
Configurability and Real-Time Operating
Systems with Hardware Support

- A State-of-the-Art Report

Susanna Nordström
susanna.nordstrom@mdh.se

Department of Computer Science and Electronics
Malardalen University, Vasteras

February 6, 2008

Abstract

Configurable real-time operating systems has the ability tobe customized in
order to only include services used by a real-time operatingsystem application.
This report gives an overview of research performed in the area of hardware sup-
port for real-time operating systems with focus on providedfunctionality, the hard-
ware/software partitioning of provided functionality andto what extent the func-
tionality is configurable.

1



1 Introduction

A real-time system is a system that reacts on events in the environment and executes
functions based on these within a precise time. In these systems, time is a vital pa-
rameter and the behavior of the system is only considered correct if the correct result
is presented within a specified time limit [23]. A real-time operating system (RTOS)
is an operating system that is implemented for real-time systems in order to simplify
design, execution and maintenance of real-time systems andapplications [8].

The most common way of implementing RTOS functionality is todo it completely
in software. However, a real-time kernel in hardware, the Real-Time Unit (RTU), has
been developed at Mälardalen Real-Time Research Centre (MRTC), Mälardalen Uni-
versity, Sweden. The RTU is implemented in VHDL and used in integrated circuits
such as Field Programmable Gate Arrays (FPGA). The RTU has been a topic for re-
search in both uni- and multiprocessor projects since 1991,when the first article was
published by Lindhet al. [14]. Previous work on the RTU concerns for example cre-
ation and proof of concept [14, 15, 11, 12], extended implementation for inclusion in
multiprocessor systems [16, 29, 13, 5, 2] and further benchmarking and performance
comparisons with software solutions [4, 9, 28]. Previous work on the RTU has shown
motivations for having the real-time functionality implemented in hardware. The deter-
ministic characteristics of hardware improves the predictability of the time behavior in
a hardware implemented RTOS since the time gap between the service call minimum
and maximum time is decreased. Another characteristic of hardware implementations
is concurrency, which can be utilized in hardware support and its internal components,
enabling quick response. In software real-time kernels, the CPU has to execute code
for clock-tick administration and task waiting queues. In the RTU and other hardware
support, the CPU load is reduced because no CPU execution time for clock-tick admin-
istration is needed. Neither needs the CPU be involved in task queue handling since
the hardware support performs this administration in parallel to the CPU. This results
in reduced system overhead and faster service call responsetime. Further, the memory
footprint is reduced since functionality is placed in hardware instead of software.

However, RTOS with hardware support, like the Real-Time Unit (RTU), has been
criticized for not being adjustable to the same extent as software real-time kernel solu-
tions are. This is one of the reasons that may prevent system designers from choosing
a real-time kernel with hardware support when building a system, even though they
could benefit from characteristics associated with hardware support described earlier.
Another disadvantage with hardware support is the occupation of hardware resources.
Hardware support occupies FPGA area and sometimes a small amount of memory, a
conventional software RTOS consumes none FPGA area.

One aspect that addresses these issues is configurability. Most software RTOS
for embedded systems and FPGA designs are, to some extent, configurable in order
to be customizable and not use more system resources than necessary, an important
matter when the RTOS is used in resource restricted environments. When the kernel is
implemented in hardware, like the RTU and other hardware support, not only memory
footprint is motivation for configuration, the number of logic cells occupied in the
FPGA has to be considered as well. Adding configurability to hardware supported
RTOS makes them more adjustable and addresses the FPGA area occupation issue

2



when the hardware support part can be configured for minimum FPGA area resource
usage.

This state-of-the-art report intends to give an overview ofrelated work in the area
of hardware support for real-time operating systems in connection with configurability.
While there have been much work on performance analysis of hardware support, this
report focus on provided functionality, the hardware/software partitioning of provided
functionality and to what extent the functionality is configurable. Configurability of
RTOS is described in Section 2 followed by Section 3 containing a an description of
eight different hardware support followed by a Summary in Section4.

