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Abstract

While the use of software component models has 
become popular in the development of desktop appli-
cations and distributed information systems, such 
models have not been widely used in the domain of 
embedded real-time systems. Presumably, this is due to 
the requirements such systems have to meet with re-
spect to predictable timing and limited use of re-
sources. There is a considerable amount of research 
on component models for embedded real-time systems 
that focuses on source code components, statically 
configured systems, and relatively narrow application 
domains. This paper explores the alternative approach 
of using a mainstream component model based on bi-
nary components. The effects of using the model on 
timing and resource usage have been measured by 
implementing example applications both with and 
without using the model. In addition, the use of a pro-
totype tool for supporting software component services 
has been investigated in the same manner. 

1. Introduction 

The use of software component models has become 
popular in the development of desktop applications 
and distributed information systems, where popular 
component models include JavaBeans [1] and ActiveX
[2] for desktop applications and Enterprise JavaBeans
(EJB) [3] and COM+ [4] for information systems. In 
addition to basic standards for naming, interfacing, 
binding, etc., these models also define standardized 
sets of run-time services oriented towards the applica-
tion domains they target. This concept is generally 
termed software component services [5]. 

Software component models havpe not been widely 
used in the development of real-time and embedded 
systems. It is generally assumed that this is due to the 
special requirements such systems have to meet, in 
particular with respect to timing predictability and 
limited use of resources such as memory and CPU 

time. Much research has been directed towards defin-
ing new component models for real-time and embed-
ded systems, typically focusing on relatively small and 
statically configured systems. Most of the published 
research proposes models based on source code com-
ponents and targeting relatively narrow application 
domains. Examples of such models include the Koala
component model for consumer electronics [6], PE-
COS for industrial field devices [7], and SaveCCM for 
vehicle control systems [8].  

An alternative approach is to strive for a component 
model for embedded real-time systems based on binary 
components and targeting a broader domain of appli-
cations, similarly to the domain targeted by a typical 
real-time operating system. This paper explores the 
possibility of using a mainstream component model as 
the starting point for such a model. Specifically, the 
use of the Component Object Model (COM) [9] with 
the real-time operating system Windows CE [10] is 
investigated. We have empirically evaluated the effect 
of using COM by implementing applications both with 
and without using the model. In addition, we have 
evaluated the effects of using a prototype tool for sup-
porting software component services in embedded 
real-time systems. 

The rest of this paper is organized as follows. Sec-
tion 2 provides background information on COM and 
the prototype tool. Section 3 presents an automatic 
control applications that we use as an example to 
evaluate the use of these technologies. In Section 4, we 
described the tests we have conducted and their results. 
These results are discussed in Section 5. Section 6 is 
an overview of some related work. Conclusions and 
ideas for future work are presented in Section 7. 

2. Background 

2.1. The Component Object Model (COM) 

Microsoft’s Component Object Model (COM) [9] is 
one of the most commonly used software component 
models for desktop and server side applications. Al-
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though the model is increasingly being replaced by the 
newer .NET technology [11] in these domains, we 
believe COM is a more suitable starting point for a 
model aimed at embedded real-time systems because 
of its relative simplicity. In particular, the use of auto-
matic memory management (garbage collection) in 
.NET is a serious barrier against ensuring predictable 
timing. 

A key principle of COM is that interfaces are speci-
fied separately from both the components that imple-
ment them and those that use them. COM defines a 
dialect of the Interface Definition Language (IDL) that 
is used to specify object-oriented interfaces. Interfaces 
are object-oriented in the sense that their operations are 
to be implemented by a class and passed a reference to 
a particular instance of that class when invoked. The 
code that uses a component does not refer directly to 
any objects, however. Instead, the operations of an 
interface supported by an object are invoked via what 
is known as an interface pointer. A concept known as 
interface navigation makes it possible for the user to 
obtain a pointer to every interface supported by the 
object.  

