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Abstract. We describe a partial order reduction technique for a real-
time component model. Components are described as timed automata
with data ports, which can be composed in static structures of unidi-
rectional control and data flow. Compositions can be encapsulated as
components and used in other compositions to form hierarchical models.
The proposed partial order reduction technique uses a local time seman-
tics for timed automata, in which time may progress independently in
parallel automata which are resynchronized when needed. To increase
the number of independent transitions and to reduce the problem of
re-synchronizing parallel automata we propose, and show how, to use in-
formation derived from the composition structure of an analyzed model.
Based on these ideas, we present a reachability analysis algorithm that
uses an ample set construction to select which symbolic transitions to
explore. The algorithm has been implemented as a prototype extension
of the real-time model-checker Uppaal. We report from experiments
with the tool that indicate that the technique can achieve substantial
reduction in the time and memory needed to analyze a real-time system
described in the studied component model.

1 Introduction

Component-based development has been successfully used for desktop and e-
business applications, and it is currently being introduced in many embedded
systems. The resource constrained nature of these systems has motivated the
development of specific component models [1,14,16,21] and formal frameworks,
e.g. [8,9,11].

In general, a component based system is a composition of components, where
a component is an open system that accepts input from its environment and
produces output. The internal behaviour of a component can be described by a
composition, thereby forming a hierarchy of compositions. Components interact
with their environment through ports, according to interfaces defined for the
ports. Figure 1 shows three components A, B and C. The two components A
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Fig. 1. An example of composition where components A, B and C are composed by
connecting port p1 to p3, and p2 to p4

and B each have an output port, while component C has three input ports and an
output port. Components can be composed into more complex functional units
with well defined interfaces. A horizontal composition is a set of components
with their ports connected, as in Fig. 1. The connections define how components
can interact within a composition. A vertical composition is a component with
its internal behaviour defined by a horizontal composition.

We use a model for components and composition based on the SAVE1 com-
ponent model [1,5], and designed for vehicle applications with analysability and
safety in mind. The component model is similar to IEC 1131 [16] and Rubus [16].
In our model a component is either idle or executing, and data is transferred
from a component when its execution has finished. Some input ports are called
trigger ports, and are used to trigger the transition of a component’s state from
idle to executing. Control flow is specified by means of trigger ports: when one
component becomes idle, it can trigger other components so that they become
executing. As timeliness is an important property for many embedded systems,
we model the execution of components as timed automata [2].

Model checking is an well-established and popular approach for analysis of
models, although it is inherently complex and suffers from the so-called state-
space explosion problem [13]. Partial order reduction [10,20,18,7] has been sug-
gested as a technique to reduce the state-space explosion caused by parallelism.
The idea is to explore representative traces — a property preserving subset of
the full model based on independence of transitions. In this paper we present a
partial order reduction technique for real-time systems, which is guided by the
structure the component based system being analyzed. As in [3,17] we use local
time semantics to increase independence. For timed automata the implicit syn-
chronization of global time restricts independence of actions. For our component
model we note that the separation of communication from internal computa-
tions makes internal transitions independent of actions in other components. We
also note that we have extensive information on how components communicate,
which is useful for our ample set construction. To increase independence fur-
ther we relax the synchronization, so that we abstract from the exact time of

1 SAVE is a project supported by Swedish Foundation for Strategic Research. See
http://www.mrtc.mdh.se/SAVE/ for more information.
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non-triggering write operations while preserving the order of writes. We present
an algorithm for partial order reduction that takes advantage of these ideas, and
provide some experimental results from a prototype implementation. The exper-
iments indicate that that our component model is well suited for partial order
reduction, and they show good additional reductions when the further relaxed
synchronization is used.

Related work includes partial order reduction techniques for timed systems,
in particular the local time semantics for timed automata first introduced by
Bengtsson et. al., [3]. They also apply the partial order reduction in reachability
analysis of timed automata. This work is extended to Timed LTL model-checking
by Minea in [17]. We adopt the local time semantics to develop a reachability
analysis algorithm for a component model and study how the particular se-
mantics and the static structure of the model can be used to improve previous
results. A more recent approach to symbolic model checking of timed automata
based on partial order semantics is presented by Lugiez et. al., in [15]. It relies
on constraints over event occurrences, instead of clock constraints. In [19], Salah
et. al., show that the union of zones reached by interleavings of the same set of
transitions is convex. Concurrent semantics for networks of timed automata are
investigated in [6,4], by a symbolic unfolding into petri nets with read arcs (to
support urgency and invariants).