2 Configuration

In conventional software based RTOS, a lot of functionalityis available in order to
satisfy a large variety of customer requirements. For this reason, many RTOS are
configurable in order to only include functionality that will be used in the actual appli-
cation. Configuration possibilities make it possible not touse more system resources
than absolutely necessary, motivated by decreased memory usage.

Configurability broadens the use of a particular RTOS since it can be used in a
wider context when it can provide both limited and extended functionality. By being
able to use as small amount of resources as possible, a cheaper target device can be
used, which decreases the end product cost. Further, configurability is a possibility
for a system to grow if new system requirements arise over time, extending system
lifetime.

We use the term RTOS configurability to describe the ability for the system de-
signer to enable desired functionality, and disable undesired functionality, among func-
tionality provided by an RTOS at compile time. RTOS configuration may concern
enabling/disabling of RTOS functionality regarding:

• Tasks

• Scheduling priorities

• Inter process communication (IPC) such as semaphores, flags, event manage-
ment, message queues, message boxes and mutexes.

• Timing functionality

• Stack usage

• Memory allocation

• Processor endianess

• Processor datawith (8, 16, 32 or 64 bit wide)

• Error checking

• Debugging possibilities

3



Pre-runtime RTOS configurations are performed by defining the services needed at
compile time. This can be accomplished by setting flags, or inthe case of libraries,
having the linker include the services used by the application [3]. The programmer
can use an RTOS/OS specific GUI provided in the system development tool or use a
specific configuration file.

When an RTOS is partly implemented in hardware, not only memory footprint is
motivated for configuration; occupied amount of FPGA area for the hardware support
has to be considered as well.

Pre-runtime configuration of hardware components is performed using
generic VHDL design. Generic design makes it possible to pass information into a
design description of a component by setting generic parameters, e.g. the size of an
input port [1]. By doing this, the size can be varied according to system requirements.
Similar to configuring software implementations, the programmer may set the generic
parameters in connection with a specific GUI provided in the development tool or use
a specific configuration file.

What kind of functionality that is configurable in the hardware part of a hard-
ware/software implemented RTOS is quite distinctive as well as the implementation
of the hardware part itself. Following Section 3, includes on overview of different
solutions to hardware support and remarks on configurability.

3 Hardware Support for Real-Time Operating Systems

The conventional way of implementing RTOS functionality isin a software program-
ming language, executed by a general purpose CPU. The term hardware support for
RTOS describes RTOS functionality that has been implemented with a hardware de-
scription language (HDL), e.g VHDL or Verilog. To what extent the hardware support
implements RTOS functionality is dependent on research project but the RTOS appli-
cation, including system tasks are implemented in softwareand executed by the system
CPU.
Hardware support may include RTOS functionality such as scheduling, inter process
communication (IPC), interrupt management, timing management, clock-tick admin-
istration, context switch routine, task control block (TCB), task queues and other re-
source queues. The hardware support may have a specific software driver executed
by a CPU, that utilizes the hardware implemented functionality. A common way for
a software driver to communicate with the hardware support part is through memory
mapped registers over a CPU bus.

Hardware support for RTOS can be required to be used togetherwith a general
purpose CPU or be closely integrated with a special purpose CPU. If a general purpose
CPU is used, the CPU registers can only be manipulated with software programming
and the context switch routine must be implemented in software as in conventional
software RTOS. If a special purpose CPU is used, perhaps implemented in HDL, the
CPU registers is reachable and the context switch can be performed in hardware in
one or a few system clock cycles. The hardware support may be classified as a co-
processor since it performs specific functionality in parallel to a CPU that executes the
system application. The related work presented in the following sections have different

