
Using Software Component Models and Services in Embedded Real-Time
Systems

Frank Lüders, Shoaib Ahmad, Faisal Khizer, and Gurjodh Singh-Dhillon
Mälardalen University, Dept. of Computer Science and Electronics

PO Box 883, SE-721 23 Västerås, Sweden
frank.luders@mdh.se, {sad05004, fkr05001, gdn05001}@student.mdh.se

Abstract

While the use of software component models has
become popular in the development of desktop appli-
cations and distributed information systems, such
models have not been widely used in the domain of
embedded real-time systems. Presumably, this is due to
the requirements such systems have to meet with re-
spect to predictable timing and limited use of re-
sources. There is a considerable amount of research
on component models for embedded real-time systems
that focuses on source code components, statically
configured systems, and relatively narrow application
domains. This paper explores the alternative approach
of using a mainstream component model based on bi-
nary components. The effects of using the model on
timing and resource usage have been measured by
implementing example applications both with and
without using the model. In addition, the use of a pro-
totype tool for supporting software component services
has been investigated in the same manner.

1. Introduction

The use of software component models has become
popular in the development of desktop applications
and distributed information systems, where popular
component models include JavaBeans [1] and ActiveX
[2] for desktop applications and Enterprise JavaBeans
(EJB) [3] and COM+ [4] for information systems. In
addition to basic standards for naming, interfacing,
binding, etc., these models also define standardized
sets of run-time services oriented towards the applica-
tion domains they target. This concept is generally
termed software component services [5].

Software component models havpe not been widely
used in the development of real-time and embedded
systems. It is generally assumed that this is due to the
special requirements such systems have to meet, in
particular with respect to timing predictability and
limited use of resources such as memory and CPU

time. Much research has been directed towards defin-
ing new component models for real-time and embed-
ded systems, typically focusing on relatively small and
statically configured systems. Most of the published
research proposes models based on source code com-
ponents and targeting relatively narrow application
domains. Examples of such models include the Koala
component model for consumer electronics [6], PE-
COS for industrial field devices [7], and SaveCCM for
vehicle control systems [8].

An alternative approach is to strive for a component
model for embedded real-time systems based on binary
components and targeting a broader domain of appli-
cations, similarly to the domain targeted by a typical
real-time operating system. This paper explores the
possibility of using a mainstream component model as
the starting point for such a model. Specifically, the
use of the Component Object Model (COM) [9] with
the real-time operating system Windows CE [10] is
investigated. We have empirically evaluated the effect
of using COM by implementing applications both with
and without using the model. In addition, we have
evaluated the effects of using a prototype tool for sup-
porting software component services in embedded
real-time systems.

The rest of this paper is organized as follows. Sec-
tion 2 provides background information on COM and
the prototype tool. Section 3 presents an automatic
control applications that we use as an example to
evaluate the use of these technologies. In Section 4, we
described the tests we have conducted and their results.
These results are discussed in Section 5. Section 6 is
an overview of some related work. Conclusions and
ideas for future work are presented in Section 7.

2. Background

2.1. The Component Object Model (COM)

Microsoft’s Component Object Model (COM) [9] is
one of the most commonly used software component
models for desktop and server side applications. Al-

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

1©1530-1605/07 $20.00 2007 IEEE

though the model is increasingly being replaced by the
newer .NET technology [11] in these domains, we
believe COM is a more suitable starting point for a
model aimed at embedded real-time systems because
of its relative simplicity. In particular, the use of auto-
matic memory management (garbage collection) in
.NET is a serious barrier against ensuring predictable
timing.

A key principle of COM is that interfaces are speci-
fied separately from both the components that imple-
ment them and those that use them. COM defines a
dialect of the Interface Definition Language (IDL) that
is used to specify object-oriented interfaces. Interfaces
are object-oriented in the sense that their operations are
to be implemented by a class and passed a reference to
a particular instance of that class when invoked. The
code that uses a component does not refer directly to
any objects, however. Instead, the operations of an
interface supported by an object are invoked via what
is known as an interface pointer. A concept known as
interface navigation makes it possible for the user to
obtain a pointer to every interface supported by the
object.

