCM ofS is 10, which
means thatS1 is invoked twice andS2 once before the pat-
tern is repeated. We now illustrate the guarantee test for
S1 andS2. Numbers above columns represent steps in the
guarantee algorithm described in 4.3 (see figure 8 in paral-
lel):

1 3 4 5 8 9 10

tc TS Inv. sca �MAXT(?) R

3 S1 1 1 � 1) > f5g
2 3 � 1) > f5,11g

S2 1 2 � 3) ? abort

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T1 T4 T5 T1 T4 T5S
1

1

reserve

S
2

1

reserve
I0 I1 I0 I1

Next sch. instance

::::::::::| {z }
not enough sc for S2

Figure 8. Steps in guarantee algorithm.

The sporadic set cannot be guaranteed at critical slot 3.
What we can do now is to redesign the system and try again.
Since we support distributed systems, we could reallocate
some of the periodic tasks from node 0 to node 1, or al-
locate some of sporadics on node 1. In this example, we
decide to schedule the periodic taskT4 on node 1 instead of
node 0. The new periodic schedule is depicted in figure 9.
Intervals remain the same, spare capacities and critical slots
have to be recalculated forI1 andI2:

Node 0

Node 1

0 1 2 3 4 5 6 7 8 9

T1

T4

T5

0 1 2 3 4 5 6 7 8 9

T2 T3

I0 I1

I2 I3

Figure 9. The schedule after redesign.

I1 : sc(I1) = 1+1=2 I2 : sc(I2) = 1-1=0
tc(I1) = 5+2=7 tc(I2) = 6+0=6

We try to guaranteeS on node 0 again, but this time one
critical point has changed; we got 7 instead for 6:

1 3 4 5 8 9

tc Task Inv. sca � (?) R

3 S1 1 2 � 1) > f6g
2 3 � 1) > f6,11g

S2 1 3 � 3) > f5,6,9,10,11g
7 S1 1 3 � 1) > f11g

2 2 � 1) > f11,15g
S2 1 3 � 3) > f9,10,11,14,15g

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T1 T5 T1 T5S
1

1 S
2

1S
1

2 S
1

2

I0 I1 I0 I1

a) Critical slot 3

b) Critical slot 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T1 T5 T1 T5S
1

1 S
1

1S
1

2 S
1

2

I0 I1 I0 I1

Figure 10. Guaranteeing after redesign.

The sporadic set is guaranteed at both critical slots and we
can accept it.
Next follows the description of on-line execution (as de-
scribed in section 5) on node 0 for the periodic and spo-
radic tasks described above, extended with one soft aperi-
odic task,A1(2; 2), where the first parameter is arrival time,
and the other one is execution time. AssumeS arrives at
slot 3.R(t) containts tasks that are ready to execute in slot
t. The execution trace is depicted in figure 11 (“case” refers
to the cases described in 5):

t R(t) case exe. sc

0 fT1; T5g 3 T1 unchanged
1 fT1; T5g 3 T1 unchanged
2 fT5; A1g, 2b A1 sc(I0) decreased
3 fT5; S

1
1 ; S2; A1g 2a S

1
1 sc(I0) decreased

4 fT5; S2; A1g 2a S2 sc(I0) decreased
5 fT5; S2; A1g 2a S2 sc(I1) decreased
6 fT5; A1g 2b A1 sc(I1) decreased
7 fT5g 3 T5 unchanged
8 fT5; S

2
1g 2c T5 unchanged

Next sch.
instance

Node 0
0 1 2 3 4 5 6 7 8 9

T1 T5S
1

1 S2A1 A1

I0 I1

Figure 11. On-line execution on node 0.

7. Conclusion

In this paper, we presented an algorithm to handle event-
triggered sporadic tasks, i.e., with unknown arrival times,
but known maximum arrival frequencies, in the context
of time-triggered, distributed schedules with general con-
straints. The sporadic tasks are guaranteed during design
time, allowing rescheduling or redesign in the case of fail-
ure. At run-time, resources reserved for sporadic tasks can
be reclaimed and used for efficient aperiodic task handling.

Our algorithm is based on the slot shifting method,
which provides for the combination of time-triggered off-
line schedule construction and on-line scheduling of aperi-
odic activities. It analyzes constructed schedules for unused
resources and leeway in task executions first. The run-time
scheduler uses this information to include aperiodic tasks,
shifting other task executions (”slots”) to reduce response
times without affecting feasibility. It can also be used to
perform online guarantees.