The rest of this paper is organized as follows: the component model is de-
scribed in Section 2. In Section 3 we describes our approach to partial order
reduction, and in Section 4 we give an algorithm for checking reachability and
presents results from an experiment. Section 5 concludes the paper.

2 The Component Model

We introduce timed behaviours to model the execution of components as timed
automata, and go on to define syntax and semantics for our component model.

Example 1 (Running Example). Figure 1 shows a horizontal composition of com-
ponents A, B and C. Assume A is a timer, C a controller, and B a component
generating setpoint for the controller. The timer A is connected to the input
trigger port p3 to periodically activate C. The port p5 is used to read sensor in-
put, which is compared to the setpoint when the controller computes its output
to the actuator, port p6.

2.1 Timed Behaviour

We define a timed behaviour as a timed automaton, extended with data variables
and a final location such that no edges are leading out from this location. For
a timed behaviour we have two sets of variables, the set VC of clock variables,
and VD of data variables. The domain of variables in VC is the non-negative real
numbers R≥0, and for variables in VD the domain is a bounded set of integers
INT. We denote by P(VC) the power-set of VC, i.e. the set of all subsets of VC.
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l0
y ≤ T

y = T
y := 0

l1 y ≤ J

lf
(a)

z := 0

l0 z ≤ Max

z ≥ Min
a := 1 − a

lf

(b)

Fig. 2. Timed behaviours: (a) a timer with period T and jitter J, (b) a computation
updating data variable a after between Min and Max time units

A term t is generated by the grammar t ::= m | y | t1⊗t2, where m is a natural
number, y ∈ VD is a data variable, ⊗ ∈ {+, −, ×, /}, and t1, t2 are terms. Let U
be the set of variable updates, each in the form y := t for a data variable y ∈ VD
and a term t. An atomic clock constraint is of the form y ∼ m, for y ∈ VC, m a
natural number, and ∼ ∈ {<, ≤, =, ≥, >}. Similarly, an atomic data constraint
is of the form t1 ∼ t2, with terms t1 and t2. We denote by conj(VD, VC) the set of
conjunctions of atomic constraints. For g ∈ conj(VD, VC) we have gD ∈ conj(VD)
the atomic data constraints of g, and gC ∈ conj(VC) the atomic clock constraints
of g.

A timed behaviour is a timed automaton B = 〈N, l0, lf , VD, VC, r0, rf , E, I〉,
where N is a set of locations, l0 is the initial location, lf is the final location, VD
and VC are sets of variables, r0 ⊆ VC and rf ⊆ VC are sets of clocks (initial and
final resets), E is a set of edges so that E ⊆ N × conj(VD, VC)×U ×P(VC)×N ,
and I maps each location l in N \ {lf} to its invariant I(l), a conjunction of
upper bounds on clocks (y ≤ m or y < m). We write l

g,e,r−→ l′ iff 〈l, g, e, r, l′〉 ∈ E
to denote an edge from location l to l′ with a guard g, variable update e, and
reset clocks r ⊆ VC.

2.2 Component

A component in our setting is defined by its interface and a timed behaviour.
The interface of a component consists of data ports and trigger ports, where con-
nected data ports define data flow between components, and connected trigger
ports define control flow. The ports are either input or output. An input data
port has an associated data variable holding the current data item for this port.

A component is initially idle, and it remains in this state until all input
trigger ports have been activated, at which point it is triggered and switches
to the executing state. The internal computation of a component starts with a
read phase, where all the input data ports are stored internally. The internal
copies of input data are used together with internal state variables during the
execute phase, where the internal behaviour of the component is executed. When
the execute phase is over the write phase writes output to the output data
ports. Finally, the input trigger ports are reset and all outgoing trigger ports are
activated, after which the component returns to the idle state.
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Each component C is a tuple 〈Pin, Pout, Ptrig, B, π〉, where Pin is a set of input
ports, Pout is a set of output ports, Ptrig ⊆ Pin are the trigger input ports, B is
the timed behaviour, and π : P �→ VD is a mapping from ports to variables. We
denote by P the set of ports Pin ∪ Pout of a component.

