Configurability and Real-Time Operating
Systems with Hardware Support
- A State-of-the-Art Report

Susanna Nordstrém
susanna.nordstrom@mdh.se
Department of Computer Science and Electronics

Malardalen University, Vasteras

February 6, 2008

Abstract

Configurable real-time operating systems has the abilifyet@ustomized in
order to only include services used by a real-time operatirgiem application.
This report gives an overview of research performed in tle@ af hardware sup-
port for real-time operating systems with focus on provitigtttionality, the hard-
ware/software partitioning of provided functionality atwdwhat extent the func-
tionality is configurable.

1 Introduction

A real-time system is a system that reacts on events in thieommrent and executes
functions based on these within a precise time. In thesemgsttime is a vital pa-

rameter and the behavior of the system is only considere@aaf the correct result
is presented within a specified time limit [23]. A real-timpavating system (RTOS)
is an operating system that is implemented for real-timéesys in order to simplify

design, execution and maintenance of real-time systemaggyplitations [8].

The most common way of implementing RTOS functionality isitait completely
in software. However, a real-time kernel in hardware, thalRéme Unit (RTU), has
been developed at Malardalen Real-Time Research Centrég QyJRialardalen Uni-
versity, Sweden. The RTU is implemented in VHDL and used tegrated circuits
such as Field Programmable Gate Arrays (FPGA). The RTU has &dopic for re-
search in both uni- and multiprocessor projects since 1@8gn the first article was
published by Lindhket al. [14]. Previous work on the RTU concerns for example cre-
ation and proof of concept [14, 15, 11, 12], extended implaatéon for inclusion in
multiprocessor systems [16, 29, 13, 5, 2] and further berackimg and performance
comparisons with software solutions [4, 9, 28]. Previouskwan the RTU has shown
motivations for having the real-time functionality implented in hardware. The deter-
ministic characteristics of hardware improves the prediiidity of the time behavior in
a hardware implemented RTOS since the time gap between thieeseall minimum
and maximum time is decreased. Another characteristic miiere implementations
is concurrency, which can be utilized in hardware suppadtieminternal components,
enabling quick response. In software real-time kerneks,GRU has to execute code
for clock-tick administration and task waiting queues.Ha RTU and other hardware
support, the CPU load is reduced because no CPU executietidimlock-tick admin-
istration is needed. Neither needs the CPU be involved kdasue handling since
the hardware support performs this administration in pelrtd the CPU. This results
in reduced system overhead and faster service call respiorese~urther, the memory
footprint is reduced since functionality is placed in haadevinstead of software.

However, RTOS with hardware support, like the Real-TimetRTU), has been
criticized for not being adjustable to the same extent asvsoé real-time kernel solu-
tions are. This is one of the reasons that may prevent sysésigreers from choosing
a real-time kernel with hardware support when building gesys even though they
could benefit from characteristics associated with hardwsapport described earlier.
Another disadvantage with hardware support is the occoipati hardware resources.
Hardware support occupies FPGA area and sometimes a smalirdof memory, a
conventional software RTOS consumes none FPGA area.

One aspect that addresses these issues is configurabilingt ddftware RTOS
for embedded systems and FPGA designs are, to some extaefigwable in order
to be customizable and not use more system resources thassaeg, an important
matter when the RTOS is used in resource restricted enveatsnWhen the kernel is
implemented in hardware, like the RTU and other hardwar@astpnot only memory
footprint is motivation for configuration, the number of logells occupied in the
FPGA has to be considered as well. Adding configurability aodiwvare supported
RTOS makes them more adjustable and addresses the FPGAcatgzation issue

when the hardware support part can be configured for minimB@A-area resource
usage.

This state-of-the-art report intends to give an overviewetdted work in the area
of hardware support for real-time operating systems in eotion with configurability.
While there have been much work on performance analysisroft@e support, this
report focus on provided functionality, the hardwarefsafie partitioning of provided
functionality and to what extent the functionality is configble. Configurability of
RTOS is described in Section 2 followed by Section 3 contgjrd an description of
eight different hardware support followed by a Summary intlee4.

