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Abstract. In software engineering for embedded 
systems generic reusable software components 
must often be discarded in favor of using re-
source optimized solutions. 

In this paper we outline a model that enables 
the utilization of component-based principles 
even for embedded systems with high optimiza-
tion demands. The model supports the creation of 
component variants optimized for different sce-
narios, through the introduction of an entrance 
preparation step and an ending verification step 
into the component design process. These activi-
ties are proposed to be supported by tools work-
ing on metadata associated with components, 
where the metadata is possible to automatically 
retrieve from many development tools.  

This paper outlines the theoretical model that 
is the basis for our current realization work. 
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1. Introduction 
 

Component-Based Software Engineering 
(CBSE), promises independent development and 
reuse of software components [7]. The founda-
tion is that general components are reused in 
many applications, and that problems with archi-
tectural mismatches can be eliminated [9]. How-
ever, there are studies, e.g., [5, 6, 15] indicating 
that the development of  reusable components in 
comparison with optimized components for cer-
tain applications requires up to five times the 
effort. A substantial part of the extra effort in-
volves development addressing potential future 
usage scenarios. 

Due to extra-functional requirements present 
in embedded systems, software must often be 
optimized and tailored for each application [20]. 
Embedded systems are often produced in high 
volumes, implying that smaller memory capsules 
and cheaper processors has high impact on the 
total production cost. To enable the verification 
of other extra-functional properties, e.g., reliabil-
ity, safety, and timing; design choices must be 

simple in order to enhance predictability, test-
ability, and analyzability. Thus, reusable compo-
nents, which are bigger and more complex, are 
often discarded for optimized solutions.  

There are several promising component tech-
nologies for embedded systems, e.g., the Rubus 
component technology [13], Koala [17], and our 
research prototype SaveCCT [1]. These tech-
nologies proves that different important needs 
for embedded systems can be satisfied, e.g., real-
time support, and resource efficient run-time 
systems. However, in industrial case-studies 
where SaveCCT have been applied, we have 
found that much of the necessary support is pro-
vided (or possible to provide) but that the need 
to optimize components for certain applications 
remains a challenge [1].  

The optimization problem has also been rec-
ognized in related research, and a classification 
of different techniques is presented in [11]. 
Common for many of these techniques is the 
support for configuration of components, e.g., 
[2, 3]. However, the flip-side is that future sce-
narios must be predicted, and that the configura-
tion code increase complexity and thereby re-
source usage. The other main principle for exist-
ing techniques is to apply external adaptation 
through wrappers [22], or adaptors [21]. The 
main limitation here is that optimization of the 
component’s internal realization is not possible, 
e.g., it is not possible to remove functionality. 
Thus, these techniques it is not suitable for re-
source constrained embedded systems.  

To address the problem, we are creating a 
framework supporting engineering activities re-
lated to optimization and adaptation of compo-
nents. The framework should be used in combi-
nation with a component technology, in our case 
it will be a part of SaveCCT. In this paper we 
present the founding model for the framework, 
and this model is the contribution. The model is 
based on using component metadata, most of 
which can be automatically retrieved from de-
velopment tools. Associating metadata with 
components is common, e.g., the MS .Net 



framework [16] uses metadata for certain run-
time properties. In [18] it is showed how meta-
data can be used to improve the test phase. In 
our work we use that idea and extend it to cover 
the whole component development phase. Simi-
lar to Built-In-Test (BIT) [4, 8, 19], our model 
includes reuse of tests, but as specifications and 
results in the metadata instead of executable test 
cases embedded in the components. In an initial 
phase of component design, our model supports 
preparation activities such as selection of a suit-
able candidate component to adapt, given a set 
of requirements forming a new usage scenario. 
This initial phase provides an estimate of the 
amount of specialization that must be performed. 
The need for similar component retrieval support 
has also been recognized in, e.g., [12], [14]. Dur-
ing component design our model collects key 
metadata from the tool-suite, in the design, reali-
zation, and test phases. At the end of the process 
the model supports verification activities such as 
detection of side-effects that have occurred dur-
ing the specialization process. 

In section 2, an overview of the proposed 
model is given. In section 3, the central distinc-
tion of components, variants, and versions is de-
fined. Section 4 presents the metadata that is a 
core part of the model, while algorithms using 
the metadata are presented in section 5. Section 
6 demonstrates the model by an example. Finally 
section 7 concludes the paper.     