Example 2. Component A of Example 1 has no input ports so it is spontaneously
triggered. Figure 2 (a) shows the timed behaviour BA of A, with period T = 10
and jitter J = 1. When A is triggered the read phase leads to the initial location
l0. The automaton uses a clock y to ensure that lf is reached every T time units,
with a non-deterministic offset J. Reaching the final location lf starts the write
phase, after which A is spontaneously triggered again. Figure 2 (b) shows the
timed behaviour BB of component B, with response time between Min = 5 and
Max = 20. The clock z is used to ensure that lf is reached after between Min
and Max time units. The setpoint value a is updated to 1−a. The port mapping
πB for B is such that πB(p2) = a, meaning that a is copied to p2 in the write
phase.

Semantics. In order to define a state of a component we first introduce clock
and data valuations. For a set of clocks VC a clock valuation is a map u : VC �→
R≥0. Similarly, for a set of data variables VD and ports P a data valuation is a
map v : (VD ∪ P ) �→ INT. Operations on valuations are:

u′ = [r := 0]u iff u′(y) = 0 for clocks y ∈ r, and
u′(y′) = u(y′) for y′ 
∈ r.

v′ = [y := t]v iff v′(y) = v(t) for y, and
v′(y′) = v(y′) for y′ 
= y.

u′ = u ⊕ δ iff δ ∈ R≥0 and u′(y) = u(y) + δ for any clock y.

We introduce the idle location l⊥ 
∈ N , and denote by N⊥ the set N ∪ {l⊥}.
A state of a component is a tuple 〈l, v, u〉, where l is a location in N⊥, v is a data
valuation, and u is a clock valuation. We introduce values active and inactive
for trigger ports, and define a component as triggered for a data valuation v,
triggered(v), iff for each p ∈ Ptrig we have v(p) = active. A function input(v) is
used to copy values from input ports to corresponding internal variables, simi-
larly output(v) copies internal variables to output ports, and idle(v) inactivates
trigger inputs:

input(v) = [y := p | p ∈ Pin, y = π(p)]v
output(v) = [p := y | p ∈ Pout, y = π(p)]v
idle(v) = [p := inactive | p ∈ Ptrig]v

The transition rules for a component C are:

– delay transition: 〈l, v, u〉 δ−→ 〈l, v, u ⊕ δ〉 if δ ∈ R≥0, u ⊕ δ |= I(l),
l 
= lf , and if l = l⊥ then ¬triggered(v).

– internal transition: 〈l, v, u〉 τ−→ 〈l′, v′, u′〉 along an edge l
g,e,r−→ l′ with e in the

form y := t if v |= gD, u |= gC, u′ |= I(l′), v′ = [y := t]v, and u′ = [r := 0]u.
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– read transition: 〈l⊥, v, u〉 r−→ 〈l0, input(v), [r0 := 0]u〉 if triggered(v).
– write transition: 〈lf , v, u〉 w−→ 〈l⊥, idle(output(v)), [rf := 0]u〉.

We use the following restriction on the internal behaviour of components to
avoid spurious local time traces:

Definition 1 (Time Divergence). We require for a timed behaviour that time
diverges, i.e. that there is no time-stop due to invariants, and within any finite
time bound only a finite number of transitions can be taken (non-zenoness).

2.3 Composition

A composition is a set of interconnected components, also known as a horizontal
composition. We define a composition as a tuple 〈P x

in, P x
out, C, X〉, where P x

in and
P x

out are external ports connecting the composition to its environment, C is a set
of components and X is a set of connections. A connection x = 〈p, p′〉 connects
port p ∈ (P i

out∪P x
in) to port p′ ∈ (P j

in∪P x
out) for Ci and Cj in C. We do not allow

conflicting connections, i.e. connecting output ports of the same component with
the same port.

Example 3. The composition of Fig. 1 has an external input port p5 for sensor
input, an external output port p6 for actuation, three components A, B and C,
and two connections 〈p1, p3〉 and 〈p2, p4〉.