2 Configuration

In conventional software based RTOS, a lot of functionaktyavailable in order to
satisfy a large variety of customer requirements. For te@son, many RTOS are
configurable in order to only include functionality that Mik used in the actual appli-
cation. Configuration possibilities make it possible notuse more system resources
than absolutely necessary, motivated by decreased mersaggu

Configurability broadens the use of a particular RTOS sihaamn be used in a
wider context when it can provide both limited and extendettfionality. By being
able to use as small amount of resources as possible, a cteaget device can be
used, which decreases the end product cost. Further, coafigity is a possibility
for a system to grow if new system requirements arise oveg,tiextending system
lifetime.

We use the term RTOS configurability to describe the abilitythe system de-
signer to enable desired functionality, and disable umddsunctionality, among func-
tionality provided by an RTOS at compile time. RTOS configiora may concern
enabling/disabling of RTOS functionality regarding:

e Tasks
e Scheduling priorities

e Inter process communication (IPC) such as semaphores, #agat manage-
ment, message queues, message boxes and mutexes.

e Timing functionality

e Stack usage

e Memory allocation

e Processor endianess

e Processor datawith (8, 16, 32 or 64 bit wide)
e Error checking

e Debugging possibilities

Pre-runtime RTOS configurations are performed by definieg#rvices needed at
compile time. This can be accomplished by setting flags, dhéncase of libraries,
having the linker include the services used by the apptcafB]. The programmer
can use an RTOS/OS specific GUI provided in the system dewaloptool or use a
specific configuration file.

When an RTOS is partly implemented in hardware, not only nrgrfaotprint is
motivated for configuration; occupied amount of FPGA areale hardware support
has to be considered as well.

Pre-runtime configuration of hardware components is peréok using
generic VHDL design. Generic design makes it possible t@ pra®rmation into a
design description of a component by setting generic paexsiee.g. the size of an
input port [1]. By doing this, the size can be varied accogdmsystem requirements.
Similar to configuring software implementations, the pesgmer may set the generic
parameters in connection with a specific GUI provided in teetbpment tool or use
a specific configuration file.

What kind of functionality that is configurable in the hardegart of a hard-
ware/software implemented RTOS is quite distinctive ad aglthe implementation
of the hardware part itself. Following Section 3, includesaverview of different
solutions to hardware support and remarks on configurgbilit

3 Hardware Support for Real-Time Operating Systems

The conventional way of implementing RTOS functionalityrisa software program-
ming language, executed by a general purpose CPU. The texwdai@ support for
RTOS describes RTOS functionality that has been implendentth a hardware de-
scription language (HDL), e.g VHDL or Verilog. To what extéhe hardware support
implements RTOS functionality is dependent on researcfeprbut the RTOS appli-
cation, including system tasks are implemented in soft@aceexecuted by the system
CPU.

Hardware support may include RTOS functionality such agduling, inter process
communication (IPC), interrupt management, timing manag#, clock-tick admin-
istration, context switch routine, task control block (TCBask queues and other re-
source queues. The hardware support may have a specificaseftitiver executed
by a CPU, that utilizes the hardware implemented functibnal common way for
a software driver to communicate with the hardware suppant is through memory
mapped registers over a CPU bus.

Hardware support for RTOS can be required to be used togefitiera general
purpose CPU or be closely integrated with a special purp&é¢. @ a general purpose
CPU is used, the CPU registers can only be manipulated withva@ programming
and the context switch routine must be implemented in saétveas in conventional
software RTOS. If a special purpose CPU is used, perhap&mwited in HDL, the
CPU registers is reachable and the context switch can berpeztl in hardware in
one or a few system clock cycles. The hardware support mayalssified as a co-
processor since it performs specific functionality in platab a CPU that executes the
system application. The related work presented in theviatig sections have different

approaches to this.