   

2. Model Overview 
 

Figure 1, shows a schematic overview of the 
suggested model, fitted into a design process for 
software components. Characterizing for CBSE 
is that component development and system de-
velopment (using components) are separated 
activities. It is important to be aware of that the 
focus in this work is on the component develop-
ment process, and that the majority of the re-
search targeting software components are con-
cerned with system development using compo-
nents Referring to the figure, the shown design 
process prior the integration of our model can be 
imagined as a waterfall model with four steps, 
design, realization, test execution, and finally 
delivery to the component repository. The main 
characteristics to emphasize after the introduc-
tion of our model are: 
• There is a preparation step added as an en-
trance step into the process. At this stage, given 
the requirements forming a new usage scenario, 
the decision to create a component from scratch 
or to select a component to specialize are taken 

through evaluation of the amount of work 
needed for specialization. The output from this 
step is a plan, or work-order, guiding design and 
verification efforts.  
• There is an additional verification step at the 
end of the process. Here unplanned side-effects 
(not according to the plan from the work-order) 
are detected, e.g., functionality that has changed 
without intention in a specialization. 
• The model is based on metadata, which is 
automatically retrieved in the design process.  
Given that tools are capable of exporting data, 
the need for manual intervention is small.  

Not shown in the figure, but also a central 
concept, is that the model distinguish compo-
nents from variants and versions in the reposi-
tory. This is described in next section. 
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Figure 1, overview of the model  

 

3. Components, Variants, and Versions 
 

In the repository a component may exist in 
several variants and versions. An overview of 
the repository is shown in figure 2. The elements 
shown in the figure are defined below:  
• The repository Rep = {C1, …, Cn}. The reposi-
tory on the top-level stores all components in a 
flat set. The structure is flat since the compo-
nents have no dependencies to each others in 
contrast to, e.g., object-oriented approaches were 
the inheritance relations may affect the storage 
structure. 
• Ci is an abstract component. It is a root node in 
the repository representing all variants of the ith 
component in the repository. Ci = {Ci1, …, Cin}. 
The structure is flat indicating no interdependen-
cies between the different variants; they are 
separate units for usage and maintenance. 
• Each variant may exist in several versions Cij = 
{Cij1, …, Cijn}. Versioning of the variants is han-
dled according to the rules of common version 
management theory. The version created latest in 
time will have the highest version number. 
• Referring to a component Cijk, means version k 
of variant j of the ith component in the repository. 
Cijk is a concrete component in a component 



technology, e.g., [1][17], according to common 
component definitions, e.g. [10]. 

Assume that the function Req(x) gives the set 
of uniquely identified requirements fulfilled by 
element x. How this is realized is described in 
the next section. The following guarding condi-
tions must be fulfilled for a software element to 
qualify as a variant, or version of a component 
respectively: 

Commonality guard - for all variants j and 
versions k of component i, {∩jk Req(Cijk)} ≠ ∅. 
This implies that there must be at least one re-
quirement in common between all variants and 
versions of a certain component. If this guard is 
not fulfilled, the variants and versions cannot be 
stored under same component.  

Compatibility guard - for a new version k+1 
of variant k, Req(Cijk) ⊆ Req(Cijk+1). This implies 
that a new version of a variant should fulfill at 
least the same requirements as the previous ver-
sion. When this strict guard is fulfilled the new 
version is backwards compatible with the older 
version, typically bug-corrections and improve-
ments will sort under this category. In our 
model, if this guard is not fulfilled the compo-
nent may be qualified as a new variant; other-
wise a new component should be created. 

 

 
Figure 2, repository layout 

 

4. Metadata definition 
 

Metadata units are associated with all con-
crete components, i.e., all versions of all variants 
of a component. The metadata manage require-
ments, elements of design and verification of the 
software in the repository.  

An overview of the metadata is shown in fig-
ure 3. The figure show more metadata compared 
to what will be formally defined in this paper; 
this is to give an idea of the overall concept. The 
core metadata (thicker lines in the figure), are the 
necessary parts required to provide the support 
that is emphasized in this paper. Non core parts 
may be useful when browsing the repository, 
e.g., containing abstract, keywords, usage statis-

tics, and key design patterns practiced when the 
component was developed .   

To define the core parts of the metadata, let 
Mijk = (Sijk,Gijk) be the metadata associated with 
Cijk. Sijk is a specification of the component Sijk 
= (Rijk, Dijk, Vijk) where: 
• Rijk is a set of uniquely identified requirements 
Rijk ={r1, …, rn}. Rijk contains all documented 
requirements that the software element tries to 
fulfill, including both functional and extra-
functional requirements. The actual formulation 
or semantics of the requirement is not strictly 
required. The important matter is that a unique 
identity is associated with each requirement.  
• Dijk is a set of uniquely identified architectural 
entities Dijk = {d1, …, dn}. Depending on the 
realization of the software element, these design 
entities can be different artifacts, e.g., functions, 
data structures, objects, components or analysis. 
As for requirements, design entities must be as-
sociated with a unique identifier.  
• Vijk is a set of uniquely identified verification 
cases Vijk = {v1, …, vn}. Vijk includes all test-
cases, together with expected results, and also 
obtained results after the test phase. As for Rijk 
and Dijk each case needs to be represented.    