COM also defines a run-time format for interface
pointers. What an interface pointer really references is
an interface node, which in turn, contains a pointer to a
table of function pointers, called a VTABLE. Typi-
cally, the node also contains a pointer to an object’s
instance data, although this is implementation specific.
This use of VTABLEs is identical to the way that
many C++ compilers implement virtual methods. Thus,
the time and space overhead associated with accessing
an object through an interface pointer is presumably
the same as that incurred with C++ virtual methods.
Figure 1 illustrates the typical format of interface
nodes.

interface pointer

interface node
instance data

VTABLE

method code

method code

method code

method code

Figure 1. Typical format of COM interface
nodes

For most real-time systems, a more serious concern
than these modest overheads is that interface naviga-
tion introduces a possible source of run-time errors. If
the user of a component asks an object for a pointer to
an interface that the object does not support, this will

not be detected during compilation. It may be argued,
in fact, that this is the principal difference between
interface navigation and interface inheritance in tradi-
tional object-oriented programming. This can be seen
as a necessary price to pay for the otherwise desirable
reduced compile-time dependence between compo-
nents.

As already mentioned, a COM component is im-
plemented in classes. The mechanism for creating in-
stances of these classes is closely linked with how and
when the code in different components is linked to-
gether. COM defines a policy for instantiation, which
is intended to ensure that different components can be
installed in a system at different times. When a com-
ponent is installed, information about it must be regis-
tered somewhere in the system, linking the identity of
its classes to the code that implement these. COM also
requires a run-time library, called the COM library, to
be installed on the system. When some code wants to
use a component, it uses an operation provided by the
COM library to ask for an instance of a class and an
initial interface pointer to it. If the code of the compo-
nent is not already loaded into memory, the COM li-
brary uses the registered information to locate the code
and load it before an instance is created. This process
is illustrated in Figure 2.

Client Component

COM Library Registry

1) Request object by
class and interface

2) Look up component

3) Load component if necessary
and request object

4) Return interface
pointer

5) Invoke
operations

Figure 2. Instance creation and dynamic
loading of code in COM

Thus, creation of an instance involves searching the
information about registered classes and possibly
loading of code. This leads to a noticeable overhead
when compared to instantiation in for instance C++.
Furthermore, this overhead will vary, depending on
whether the code implementing a class has already
been loaded or not. This variability can be eliminated,
however, by designing the software such that all com-
ponents that may be used will be loaded at start-up.
Note that removal of instances is subject to the same

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

2

variability, since the COM standard states that code
can be unloaded when the last instance that rely on it is
removed.

A benefit that follows from COM’s way of creating
instances is that the code that implements a component
can be built independently of any code that uses the
component. Since instantiation involves passing the
identity of the desired class as a parameter to a system
operation, it is a possible source of run-time errors,
which is not present during instantiation in traditional
object-oriented programming, since attempting to in-
stantiate a class that does not exist will result in a com-
pilation error in this case. Again, this is a necessary
price to be paid for decreased coupling.

2.2. Software component services for embed-
ded real-time systems

A prototype tool for supporting software compo-
nent services in embedded real time systems is pre-
sented in [12]. The tool adds services to COM compo-
nents on Windows CE through the use of proxy object
that intercept method calls. Figure 3 illustrates the use
of a proxy object that provides a simple logging ser-
vice. The object C2 implements an interface IC2 for
which we wish to apply a logging service. A proxy
object that also implements IC2 is placed between C2
and a client that uses the operations exposed through
IC2. The operations implemented by the proxy forward
all invocations to the corresponding operations in C2
in addition to writing information about parameter
values, return codes, and invocation and return times to
some logging medium.

Figure 3. A logging service proxy

The tool takes as inputs a component specification
along with specifications of desired services and gen-
erates source code for a proxy object. Component
specifications may be in the form of Interface Defini-
tion Language (IDL) files or their binary equivalent
Type Library (TLB) files. Desired services are either

specified in a separate file using an XML-based format
or in the tool´s graphical user interface, described fur-
ther below. Note that access to component source code
is not required. Based on these inputs, the tool gener-
ates a complete set of files that can be used with Mi-
crosoft eMbedded Visual C++ to build a COM com-
ponent implementing the proxy objects (i.e., the prox-
ies are themselves COM objects). This process is de-
picted in Figure 4.