Semantics. A state of a composition is a triple 〈l, v, u〉, where l is a location
vector, v is a data valuation and u is a clock valuation. For a state s we denote
by s[i] the state 〈l[i], v[i], u[i]〉 of a component Ci ∈ C. The local valuations v[i]
and u[i] for a component Ci are such that v[i](y) = v(y) for y ∈ (P i ∪ V i

D), and
u[i](y) = u(y) for y ∈ V i

C. In addition to the local valuations, the data valuation
v also maps external ports P x to their values. The transfer of data and triggering
introduced by writing to ports Q:

writedata(Q, v) = [p′ := p | 〈p, p′〉 ∈ X , p ∈ Q, p′ ∈ P x
out ∪ P j

in \ P j
trig]v

writetrig(Q, v) = [p′ := active | 〈p, p′〉 ∈ X , p ∈ Q, p′ ∈ P j
trig]v

The transition rules for a composition are then:

– delay transition: s
δ−→ s′ if s[i] δ−→ s′[i] for each component Ci ∈ C.

– internal transition: s
τ i

−→ s′ in the behaviour of Ci if
s[i] τ−→ s′[i], and s[j] = s′[j] for j 
= i.

– read transition: s
ri

−→ s′ if s[i] r−→ s′[i] and s′[j] = s[j] for j 
= i.

– write transition: s
wi

−→ s′ where either Ci ∈ C for internal component Ci

writing to ports Q = P i
out or i = Q for external write to ports Q ⊆ P x

in if
• internal state of writer is updated: s[i] w−→ s1[i] if Ci ∈ C,

s1[j] = s[j] for j 
= i (for external writes s1 = s), and
• data or triggering is transferred from ports Q:

s′ = 〈l1, v′, u1〉 with v′ = writetrig(Q, writedata(Q, v1)).
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2.4 Composite Component

In our component model [1,5] we introduce composite components to support hi-
erarchical composition, by allowing the behaviour of a component to be described
by a composition. As any other component, a composite component is defined
by its interface (ports) and its timed behaviour. Unlike other components the
behaviour of a composite component is described as an internal composition.
This is sometimes referred to as vertical composition. Composite components
can be constructed from compositions that are time divergent (Definition 1).
We also require that internal components have at least one input trigger port,
to avoid spontaneous triggering.

For a composite component C, an internal transition is either an internal,
read or write transition of some internal component. The read operation of C
correspond to a write to the external input ports of the internal composition.
Component C can write when all internal components are idle. The port values
are already updated by internal writes, so the write operation only need to
inactivate input trigger ports.

3 Partial Order Reduction

The idea of partial order reduction is to explore representative sequences of
independent transitions, instead of examining all possible sequences. However,
the implicit synchronization of global time restricts independence for transi-
tions of timed automata. As in [3,17] we use local time semantics to increase
independence. It essentially allow us to analyse components of a composition in
isolation, and then synchronize the components to a shared state whenever one
writes to the others. To increase independence further than [3,17] we relax the
synchronization, so that we abstract from the exact time of non-triggering write
operations.

3.1 Representatives and Local Time Traces

To describe the concept of representative traces, we first need a notion of in-
dependent transitions. Two transitions are considered independent if they can
be reordered within a trace without affecting the final state of the trace, or the
validity of the trace. We denote by enabled(σ) the set of transitions that can
immediately follow a finite trace σ, and define independent transitions as in [17]:

Definition 2. Two transitions α1 and α2 are independent iff for any trace σ
such that α1, α2 ∈ enabled(σ):

– Enabledness: α2 ∈ enabled(σα1) and α1 ∈ enabled(σα2).
– Commutativity: Any state reachable by the trace σα1α2 can also be reached

by the trace σα2α1.

Independence is a sufficient condition for reordering transitions within a trace
so that the same state is reached, however it is not a sufficient condition for
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reordering of transitions during reachability analysis. There could for example
be a transition α3 in enabled(σα1) which is not in enabled(σα2), which we
would miss if we only considered the trace σα2α1. For analysis of a composition
we need a strategy to make sure that some representative trace is explored for
each possible trace of the full state graph. We examine conditions for reordering
further in Sect. 4.1.