Gijk = (CRijk, VRijk), contains manually de-
fined relations, over the automatically derived 
sets Dijk, Rijk, and Vijk. 
• CRijk ⊆ Dijk × Rijk represents the causal rela-
tionships between elements of the design and 
their respective requirements. It represents the 
reason, or the cause, for design elements to exist.      
• VRijk ⊆ Vijk × (Rijk ∪ Dijk) represents the ver-
ify relationships from elements of the verifica-
tion cases, to which requirements and/or design 
entities, each case verifies. Relations from Vijk to 
Dijk represent white-box test cases, while edges 
from Vijk to Rijk represent black-box cases. 
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Figure 3, metadata associated with Cijk 

 

5. Central algorithms on the metadata  
 

Figure 1 emphasized the support provided 
first and last in the component design process, 
the algorithms applied in the two different stages 
are described in the following sub-sections.     
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5.1 Preparation 
 

When a need for a new component is de-
tected, a central decision is to decide if the new 
component should be obtained through adapta-
tion of an existing component or if a new com-
ponent should be developed. To support this de-
cision, the metadata can be used to compare 
candidates for reuse and adaptation. The follow-
ing expressions determine what requirements 
that are addressed by variants and versions of a 
specific component:    
• SRi derives all requirements shared by all vari-
ants and versions of a component. It is defined as 
the intersection of all requirements addressed by 
all entities of a certain component Ci: SRi = {∩jk 
Req(Cijk)}   
• NRi is the set containing the requirements ad-
dressed only by a sub-set of the variants and ver-
sions of a certain component Ci. NRi = {∪jk 
Req(Cijk)} - SRi  
• AR(r)  gives the set of versions and variants 
that address the requirement r, of a certain com-
ponent Ci, AR(r)= { Cijk | {r} ⊆ Req(Cijk)} 

The application of the expressions above pro-
vides overview information about the compo-
nents. We can see divide requirements into those 
addressed by all versions and variants, and those 
requirements addressed by certain sub-sets. With 
this information developers are guided in the 
choice of candidate components to investigate in 
the work to find a suitable component to reuse.  

It is possible to derive a work-order for each 
concrete component, i.e., Cijk. Initially work-
orders are used to estimate the amount of work 
to apply changes to certain concrete components 
to fit a new usage scenario. Thus, finding the 
most feasible candidate to adapt is supported by 
comparison of work orders. A component whose 
work order shows little need for adaptation is 
likely a suitable starting point for a new variant. 
Later, during the development, the work is 
guided by the work-order. For a certain concrete 
candidate Cijk, and given the requirements form-
ing a new usage scenario, the work order show 
what design entities and what test cases to reuse 
as-is, to change, and to remove. It also shows 
what requirements that remains unimplemented 
and thus will require new development. The 
functions that are needed to be applied on the 
metadata are defined here.  

An estimation of consequences of a changed 
requirement, r, in terms of the set of affected 
design entities, AD(r), and set of affected test 
cases, AT(r), is determined through:   

• AD(r) = {x | CRijk (x,r)} 
• AT(r) = { x | VRijk (x,r)} 

The consequences of a removed requirement, 
r, in terms of affected design entities can simi-
larly be determined by the same expressions. 
However, to determine if the deign entity or test 
case is not only affected, but according to the 
relationships expressed in the graphs can be re-
moved, we must take the whole set of all re-
moved requirements into consideration. Let RR 
be the set of requirements that is planned to be 
removed. Design entities that may be removed 
are determined through the function RD(RR). 
Similarly test-cases that may be removed are 
derived by the function RT(RR).     
• RD(RR) = { x |  ¬∃r : [CRijk (x,r)  ∧   

      r ∈ Rijk-RR ] } 
• RT(RR)  = { x | ¬∃r : [VRijk (x,r)  ∧  
           r ∈ Rijk-RR ] } 
 

5.2 Verification  
 

When a resulting variant or version is created 
based on reuse of another, it is possible to detect 
un-planned effects of the changes. To detect un-
planned side-effects that may have occurred in 
the process, regression testing is applied based 
on information in the work order. The only al-
lowed changes between the results of reused test 
cases are those we knew would be affected in the 
work order. If any other changes are detected, 
they must be investigated. There can be one of 
two reasons that must be corrected by the devel-
opers: 
• Unplanned or unnecessary parts were changed 
during the development of the new variant, 
which must be found and corrected. 
• Undocumented dependencies in the relations 
CRijk and/or VRijk should be updated and added 
to achieve a continuous improvement of the de-
cision supporting relations. It may also be useful 
to store statistics when undocumented depend-
encies are discovered, to estimate a precision for 
work orders. 

 

6. Usage Example  
 

Now that we have defined the elements in the 
model we will demonstrate the support for de-
sign decisions. We do this through a simplified 
industrial case.  
 