G
e n

e r
at

e

Figure 4. Proxy object generation

This use of proxy objects for interception is in-
spired by COM+. However, rather than to generate
proxies at run-time, they are generated and compiled
on a host computer and downloaded to the embedded
system along with the application components. This
process may occur when the software is initially
downloaded to the system or as part of dynamic recon-
figuration of a system that supports this. In the latter
case, one can imagine updating or adding proxies
without updating or adding any application compo-
nents. The current version of the tool only generates
proxy code and does not address the registration and
run-time instantiation of components. This means that
the client code must instantiate each proxy along with
the affected COM object and set up the necessary con-
nection between them.

In addition to logging, the tool supports generating
proxies that implement one or more of the following
services: execution time measurement of method invo-
cations; synchronization between concurrent invoca-
tions; execution timeout on invocations; and cyclic
execution of methods.

Figure 5 shows the graphical user interface of the
tool. After a TLB or IDL file has been loaded all COM
classes defined in the file are listed. Checking the box
to the left of a COM class causes a proxy for that class
to be generated when the button at the bottom of the
tool is pressed. Under each COM class, the interfaces

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

3

implemented by the class is listed and, under each in-
terface, the operations implemented by the interface. In
addition, the available services are listed with their
names set in brackets. Checking the box to the left of a
service causes code to be generated that provides the
service for the element under which the service is
listed. In the current version of the tool, a service for
cyclic execution may only be specified for the IPas-
siveController interface while all other services may
only be specified for individual operations. The IPas-
siveController interface is described in connection with
the example application in the next section.

Figure 5. User interface of the prototype tool

If the cyclic execution service is checked, the proxy
will implement an interface called IActiveController
instead of IPassiveController (see the example in the
next section). IActiveController includes operations for
setting the period and threading priority of the cyclic
execution. Checking the logging service results in a
proxy that logs each invocation of the affected opera-
tion. The timing service causes the proxy to measure
the execution time of the process and write it to the log
at each invocation (if timing is checked but not log-
ging, execution times will be measured but not saved).

The synchronization service means that each invo-
cation of the operation will be synchronized with all
other invocations of all other operations on the proxy
object for which the synchronization service is
checked. The only synchronization policy currently
supported is mutual exclusion. The timeout service has
a numeric parameter. When this service is selected (by
clicking the name rather than the box) as in Figure 5,
an input field marked Milliseconds is visible near the
bottom of the tool. Checking the service results in a
proxy where invocations of the operation always ter-
minate within the specified number of milliseconds. In
the case that the object behind the proxy does not
complete the execution of the operation within this
time, the proxy forcefully terminates the execution and
returns en error code.

3. Example application

To evaluate the effects of using both COM and the
prototype tool, we used the example application pre-
sented in [12]. At the center of this application is a
component that encapsulates a proportional-integral-
differential (PID) controller [13]. Four different ver-
sions of the application were implemented. They are
presented here in the order in which they were first
developed. The four versions are summarized in Table
1 at the end of this section.

We first implemented a version using COM, shown
in Figure 6, which we term Control2. PIDController is
a COM class that implements an interface IActive-
Controller and relies on the two interfaces ISensor and
IActuator to read and write data from/to the controlled
process. For the purpose of this example, these inter-
faces are implemented by the simple COM class
DummyProcess that does nothing except returning a
constant value to the controller. The interfaces are de-
fined as follows:

interface ISensor : IUnknown
{
 [propget] HRESULT ActualValue(
 [out, retval] double *pVal);
};

interface IActuator : IUnknown
{
 [propget] HRESULT DesiredValue(
 [out, retval] double *pVal);
 [propput] HRESULT DesiredValue(
 [in] double newVal);
};

interface IController : IActuator
{
 [propget] HRESULT SensorInterface(
 [out, retval] ISensor **pVal);