Following sections presents an overview of research padrin the area of hard-
ware support for RTOS. Each hardware support project witlémcribed in the aspect
of chosen RTOS hardware/software partitioning, implerérftinctionality and re-
marks on configurability. Each project is summarized in detakhere provided func-
tionality is shown regarding hardware or software impletagan. Task needs special
attention since a tasks can be marked being implementedtinfasdware and soft-
ware. This is because a task is considered implemented twaef when there exist
application tasks executed by a main CPU and when a contéxtsmutine is imple-
mented in software requiring a software implemented tasltrobblock (TCB, a struc-
ture containing task information regarding task entry patack, timing, priority and
state information). A task is considered being a part of thellvare implementation
when the scheduler is implemented in hardware, contaimiskstand task information
in task queues.

3.1 Real-Time Unit (RTU)

As described earlier, the RTU originates from the work ofd et al. [14] and has

been a topic for different directions of research and haseguently had different
implementations. This section will describe the latest Rigle-processor solution
implemented to be configurable [22].

Table 1: Implemented functionality in the RTU [27].

Functionality HW/SW Configurability

General RTOS functionality:

Tasks (periodic, aperiodic) HW and SW Number of (2 to 512)

Scheduling algorithm (Priority based) HW

Timers HW Size of argument (up to 16
bits)

External interrupts HW Number of (2 to 256)

RTOS clock-tick processing HW Resolution

Context switch routine SW

IPC:

Semaphores HW Number of (2 to 1 024)

Flags HW Number of (1 to 26 flag-
bits)

The hardware part of the RTU is implemented in hardware @ubsrdware de-
scription language, VHDL) and contains the scheduling, IRGhe form of binary
semaphores and flags, external interrupt management aechienagement control.
The hardware implementation is utilized through memory pegjregisters and is used
together with a small software driver, also called appitaprogrammers interface
(API). It makes it possible for the programmer to utilize tre¥dware, i.e., transfer the
service calls to the kernel. The RTU componentis connectadjeneral purpose CPU
with a bus interface and an internal interrupt to notify tHelCwhen a taskswitch is

about to occur. Context switch routine, task and TCB is imm@ated in software but
task queues are implemented in hardware. Functionalitycantiguration possibilies
are described in Table 1.

3.2 The) Hardware/Software RTOS Framework and the Config-
urable Hardware Scheduler

Mooneyet al. have implemented thé hardware/software RTOS framework, a hard-
ware/software generation tool for multiprocessor systerrehip designs [18, 10, 17].
The motivation is to simplify and speed up the design procéssreating a hard-
ware/software co-design system with automatic generatiegncomplete RTOS from
predesigned hardware/software RTOS components.

The hardware components are implemented in hardware pésarianguage Ver-
ilog and the software components in C. Thigamework has a hardware RTOS library
containing three components: a system-on-chip lock caSl€I(C, a mechanism
for protecting and synchronizing use of critical sectiom@imultiprocessor system)
a system-on-chip deadlock detection unit (SoCDDU) and g&esy®n-chip dynamic
memory management unit (SoCDMMU).

Table 2: Implemented functionality and configuration opsioin the § hard-
ware/software RTOS framework [18, 10, 17].

Functionality HW/SW Configurability
General RTOS functionality:

Tasks SW Number of
Scheduling (Priority based) SW

RTOS clock-tick processing SW

Context switch routine SwW

IPC:

Semaphores SW Enable/Disable
Event groups S Enable/Disable
Mailboxes SW Enable/Disable
Queues SW Enable/Disable
Mutexes (mutual exclusion objects) SW Enable/Disable
Special features:

Processors (PowerPC or ARM) HW Number of
Deadlock detection HW or SW Enable/Disable
Dynamic memory management HW or SW Enable/Disable
SoC lock cache HW Enable/Disable

Thed framework software RTOS library includes their own AtlaRBOS for mul-
tiprocessor systems (including priority-based preeneptiv scheduler,
semaphores, mailboxes, queues and mutexes). There is @fsaraework base sys-
tem library for including processor specific items such asdmbiters, caches and /0.
Number of general purpose processors is also optional ifrdheework.

