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Abstract

For component-based systems, classical techniques for
WCET-estimation produce unacceptable overestimations of
the WCET. This is because software components have more
general behavior in order to support reuse. Existing tools
and methods for component-based software engineering
(CBSE) do not yet adequately consider reusable analyses.

We present a method that allows different WCETs to be
associated with subsets of the component behavior by clus-
tering WCETs with respect to behavior. The method is in-
tended to be used for facilitating reusable WCET analy-
sis for reusable software components. We illustrate our
technique and demonstrate its potential in achieving tight
WCET-estimates for components with rich behavior.

1 Introduction

In this paper we present a method that allows reuse of
components with rich behavior (and its implied high re-
source usage) in contexts where not all functionality of the
components is needed. For these contexts it is imperative to
be able to analytically reduce the estimated resource usage
in order to achieve tight predictions of high quality. Thus
increasing accuracy of predictions.

The work presented in this paper is intended to be used to
facilitate reusable WCET analysis for software components,
e.g., in the framework presented in [1].

Components are often reused over product boundaries,
i.e., they are part of product lines and it is desirable to use
the same component without re-analysis or recompilation.
However, different products offer different contexts or us-
age of components; thus a component used in a, e.g., truck
may use different parts of the component compared to the
same component used in a caterpillar. Using a context in-
sensitive WCET analysis may be very inaccurate compared
to the WCETtruck or WCETcaterpillar (WCETs of the truck
and caterpillar respectively), leading to a poor utilization of
the system resources because of large differences between
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predicted behavior and actual behavior.
Resource constraints and predictability requirements are

especially common in many embedded-systems sectors,
such as automotive, robotics and other types of computer
controlled equipment. Because of the intrinsically non-
linear behavior of software, it is often hard to make accurate
predictions of extra functional properties (EFPs). The prob-
lem is worsened in component-based development where
components are kept free of context to facilitate reuse. To
make analysis more accurate, and thereby systems more
predictable, it is desirable to have high accuracy of the pre-
dictions. This can be achieved by considering the context in
which the software is used.

The contribution of this paper is a method for increasing
the accuracy of WCET by clustering WCETs with respect
to usage. We use binary search heuristics to efficiently cre-
ating clusters of similar WCETs. We describe and formalize
the method, and exemplify with an illustrative example. Fi-
nally we use a simple academic case study and create clus-
ters on two components.

The outline of the rest of this paper is as follows; in Sec-
tion 2 we discuss related works. Usage scenarios are dis-
cussed in Section 3. In Section 4 component WCET analy-
sis and the WCET clustering method are presented. In Sec-
tion 5 we evaluate the method. In Section 6 we discuss the
applicability of the method, and finally, Section 7 concludes
the paper and future work is discussed.

2 Related work

Static WCET analysis is the only safe method for esti-
mating WCETs for hard real-time systems [2]. However,
traditional static WCET analysis does not consider usage.
Software components designed for reuse are often more
general compared to application specific code, leading to
that parts of the component are only used in specific us-
ages; in turn leading to greater variance of execution times.
For component-based systems, where reuse is in focus, it is
desirable to not being forced to reanalyze components for
each usage, at least within the same platform.

One approach to solve similar problems is parametric
WCET. This has been proposed by many researchers within
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the WCET community. There are very few parametric
WCET methods developed; although, in a MSc thesis [3, 4]
such a method has been developed and tested with the aiT
tool [5]. However, the focus of this work is not reusable
WCET analysis, and reanalysis is required for different us-
ages.

In [6] each basic block of a program is analyzed with re-
spect to execution times and probability distributions of the
execution times are derived. This method is, in comparision
to our method, based on measurements. In [7] a framework
has been developed that considers the usage of a system;
however, neither software components nor reuse is consid-
ered. In [8] the source code is divided in modes depending
on input, and only modes that are used in a given context is
analyzed. In [9] a framework for probabilistic WCET with
static analysis is presented. The probabilities are related to
the probability of possible values of external and internal
variables. All mentioned methods have the drawback of re-
quiring reanalysis for every new usage.

Recent case-studies show that it is important to consider
mode- and context-dependent WCET estimates when ana-
lyzing real sized industrial software systems [10, 11].

There are several WCET tools that support assertions
and conditions to make the WCET tighter, e.g., aiT [5],
RapiTime [12], Bound-t [13] and SWEET [14].

3 Usage scenario

In the “real” physical world, distinct modes exist and are
often engineered into systems, for example, asmodes of
operation. We hypothesize that modes are significant dis-
criminators of WCET and can be utilized for more accurate
WCET modeling.