COM also defines a run-time format for interface 
pointers. What an interface pointer really references is 
an interface node, which in turn, contains a pointer to a 
table of function pointers, called a VTABLE. Typi-
cally, the node also contains a pointer to an object’s 
instance data, although this is implementation specific. 
This use of VTABLEs is identical to the way that 
many C++ compilers implement virtual methods. Thus, 
the time and space overhead associated with accessing 
an object through an interface pointer is presumably 
the same as that incurred with C++ virtual methods. 
Figure 1 illustrates the typical format of interface 
nodes.

interface pointer

interface node
instance data

VTABLE

method code

method code

method code

method code

Figure 1. Typical format of COM interface 
nodes

For most real-time systems, a more serious concern 
than these modest overheads is that interface naviga-
tion introduces a possible source of run-time errors. If 
the user of a component asks an object for a pointer to 
an interface that the object does not support, this will 

not be detected during compilation. It may be argued, 
in fact, that this is the principal difference between 
interface navigation and interface inheritance in tradi-
tional object-oriented programming. This can be seen 
as a necessary price to pay for the otherwise desirable 
reduced compile-time dependence between compo-
nents. 

As already mentioned, a COM component is im-
plemented in classes. The mechanism for creating in-
stances of these classes is closely linked with how and 
when the code in different components is linked to-
gether. COM defines a policy for instantiation, which 
is intended to ensure that different components can be 
installed in a system at different times. When a com-
ponent is installed, information about it must be regis-
tered somewhere in the system, linking the identity of 
its classes to the code that implement these. COM also 
requires a run-time library, called the COM library, to 
be installed on the system. When some code wants to 
use a component, it uses an operation provided by the 
COM library to ask for an instance of a class and an 
initial interface pointer to it. If the code of the compo-
nent is not already loaded into memory, the COM li-
brary uses the registered information to locate the code 
and load it before an instance is created. This process 
is illustrated in Figure 2. 

Client Component

COM Library Registry

1) Request object by
class and interface

2) Look up component

3) Load component if necessary
and request object

4) Return interface 
pointer

5) Invoke
operations

Figure 2. Instance creation and dynamic 
loading of code in COM

Thus, creation of an instance involves searching the 
information about registered classes and possibly 
loading of code. This leads to a noticeable overhead 
when compared to instantiation in for instance C++. 
Furthermore, this overhead will vary, depending on 
whether the code implementing a class has already 
been loaded or not. This variability can be eliminated, 
however, by designing the software such that all com-
ponents that may be used will be loaded at start-up. 
Note that removal of instances is subject to the same 
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variability, since the COM standard states that code 
can be unloaded when the last instance that rely on it is 
removed. 

A benefit that follows from COM’s way of creating 
instances is that the code that implements a component 
can be built independently of any code that uses the 
component. Since instantiation involves passing the 
identity of the desired class as a parameter to a system 
operation, it is a possible source of run-time errors, 
which is not present during instantiation in traditional 
object-oriented programming, since attempting to in-
stantiate a class that does not exist will result in a com-
pilation error in this case. Again, this is a necessary 
price to be paid for decreased coupling. 

2.2. Software component services for embed-
ded real-time systems 

A prototype tool for supporting software compo-
nent services in embedded real time systems is pre-
sented in [12]. The tool adds services to COM compo-
nents on Windows CE through the use of proxy object 
that intercept method calls. Figure 3 illustrates the use 
of a proxy object that provides a simple logging ser-
vice. The object C2 implements an interface IC2 for 
which we wish to apply a logging service. A proxy 
object that also implements IC2 is placed between C2 
and a client that uses the operations exposed through 
IC2. The operations implemented by the proxy forward 
all invocations to the corresponding operations in C2 
in addition to writing information about parameter 
values, return codes, and invocation and return times to 
some logging medium. 

Figure 3. A logging service proxy 

The tool takes as inputs a component specification 
along with specifications of desired services and gen-
erates source code for a proxy object. Component 
specifications may be in the form of Interface Defini-
tion Language (IDL) files or their binary equivalent 
Type Library (TLB) files. Desired services are either 

specified in a separate file using an XML-based format 
or in the tool´s graphical user interface, described fur-
ther below. Note that access to component source code 
is not required. Based on these inputs, the tool gener-
ates a complete set of files that can be used with Mi-
crosoft eMbedded Visual C++ to build a COM com-
ponent implementing the proxy objects (i.e., the prox-
ies are themselves COM objects). This process is de-
picted in Figure 4. 