The configuration is performed when the user sets the comfigarparameters in
a GUI tool that generates the files of the components to baded in the system. The
user can configure th&framework in the options described in Table 2. The config-
uration focus mainly on the option to have certain parts efRTOS implemented in
hardware that are in-house developed solutions to RTO8$sJlne main purpose the
tool is to aid the system designer to explore which configomas most suitable for a
specific application requirement, e.g. regarding RTOSuesousage.

Further, a configurable hardware scheduler has been imptedheby
Mooneyet al. [7]. The scheduler is configured similar to theframework with a
GUI tool that after user configuration input generates thre\are files in Verilog and
software driver files in C. The hardware scheduler whichimsludes RTOS clock-tick
processing is configurable in number of tasks, externalrimpés, timer resolution, and
scheduling algorithm. The scheduler provides three sdimegdisciplines: priority-
based, rate monotonic and earliest deadline first. The stihgdnode can be changed
at runtime. A software driver utilizes the hardware sched@linctionality through
memory mapped registers of a general purpose CPU. Pro@egsendent code, such
as the context switch routine, is also implemented in saffwahe functionality of the
hardware scheduler is summarized in Table 3.

Table 3: Implemented functionality in the configurable heaide scheduler [7].

Functionality HW/SW Configurability

General RTOS functionality:

Tasks HW and SW Number of (up to 64)

Scheduling algorithm HW Priority based, Rate monotonic
or Earliest deadline first

RTOS clock-tick processing HW Resolution

External interrupts HW and SW Number of (up to 8)

Context switch routine SwW

3.3 Co-Scheduler2

Morton et al. present the HW/SW partitioning of a single-processor timaé kernel
in [19]. By strategic choice for speed-up purposes, onlysttteeduling including task

Table 4: Implemented functionality in the cs2 (Co-Scher®)l§1 9].

Functionality HW/SW Configurability

General RTOS functionality:

Tasks (periodic, aperiodic) HW and SW Number of (3 to 16)
Scheduling algorithm (Earliest deadline HW

first)

Clock-tick processing HW

Context switch routine SwW

queues, implemented as Earliest Deadline First (EDF) dlgor is moved to a co-
processor, Cs2 (Co-Scheduler2). A general purpose CPUWeethe application and
tasks. The coprocessor is not claimed to be configurablehbutdprocessor size and
performance are analyzed for 3 to 16 tasks. The coprocessesdjnearly in size with
number of tasks. An overview of the Cs2 is shown in Table 4.

3.4 Real-Time Task Manager (RTM)

Jacobet al. has implemented a real-time task manager (RTM) in hardw&reThe
RTM is a processor extension that implements schedulimg thanagement and event
management with the purpose to minimize real-time opegatystem performance
drawbacks. The RTM is an on-chip memory mapped periphetraharinot be used a
stand-alone RTOS, it is meant to be integrated into softRa®S where it handles
the scheduling. They claim the RTM not to application specifhe RTM is described
as scalable and is reported used in configurations of 32, 62%@ tasks and events.

Table 5: Implemented functionality in the Real-time Taskidger (RTM) [6].

Functionality HW/SW Configurability

General RTOS functionality:

Tasks HW and SW Number of (32, 64 or 256)
Scheduling algorithm (Priority based) HW

RTOS clock-tick processing HW

Context switch routine SwW

IPC:

Event management HW Number of (32, 64 or 256)

3.5 Operating System Coprocessor (OSC)

Oliviera et al. presents the Operating System Coprocessor (OSC) whichdsvhee
VDHL implemented operating system functionality such as skta
scheduling, context switching, inter process commuracatiand timing
[24, 25].