Independence can be concluded from the structure of a composition, us-
ing a set active(α) of components that participate in a transition α such that
active(αi) = {Ci} for α ∈ {τ, δ, r} and active(wi) = {Ci} ∪ {Cj | 〈p, p′〉 ∈ X , p ∈
P i

out, p
′ ∈ P j

in}. We then restate a theorem found in e.g. [3,17], i.e. that two local
time actions are independent if no automata participate in both actions:

Theorem 1. active(α1) ∩ active(α2) = ∅ ⇒ independent(α1, α2)

Proof. See [17]. ��

We reduce the independence relation further (for internal transitions) in
Sect. 3.2, where we introduce local time semantics. We say that two transitions α1
and α2 are dependent, and write dependent(α1, α2), whenever independent(α1,
α2) cannot be concluded from the structure of a composition. The dependency
relation is thus a safe approximation of transitions that are not independent.

We define a local time trace to be a representative of some timed trace. A
trace σ is a representative of a trace σ′ iff independent transitions of σ can be
reordered to construct σ′. A timed trace (as defined in [2]) is a pair 〈σ, t〉 such
that σ(i) is the ith transition of the trace, t(i) is the time of this transition, and
the timepoints t(i) are monotonic, i.e. i ≤ j implies t(i) ≤ t(j). Local time traces
are then defined as:

Definition 3. A local time trace is a trace 〈σ, t〉 such that dependent transitions
are monotonic, i.e. for any σ(i) and σ(j) that are dependent we have i ≤ j
implies t(i) ≤ t(j).

3.2 Local Time Semantics

To keep track of the local time within components we introduce a reference
clock ci ∈ V i

C for each component Ci ∈ C. We define a local delay transition for
component Ci, where other components do not need to delay correspondingly.

We relax the synchronization of our local time semantics compared to [3]
by completing the internal computation of a component before synchronizing
with other components. This can be done since values written to input ports
of a component are not used during its internal computation. We run internal
computations ahead implicitly in the rule for a write operation wi of Ci by
requiring that any Cj such that dependent(wi, wj) is either idle (l[j] = lj⊥) or
finished (l[j] = ljf ).

Time is synchronized so that the local time in all components dependent on
a write operation is ensured to be later than the local time of the writer, i.e.
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ci ≤ cj for a writer Ci and any Cj such that dependent(wi, wj). This is to make
traces of the local time semantics be local time traces, according to Definition 3.
The set of components that are triggered by a write, given a location vector l
and data valuation v, is:

trig(l, v) = {Cj | l[j] = lj⊥ ∧ triggeredj(v[j])}
The clock synchronization constraint synci(l, v) also preserves the exact time of
triggering by requiring that ci = cj for triggered components Cj :

synci(l, v) =

⎛
⎝ ∧

Cj∈trig(l,v)

ci = cj

⎞
⎠ ∧

⎛
⎝ ∧

dependent(wi,wj)

ci ≤ cj

⎞
⎠

We use compositions to describe component based systems. We define local
time transitions s −→t s′ for a composition using the corresponding rules for
transitions s −→ s′:

– delay transition: s
δi

−→t s′ if s[i] δ−→ s′[i] and s′[j] = s[j] for j 
= i.

– internal transition: s
τ i

−→t s′ if s
τ i

−→ s′.
– read transition: s

ri

−→t s′ if s
ri

−→ s′.
– write transition: s

wi

−→t s′ for s = 〈l, v, u〉 if s
wi

−→ s′, u |= synci(l, v), and
either l[j] = lj⊥ or l[j] = ljf for Cj such that dependent(wi, wj).

Lemma 1 shows that internal transitions in the local time semantics are in-
dependent of write transitions. This independence makes our model suited for
partial order reduction, and enables the weak synchronization (otherwise we
would need ci = cj also for non-triggering participants, instead we use ci ≤ cj

to preserve order of write operations).