G
e n

e r
at

e

Figure 4. Proxy object generation 

This use of proxy objects for interception is in-
spired by COM+. However, rather than to generate 
proxies at run-time, they are generated and compiled 
on a host computer and downloaded to the embedded 
system along with the application components. This 
process may occur when the software is initially 
downloaded to the system or as part of dynamic recon-
figuration of a system that supports this. In the latter 
case, one can imagine updating or adding proxies 
without updating or adding any application compo-
nents. The current version of the tool only generates 
proxy code and does not address the registration and 
run-time instantiation of components. This means that 
the client code must instantiate each proxy along with 
the affected COM object and set up the necessary con-
nection between them. 

In addition to logging, the tool supports generating 
proxies that implement one or more of the following 
services: execution time measurement of method invo-
cations; synchronization between concurrent invoca-
tions; execution timeout on invocations; and cyclic 
execution of methods. 

Figure 5 shows the graphical user interface of the 
tool. After a TLB or IDL file has been loaded all COM 
classes defined in the file are listed. Checking the box 
to the left of a COM class causes a proxy for that class 
to be generated when the button at the bottom of the 
tool is pressed. Under each COM class, the interfaces 
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implemented by the class is listed and, under each in-
terface, the operations implemented by the interface. In 
addition, the available services are listed with their 
names set in brackets. Checking the box to the left of a 
service causes code to be generated that provides the 
service for the element under which the service is 
listed. In the current version of the tool, a service for 
cyclic execution may only be specified for the IPas-
siveController interface while all other services may 
only be specified for individual operations. The IPas-
siveController interface is described in connection with 
the example application in the next section.  

Figure 5. User interface of the prototype tool 

If the cyclic execution service is checked, the proxy 
will implement an interface called IActiveController 
instead of IPassiveController (see the example in the 
next section). IActiveController includes operations for 
setting the period and threading priority of the cyclic 
execution. Checking the logging service results in a 
proxy that logs each invocation of the affected opera-
tion. The timing service causes the proxy to measure 
the execution time of the process and write it to the log 
at each invocation (if timing is checked but not log-
ging, execution times will be measured but not saved). 

The synchronization service means that each invo-
cation of the operation will be synchronized with all 
other invocations of all other operations on the proxy 
object for which the synchronization service is 
checked. The only synchronization policy currently 
supported is mutual exclusion. The timeout service has 
a numeric parameter. When this service is selected (by 
clicking the name rather than the box) as in Figure 5, 
an input field marked Milliseconds is visible near the 
bottom of the tool. Checking the service results in a 
proxy where invocations of the operation always ter-
minate within the specified number of milliseconds. In 
the case that the object behind the proxy does not 
complete the execution of the operation within this 
time, the proxy forcefully terminates the execution and 
returns en error code. 

3. Example application 

To evaluate the effects of using both COM and the 
prototype tool, we used the example application pre-
sented in [12]. At the center of this application is a 
component that encapsulates a proportional-integral-
differential (PID) controller [13]. Four different ver-
sions of the application were implemented. They are 
presented here in the order in which they were first 
developed. The four versions are summarized in Table 
1 at the end of this section. 

We first implemented a version using COM, shown 
in Figure 6, which we term Control2. PIDController is 
a COM class that implements an interface IActive-
Controller and relies on the two interfaces ISensor and 
IActuator to read and write data from/to the controlled 
process. For the purpose of this example, these inter-
faces are implemented by the simple COM class 
DummyProcess that does nothing except returning a 
constant value to the controller. The interfaces are de-
fined as follows: 

interface ISensor : IUnknown
{
  [propget] HRESULT ActualValue( 
    [out, retval] double *pVal);
};

interface IActuator : IUnknown
{
  [propget] HRESULT DesiredValue( 
    [out, retval] double *pVal); 
  [propput] HRESULT DesiredValue( 
    [in] double newVal); 
};