The OSC is one of four dedicated co-processors in the AdvhReal-time Pro-
cessor Architecture project (ARPA), a project with focusilvestigating system-on-
chip solutions optimized for real-time systems. They depdioth main CPU and co-
processors themselves. The close relation between thegsws enables the OSC to
have privileged access to registers and program counteeahtin CPU which enables
the OSC to perform a context switch without software intatien. The OSC supports
either non real-time tasks or real-time tasks. Four reaétscheduling policies are
provided as shown in the summary in Table 6. The OSC exchasgeand semaphore
information with the main CPU with memory mapped registéise software driver is
currently assembler implemented.

Table 6: Implemented functionality in the Operating Systeaprocessor (OSC) [24,

25].
Functionality HW/SW Configurability
General RTOS functionality:
Tasks HW and SW Number of
Scheduling algorithm HW Rate monotonic, Deadline mono-

tonic, Earliest deadline first or
Least slack first
RTOS clock-tick processing HW

Context switch routine HW
IPC:
Semaphores HW Number of

3.6 The Silicon OS in the TRON project

The Real-time Operating System Nucleus project (TRON) egradese project for re-
search in ideal computer architectures in different argasis been running since 1984
and has produced several subprojects. One of the submdjebte Industrial-TRON
(ITRON) which is a software real-time OS for use in embeddetiesns. Nakanet al.
presented in [21, 20] a real-time OS where parts of the ITRAOMRK functionality
was implemented in hardware (HDL). The solution consist bardware part, called
"Silicon TRON", and a software part, the remaining partstef tTTRON. The hard-
ware part implements task scheduling, task synchronizatask communication and
external interrupt management. The Silicon TRON togeth#r the software part is
called a "Silicon OS". Configurability is not described biffatent number of tasks,
semaphores, flags and timers were reported as describetle7larhe Silicon OS is
connected to a general-purpose CPU as a peripheral with iyenapped registers. It
is also connected to an interrupt input port of the CPU wheoraext switch is about
to occur.

Table 7: Implemented functionality in the Silicon OS [21].20

Functionality HW/SW Configurability

General RTOS functionality:

Tasks (periodic, aperiodic) HW and SW Number of (3 to 16)

Scheduling algorithm (Priority based) HW

External interrupts HW

RTOS clock-tick processing HW

Timers HW Bit width of timer argu-
ment (8, 16 or 32)

Context switch routine SW

IPC:

Semaphores HW Number of (8, 16 or 32)

Flags HW Number of (8, 16 or 32)

3.7 FE-Timer

Parisotcet al. presents a hardware architecture for real-time operaistgss support
using special hardware components implemented in one FRGJA The included F-
Timer is a co-processor that communicates with the maingssar and releases it from
the tasks time management. The F-Timer hardware architelsindles external asyn-
chronous interrupts and scheduling of tasks with priorAjl. tasks are programmed
and when the execution time of a certain task is reached,rtteepsor is interrupted
and the correct task is available on the bus. Configurabdityot discussed but the
F-timer is said to be adjustable. Details of reported furdlity is summarized in
Table 8.

Table 8: Implemented functionality in the F-timer [26].

Functionality HW/SW Configurability
General RTOS functionality:

Tasks (periodic, aperiodic) HW and SW

Priority levels HW

Scheduling algorithm (Smallest input first HW
output, Priority based)

RTOS clock-tick processing HW
Timers HW

External interrupts HW
Context switch routine SwW

4 Summary

In this report, research projects in the area of hardwarpatifor RTOS have been de-
scribed in the aspect of hardware/software partitioningrofided functionality. The
combination of configurability and hardware support haverbaiscussed. The com-
bination of configurability and hardware support for RTOSyrimcrease the ability to
better exploit the benefits associated with hardware stigpch as increased perfor-
mance and predictability, and decreased CPU load and meumsage.