Lemma 1. For the local time semantics we have:

– independent(αi
1, α

j
2) if i 
= j and α1, α2 in {τ, δ}

– independent(wi, αj) if i 
= j and α in {τ, δ}
– independent(wi, rj) if Cj 
∈ active(wi)
– independent(wi, wj) if active(wi) ∩ active(wj) = ∅

Proof. by Theorem 1, and for independent(wi, τ j) we note that wi is not enabled
if τ j is enabled for Cj ∈ active(wi), similarly for δj . ��
Theorem 2 (Correctness of Local Time Semantics). Assume local time
states s0 and sf = 〈lf , vf , uf〉, global time states s′0 and s′f = 〈l′f , v′f , u′

f〉, and a
component Ck. Let s0 = s′0 except for reference clocks which are zero in s0 but
not included in s′0.

– (Soundness) whenever s0 −→∗
t sf then s′0 −→∗ s′f so that lf [k] = l′f [k],

vf [k](y) = v′f [k](y) for y ∈ V k
D (i.e. not for y ∈ P k), and uf [k] = u′

f [k].
– (Completeness) whenever s′0 −→∗ s′f then s0 −→∗

t sf so that lf [k] = l′f [k],
vf [k](y) = v′f [k](y) for y ∈ V k

D (i.e. not for y ∈ P k), and uf [k] = u′
f [k].

Proof. Soundness is shown by induction over a local time trace, and completeness
by construction of the corresponding local time trace (see [12]). ��
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3.3 Symbolic Local Time Semantics

We define a zone Z as a set of clock valuations, and use symbolic states 〈l, v, Z〉 to
represent all states 〈l, v, u〉 such that u ∈ Z. For a zone Z and a clock constraint
g we define conjunction Z ∧ g as the set of valuations u ∈ Z such that u |= g,
reset r(Z) as u′ such that u′ = [r := 0]u for u ∈ Z, and symbolic local delay Z↑i

as u′ such that for u ∈ Z, δ ∈ R≥0 we have u′[i] = u[i] ⊕ δ and u′[j] = u[j] for
i 
= j.

The initial symbolic state is 〈l0, v0, Z0〉, where Z0 = ({u0})↑ ∧ I(l0) incorpo-
rates an initial delay in all components from a zone with a single solution u0. To
improve the presentation we incorporate the semantics of a component into the
transition rules for a composition:

– internal transition: 〈l, v, Z〉 τ i

=⇒t 〈[li′/li]l, v′, Z ′〉 along an edge li
g,e,r−→ li

′ with
e in the form y := t if v |= gD, v′ = [y := t]v, and
if li

′ = lif then Z ′ = r(Z ∧ gC), otherwise Z ′ = (r(Z ∧ gC))↑i ∧ Ii(li′).

– read transition: 〈l, v, Z〉 ri

=⇒t 〈[li0/li⊥]l, v′, Z ′〉 if l[i] = li⊥ and triggeredi(v[i]),
with v′[i] = input(v[i]), v′[j] = v[j] for j 
= i, and
if li0 = lif then Z ′ = ri

0(Z), otherwise Z ′ = (ri
0(Z))↑i ∧ Ii(li0).

– write transition: 〈l, v, Z〉 wi

=⇒t 〈[li⊥/lif ]l, v′, Z ′〉 where either Ci ∈ C writing
to ports Q = P i

out, or i = Q for external write to Q ⊆ P x
in, if l[i] = lif and:

• l[j] = lj⊥ or l[j] = ljf for Cj such that dependent(wi, wj),
• v1[i] = idle(output(v[i])) if Ci ∈ C, v1[j] = v[j] for j 
= i,
• v′ = writetrig(Q, writedata(Q, v1)), and
• if triggeredi(v′[i]) then Z ′ = ri

f (Z ∧ synci(l, v)), otherwise
Z ′ = (ri

f (Z ∧ synci(l, v)))↑i.

For global time semantics a zone can be represented as a conjunction of clock
difference constraints. Constraints on two clocks are preserved by global time
delay because both clocks grow equally, but for local time we need a different
zone representation that is preserved by local time delay. Local time zones can
be efficiently represented [3,17] as difference constraints on reference clocks ci

and timestamps ty for the latest reset of a clock y.