interface IController : IActuator
{
  [propget] HRESULT SensorInterface( 
    [out, retval] ISensor **pVal); 
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  [propput] HRESULT SensorInterface( 
    [in] ISensor *newVal); 
  [propget] HRESULT ActuatorInterface( 
    [out, retval] IActuator **pVal); 
  [propput] HRESULT ActuatorInterface( 
    [in] IActuator *newVal); 
  [propget] HRESULT CycleTime( 
    [out, retval] double *pVal); 
  [propput] HRESULT CycleTime( 
    [in] double newVal); 
  [propget] HRESULT Parameter( 
    [in] short Index,
    [out, retval] double *pVal); 
  [propput] HRESULT Parameter( 
    [in] short Index,
    [in] double newVal); 
};

interface IActiveController
  : IController
{
  [propget] HRESULT Priority( 
    [out, retval] short *pVal); 
  [propput] HRESULT Priority( 
    [in] short newVal); 
  HRESULT Start(); 
  HRESULT Stop(); 
};

Figure 6. Implementation with COM 

IController is a generic interface for a single-vari-
able controller with configurable cycle time and an 
arbitrary number of control parameters. PIDController 
uses three parameters for the proportional, integral, 
and differential gain. IActiveController extends this 
interface to allow control of the controller´s execution 
in a separate thread. (The reason for splitting the inter-
face definitions like this was to reuse IController for a 
controller that uses the cyclic execution service rather 
than maintaining its own thread.) Note that IController 
inherits the DesiredValue property from IActuator. 
This definition was chosen to allow the interface to be 
used for cascaded control loops where the output of 
one controller forms the input to another. 

The test application TestControl2.exe creates one 
instance of PIDController and one instance of 
DummyController. It then connects the two objects by 
setting the SensorInterfaca and ActuatorInterface 
properties of the PIDController object. After this it sets 

the cycle time and the control parameters before in-
voking the Start operation. This causes the PIDCon-
troller object to create a new thread that executes a 
control loop. A simple timing mechanism is used to 
control the execution of the loop in accordance with 
the cycle time property. At each iteration the loop 
reads a value from the sensor interface, which it uses 
in conjunction with the desired value, the control pa-
rameters, and an internal state based on previous inputs 
to compute and write a new value to the actuator inter-
face. To minimize jitter (input-output delay as well as 
sampling variability), this part of the loop uses internal 
copies of all variables, eliminating the need for any 
synchronization.  

Next, the control loop updates its internal variables 
for subsequent iterations. Since the desired value and 
the control parameters may be changed by the applica-
tion while the controller is running, this part of the 
loop uses a mutual exclusion mechanism for synchro-
nization. In addition to performing its control task the 
loop timestamps and writes the sensor and actuator 
data to a log. The control loop is illustrated by the fol-
lowing pseudo code: 

while (Run) { 
   WaitForTimer(); 
   ReadSensorInput(); 
   ComputeAndWriteActuatorOutput(); 
   WriteDataToLog(); 
   WaitForMutex(); 
   UpdateInternalState(); 
   ReleaseMutex(); 
}

Note that, due to the simple timing mechanism, the 
control loop will halt unless all iterations complete 
within the cycle time. 

Next, we implemented a component intended to 
perform the same function, but relying on services 
provided by generated proxies. A test application using 
this component and proxies is shown in Figure 7. In 
this application, termed Control3, PIDController is a 
COM class that implements the IPassiveController 
interface. Note that, although this COM class has the 
same human readable name as in the application de-
scribed above, it has a distinct identity to the COM 
run-time environment. To avoid confusion we use the 
notation Control3.PIDController when appropriate. 
IPassiveController extends IController as follows: 

Interface IPassiveController
  : IController 
{
  HRESULT UpdateOutput(); 
  HRESULT UpdateState(); 
};
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These operations are used by the proxy_PIDController 
object to implement a control loop that performs the 
same control task as in the previous example.  