In [15] usage scenarios are probability distributions for
so-called modes. Probabilities are estimated using large
number of long program runs. To guarantee statistical prop-
erties (for example relative independence of input order),
the program runs are divided into short runs, for example
cycles in periodic real-time systems, transaction in transac-
tion processing systems, and if necessary sampled. Modes
are then defined as sets of similar runs based on input
classes or other context parameters.
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Figure 1. Input variable I

Thus we define a usage scenario as U =
〈X0, ..., Xn−1〉, where theXi(0 ≤ i < n) are input

variables, each with bounds on values, a given type,
and a probability distributionPi : Xi → [0, 1] for the
occurrence of these values in the input. We assume
that these variables (and hence their distributions) are
chosen to be statistically independent and either have
small domains naturally or model discredited partitions of
real input variables. (See Figure 1 for an illustration of
these concepts). The input domainM is then defined as
M := X0 × · · · × Xn−1. The probability distributions
Pi(0 ≤ i < n) extend uniquely to a probability distri-
bution P : M → [0, 1] on the input domain, defined by
P (x0, . . . , xn−1) = P0(x0) × · · · × Pn−1(xn−1).
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Figure 2. Usage scenario

Furthermore we assume that0 ≤ pt < 1 is a given prob-
ability threshold for ignoring low probability inputs (and
consequently later their times). This will permit predictions
of the form “with0.99 probability WCET< 500ms.” Inputs
over the threshold are calledactive and the ratio ofactive in-
puts overall inputs is called the usage-scenarioutilization.
See also Figure 2 for an illustration of the concept.

4 Component WCET analysis

Components are reused in different products and differ-
ent contexts. A different usage profile can substantially
change the behavior of a component. To predict the exe-
cution time of a complex component with high accuracy,
components must today be reanalyzed for every new usage
profile – a very costly activity. Furthermore, it is not cer-
tain that the source code is available for components as they
may be delivered by sub contractors. In this case analyses
become even more costly [16].

Our method overcomes the problem by analyzing the ex-
ecution times and their probability as a function of the input
of the component. We assume that execution time varies
with different inputs and their associated modes.

We define an input domainI for a set of input variables
{X0, X1, . . . , Xn−1} as I = X0 × X1 × · · · × Xn−1.
Each elementq in I is associated with an execution time
ET (q) ∈ W, where all execution times of the component
are represented in the setW. The longest execution time
max(W) = WCETabs is the absolute WCET. A traditional
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static WCET tool will only find an estimate WCETest ≥
WCETabs; however, we want to find the WCET for a spe-
cific usage. BecauseI often is very large, we can not per-
form WCET analysis for every element inI (every possible
usage), instead we perform static WCET analysis with an-
notations on the input parameters, and perform a number of
systematic runs with different bounds on the input param-
eters. When WCET analysis is performed with restrictions
on the input parameters, notall input elements are consid-
ered, but rather a set of clusters{Dl|Dl ⊆ I}, such that
D0 ⊕ D1 ⊕ · · · ⊕ Dn−1 = I. Thus, a cluster is a subset of
all possible inputs, and a WCET tool can produce a WCET
considering only that subset of inputs. Each clusterDl is
analyzed and associated with two execution timesetmax

l =
max(ET (d))d∈Dl

and etmin
l = min(ET (d))d∈Dl

. The
timeetmax

l is the result of running the WCET tool with the
inputs represented inDl with respect to WCET. The time
etmin

l is the result of running the WCET tool with the inputs
represented inDl with respect to best-case execution time
(BCET).

As with all static WCET analyses all execution time es-
timates are safe over-estimations.

4.1 Clustering WCETs

To handle the size of the input domainI clusters need
to be expressed with bounds or other operators, where each
bound is associated with a WCET. It is often unfeasible to
make a list of all inputs that are associated with one cluster;
furthermore, WCET-tools often uses bounds to restrict the
inputs. With the mathematical operators{≤, >} ranges of
inputs can be expressed. The clustersDl should be chosen
in such a way that similar execution times are grouped and
can be expressed as restrictions on the inputs. A challenge is
to find the right clustersDl such that accuracy of execution
times become high.

4.2 Finding clusters

When the input domainI is too large to perform WCET
analysis for every single input combination it is necessary
to divideI into clusters of input combinations and analyze
each cluster with respect to execution time. As the relation
between inputs and WCET is not known a priori, the input
space must be searched to find clusters such that all input
combinations within the cluster produces similar execution
times. In order to find such clusters it is necessary to have a
way of evaluating clusters.