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

4

 [propput] HRESULT SensorInterface(
 [in] ISensor *newVal);
 [propget] HRESULT ActuatorInterface(
 [out, retval] IActuator **pVal);
 [propput] HRESULT ActuatorInterface(
 [in] IActuator *newVal);
 [propget] HRESULT CycleTime(
 [out, retval] double *pVal);
 [propput] HRESULT CycleTime(
 [in] double newVal);
 [propget] HRESULT Parameter(
 [in] short Index,
 [out, retval] double *pVal);
 [propput] HRESULT Parameter(
 [in] short Index,
 [in] double newVal);
};

interface IActiveController
 : IController
{
 [propget] HRESULT Priority(
 [out, retval] short *pVal);
 [propput] HRESULT Priority(
 [in] short newVal);
 HRESULT Start();
 HRESULT Stop();
};

Figure 6. Implementation with COM

IController is a generic interface for a single-vari-
able controller with configurable cycle time and an
arbitrary number of control parameters. PIDController
uses three parameters for the proportional, integral,
and differential gain. IActiveController extends this
interface to allow control of the controller´s execution
in a separate thread. (The reason for splitting the inter-
face definitions like this was to reuse IController for a
controller that uses the cyclic execution service rather
than maintaining its own thread.) Note that IController
inherits the DesiredValue property from IActuator.
This definition was chosen to allow the interface to be
used for cascaded control loops where the output of
one controller forms the input to another.

The test application TestControl2.exe creates one
instance of PIDController and one instance of
DummyController. It then connects the two objects by
setting the SensorInterfaca and ActuatorInterface
properties of the PIDController object. After this it sets

the cycle time and the control parameters before in-
voking the Start operation. This causes the PIDCon-
troller object to create a new thread that executes a
control loop. A simple timing mechanism is used to
control the execution of the loop in accordance with
the cycle time property. At each iteration the loop
reads a value from the sensor interface, which it uses
in conjunction with the desired value, the control pa-
rameters, and an internal state based on previous inputs
to compute and write a new value to the actuator inter-
face. To minimize jitter (input-output delay as well as
sampling variability), this part of the loop uses internal
copies of all variables, eliminating the need for any
synchronization.

Next, the control loop updates its internal variables
for subsequent iterations. Since the desired value and
the control parameters may be changed by the applica-
tion while the controller is running, this part of the
loop uses a mutual exclusion mechanism for synchro-
nization. In addition to performing its control task the
loop timestamps and writes the sensor and actuator
data to a log. The control loop is illustrated by the fol-
lowing pseudo code:

while (Run) {
 WaitForTimer();
 ReadSensorInput();
 ComputeAndWriteActuatorOutput();
 WriteDataToLog();
 WaitForMutex();
 UpdateInternalState();
 ReleaseMutex();
}

Note that, due to the simple timing mechanism, the
control loop will halt unless all iterations complete
within the cycle time.

Next, we implemented a component intended to
perform the same function, but relying on services
provided by generated proxies. A test application using
this component and proxies is shown in Figure 7. In
this application, termed Control3, PIDController is a
COM class that implements the IPassiveController
interface. Note that, although this COM class has the
same human readable name as in the application de-
scribed above, it has a distinct identity to the COM
run-time environment. To avoid confusion we use the
notation Control3.PIDController when appropriate.
IPassiveController extends IController as follows:

Interface IPassiveController
 : IController
{
 HRESULT UpdateOutput();
 HRESULT UpdateState();
};

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

5

These operations are used by the proxy_PIDController
object to implement a control loop that performs the
same control task as in the previous example.