Example 4. We explore a symbolic trace of the composition in Fig. 1. In the
initial state 〈[lA⊥, lB⊥, lC⊥], v0, Z0〉 both A and B can read, since they have no trigger
input ports (and so all their triggers are trivially active). If A reads first (rA)
we get to a state 〈[lA0 , lB⊥, lC⊥], v0, Z1〉 with Z1 = Z↑A

0 ∧ (y ≤ 10). We continue the
trace with rB to 〈[lA0 , lB0 , lC⊥], v0, Z2〉 with Z2 = rz(Z1)↑B ∧ (z ≤ 20) for rz = {z}.
From this state internal transitions τA and τB are enabled. By τB we get to a
state 〈[lA0 , lBf , lC⊥], v3, Z3〉 with v3 = [a := 1]v0 and Z3 = Z2 ∧(z ≥ 5). Component
B cannot write from this state, because wB depends on wA and A is neither idle
or in its final location, so we take τA to the state 〈[lA1 , lBf , lC⊥], v3, Z4〉 with Z4 =
ry(Z3 ∧ y = 10)↑A ∧ y ≤ 1 for ry = {y}. Another τA leads to 〈[lAf , lBf , lC⊥], v3, Z4〉.
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From this state both A and B can write, A when 10 ≤ cA ≤ 11 and B when
5 ≤ cB ≤ 20, but it cannot be determined if C will get data from B before being
triggered by A.

Theorem 3 (Correctness of Symbolic Local Time Semantics). Assume
location vectors l0, lf , variable valuations v0, vf , clock valuations u0, uf , and
local time zones Z0, Zf .

– (Soundness) whenever 〈l0, v0, Z0〉 =⇒∗
t 〈lf , vf , Zf 〉 then for any uf ∈ Zf

〈l0, v0, u0〉 −→∗
t 〈lf , vf , uf〉.

– (Completeness) whenever 〈l0, v0, u0〉 −→∗
t 〈lf , vf , uf〉 then

〈l0, v0, Z0〉 =⇒∗
t 〈lf , vf , Zf 〉 so that uf ∈ Zf .

Proof. Symbolic transition rules are constructed from local time semantics and
definitions of zone operations. Preservation of zone representation is shown
in [17]. See [12]. ��

4 Reachability Analysis

We perform reachability analysis by exploring a subset of enabled transitions
from each explored state, in order to reach a target location denoted lk	 for a
component Ck. In the analysis we use the symbolic local time semantics, to get
the independence introduced in our local time semantics and to get a finite state
space.

4.1 The Ample Set Method

An ample set [18] is a subset of the enabled transitions that is sufficient to
explore when model checking. The ample set method reduces a state graph G to
a subgraph R such that correctness of model checking is preserved, i.e. checking
R gives the same result as checking G. In general we need to select an ample set
so that the checked property is preserved, i.e. a property holds in a representative
trace σ in R iff the same property holds in all traces σ′ in G represented by σ,
and so that all traces in G have a representative in R.

For local reachability we note first that we only need to consider traces of G
that can actually reach the target location. We also note that local reachability
in a component Ck is preserved by representative traces, since the reordering
of independent transitions does not affect which local states are reachable. The
following describes how we can construct an ample set:

Definition 4 (Ample Set Construction). From the static structure of a com-
position we compute Pk the enabled transitions that can give progress in Ck, i.e.
transitions of Ck or of some Cj producing data or triggering to Ck (possibly via
other components). From Pk we define the ample set as follows:

– The ample set is empty iff Pk is empty, otherwise some α0 ∈ Pk is in the
ample set. This must hold for each valuation of a zone, as discussed in [17].
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– If α is in the ample set, α′ is enabled, and dependent(α, α′) then α′ must
also be in the ample set.

– If α is in the ample set, α′ is not enabled, dependent(α, α′), and there is a
transition α′′ that can lead to α′ ∈ Pk before α is taken, then α′′ must also
be in the ample set. This can be determined from the static structure of a
composition.

– For a local cycle, at least one transition in Pk and outside of the cycle is in
the ample set.

Theorem 4. For any trace σ in G reaching the target location, the subgraph R
induced by the ample set construction in Definition 4 contains a representative
of an extension σρ in G.