Provided functionality among the hardware supported RT@y8eémentations have
been summarized in Table 9 where hardware/software gauitiy is shown for each
feature, and configurability and enable/disable postisliare marked. Regarding the
Featuresin Table 9 the abbreviations and meaning will be explain@dsksare in
most cases marked being implemented in both hardware atvabsef This is because
a task is considered implemented in software when ther¢ apfication tasks exe-
cuted by a main CPU and when a context switch routine is imptged in software
requiring a software implemented task control block (TGB3tructure containing task
information regarding task entry point, stack, timing,gpity and state information.
A task is considered being a part of the hardware implemientathen the sched-
uler is implemented in hardware, containing tasks and tafskrnation in task queues.
Further features in Table 9 aBched.(scheduling algorithm)Clock (internal RTOS

10

clock-tick), Irq (external interrupts triggered by external even®gw (context switch
routine),Sem(any kind of semaphore functionality), Flags (any kind o§ffanction-
ality), Eventgevent groups or event managementin the aréB©@j. Mailbox, Queues
andMutexare not abbreviations and are common RTOS features for IRE abbre-
viations of the hardware supportin the table are each ptedémprevious sections of
this report.

Table 9: A summary of provided functionality in differentrdavare support imple-
mentations. The table shows if a feature is implementedtin bardware and software
(H/S), only hardware (HW) or only software (SW). Configueafdatures are marked
(-

Hardware Support
Feature | RTU | 6 | Sch [Co2 | RTM | OSC | TRON [F-timer
General RTOS functionality:
Tasks H/st swt H/St | HISt | HIST H/st H/st HIS
Sched. HW SW HwWT HW HW HWT HW HW
Clock HwWT SW HWT | HwW HW HW HwWT HW
Irq HWT n/a H/st n/a n/a n/a HW HW
Csw SwW SwW SwW SW SW HW SW SW
IPC:
Sem. HWT SWi n/a n/a n/a HWT HWT n/a
Flags HWT n/a n/a n/a n/a n/a HWT n/a
Events n/a SWH n/a n/a Hw n/a n/a n/a
Mailbox n/a SWH n/a n/a n/a n/a n/a n/a
Queues n/a Swh n/a n/a n/a n/a n/a n/a
Mutex n/a SwWi n/a n/a n/a n/a n/a n/a
Specific features:
DDU? n/a H/St n/a n/a n/a n/a n/a n/a
DMMU 2 n/a H/SH n/a n/a n/a n/a n/a n/a
Lc? n/a HwW# n/a n/a n/a n/a n/a n/a

 Configurable

¥ Enable/Disable

1 Deadlock detection unit.

2 Dynamic memory management unit.
3 System-on-chip lock cache.

Apparentin Table 9 is that theFramework § in Table 9) is different from the other
hardware support. Instead of implementing hardware sumfd®TOS functionality
closely related to the real-time kernel functionality, thEramework project proposes
special purpose hardware components providing solutmksdwn RTOS issues such
as deadlock detection and dynamic memory management. TB& Rfovided in the
framework is software implemented. This project is the qrlgject where options to
enable or disable functionality is provided clearly.

Even though the hardware support included in this reportraptemented differ-

11

ently and more or less independent of each other, there eeeadsimilarities. All but
one hardware support is connected to a general purpose CRUnasnory mapped
peripheral. When a general purpose CPU is used, the syswgndemust manipulate
the CPU registers with software programming and hence théegbswitch routine
(Cswin Table 9), is implemented in software. This means that 8BS that are stored
and re-stored during a context switch, is implemented itwaok as well. The advan-
tage with this solution is that the hardware support can btegddo another general
purpose CPU. However, in the project behind Operating 8y§teprocessor@SCin
Table 9), they develop both the main CPU and the OSC thenssaleaning they have
access to CPU registers in hardware and can perform a cemtgh without software
intervention. This increases performance of the contekthwIn early implementa-
tions of the RTU, in the FASTCHART project, a similar solutizvas presented. The
hardware real-time kernel was integrated with an in-hoeseldped CPU and context
switch was possible to perform in only one clock-cycle.