Figure 7. Implementation with COM and gen-
erated proxies 

The proxy_PIDController COM class was gener-
ated with the use of the tool by checking the cyclic 
execution service under the Control3.PIDController´s 
IPassiveController interface. The proxy_DummyProc-
ess COM class provides the interface pointers for the 
controller’s SensorInterface and ActuatorInterface 
properties. Behind this proxy is a DummyProcess ob-
ject with the same functionality as in the Control2 ap-
plication. proxy_DummyProcess was generated by the 
tool with the logging service checked. As a result, all 
data read and written via the sensor and actuator inter-
faces are logged. The interfaces IDummyProc-
ess_Proxy and IPIDController_Proxy are only used to 
set up the connections between proxies and other ob-
jects. They are defined as follows: 

interface IProxy_DummyProcess
  : IUnknown
{
  HRESULT AttachISensor( 
    [in] IUnknown *pTarget); 
  HRESULT AttachIActuator( 
    [in] IUnknown *pTarget); 
};

interface IProxy_PIDController
  : IUnknown
{
  HRESULT AttachIPassiveController( 
    [in] IUnknown *pTarget); 
};

To be able to evaluate the overhead introduced by 
the use of COM and the generated proxies, we imple-
mented two non-component-based versions of the ap-
plication, each consisting of a single executable file. 
Figure 8 shows the internal structure of these pro-
grams, termed Control0 and Control1, as UML class 
diagrams.  

Figure 8. Non-component-based implementa-
tions

The application termed Control1 was constructed 
by making very modest modifications to the source 
code of the Control2 application. The main modifica-
tion was that the calls to the COM library for creating 
instances of COM classes were replaced by simple 
instantiation of C++ classes. The C++ classes CPID-
Controller and CDummyProcess are identical to those 
used internally to implement the COM classes of Con-
trol2. ISensor and IActuator are abstract C++ classes 
that correspond directly to the COM interfaces of the 
same names. They are specified in C++ as follows: 

class ISensor : public IUnknown 
{
  virtual HRESULT get_ActualValue( 
    double *pVal) = 0; 
};

class IActuator : public IUnknown 
{
  virtual HRESULT get_DesiredValue( 
    double *pVal) = 0; 
  virtual HRESULT put_DesiredValue( 
    double newVal) = 0; 
};

Control0 is a modified version of Control1, where 
the classes are modified such that virtual methods are 
not used. This means that calls to the methods are not 
performed using VTABLES of function pointers, and 
the address of the methods are determined at compile-
time rather than at run-time. The abstract classes are 
removed, since such classes rely entirely on virtual 
methods. Table 1 summarizes the four different ver-
sions of the application. 

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

6



Table 1. Summary of application versions 

Name Description 

Control0 Using C++ without virtual methods 

Control1 Using C++ with virtual methods 

Control2 Using COM 

Control3 Using COM and proxy-based services 

4. Tests 

4.1. Test setup 

The example application described in the previous 
section was tested on a system running Window CE 
5.00. The hardware used was a PC with a 2.8 GHz 
Pentium 4 processor. The Windows CE run-time im-
age was built using Microsoft Platform Builder 5.00 
with the standard board support package for a Win-
dows CE based PC (CEPC) and the standard setting 
provided by the “Industrial Controller” platform tem-
plate. This platform allowed time measurements to be 
made with a resolution of one millisecond. Each of the 
four versions of the application was built with Micro-
soft eMbedded Visual C++ and tested on the target 
computer one at a time, resetting the target between 
each test. 

For each of the four versions of the example appli-
cation, two different execution times were measured. 
The first was the time required for invocation of the 
get_ActualValue method of the DummyProcess COM 
objects or, in the case of Control0 and Control1, of the 
CDummyProcess C++ objects. Given the one millisec-
ond resolution, we were required to modify the control 
loop of the programs by adding an inner loop that per-
formed two million invocations of get_ActualValue 
instead of a single invocation to obtain usable time 
measurements. For each of the versions, this measure-
ment was made 170 times. 

The second measurement made for each of the ver-
sions was the time required for initialization of the 
application. This initialization includes instantiation of 
the COM or C++ objects and setting up of the connec-
tions between them. This test was performed 20 times 
for each of the versions of the example application. 

In addition to execution times, measurements of 
memory usage were also performed. However, we 
were not able to see any difference between the four 
different versions of the test application on the test 

platform we used. Also, differences between the size 
of source code and binary files were presented in [12] 
and are not repeated here. Thus, the following presen-
tation and discussion of the results focus on execution 
times. 