4



approaches to this.
Following sections presents an overview of research performed in the area of hard-

ware support for RTOS. Each hardware support project will bedescribed in the aspect
of chosen RTOS hardware/software partitioning, implemented functionality and re-
marks on configurability. Each project is summarized in a table where provided func-
tionality is shown regarding hardware or software implementation. Task needs special
attention since a tasks can be marked being implemented in both hardware and soft-
ware. This is because a task is considered implemented in software when there exist
application tasks executed by a main CPU and when a context switch routine is imple-
mented in software requiring a software implemented task control block (TCB, a struc-
ture containing task information regarding task entry point, stack, timing, priority and
state information). A task is considered being a part of the hardware implementation
when the scheduler is implemented in hardware, containing tasks and task information
in task queues.

3.1 Real-Time Unit (RTU)

As described earlier, the RTU originates from the work of Lind et al. [14] and has
been a topic for different directions of research and has consequently had different
implementations. This section will describe the latest RTUsingle-processor solution
implemented to be configurable [22].

Table 1: Implemented functionality in the RTU [27].
Functionality HW/SW Configurability

General RTOS functionality:
Tasks (periodic, aperiodic) HW and SW Number of (2 to 512)
Scheduling algorithm (Priority based) HW
Timers HW Size of argument (up to 16

bits)
External interrupts HW Number of (2 to 256)
RTOS clock-tick processing HW Resolution
Context switch routine SW
IPC:
Semaphores HW Number of (2 to 1 024)
Flags HW Number of (1 to 26 flag-

bits)

The hardware part of the RTU is implemented in hardware (using hardware de-
scription language, VHDL) and contains the scheduling, IPCin the form of binary
semaphores and flags, external interrupt management and time management control.
The hardware implementation is utilized through memory mapped registers and is used
together with a small software driver, also called application programmers interface
(API). It makes it possible for the programmer to utilize thehardware, i.e., transfer the
service calls to the kernel. The RTU component is connected to a general purpose CPU
with a bus interface and an internal interrupt to notify the CPU when a taskswitch is

5



about to occur. Context switch routine, task and TCB is implemented in software but
task queues are implemented in hardware. Functionality andconfiguration possibilies
are described in Table 1.

3.2 Theδ Hardware/Software RTOS Framework and the Config-
urable Hardware Scheduler

Mooneyet al. have implemented theδ hardware/software RTOS framework, a hard-
ware/software generation tool for multiprocessor system-on-chip designs [18, 10, 17].
The motivation is to simplify and speed up the design processof creating a hard-
ware/software co-design system with automatic generationof a complete RTOS from
predesigned hardware/software RTOS components.

The hardware components are implemented in hardware description language Ver-
ilog and the software components in C. Theδ framework has a hardware RTOS library
containing three components: a system-on-chip lock cache (SoCLC, a mechanism
for protecting and synchronizing use of critical sections in a multiprocessor system)
a system-on-chip deadlock detection unit (SoCDDU) and a system-on-chip dynamic
memory management unit (SoCDMMU).

Table 2: Implemented functionality and configuration options in the δ hard-
ware/software RTOS framework [18, 10, 17].

Functionality HW/SW Configurability

General RTOS functionality:
Tasks SW Number of
Scheduling (Priority based) SW
RTOS clock-tick processing SW
Context switch routine SW
IPC:
Semaphores SW Enable/Disable
Event groups SW Enable/Disable
Mailboxes SW Enable/Disable
Queues SW Enable/Disable
Mutexes (mutual exclusion objects) SW Enable/Disable
Special features:
Processors (PowerPC or ARM) HW Number of
Deadlock detection HW or SW Enable/Disable
Dynamic memory management HW or SW Enable/Disable
SoC lock cache HW Enable/Disable

Theδ framework software RTOS library includes their own AtlantaRTOS for mul-
tiprocessor systems (including priority-based preemptive scheduler,
semaphores, mailboxes, queues and mutexes). There is also aδ framework base sys-
tem library for including processor specific items such as bus arbiters, caches and I/O.
Number of general purpose processors is also optional in theframework.