Figure 7. Implementation with COM and gen-
erated proxies

The proxy_PIDController COM class was gener-
ated with the use of the tool by checking the cyclic
execution service under the Control3.PIDController´s
IPassiveController interface. The proxy_DummyProc-
ess COM class provides the interface pointers for the
controller’s SensorInterface and ActuatorInterface
properties. Behind this proxy is a DummyProcess ob-
ject with the same functionality as in the Control2 ap-
plication. proxy_DummyProcess was generated by the
tool with the logging service checked. As a result, all
data read and written via the sensor and actuator inter-
faces are logged. The interfaces IDummyProc-
ess_Proxy and IPIDController_Proxy are only used to
set up the connections between proxies and other ob-
jects. They are defined as follows:

interface IProxy_DummyProcess
 : IUnknown
{
 HRESULT AttachISensor(
 [in] IUnknown *pTarget);
 HRESULT AttachIActuator(
 [in] IUnknown *pTarget);
};

interface IProxy_PIDController
 : IUnknown
{
 HRESULT AttachIPassiveController(
 [in] IUnknown *pTarget);
};

To be able to evaluate the overhead introduced by
the use of COM and the generated proxies, we imple-
mented two non-component-based versions of the ap-
plication, each consisting of a single executable file.
Figure 8 shows the internal structure of these pro-
grams, termed Control0 and Control1, as UML class
diagrams.

Figure 8. Non-component-based implementa-
tions

The application termed Control1 was constructed
by making very modest modifications to the source
code of the Control2 application. The main modifica-
tion was that the calls to the COM library for creating
instances of COM classes were replaced by simple
instantiation of C++ classes. The C++ classes CPID-
Controller and CDummyProcess are identical to those
used internally to implement the COM classes of Con-
trol2. ISensor and IActuator are abstract C++ classes
that correspond directly to the COM interfaces of the
same names. They are specified in C++ as follows:

class ISensor : public IUnknown
{
 virtual HRESULT get_ActualValue(
 double *pVal) = 0;
};

class IActuator : public IUnknown
{
 virtual HRESULT get_DesiredValue(
 double *pVal) = 0;
 virtual HRESULT put_DesiredValue(
 double newVal) = 0;
};

Control0 is a modified version of Control1, where
the classes are modified such that virtual methods are
not used. This means that calls to the methods are not
performed using VTABLES of function pointers, and
the address of the methods are determined at compile-
time rather than at run-time. The abstract classes are
removed, since such classes rely entirely on virtual
methods. Table 1 summarizes the four different ver-
sions of the application.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

6

Table 1. Summary of application versions

Name Description

Control0 Using C++ without virtual methods

Control1 Using C++ with virtual methods

Control2 Using COM

Control3 Using COM and proxy-based services

4. Tests

4.1. Test setup

The example application described in the previous
section was tested on a system running Window CE
5.00. The hardware used was a PC with a 2.8 GHz
Pentium 4 processor. The Windows CE run-time im-
age was built using Microsoft Platform Builder 5.00
with the standard board support package for a Win-
dows CE based PC (CEPC) and the standard setting
provided by the “Industrial Controller” platform tem-
plate. This platform allowed time measurements to be
made with a resolution of one millisecond. Each of the
four versions of the application was built with Micro-
soft eMbedded Visual C++ and tested on the target
computer one at a time, resetting the target between
each test.

For each of the four versions of the example appli-
cation, two different execution times were measured.
The first was the time required for invocation of the
get_ActualValue method of the DummyProcess COM
objects or, in the case of Control0 and Control1, of the
CDummyProcess C++ objects. Given the one millisec-
ond resolution, we were required to modify the control
loop of the programs by adding an inner loop that per-
formed two million invocations of get_ActualValue
instead of a single invocation to obtain usable time
measurements. For each of the versions, this measure-
ment was made 170 times.

The second measurement made for each of the ver-
sions was the time required for initialization of the
application. This initialization includes instantiation of
the COM or C++ objects and setting up of the connec-
tions between them. This test was performed 20 times
for each of the versions of the example application.

In addition to execution times, measurements of
memory usage were also performed. However, we
were not able to see any difference between the four
different versions of the test application on the test

platform we used. Also, differences between the size
of source code and binary files were presented in [12]
and are not repeated here. Thus, the following presen-
tation and discussion of the results focus on execution
times.

4.1. Results

Figure 9 shows measured execution times of mak-
ing two million invocations of get_ActualValue for the
four different version of the example application. The
measurements for Control0 (without COM and not
using virtual methods) are the lowest with an average
of four milliseconds. These measurements show no
variation, but given that the resolution is one millisec-
ond the uncertainty per measurement is 25%.