4.1. Results 

Figure 9 shows measured execution times of mak-
ing two million invocations of get_ActualValue for the 
four different version of the example application. The 
measurements for Control0 (without COM and not 
using virtual methods) are the lowest with an average 
of four milliseconds. These measurements show no 
variation, but given that the resolution is one millisec-
ond the uncertainty per measurement is 25%.  

Comparing Measured Execution Times of All Programs During 
Control Execution
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Figure 9. Measured execution times

Control1 (without COM but using virtual methods) 
and Contro2 (with COM) give similar results of ap-
proximately 19 milliseconds on average and 5% varia-
tion. This indicates that the overhead of using COM as 
well as of using virtual methods in C++ is approxi-
mately 15 milliseconds. Taking into account that two 
million invocations were made per measurement, this 
correspond to an invocation overhead of 7.5 nanosec-
onds for this particular processor.  

Control3 (with COM and all invocations passing 
through a proxy objects) gives approximately 27 milli-
seconds on average and 11% variation. This indicates 
an additional overhead of approximately eight milli-
seconds compared to Control2, corresponding to four 
nanoseconds per invocation. Table 2 summarizes the 
measurements depicted in Figure 9. 
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Table 2. Summary of execution times 

Execution time (ms) 
Version

Min. Max. Average 

Control0 4 4 4 

Control1 19 20 19.00588 

Control2 19 20 19.01176 

Control3 27 30 27.12353 

Figure 10 shows measured execution times of ap-
plication initialization for Control0, Control1, and 
Control2. The measurements for Control0 (where the 
initialization consists of instantiating two C++ classes 
and passing a reference of one instance to the other) 
give an average of 0.4 milliseconds. For Control1 
(where the initialization is very similar) the average is 
0.7 milliseconds and for Control2 (where initialization 
involves calling the COM library to instantiate the 
COM classes) one millisecond. Given that these values 
are so small compared to the one millisecond resolu-
tion and that only 20 measurements were collected in 
each case, they can only be viewed as crude estima-
tions of the real execution time.  

Comparing Measured Execution Times for 
Initialization of Control0, Control1 & Control2
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Figure 10. Measured initialization times for 
Control0, Control1, and Control2 

Figure 11 shows measured execution times of ap-
plication initialization for Control3. For this imple-
mentation (where the initialization comprises calling 
the COM library to instantiate four different COM 

classes in three different components and performing a 
comparatively complex setup task) the average is ap-
proximately 2940 milliseconds, which is off course 
notably higher than for the other implementations. The 
variation is also quite high with a difference of 4686 
milliseconds between the minimum and maximum. If 
we treat the maximum value as an outlier we get ap-
proximately 2730 milliseconds on average and 40% 
variation. The measured execution times of application 
initialization is summarized in Table 3. 
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Figure 11. Measured initialization times for 
Control3

Table 3. Summary of initialization times 

Execution time (ms) 
Version

Min. Max. Average 

Control0 0 1 0.4 

Control1 0 1 0.7 

Control2 1 1 1 

Control3 2264 6950 2940.85 

5. Discussion 

The measured execution times during control exe-
cution constitute quite strong evidence that the over-
heads of using both COM and the proxy-based ser-
vices are modest and, even more importantly in many 
real-time systems, quite predictable. The overhead of 
using COM interfaces pointers are found to be essen-
tially equal to that of using C++ virtual methods. It 
should be noted here, however, that using C++ classes 
allows mixing of virtual and statically bound methods. 
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Typically, a carefully designed C++ class will use vir-
tual methods only where variability is desired, leading 
to a lower average overhead than for an equivalent 
COM class where invocation through interface point-
ers is mandatory. 

Comparing the use of proxy-based services with the 
use of COM without services, the additional overhead 
is found to be quite modest. In some cases, however, 
the increased number of indirections might be expected 
to lead to an increase in the number of cache misses 
and thereby a higher penalty. Clearly, the tests pre-
sented in this paper, where a single operation has been 
invoked repeatedly in a loop, is much less likely to 
result in cache misses than more realistic usage sce-
narios. 