6



The configuration is performed when the user sets the configuration parameters in
a GUI tool that generates the files of the components to be included in the system. The
user can configure theδ framework in the options described in Table 2. The config-
uration focus mainly on the option to have certain parts of the RTOS implemented in
hardware that are in-house developed solutions to RTOS issues. The main purpose the
tool is to aid the system designer to explore which configuration is most suitable for a
specific application requirement, e.g. regarding RTOS resource usage.

Further, a configurable hardware scheduler has been implemented by
Mooneyet al. [7]. The scheduler is configured similar to theδ framework with a
GUI tool that after user configuration input generates the hardware files in Verilog and
software driver files in C. The hardware scheduler which alsoincludes RTOS clock-tick
processing is configurable in number of tasks, external interrupts, timer resolution, and
scheduling algorithm. The scheduler provides three scheduling disciplines: priority-
based, rate monotonic and earliest deadline first. The scheduling mode can be changed
at runtime. A software driver utilizes the hardware scheduler functionality through
memory mapped registers of a general purpose CPU. Processordependent code, such
as the context switch routine, is also implemented in software. The functionality of the
hardware scheduler is summarized in Table 3.

Table 3: Implemented functionality in the configurable hardware scheduler [7].
Functionality HW/SW Configurability

General RTOS functionality:
Tasks HW and SW Number of (up to 64)
Scheduling algorithm HW Priority based, Rate monotonic

or Earliest deadline first
RTOS clock-tick processing HW Resolution
External interrupts HW and SW Number of (up to 8)
Context switch routine SW

3.3 Co-Scheduler2

Morton et al. present the HW/SW partitioning of a single-processor real-time kernel
in [19]. By strategic choice for speed-up purposes, only thescheduling including task

Table 4: Implemented functionality in the cs2 (Co-Scheduler2) [19].
Functionality HW/SW Configurability

General RTOS functionality:
Tasks (periodic, aperiodic) HW and SW Number of (3 to 16)
Scheduling algorithm (Earliest deadline HW
first)
Clock-tick processing HW
Context switch routine SW

7



queues, implemented as Earliest Deadline First (EDF) algorithm, is moved to a co-
processor, Cs2 (Co-Scheduler2). A general purpose CPU executes the application and
tasks. The coprocessor is not claimed to be configurable but the coprocessor size and
performance are analyzed for 3 to 16 tasks. The coprocessor grows linearly in size with
number of tasks. An overview of the Cs2 is shown in Table 4.

3.4 Real-Time Task Manager (RTM)

Jacobet al. has implemented a real-time task manager (RTM) in hardware [6]. The
RTM is a processor extension that implements scheduling, time management and event
management with the purpose to minimize real-time operating system performance
drawbacks. The RTM is an on-chip memory mapped peripheral. It cannot be used a
stand-alone RTOS, it is meant to be integrated into softwareRTOS where it handles
the scheduling. They claim the RTM not to application specific. The RTM is described
as scalable and is reported used in configurations of 32, 64 and 256 tasks and events.

Table 5: Implemented functionality in the Real-time Task Manager (RTM) [6].
Functionality HW/SW Configurability

General RTOS functionality:
Tasks HW and SW Number of (32, 64 or 256)
Scheduling algorithm (Priority based) HW
RTOS clock-tick processing HW
Context switch routine SW
IPC:
Event management HW Number of (32, 64 or 256)

3.5 Operating System Coprocessor (OSC)

Oliviera et al. presents the Operating System Coprocessor (OSC) which is hardware
VDHL implemented operating system functionality such as task
scheduling, context switching, inter process communication and timing
[24, 25].