Besides being connected to a general purpose CPU, othdarsiies among pre-
sented hardware support are that, except footheamework, they all have the sched-
uler and RTOS clock-tick processing implemented in haréwalmplementing the
RTOS clock-tick in hardware relieves the main CPU from hamgdfiming calculation
for periodic tasks and delayed tasks. In software impleeeRTOS, the RTOS has
to check the task delay queues, decrease each task’s tichee-acheduled a task if a
timer has expired. This procedure is performed in certame tintervals and each time
the main CPU is interrupted and has to execute software aydeahdling this. In a
hardware implemented scheduler, this is performed in |gduital the CPU executing
the running application task, which leads to increasecopernce.

Regarding scheduling, the configurable hardware schedntethe Operating Sys-
tem CoprocessorSchand OSCin Table 9) are providing configurability regarding
scheduling while the system designer has several optigasdiang scheduling algo-
rithms in hardware. The configurable hardware schedulert®nfigurable at run time
while the OSC provides the designer to choose schedulirggitiign at compile time.
The other hardware support only provide one scheduling iifgo.

Half of the hardware support in Table 9 provide some form &,IBnd when they
do, provided IPC is configurable. Configurability in genésaliscussed to most extent
in the hardware support projects that provide completestfmylgenerating whole sys-
tems: the Framework, OSC and to some extent the configurable hardwhszlsler.
Here, configurability is accomplished when setting commbparameters in connec-
tion with using the tool. Among the other hardware suppat ttoes not provide a tool
environment, the Silicon OS in the TRON project and the RTRQNandRTUin Ta-
ble 9), reports configurability regarding tasks, timer tegon, semaphores and flags.
The variations in configurability is different but providednfigurable functionality is
very similar in these two hardware support.

12

References

[1]
(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

J. BhaskerA VHDL Primer. Prentice Hall PTR, Revised edition, 1995.

L. Enblom and L. Lindh. Adding Flexibility and Real-TimBerformance by
Adapting a Single Processor Industrial Application to a fiftubcessor Platform.
In Parallel and Distributed Processing EUROMICRO Workshiglantova, Italy,
February 2001.

F. Engel, G. Heiser, I. KuzZ, S. M. Petters, and S. Ruocc@er@ting Systems
on SoCs: A Good Idea? IBRTSI in conjunction with 25th IEEE RTS$sbon,
Portugal, December 2004.

J. Furunas. Benchmarking of a Real-Time System thaisasila booster. In
International Conference on Parallel and Distributed Pessing Techniques and
Applications Mantova, Italy, June 2000.

T. Klevin and L. Lindh. Scalable Architecture for Reairie Applications And
Use of bus-monitoring. Innternational Conference on Real-Time Computing
Systems and ApplicationBecember 1999.

P. Kohout, B. Ganesh, and B. Jacob. Hardware Support &zi-Bme Operat-
ing Systems. INEEE/ACM/IFIP international conference on Hardware/sedire
codesign and system synthediswport Beach, USA, 2003.

P. Kuacharoen, M. A. Shalan, and V. J. Mooney lll. A Confaje Hardware
Scheduler for Real-Time Systems. Ilternational Conference on Engineering
of Reconfigurable Systems and Algorithiress Vegas, USA, June 2003.

J. J. LabrosseMicroC/OS-Il The Real-Time KerneCMP Books, second edition,
2002.

J. Lee, V. J. Mooney lll, K. Ingstrém, A. Daleby, T. Kleviand L. Lindh. Com-
parison of the RTU Hardware RTOS with a Hardware/Softwar®8TInDesign
Automation Conferen¢danuary 2003.

J. Lee, K. Ryu, and V. J. Mooney lll. A Framework for Autatic Genera-
tion of Configuration Files for a Custom Hardware/Softwamd$. InInter-
national Conference on Engineering of Reconfigurable &ystend Algorithms
June 2002.

L. Lindh. FASTHARD - A Fast Time Deterministic HardwaBased Real-Time
Kernel. INIEEE press, Real-Time Workshajgthens, January 1992.