We provided an off-line schedulability test for sporadic
tasks based on slot shifting. It constructs a worst case sce-
nario for the arrival of the sporadic task set and tries to guar-
antee it in the off-line schedule. The guarantee algorithm is
applied at selected slots only. At run-time, it uses the slot
shifting mechanisms to feasibly schedule sporadic tasks in
union with the off-line scheduled periodic tasks, while al-
lowing resources to be reclaimed for aperiodic tasks.

Since the major part of preparations is performed off-
line, the involved on-line mechanisms are simple. Further-
more, the reuse of resources allows for high resoure utiliza-
tion.

Acknowledgements

The authors wish to thank the reviewers for their fruitful
comments which helped to improve the quality of the paper.
Further thanks go to Jukka M¨aki-Turja and Björn Lindberg
for their careful reviewing and stimulating discussions.

References

[1] N. Audsley, A. Burns, M. Richardson, and A. Wellings.
Deadline monotonic scheduling theory.WRTP’92. Preprints
of the IFAC Workshop. Pergamon Press, U.K, 1992.

[2] A. Burns, N. Audsley, M. Richardson, and A. Wellings.
Hard real-time scheduling: the deadline monotonic ap-
proach.Proc. of the IFAC/IFIP Workshop, UK, 1992.

[3] G. Buttazzo, G. Lipari, and L. Abeni. A bandwidth reser-
vation algorithm for multi-application systems.Proc. of the
Intl. Conf. on Real-time Computing Systems and Applica-
tions, Japan, 1998.

[4] G. C. Buttazzo.Hard Real-time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications. Kluwer
Academic Publishers, 1997.

[5] M. Caccamo and G. C. Buttazzo. Exploiting skips in peri-
odic tasks for enhancing aperiodic responsiveness.Proc. of
the 18th Real-Time Systems Symposium, USA, Dec. 1997.

[6] M. Chetto and H. Chetto. Scheduling periodic and sporadic
tasks in a real-time system.Inf. Proc. Letters, Feb. 1989.

[7] G. Fohler. Flexibility in Statically Scheduled Hard Real-
Time Systems. PhD thesis, Technische Universit¨at Wien,
Austria, Apr. 1994.

[8] G. Fohler. Joint scheduling of distributed complex periodic
and hard aperiodic tasks in statically scheduled systems. In
Proc. 16th Real-time Systems Symposium, Pisa, Italy, 1995.

[9] M. Garey., D. Johnson, B. Simons, and R. Tarjan. Schedul-
ing unit-time tasks with arbitrary release times and dead-
lines. IEEE Trans. on Soft. Eng., May 1981.

[10] K. Jeffay. Scheduling sporadic tasks with shared resources
in hard real-time systems.Dept. of Comp. Sci., Univ. of
North Carolina at Chapel Hill, 1992.

[11] H. Kopetz. Sparse time versus dense time in distributed real
time systems.In Proc. of the Second Int. Workshop on Re-
sponsice Comp. Sys., Saitama, Japan, Oct. 1992.

[12] C. Liu and J. Layland. Scheduling algorithms for multi-
programming in hard real-time environment.Journ. of the
ACM, 20, 1, Jan. 1973.

[13] A. Mok. Fundamental Design Problems for the Hard Real-
Time Envs. PhD thesis, MIT, May 1983.

[14] P. Puschner and C. Koza. Calculating the maximum execu-
tion time of real-time programs.RT Systems Journal, 1989.

[15] M. Spuri, G. C. Buttazzo, and F. Sensini. Robust aperiodic
scheduling under dynamic priority systems.In Proc. of the
IEEE RTSS, Dec. 1995.

[16] J. Stankovic, K. Ramamritham, and C.-S. Cheng. Evaluation
of a flexible task scheduling algorithm for distributed hard
real-time systems.IEEE Trans. on comp., 34(12), Dec 1995.

[17] T. Tia, W. Liu, J. Sun, and R. Ha. A linear-time optimal
acceptance test for scheduling of hard real-time tasks.Dept.
of Comp. Sc., Univ. of Illinois at Urbana-Champaign, 1994.