The OSC is one of four dedicated co-processors in the Advanced Real-time Pro-
cessor Architecture project (ARPA), a project with focus oninvestigating system-on-
chip solutions optimized for real-time systems. They develop both main CPU and co-
processors themselves. The close relation between the processors enables the OSC to
have privileged access to registers and program counter of the main CPU which enables
the OSC to perform a context switch without software intervention. The OSC supports
either non real-time tasks or real-time tasks. Four real-time scheduling policies are
provided as shown in the summary in Table 6. The OSC exchange task and semaphore
information with the main CPU with memory mapped registers.The software driver is
currently assembler implemented.

8



Table 6: Implemented functionality in the Operating SystemCoprocessor (OSC) [24,
25].

Functionality HW/SW Configurability

General RTOS functionality:
Tasks HW and SW Number of
Scheduling algorithm HW Rate monotonic, Deadline mono-

tonic, Earliest deadline first or
Least slack first

RTOS clock-tick processing HW
Context switch routine HW
IPC:
Semaphores HW Number of

3.6 The Silicon OS in the TRON project

The Real-time Operating System Nucleus project (TRON) is a Japanese project for re-
search in ideal computer architectures in different areas.It has been running since 1984
and has produced several subprojects. One of the subprojects is the Industrial-TRON
(ITRON) which is a software real-time OS for use in embedded systems. Nakanoet al.
presented in [21, 20] a real-time OS where parts of the ITRON RTOS functionality
was implemented in hardware (HDL). The solution consists ofa hardware part, called
"Silicon TRON", and a software part, the remaining parts of the ITRON. The hard-
ware part implements task scheduling, task synchronization, task communication and
external interrupt management. The Silicon TRON together with the software part is
called a "Silicon OS". Configurability is not described but different number of tasks,
semaphores, flags and timers were reported as described in Table 7. The Silicon OS is
connected to a general-purpose CPU as a peripheral with memory mapped registers. It
is also connected to an interrupt input port of the CPU when a context switch is about
to occur.

Table 7: Implemented functionality in the Silicon OS [21, 20].
Functionality HW/SW Configurability

General RTOS functionality:
Tasks (periodic, aperiodic) HW and SW Number of (3 to 16)
Scheduling algorithm (Priority based) HW
External interrupts HW
RTOS clock-tick processing HW
Timers HW Bit width of timer argu-

ment (8, 16 or 32)
Context switch routine SW
IPC:
Semaphores HW Number of (8, 16 or 32)
Flags HW Number of (8, 16 or 32)

9



3.7 F-Timer

Parisotoet al. presents a hardware architecture for real-time operating systems support
using special hardware components implemented in one FPGA [26]. The included F-
Timer is a co-processor that communicates with the main processor and releases it from
the tasks time management. The F-Timer hardware architecture handles external asyn-
chronous interrupts and scheduling of tasks with priority.All tasks are programmed
and when the execution time of a certain task is reached, the processor is interrupted
and the correct task is available on the bus. Configurabilityis not discussed but the
F-timer is said to be adjustable. Details of reported functionality is summarized in
Table 8.

Table 8: Implemented functionality in the F-timer [26].
Functionality HW/SW Configurability

General RTOS functionality:
Tasks (periodic, aperiodic) HW and SW
Priority levels HW
Scheduling algorithm (Smallest input first HW
output, Priority based)
RTOS clock-tick processing HW
Timers HW
External interrupts HW
Context switch routine SW

4 Summary

In this report, research projects in the area of hardware support for RTOS have been de-
scribed in the aspect of hardware/software partitioning ofprovided functionality. The
combination of configurability and hardware support have been discussed. The com-
bination of configurability and hardware support for RTOS may increase the ability to
better exploit the benefits associated with hardware support such as increased perfor-
mance and predictability, and decreased CPU load and memoryusage.