Comparing Measured Execution Times of All Programs During
Control Execution

0

5

10

15

20

25

30

35

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161

Sample Number

E
xe

cu
ti

on
 T

im
e

(m
s)

Control 0
Control 1
Control 2
Control 3

Figure 9. Measured execution times

Control1 (without COM but using virtual methods)
and Contro2 (with COM) give similar results of ap-
proximately 19 milliseconds on average and 5% varia-
tion. This indicates that the overhead of using COM as
well as of using virtual methods in C++ is approxi-
mately 15 milliseconds. Taking into account that two
million invocations were made per measurement, this
correspond to an invocation overhead of 7.5 nanosec-
onds for this particular processor.

Control3 (with COM and all invocations passing
through a proxy objects) gives approximately 27 milli-
seconds on average and 11% variation. This indicates
an additional overhead of approximately eight milli-
seconds compared to Control2, corresponding to four
nanoseconds per invocation. Table 2 summarizes the
measurements depicted in Figure 9.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

7

Table 2. Summary of execution times

Execution time (ms)
Version

Min. Max. Average

Control0 4 4 4

Control1 19 20 19.00588

Control2 19 20 19.01176

Control3 27 30 27.12353

Figure 10 shows measured execution times of ap-
plication initialization for Control0, Control1, and
Control2. The measurements for Control0 (where the
initialization consists of instantiating two C++ classes
and passing a reference of one instance to the other)
give an average of 0.4 milliseconds. For Control1
(where the initialization is very similar) the average is
0.7 milliseconds and for Control2 (where initialization
involves calling the COM library to instantiate the
COM classes) one millisecond. Given that these values
are so small compared to the one millisecond resolu-
tion and that only 20 measurements were collected in
each case, they can only be viewed as crude estima-
tions of the real execution time.

Comparing Measured Execution Times for
Initialization of Control0, Control1 & Control2

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19

Sample Number

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Control0

Control1

Control2

Figure 10. Measured initialization times for
Control0, Control1, and Control2

Figure 11 shows measured execution times of ap-
plication initialization for Control3. For this imple-
mentation (where the initialization comprises calling
the COM library to instantiate four different COM

classes in three different components and performing a
comparatively complex setup task) the average is ap-
proximately 2940 milliseconds, which is off course
notably higher than for the other implementations. The
variation is also quite high with a difference of 4686
milliseconds between the minimum and maximum. If
we treat the maximum value as an outlier we get ap-
proximately 2730 milliseconds on average and 40%
variation. The measured execution times of application
initialization is summarized in Table 3.

Control3

0

1000

2000

3000

4000

5000

6000

7000

8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sample Number

E
xe

cu
ti

o
n

 T
im

e
(m

s)

Figure 11. Measured initialization times for
Control3

Table 3. Summary of initialization times

Execution time (ms)
Version

Min. Max. Average

Control0 0 1 0.4

Control1 0 1 0.7

Control2 1 1 1

Control3 2264 6950 2940.85

5. Discussion

The measured execution times during control exe-
cution constitute quite strong evidence that the over-
heads of using both COM and the proxy-based ser-
vices are modest and, even more importantly in many
real-time systems, quite predictable. The overhead of
using COM interfaces pointers are found to be essen-
tially equal to that of using C++ virtual methods. It
should be noted here, however, that using C++ classes
allows mixing of virtual and statically bound methods.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

8

Typically, a carefully designed C++ class will use vir-
tual methods only where variability is desired, leading
to a lower average overhead than for an equivalent
COM class where invocation through interface point-
ers is mandatory.

Comparing the use of proxy-based services with the
use of COM without services, the additional overhead
is found to be quite modest. In some cases, however,
the increased number of indirections might be expected
to lead to an increase in the number of cache misses
and thereby a higher penalty. Clearly, the tests pre-
sented in this paper, where a single operation has been
invoked repeatedly in a loop, is much less likely to
result in cache misses than more realistic usage sce-
narios.

