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Abstract

In this document we will give a brief introduction to scheduling of hard real-time systems using constraint programming. We
will give a short introduction to constraint propagation and distribution, describe how time triggered real-time systems can be
described and how they can be scheduled using constraint programming.

Key words: constraint programming, real-time systems, off-line scheduling, Oz.

1 Constraint Programming
The class of problems that can be solved by constraint programming ranges from puzzles to scheduling, to ware house
allocation, configuration and placement. In this brief introduction to constraint programming we will look into how
constraint programming can be used for off-line scheduling of hard real-time systems. Studies have shown that
constraint programming can also be utilized for tackling multi-rate systems with relative timing constraints but we will
not cover these issues in this paper [Schild97].

1.1 Propagation and distribution
The two elementary techniques of constraint programming are constraint propagation and constraint distribution.
Constraint propagation is an efficient inference mechanism using concurrently working propagators that accumulates
information in a constraint store. Constraint distribution splits a problem into complementary cases when constraint
propagation cannot advance any further. By iterating propagation and distribution, propagation will eventually
determine the solutions of a problem.

An exponential growth in the number sub problems can easily arise from constraint distribution. The potential
combinatorial explosion can however be limited by combining strong propagation mechanisms with problem specific
heuristics for choosing  the steps of distribution.

1.1.1 Finite domains and constraints

Finite domains are finite sets of nonnegative integers. Constraints are formulated by means of predicate logic.
For example,

X = 67, X ∈  {0,… ,9}, X = Y, X2 - Y2 = Z2, X + Y +Z < U, X + Y ≠ 5Z.

A basic constraint can e.g., take the form of X = n, X = Y or X ∈  D, where n is a non-negative integer and D a finite
domain. All constraints that are basic are located in a constraint store, which cache the conjunction of basic constraints
up to logical equivalence. For example, a conjunction could be:

X ∈  {0,..,5} ∧  Y = 8 ∧  Z ∈  {0,..,5}

The propagators impose nonbasic constraints like, X < Y or X2 - Y2 = Z2. A propagator for a constraint C is a
concurrent computational agent that tries to narrow the domains of the variables occurring in C.

Two propagators that share the same variable can communicate with each other via the constraint store. For example,
suppose we have these two propagators:

X +Y = 9      2X + 4Y = 24
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over a constraint store with the following basic constraints:

X ∈  {0,… ,9} Y ∈  {0,… ,9}

With the current ranges of X and Y the first propagator cannot do anything, however the second can narrow the domains
of both X and Y:

X ∈  {0,… ,8} Y ∈  {2,… ,6}.

Now can the first propagator narrow the domain of X:

X ∈  {3,… ,7} Y ∈  {2,… ,6}.

Laboring on we now see that the second propagator can narrow the domain of both X and Y:

X ∈  {4,… ,6} Y ∈  {3,… ,4}.

Using the first propagator again narrows the domain of X further:

X ∈  {5,… ,6} Y ∈  {3,… ,4}.

And finally we use the second propagator again and determine the values of X and Y:

X  = 6 Y  = 3.

1.2 Distribution and search trees
Constraint propagation is usually incomplete (for the sake of efficiency). Hence to obtain a solution for a set of
constraints S, we have to choose a (not necessarily basic ) constraint C and solve both S ∪  {C} and S ∪  {¬ C}. We say
that we have distributed S with C at the current choice point. The second alternative is solved if the first alternative leads
to an inconsistent store – meaning it has failed.

To illustrate this we give an example. Suppose we have these constraints and propagators:

X ∈  {1,… ,6,8} Y ∈  {1,… ,10} Z ∈  {1,3,… ,10} X - Z = 3Y.

Using the propagator X - Z = 3Y we can narrow the domains to a stable set

X ∈  {4,… ,6,8} Y ∈  {1,… ,2} Z ∈  {1,3,… ,5}

The space is now stable but neither failed nor solved. So to go on we continue with a first distribution step. We choose
to distribute with the constraint X = 4. Figure 1 shows the resulting search tree.

[X [4#6 8] Y[1#2] Z[1 3#5]]

[X [5#6 8] Y[1#2] Z[1 3#5]][4 1 1]

X=4 X≠4

[X [6 8] Y[1#2] Z[1 3#5]]Failure

X≠5X=5

[6 1 3] [8 1 5]

X=6 X≠6

Figure 1  A search tree.

An alternative to the propagate and distribute method is a naive enumerate and test method, which would enumerate all
triples (X,Y,Z) admitted by the initial domain constraints and test the constraints X ≠ 7, Z ≠ 2 and X - Z = 3Y for each
triple. If this strategy was to be employed there would be 8*10*10 possible candidates. This shows that constraint
propagation can reduce the size of the search tree significantly.

The art of constraint programming consists of the discovery of a model describing the problem and devising a
distribution strategy (heuristics) that yields a computationally feasible search tree



3

2 Scheduling using constraint programming
Constraint programming is well suited for solving scheduling problems of non-preemptive character. This is best
shown in an example:

Consider the following precedence graph. The tasks are to be scheduled on the same node without preemption
within a period of 10 time units.

(1, 0, 5)

      A

(2, 0, 8)

      B

(1, 0, 10)

      C

(1, 0, 3)

      D

(1, 0, 10)

      I

(1, 9, 10)

      H
(1, 0, 8)

      G

(1, 4, 5)

      E

(1, 0, 5)

      F

                earliest release-time

execution-time            dead-line

First we can assert that the release time of a task is not greater than the deadline minus the execution time, and
not less than zero

0 ≤  release(A) ≤ deadline(A) - execTime(A)

....

0 ≤  release(I) ≤ deadline(I) - execTime(I)

and then assert that all tasks are finished at the end of the period

deadline(A) ≤ 10

...

deadline(I) ≤ 10

and then the precedence relations are asserted

release(B) ≥ deadline(A)

release(C) ≥ deadline(A)

...

release(I) ≥ deadline(G)
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and finally it is asserted that there is no overlap between the execution of two different tasks

release(Taski) + execTime(Taski) ≤  release(Taskj)

    or

release(Taskj) + execTime(Taskj) ≤  release(Taski)

for all i≠ j

By then applying constraint propagation and distribution a solution is found. One possible solution is

release(A) = 0

release(B) = 5

release(C) = 1

release(D) = 2

release(E) = 4

release(F) = 3

release(G) = 7

release(H) = 9

release(I) = 8.

3 Conclusion
We have in this paper shown the basics of constraint programming and how constraint programming can be
utilized for off-line scheduling. We did not address pre-emptive scheduling because this leads to very
complicated constraints.  As a comparison to regular off-line scheduling constraint distribution is no different. It
is however in the use of constraint propagation that constraint programming excel. It can decrease the possible
search tree significantly. Thus it would be a good idea to use constraint propagation as a preprocessing step
before scheduling using more conventional techniques.
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