Provided functionality among the hardware supported RTOS implementations have
been summarized in Table 9 where hardware/software partitioning is shown for each
feature, and configurability and enable/disable possibilities are marked. Regarding the
Featuresin Table 9 the abbreviations and meaning will be explained.Tasksare in
most cases marked being implemented in both hardware and software. This is because
a task is considered implemented in software when there exist application tasks exe-
cuted by a main CPU and when a context switch routine is implemented in software
requiring a software implemented task control block (TCB),a structure containing task
information regarding task entry point, stack, timing, priority and state information.
A task is considered being a part of the hardware implementation when the sched-
uler is implemented in hardware, containing tasks and task information in task queues.
Further features in Table 9 areSched.(scheduling algorithm),Clock (internal RTOS

10



clock-tick), Irq (external interrupts triggered by external events),Csw(context switch
routine),Sem(any kind of semaphore functionality), Flags (any kind of flag function-
ality), Events(event groups or event management in the area ofIPC). Mailbox, Queues
andMutexare not abbreviations and are common RTOS features for IPC. The abbre-
viations of the hardware support in the table are each presented in previous sections of
this report.

Table 9: A summary of provided functionality in different hardware support imple-
mentations. The table shows if a feature is implemented in both hardware and software
(H/S), only hardware (HW) or only software (SW). Configurable features are marked
(†).

Hardware Support

Feature RTU δ Sch Co2 RTM OSC TRON F-timer

General RTOS functionality:

Tasks H/S† SW† H/S† H/S† H/S† H/S† H/S† H/S

Sched. HW SW HW† HW HW HW† HW HW

Clock HW† SW HW† HW HW HW HW† HW

Irq HW† n/a H/S† n/a n/a n/a HW HW

Csw SW SW SW SW SW HW SW SW

IPC:

Sem. HW† SW‡ n/a n/a n/a HW† HW† n/a

Flags HW† n/a n/a n/a n/a n/a HW† n/a

Events n/a SW‡ n/a n/a HW† n/a n/a n/a

Mailbox n/a SW‡ n/a n/a n/a n/a n/a n/a

Queues n/a SW‡ n/a n/a n/a n/a n/a n/a

Mutex n/a SW‡ n/a n/a n/a n/a n/a n/a

Specific features:

DDU1 n/a H/S‡ n/a n/a n/a n/a n/a n/a

DMMU2 n/a H/S‡ n/a n/a n/a n/a n/a n/a

LC3 n/a HW‡ n/a n/a n/a n/a n/a n/a

† Configurable
‡ Enable/Disable
1 Deadlock detection unit.
2 Dynamic memory management unit.
3 System-on-chip lock cache.

Apparent in Table 9 is that theδ Framework (δ in Table 9) is different from the other
hardware support. Instead of implementing hardware support of RTOS functionality
closely related to the real-time kernel functionality, theδ Framework project proposes
special purpose hardware components providing solutions to known RTOS issues such
as deadlock detection and dynamic memory management. The RTOS provided in the
framework is software implemented. This project is the onlyproject where options to
enable or disable functionality is provided clearly.

Even though the hardware support included in this report areimplemented differ-

11



ently and more or less independent of each other, there are several similarities. All but
one hardware support is connected to a general purpose CPU asa memory mapped
peripheral. When a general purpose CPU is used, the system designer must manipulate
the CPU registers with software programming and hence the context switch routine
(Cswin Table 9), is implemented in software. This means that the TCBs that are stored
and re-stored during a context switch, is implemented in software as well. The advan-
tage with this solution is that the hardware support can be ported to another general
purpose CPU. However, in the project behind Operating System Coprocessor (OSCin
Table 9), they develop both the main CPU and the OSC themselves meaning they have
access to CPU registers in hardware and can perform a contextswitch without software
intervention. This increases performance of the context switch. In early implementa-
tions of the RTU, in the FASTCHART project, a similar solution was presented. The
hardware real-time kernel was integrated with an in-house developed CPU and context
switch was possible to perform in only one clock-cycle.