Based on the measured execution times during ap-
plication initialization, it seams safe to conclude that
the times required when C++ or COM is used are of
the same order of magnitude, while the time required
when proxy-based services are used are several orders
of magnitude higher. Nonetheless, these measurements
leave much to be desired. For Control0, Control1, and
Control2, it would be desirable to perform additional
measurements using loops that repeat the initializations
to obtain higher values and hence increased accuracy.
For Control3, additional measurements to reveal the
most time consuming parts of the initialization phase
would be very desirable.

6. Related work

Although models based on source code component
still seem to dominate, there are other efforts to sup-
port binary software components for embedded real-
time systems. One example is the ROBOCOP research
project [14], which builds on the aforementioned Ko-
ala component model and primarily targets the con-
sumer electronics domain. The component model de-
fined as part of this project is largely based on the ba-
sic concepts of COM. Furthermore, the sequel of the
project, called Space4U [15], also seems to use a
mechanism similar to software component services,
e.g. to support fault-tolerance.

The approach to software component services dis-
cussed in this paper relies heavily on the technique of
providing services by interception. This mechanism is
also used in other technologies and is sometimes called
interceptors rather than proxies, e.g. in the Common
Object Request Broker Architecture (CORBA) [16]
and the MEAD framework for fault-tolerant real-time
CORBA applications [17]. The approach is further-
more similar to the concept of aspects and weaving. In
[18], a real-time component model called RTCOM is

presented which have support for weaving of function-
ality into components as aspects while maintaining
real-time properties. An important difference with our
approach is that, in RTCOM, functionality is weaved
in at the level of source code..

Another effort towards adapting a mainstream com-
ponent model to the embedded real-time systems do-
main is presented in [19]. This work aims to extend the
Enterprise JavaBeans model with means for specifying
timing properties of software components. As it fo-
cuses on specification and not run-time issues, it is
complementary to our work rather than an alternative.
The fact that it is based on EJB rather than COM is not
of principal importance, but the lack of Java run-time
environments for embedded real-time systems may
mean that the approach is further from real-world ap-
plication.

In general, the concept of software component ser-
vices can be seen as a special case of middleware. The
use of middleware in embedded real-time systems is an
active topic of research (and practice) not necessarily
related to software components. Similar to our ap-
proach of adapting a mainstream component model,
efforts have been made to adapt mainstream middle-
ware to the domain of embedded real-time systems
[20]. Specialized middleware frameworks for this do-
main also exist, including OSA+ [21] that provides
services for distributed systems and Kokyu [22] that
provides flexible scheduling and dispatching services.

7. Conclusion and future work

The aim of the work presented in this paper has
been to investigate the possibility of using a main-
stream software component model, as well as an exten-
sion of this model with run-time services, for devel-
oping embedded real-time systems. We believe that the
results show that this is a promising approach, al-
though further investigation, in particular of the over-
heads related to object instantiation, should be under-
taken. The overheads related to invoking operations
through COM interfaces as well as through a for-
warding proxy were found to be both modest and pre-
dictable. Thus, these overheads would probably be
quite acceptable in many embedded real-time systems.
In particular, we can conclude that a system that can
afford the invocation overhead of C++ virtual methods
can also afford COM interfaces, since the cost is nearly
identical.

Since we view the use of a mainstream component
model like COM as an alternative to more specialized
models, it would be interesting to conduct a compara-
tive study of COM (and possibly other mainstream

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

9

models) and at least one specialized model. A possible
object of such a study is the aforementioned Koala
component model, which is supported by freely avail-
able tools. Differences between models, e.g. in terms
of time and memory overheads, should be investigated
empirically by implementing example applications.

In addition to the run-time effects on resource usage
and predictability, the effects of using the approach on
development effort and such quality attributes as reli-
ability and reusability should be evaluated. In our fu-
ture work, we aim to do this using different empirical
techniques, including both controlled experiments and
case studies with student participation. In addition, it
would be desirable to perform industrial case studies,
which implies a lower level of control and replication,
but allows more realistic situations to be investigated.

8. References

[1] R. Englander, Developing Java Beans, O'Reilly, 1997.