Based on the measured execution times during ap-
plication initialization, it seams safe to conclude that 
the times required when C++ or COM is used are of 
the same order of magnitude, while the time required 
when proxy-based services are used are several orders 
of magnitude higher. Nonetheless, these measurements 
leave much to be desired. For Control0, Control1, and 
Control2, it would be desirable to perform additional 
measurements using loops that repeat the initializations 
to obtain higher values and hence increased accuracy. 
For Control3, additional measurements to reveal the 
most time consuming parts of the initialization phase 
would be very desirable. 

6. Related work 

Although models based on source code component 
still seem to dominate, there are other efforts to sup-
port binary software components for embedded real-
time systems. One example is the ROBOCOP research 
project [14], which builds on the aforementioned Ko-
ala component model and primarily targets the con-
sumer electronics domain. The component model de-
fined as part of this project is largely based on the ba-
sic concepts of COM. Furthermore, the sequel of the 
project, called Space4U [15], also seems to use a 
mechanism similar to software component services, 
e.g. to support fault-tolerance. 

The approach to software component services dis-
cussed in this paper relies heavily on the technique of 
providing services by interception. This mechanism is 
also used in other technologies and is sometimes called 
interceptors rather than proxies, e.g. in the Common 
Object Request Broker Architecture (CORBA) [16] 
and the MEAD framework for fault-tolerant real-time 
CORBA applications [17]. The approach is further-
more similar to the concept of aspects and weaving. In 
[18], a real-time component model called RTCOM is 

presented which have support for weaving of function-
ality into components as aspects while maintaining 
real-time properties. An important difference with our 
approach is that, in RTCOM, functionality is weaved 
in at the level of source code.. 

Another effort towards adapting a mainstream com-
ponent model to the embedded real-time systems do-
main is presented in [19]. This work aims to extend the 
Enterprise JavaBeans model with means for specifying 
timing properties of software components. As it fo-
cuses on specification and not run-time issues, it is 
complementary to our work rather than an alternative. 
The fact that it is based on EJB rather than COM is not 
of principal importance, but the lack of Java run-time 
environments for embedded real-time systems may 
mean that the approach is further from real-world ap-
plication. 

In general, the concept of software component ser-
vices can be seen as a special case of middleware. The 
use of middleware in embedded real-time systems is an 
active topic of research (and practice) not necessarily 
related to software components. Similar to our ap-
proach of adapting a mainstream component model, 
efforts have been made to adapt mainstream middle-
ware to the domain of embedded real-time systems 
[20]. Specialized middleware frameworks for this do-
main also exist, including OSA+ [21] that provides 
services for distributed systems and Kokyu [22] that 
provides flexible scheduling and dispatching services. 

7. Conclusion and future work 

The aim of the work presented in this paper has 
been to investigate the possibility of using a main-
stream software component model, as well as an exten-
sion of this model with run-time services, for devel-
oping embedded real-time systems. We believe that the 
results show that this is a promising approach, al-
though further investigation, in particular of the over-
heads related to object instantiation, should be under-
taken. The overheads related to invoking operations 
through COM interfaces as well as through a for-
warding proxy were found to be both modest and pre-
dictable. Thus, these overheads would probably be 
quite acceptable in many embedded real-time systems. 
In particular, we can conclude that a system that can 
afford the invocation overhead of C++ virtual methods 
can also afford COM interfaces, since the cost is nearly 
identical.

Since we view the use of a mainstream component 
model like COM as an alternative to more specialized 
models, it would be interesting to conduct a compara-
tive study of COM (and possibly other mainstream 
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models) and at least one specialized model. A possible 
object of such a study is the aforementioned Koala 
component model, which is supported by freely avail-
able tools. Differences between models, e.g. in terms 
of time and memory overheads, should be investigated 
empirically by implementing example applications. 

In addition to the run-time effects on resource usage 
and predictability, the effects of using the approach on 
development effort and such quality attributes as reli-
ability and reusability should be evaluated. In our fu-
ture work, we aim to do this using different empirical 
techniques, including both controlled experiments and 
case studies with student participation. In addition, it 
would be desirable to perform industrial case studies, 
which implies a lower level of control and replication, 
but allows more realistic situations to be investigated. 
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