Besides being connected to a general purpose CPU, other similarities among pre-
sented hardware support are that, except for theδ Framework, they all have the sched-
uler and RTOS clock-tick processing implemented in hardware. Implementing the
RTOS clock-tick in hardware relieves the main CPU from handling timing calculation
for periodic tasks and delayed tasks. In software implemented RTOS, the RTOS has
to check the task delay queues, decrease each task’s timer and re-scheduled a task if a
timer has expired. This procedure is performed in certain time intervals and each time
the main CPU is interrupted and has to execute software code for handling this. In a
hardware implemented scheduler, this is performed in parallel to the CPU executing
the running application task, which leads to increased performance.

Regarding scheduling, the configurable hardware schedulerand the Operating Sys-
tem Coprocessor (Schand OSC in Table 9) are providing configurability regarding
scheduling while the system designer has several options regarding scheduling algo-
rithms in hardware. The configurable hardware scheduler is re-configurable at run time
while the OSC provides the designer to choose scheduling algorithm at compile time.
The other hardware support only provide one scheduling algorithm.

Half of the hardware support in Table 9 provide some form of IPC, and when they
do, provided IPC is configurable. Configurability in generalis discussed to most extent
in the hardware support projects that provide complete tools for generating whole sys-
tems: theδ Framework, OSC and to some extent the configurable hardware scheduler.
Here, configurability is accomplished when setting component parameters in connec-
tion with using the tool. Among the other hardware support that does not provide a tool
environment, the Silicon OS in the TRON project and the RTU (TRONandRTU in Ta-
ble 9), reports configurability regarding tasks, timer resolution, semaphores and flags.
The variations in configurability is different but providedconfigurable functionality is
very similar in these two hardware support.

12



References

[1] J. Bhasker.A VHDL Primer. Prentice Hall PTR, Revised edition, 1995.

[2] L. Enblom and L. Lindh. Adding Flexibility and Real-TimePerformance by
Adapting a Single Processor Industrial Application to a Multiprocessor Platform.
In Parallel and Distributed Processing EUROMICRO Workshop, Mantova, Italy,
February 2001.

[3] F. Engel, G. Heiser, I. KuZ, S. M. Petters, and S. Ruocco. Operating Systems
on SoCs: A Good Idea? InERTSI in conjunction with 25th IEEE RTSS, Lisbon,
Portugal, December 2004.

[4] J. Furunäs. Benchmarking of a Real-Time System that utilises a booster. In
International Conference on Parallel and Distributed Processing Techniques and
Applications, Mantova, Italy, June 2000.

[5] T. Klevin and L. Lindh. Scalable Architecture for Real-Time Applications And
Use of bus-monitoring. InInternational Conference on Real-Time Computing
Systems and Applications, December 1999.

[6] P. Kohout, B. Ganesh, and B. Jacob. Hardware Support for Real-time Operat-
ing Systems. InIEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, Newport Beach, USA, 2003.

[7] P. Kuacharoen, M. A. Shalan, and V. J. Mooney III. A Configurable Hardware
Scheduler for Real-Time Systems. InInternational Conference on Engineering
of Reconfigurable Systems and Algorithms, Las Vegas, USA, June 2003.

[8] J. J. Labrosse.MicroC/OS-II The Real-Time Kernel. CMP Books, second edition,
2002.

[9] J. Lee, V. J. Mooney III, K. Ingström, A. Daleby, T. Klevin, and L. Lindh. Com-
parison of the RTU Hardware RTOS with a Hardware/Software RTOS. InDesign
Automation Conference, January 2003.

[10] J. Lee, K. Ryu, and V. J. Mooney III. A Framework for Automatic Genera-
tion of Configuration Files for a Custom Hardware/Software RTOS. In Inter-
national Conference on Engineering of Reconfigurable Systems and Algorithms,
June 2002.

[11] L. Lindh. FASTHARD - A Fast Time Deterministic HardwareBased Real-Time
Kernel. InIEEE press, Real-Time Workshop, Athens, January 1992.