[2] D. Chappell, Understanding ActiveX and OLE, Micro-
soft Press, 1996.

[3] R. Monson-Haefel, B. Burke, and S. Labourey, Enter-
prise JavaBeans, 4th edition, O'Reilly, 2004.

[4] D.S. Platt, Understanding COM+, Microsoft Press,
1999.

[5] G.T. Heineman and W.T. Council, Component-Based
Software Engineering – Putting the Pieces Together,
Addison-Wesley, 2001.

[6] R. van Ommering, F. van der Linden, and J. Kramer,
“The Koala Component Model for Consumer Elec-
tronics Software”, Computer, volume 33, issue 3,
2000.

[7] T. Genßler, C. Stich, A. Christoph, M. Winter, O.
Nierstrasz, S. Ducasse, R. Wuyts, G. Arévalo, B.
Schönhage, and P. Müller, “Components for Embed-
ded Software – The PECOS Approach”, Proceedings
of the 2002 International Conference on Compilers,
Architectures and Synthesis for Embedded Systems,
2002.

[8] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törn-
gren, “SaveCCM – A Component Model for Safety-
Critical Real-Time Systems”, Proceedings of the 30th
EROMICRO Conference, 2004.

[9] D. Box, Essential COM, Addison-Wesley, 1997.

[10] J. Murray, Inside Microsoft Windows CE, Microsoft
Press, 1998.

[11] D.S. Platt, Introducing Microsoft .NET, 3rd edition,
Microsoft Press, 2003.

[12] F. Lüders, D. Flemström, A. Wall, and I. Crnkovic, “A
Prototype Tool for Software Component Services in
Embedded Real-Time Systems”, Proceedings of the
9th International Symposium on Component-Based
Software Engineering, 2006.

[13] K.J. Åström and B. Wittenmark, Computer Controlled
Systems – Theory and Design, 2nd edition, Prentice
Hall, 1990.

[14] J. Muskens, M.R.V. Chaudron, and J.J. Lukkien, “A
Component Framework for Consumer Electronics
Middleware”, C. Atkinson, C. Bunse, H. Gross, and C.
Peper (editors.), Component-Based Software Devel-
opment for Embedded Systems, Springer, 2005.

[15] Space4U Project, “Space4U Public Homepage”, 2006,
http://www.hitech-projects.com/euprojects/space4u/,
Accessed on 28 April 2006.

[16] Object Management Group, “Common Object Request
Broker Architecture – Core Specification”, OMG for-
mal/04-03-12, March 2004.

[17] P. Narasimhan, T.A. Dumitras, A.M. Paulos, S.M.
Pertet, C.F. Reverte, J.G. Slember, and D. Srivastava,
“MEAD – Support for Real-Time Fault-Tolerant
CORBA”, Concurrency and Computation – Practice
and Experience, volume 17, issue 12, February 2005.

[18] A. Tesanovic, D. Nyström, J. Hansson, and C. Nor-
ström, “Aspects and Components in Real-Time System
Development – Towards Reconfigurable and Reusable
Software”, Journal of Embedded Computing, volume
1, number 1, February 2004.

[19] S. Wang, S. Rho, Z. Mai, R. Bettati, and W. Zhao,
“Real-Time Component-Based Systems”, Proceedings
of the 11th IEEE Real Time and Embedded Technol-
ogy and Applications Symposium, 2005.

[20] D.C. Schmidt, “Middleware for Real-Time and
Embedded Systems”, Communications of the ACM,
volume 45, issue 6, June 2002.

[21] F. Picioroaga, A. Bechina, U. Brinkschulte, and E.
Schneider, “OSA+ Real-Time Middleware, Results
and Perspectives”, Proceeding of the 7th International
IEEE Symposium on Object-Oriented Real-Time Dis-
tributed Computing, 2004.

[22] C.D. Gill, R.K. Cytron, and D.C. Schmidt, “Multipara-
digm Scheduling for Distributed Real-Time Embedded
Computing”, Proceedings of the IEEE, volume 91, is-
sue 1, January 2003.

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

10

	Select a link below
	Return to Main Menu
	Return to Previous View