L. Lindh. Utilization of Hardware Parallelism in Realizing Real Tirkernels
PhD thesis, Royal Institute of Technology, Stockholm, Seved 994.

L. Lindh, T. Klevin, and J. Furunés. Scalable Architgetfor Real-Time Applica-
tions - SARA. InSwedish National Real-Time Conference (SNARifikoping,
Sweden, August 1999.

13

[14] L. Lindh and F. Stanischewski. FASTCHART - A Fast Timet&®ninistic CPU
and Hardware Based Real-Time-Kernel.IEEE Euromicro workshop on Real-
Time Systemgune 1991.

[15] L.LindhandF. Stanischewski. FASTCHART - Idea and Iempkntation. IREEE
International Conference on Computer Design (ICCBpston, USA, October
1991.

[16] L. Lindh, J. Starner, and J. Furunds. From Single to Mrtdcessor Real-Time
Kernels in Hardware. IREEE Real-Time Technology and Applications Sympo-
sium Chicago, USA, May 1995.

[17] V. J. Mooney lll. Hardware/Software Partitioning of &ting Systems. IDe-
sign Automation and Test in Europe Confereridarch 2003.

[18] V. J. Mooney IlIl and D. M. Blough. A Hardware-Software&&ime Operating
System Framework for SOC4dEEE Design and Test of Computef9:44-51,
2002.

[19] A. Morton and W. M. Loucks. A Hardware/Software Kernet System on Chip
Designs. INPACM Symposium on Applied Computitgcosia, Cyprus, 2004.

[20] T. Nakano, Y. Komatsudaira, A. Shiomi, and M. Imai. VU&iplementation of
a Real-time Operating System. Design Automation Conference (ASP-DAC)
Chiba, Japan, January 1997.

[21] T. Nakano, A. Utama, M. Itabashi, A. Shiomi, and M. Imaiardware Imple-
mentation of a Real-time Operating SystemTRON Project International Sym-
posium Tokyo, Japan, November 1995.

[22] S. Nordstrém and L. Asplund. Configurable HardwaretBafe Support for Sin-
gle Processor Real-Time Kernels. limernational Symposium on System-On-
Chip ConferenceTampere, Finland, November 2007.

[23] C. Norstrom, K. Sandstrém, J. M&ki-Turja, H. HanssonTHane, and J. Gustafs-
son. Robusta realtidssystenMRTC, Malardalen University, Vasteras, Sweden,
2000.

[24] A. Oliviera, V. Sklyarov, and A. Ferrari. ARPA - An Operofrce System-on-
Chip for Real-Time Applications. lEmbedded Real-Time Systems Implementa-
tion WorkshopLisbon, Portugal, December 2004.

[25] A. Oliviera, V. Sklyarov, and A. Ferrari. ARPA - An Techlogy Independent
and Synthetizable System-on-Chip Model for Real-Time Aggtions. InDigital
System Design in Euromicro ConferenPerto, Portugal, August 2005.

[26] A. Parisoto, A. J. Souza, L. Carro, M. Pontremoli, C. étex, and A. Suzim.
F-Timer: dedicated FPGA to real-time systems design supplor Real-Time
Systems, 9th Euromicro Workshd997.

14

[27] Prevas AB, Vasteras, Sweden, www.prevas.se, 2007.

[28] T. Samuelsson, M. Akerholm, P. Nygren, J. Starner, arldiidh. A Comparison
of Multiprocessor Real-Time Operating Systems ImplemgimeHardware and
Software. Ininternational Workshop on Advanced Real-Time Operatirgiedy
Services (ARTOSSorto, Portugal, July 2003.

[29] J. Starner, J. Adomat, J. Furunas, and L. Lindh. RealeTScheduling Co-
Processor in Hardware for Single and Mulitprocessor Systent UROMICRO
ConferencePrague, Czech Republic, September 1996.

15