6.1 Initial Component 
 

As a part of an order of a larger system, a 
component providing an interface to a CAN chip 
is ordered forming requirements Rijk as below: 
Rijk = {(11, Send),  



       (12, Receive),  
       (13, EnableRemoteReply),  
       (14, worst case latency for Send 1 ms)} 
Given that this component is built from 

scratch, and stored in an empty repository, i.e., 
Rep = {C1}, where C1={C111}. Depending on the 
developers design decisions, D111, and V111 of 
the local metadata associated with C111 may have 
the following structure in the repository: 
D111 = {(21, FrameTypes), 

        (22, ReceiveBuffer), 
        (23, Send ),  
        (24, Receive),  
        (25, EnableRemoteReply), 
        (26, Analysis of send, result 500ms)} 

V111 =  {(31, receive buffer test, expected: oldest         
dropped, observed: oldest dropped ), 

      (32, send test, expected: all sent observed: 
all sent), 

      (33, receive test, expected: id sequence 
2,3,66, observed: 2,3,66),  

    (34, remote reply test, expected: remote 
frame 2, observed: remote frame 2), 

    (35, timing analysis send, expected: 
<500ms, observed: 450ms)} 
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Figure 4, causal relations 
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Figure 5, verify relations 

 

Notice that the requirements, design, and 
verification sets R111, D111, and V111 should be 
automatically created, given that it is possible to 
export data from the tools. However, the causal 

and verification relations CR111 and VR111 re-
main to be manually defined. These relations can 
be presented and created graphically, through 
directed graphs. CR111 and VR111 for the case are 
defined below, and the corresponding graphs are 
shown in figure 4 and 5 respectively. For now, 
ignore the fields surrounding, e.g., nodes with id 
14 and 26.       
CR111 = {(21,11), (21,12), (21,13), (23,11), 
(22,12), (24,12), (25,13), (26,14)} 
VR111 = {(31,22), (32,11), (33,12), (34,13), 
(35,26), (35,14)} 

The metadata unit for C111 is now complete 
M111 = (S111,G111) = ((R111, D111, V111), (CR111, 
VR111)).  

    We have now the initial version of a 
variant of a component that can not only be 
reused. The component is also prepared for 
adaptation and specialization to form new 
variants addressing sets of requrements forming 
other usage scenarios. 
  

6.2 New Component 
 

In negotiation with another customer at a 
later point in time, the requirements on a similar 
component as a part of another system forms Rijk 
as below. Requirement id 13 has changed, indi-
cated here only by a “*”, requirement id 14 has 
been removed, and requirement id 15 has been 
added.  
Rijk = {(11, Send),  

     (12, Receive),  
     (13, EnableRemoteReply*),  
     (15, GetRemoteFrameStatistics)} 

Applying the expressions in section 5.1, the 
work-order contains the information in table 1. 
The results from the expressions are visualized 
in figure 4 and figure 5. The fields in the figures 
surrounding certain relations show the same as 
the table, e.g., that due to changes in requirement 
id 13, design entities {21, 25} may be affected as 
well as test case 35.  

 

Table 1, A work order for the specialization 
 Design Entities Test Cases 

Reuse ids {22, 23, 24} {31,32,33} 
Affected ids {21, 25} {34} 
Remove ids {26} {35} 

Covered requirement ids: {11,12,13} 
Uncovered requirement ids: {15} 

 

The process may proceed guided by the work 
order, eventually when tests are complete the 
results are verified according to section 5.2. In 
this case according to the work-order it is ex-
pected that test case 34 might show other results, 



and that observed results of cases {31, 32, 33} 
should be unchanged.   

 

7. Conclusions 
 

We are convinced that component-based 
principles are beneficial for all types of software. 
Mature engineering disciplines always use stan-
dardized components. One of the most important 
prerequisites for component based principles is 
that components are general, so that they can be 
(re)used many times. This prerequisite has 
shown be hard to meet in development of certain 
software, e.g., embedded software with high 
specialization demands.  

This paper introduces a model that supports 
developers of embedded software components in 
using optimized variants of components. The 
benefits are achieved by introducing a start and a 
completion step into a regular design flow. The 
completion-phase provides automatic detection 
of accidentally introduced side effects in redes-
ign. The starting phase supports the selection of 
the best matching candidate from a repository of 
components given a set of requirements.  

The model is based on associating metadata 
with components, and can be highly automated 
and integrated in an existing development tool-
suite, given that it is possible to export data from 
the tools. An industrial case study is planned, 
where a prototype realization will be integrated 
in an existing tool-suite at a sub-contractor com-
pany. A sub-contractor company is often faced 
with challenges in adapting and customizing 
components to the different needs of customers 
with varying system architectures and choices in 
technology and standards. Managing adaptation 
and optimization of components is therefore a 
key value for sub-contractors. 
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