[12] L. Lindh. Utilization of Hardware Parallelism in Realizing Real TimeKernels.
PhD thesis, Royal Institute of Technology, Stockholm, Sweden, 1994.

[13] L. Lindh, T. Klevin, and J. Furunäs. Scalable Architecture for Real-Time Applica-
tions - SARA. InSwedish National Real-Time Conference (SNART), Linköping,
Sweden, August 1999.

13



[14] L. Lindh and F. Stanischewski. FASTCHART - A Fast Time Deterministic CPU
and Hardware Based Real-Time-Kernel. InIEEE Euromicro workshop on Real-
Time Systems, June 1991.

[15] L. Lindh and F. Stanischewski. FASTCHART - Idea and Implementation. InIEEE
International Conference on Computer Design (ICCD), Boston, USA, October
1991.

[16] L. Lindh, J. Stärner, and J. Furunäs. From Single to Multiprocessor Real-Time
Kernels in Hardware. InIEEE Real-Time Technology and Applications Sympo-
sium, Chicago, USA, May 1995.

[17] V. J. Mooney III. Hardware/Software Partitioning of Operating Systems. InDe-
sign Automation and Test in Europe Conference, March 2003.

[18] V. J. Mooney III and D. M. Blough. A Hardware-Software Real-Time Operating
System Framework for SoCs.IEEE Design and Test of Computers, 19:44–51,
2002.

[19] A. Morton and W. M. Loucks. A Hardware/Software Kernel for System on Chip
Designs. InACM Symposium on Applied Computing, Nicosia, Cyprus, 2004.

[20] T. Nakano, Y. Komatsudaira, A. Shiomi, and M. Imai. VLSIImplementation of
a Real-time Operating System. InDesign Automation Conference (ASP-DAC),
Chiba, Japan, January 1997.

[21] T. Nakano, A. Utama, M. Itabashi, A. Shiomi, and M. Imai.Hardware Imple-
mentation of a Real-time Operating System. InTRON Project International Sym-
posium, Tokyo, Japan, November 1995.

[22] S. Nordström and L. Asplund. Configurable Hardware/Software Support for Sin-
gle Processor Real-Time Kernels. InInternational Symposium on System-On-
Chip Conference, Tampere, Finland, November 2007.

[23] C. Norström, K. Sandström, J. Mäki-Turja, H. Hansson, H. Thane, and J. Gustafs-
son. Robusta realtidssystem. MRTC, Mälardalen University, Västerås, Sweden,
2000.

[24] A. Oliviera, V. Sklyarov, and A. Ferrari. ARPA - An Open Source System-on-
Chip for Real-Time Applications. InEmbedded Real-Time Systems Implementa-
tion Workshop, Lisbon, Portugal, December 2004.

[25] A. Oliviera, V. Sklyarov, and A. Ferrari. ARPA - An Technology Independent
and Synthetizable System-on-Chip Model for Real-Time Applications. InDigital
System Design in Euromicro Conference, Porto, Portugal, August 2005.

[26] A. Parisoto, A. J. Souza, L. Carro, M. Pontremoli, C. Pereira, and A. Suzim.
F-Timer: dedicated FPGA to real-time systems design support. In Real-Time
Systems, 9th Euromicro Workshop, 1997.

14



[27] Prevas AB, Västerås, Sweden, www.prevas.se, 2007.

[28] T. Samuelsson, M. Åkerholm, P. Nygren, J. Stärner, and L. Lindh. A Comparison
of Multiprocessor Real-Time Operating Systems Implemented in Hardware and
Software. InInternational Workshop on Advanced Real-Time Operating System
Services (ARTOSS), Porto, Portugal, July 2003.

[29] J. Stärner, J. Adomat, J. Furunäs, and L. Lindh. Real-Time Scheduling Co-
Processor in Hardware for Single and Mulitprocessor System. In EUROMICRO
Conference, Prague, Czech Republic, September 1996.

15