Theoretically, each single input combination has only
one fixed execution-time. The difference betweenetmax

l

andetmin
l of a clusterDl shows the greatest difference be-

tween two execution times within the cluster. This in turn
is an indicator of how similar the execution times are in the
cluster. The sum of the difference betweenetmax

l andetmin
l

of all clusters
∑

l(et
max
l − etmin

l ) should be minimized to
get the highest accuracy. In the extreme, each cluster con-
tains one element; a good solution is a trade-off between
acceptable difference and max number of clusters. If the
difference betweenetmax

l andetmin
l of the cluster is larger

than the required accuracy the cluster is not evaluated as a
good cluster. Thus, the allowed difference betweenetmax

l

andetmin
l of the cluster depends on the required accuracy

of the cluster.
It is desired to create as few clusters as possible and

yet acquire as high accuracy as possible. Clusters are ef-
fectively annotations (input restrictions) to a WCET-tool.
Hence, we need methods to find annotations for WCET-
tools.

To find accurate clusters with the least effort we propose
a binary tree search approach, recursively dividing the in-
put space into two clusters until the required accuracy has
been found for all branches. Finding the clusters is a blind
search problem. The only data initially known is the longest
and shortest execution time for the entire search space (the
WCET and BCET). This lack of knowledge depends on the
nature of most WCET-tools, they provide a WCET and a
BCET given a program and annotations; we want a large
number of execution times considering different input com-
binations. The more the input space is divided the more data
become available. There are several possible approaches
to solve blind search problems, where binary search, simu-
lated annealing and evolutionary search, are a few possible
candidates.

Consider a simple example (Figure 3) with a function
foo having two input variablesx andy, wherex can take
the values[0..9] andy can take the values[0..4]. All possi-
ble execution times given this simple example are summa-
rized in Table 1. In this small example there are only 50
possible input combinations, and it is trivial to make an ex-
haustive search to find all combinations that give the same
execution time. In a larger example, this is not possible. We
have chosen such a simple example to simplify the visual-
ization of the method.

One set of values produce the worst-case execution time
WCET. In the example in Figure 3 the WCET is produced
by inputs represented by the first row in Table 1. All other
input combinations lead to lower execution times. Consider
an example where the usage scenario definesx = {3..6}
andy = {3..4}, the WCET will never occur. A WCET
topology of the example is shown in Figure 4. For the case
of a 2-dimensional input domain, the WCET topology is
visible in an execution time matrix as shown in Figure 5.

The initial knowledge of the matrix is only the highest
and lowest values (Figure 6.a). Since the knowledge of
the execution times is limited we need a search method to
localize areas with the similar execution times. One ap-
proach is to make a binary search for similar WCETs. In
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Figure 3. Example code

#i x y cond. etmax
l etmin

l

4 [3, 4] [1, 2] 170 170
2 [3, 4] [0] 130 130
12 [0, 2] [0, 4] x 6= y 140 140
15 [5, 9] [0, 2] 130 130
2 [1, 2] [1, 2] x = y 60 60
1 [0] [0] 20 20
14 [3, 9] [3, 4] 1 1

Table 1. Clustered WCETs with respect to the
example code shown in Figure 3. #i is the
number of input combinations. x and y are
the limitations on the inputs. Cond is a log-
ical condition on the inputs and etmax

l
and

etmin

l
are the longest and shortest execution

times produced by the inputs.

Figure 6 binary search is shown, dividing the search space
into smaller and smaller clusters until the desired accuracy
has been reached. The accuracy is defined as the distance
between the highest and lowest valuesetmax

l andetmin
l for

each cluster. In Figure 6, clusters that have reached their
desired accuracy are marked with “*”.

If the input space is divided into too few clusters accu-
racy will be lost; consider the extreme case of only using
one cluster (all inputs), then the accuracy will be the same
as standard WCET analysis. Due to large input spaces it
is often infeasible to make an exhaustive search; therefore,
even when the input domain is divided into a relatively large
number of clusters it is still important how these are chosen
to maximize accuracy. Since the analysis is supposed to be
reused, the effort of the analysis itself is of less concern.
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Figure 4. WCET topology with respect to the
example code shown in Figure 3.
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Figure 5. Matrix of the inputs {x,y} with cor-
responding execution times with respect to
the example code shown in Figure 3. The dot-
ted line shows the cluster Dl as shown in Fig-
ure 4.

5 Evaluation

We have performed a small evaluation with the SWEET
WCET-tool [14]. SWEET has an annotation language to
give restrictions on input parameters. Hence, it is very suit-
able for the approach presented in this paper. The annota-
tions are described by the clusters.

Two components from an academic adaptive cruise con-
troller (ACC) have been analyzed, “loggerOutput” and
“SpeedControl”. Both components have three input vari-
ables. We have a performed a guided binary search on both
components. The guidance consisted of limitations on the
input variables to 8 values for each input; these limitations
were chosen based on the source code. The result of the
guidance was an input domain of83 = 512 input combina-
tions on each of the components. It required 12 clusters of
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Figure 6. Binary search with respect to the
input matrix shown in Figure 5. An ’*’ indi-
cates that a cell does not need to be further
divided. Max indicates the WCET reported by
the tool given the annotations, and min the
BCET dito.

the input domain of the “LoggerOutput” component to par-
tition the execution times and produce 3 WCET expressions
calledcontracts. The execution times were more scattered
in the “SpeedLimit” component and it required 25 clusters
to isolate all execution times into three contracts, The final
contracts derived from the clusters for the “LoggerOutput”
and “SpeedLimit” components are shown in Tables 2 and 3.

# Expression WCET
1 i2 ≤ 0 ∧ i3 ≤ 0 239
2 (i2 > 0∧ i3 ≤ 0)∨ (i2 ≤ 0∧ i3 > 0) 433
3 other 627

Table 2. LoggerOutput component “contract”
from 12 clusters

The derived contracts are used with a usage scenario on
the input parameters. Depending on the usage the contracts
will give the WCET corresponding to the usage.

We see that for many usages we get substantially lower
WCETs for both components. Using a traditional usage
independent analysis would produce much to pessemistic
WCET for many usage scenarios.

# Expression WCET
1 i1 ≤ 0 105
2 i2 > 0 ∧ ((i1 = 0 ∧ i3 < 0)∨

(i1 > 0 ∧ i3 ≥ 0))
384

3 other 263

Table 3. SpeedLimit component “contract”
from 25 clusters

6 Applicability

The method described in this paper is a general cluster-
ing method that is well suited for creating contract based
WCETs for components. Each cluster can also be aug-
mented with more information, e.g., scheduling parameters
and energy consumption. In this way clusters can be created
with respect to several parameters and trade-offs between
them can be made.

Furthermore, the proposed method is useful for both hard
and soft real-time systems. In this paper we have only de-
scribed the application for hard real-time systems.

The methods as described in this paper indirectly per-
form an exhaustive WCET analysis because all input com-
binations are represented. This will result in safe overesti-
mations and the “real” WCET is guaranteed to be included
in the analysis.

For soft real-time systems, a number of input com-
binations (not clusters) can be analyzed with respect to
execution-time and clusters can be created through, e.g., the
least square method.

The focus of the method is still to create tight and ac-
curatereusable WCET estimations through expressing the
WCET as usage parameterized contracts.

6.1 Hardware effects

It should be noted that the contracts specified for the
clusters only consider input data limits. The timing of the
code in the cluster will also be dependant on the hardware
upon which the code is executed and where in memory the
code is located. Assuming that a simple 4-, 8- or 16-bit CPU
is used, which is common in a large segment of the embed-
ded domain, and that the code is forced to reside in and
access memory areas with the same timing properties as as-
sumed in the WCET analysis, the WCET estimates derived
should also be valid in the new context. However, if a more
advanced CPU is used, maybe with a cache or some other
performance enhancing features, and/or if the compiler and
linker change the code structure, and/or if some other hard-
ware timing properties are changed, the derived component
WCET estimates should be used with caution. Thus, in the
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latter case the contract for a component might also need to
include information upon the hardware, compiler and linker
configuration. This is something not yet considered in our
work.

7 Conclusions and future work

Component-based software engineering (CBSE) is a
promising development method to reduce time-to-market,
reduce development costs, and to increase software quality.
One main characteristic of CBSE that enable these benefits
is its facilitation of component reuse, i.e., the same com-
ponent can be used in different contexts. Unfortunately for
resource constrained systems, or systems where high de-
gree of predictability is needed, reusable components with
rich behavior increase resource consumption and decrease
predictability.

In this paper we have presented a method for cluster-
ing WCETs with respect to behavior for reusable software
components. The purpose of the method is to associate dif-
ferent WCETs with subsets of the component behavior to
achieve tight WCET estimates. The presented method is in-
tended to be used for facilitating reusable WCET analysis
for reusable software components as presented in, e.g., [1].
We have illustrated the method and demonstrated its poten-
tial in a small case study.

Future work includes case studies on large components
to evaluate the feasibility of the approach. Also case stud-
ies on industrial code is planned to evaluate the industrial
appropriateness of the proposed method. We also plan to
investigate augmentation of clusters with additional param-
eters, e.g., scheduling parameters.
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