Proof. By a construction similar to that in [7], with simplifications for local
reachability, and cycle closing due partly to construction of Pk (see [12]). ��

As mentioned in [18] constructing an optimal ample set with respect to state
space reduction is NP hard, so we suggest a heuristic. The construction in De-
finition 4 starts from a transition α0 in Pk, according to the first rule. Once a
transition has been selected the other rules are used to find the least fixpoint,
which is an ample set. To reduce the size of the ample set we select α0 as an
internal transition τ i, if possible. Otherwise select αi with minimal upper bound
on the reference clock of component Ci. This reduces the possibility for other
components to interfere with the execution of αi. We also prefer read operations
over writes when selecting α0.

4.2 Model Checking Algorithm

An algorithm for symbolic reachability analysis based on the symbolic local time
semantics and ample set construction is shown in Fig. 3. It is a standard reach-
ability algorithm, with the exception that the ample transitions are explored
instead of all enabled transitions. The normalisation max(Z) is used to ensure
termination, as the symbolic semantics is not finite. In [3] it is shown that there
is a finite partitioning of the state space, and [17] suggests a method for con-
structing max(Z). Efficient representations of local time zones are also discussed
in [3,17].

We expect the algorithm to perform well: the partial order reduction is a
subset of the symbolic local time semantics, by exploring only the ample set: a
subset of enabled transitions. The local time semantics is sound (Theorem 2)
with respect to the global time semantics. The partitioning of the state space
induced by max(Z) is however incomparable with the normalisation of global
time zones, so we cannot conclude any strict improvements. For timed automata
with local time semantics [3,17] soundness is shown only for synchronized states,
and in general for a local time state there might not exist a corresponding syn-
chronized state. This means that some local time traces lead outside the global
time semantics, giving a larger state graph to search. The components of our
model are time divergent, can always accept input, and never require input to
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PASSED := ∅
WAITING := {〈l0, v0, Z0〉}
repeat for some 〈l, v, Z〉 ∈ WAITING

WAITING := WAITING \ {〈l, v, Z〉}
if l[k] = lk� then return “REACHABLE”
else if max(Z) �⊆ Z′ for all 〈l, v, Z′〉 ∈ PASSED then

PASSED := PASSED ∪ 〈l, v, max(Z)〉
SUCC := {〈l′, v′, Z′〉 | 〈l, v, Z〉 α=⇒t 〈l′, v′, Z′〉, α ∈ ample(l, v, Z)}
WAITING := WAITING ∪ SUCC

until WAITING = ∅
return “NOT REACHABLE”

Fig. 3. An algorithm for symbolic reachability analysis, exploring a selected subset of
enabled transitions from each state until component Ck reaches lk�

be available. Because of this components can always catch up, which is why we
can show soundness for local states.

Example 5. A symbolic trace is described in Example 4. The local traces for
A and B are rAτAτA and rBτB, respectively. For global time semantics there
are six possible interleavings, although probably more interesting nine states are
passed. When searching for a location in C using the ample set construction
in Definition 4 we select either rA and rB first. The selected component will
reach its final location before the other components read operation is selected.
Even though we have not specified which transition to select only one trace
is explored, because rA and rB are independent. The trace explored using the
ample set construction passes through six states, instead of the nine for global
time semantics.

4.3 Experimental Results

We have developed a prototype implementation of our method as an extension
of the Uppaal tool2. Figure 4 illustrates the synthetic benchmarks we use to
evaluate our implementation (similar to the benchmarks of Salah et.al. [19]).
A synthetic benchmark NxM is a grid of components in N columns and M
rows. Each component Cn,m is connected to Cn,m+1 and to Cn+1,m+1. The
components in the first row are triggered once, and the timed behaviour of each
component is a delay by at least 4 time units. As target component Ck for
our ample set construction we use CN,M (i.e. C5,3 for Fig. 4). Table 1 shows
the computation time and number of explored states for global time semantics
(Section 2), local time with strict synchronization (using constraints ci = cj also
for wi, wj dependent) and local time semantics (Section 3). The prototype does
not implement the normalisation step max(Z). Normalisation is not required for
the benchmark models, and is turned off in the global time implementation. We
note that the algorithms with partial order reduction performs much better than
2 See the web site www.uppaal.com for more information.
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C1,1 C2,1 C3,1 C4,1 C5,1

C1,2 C2,2 C3,2 C4,2 C5,2

C1,3 C2,3 C3,3 C4,3 C5,3

Fig. 4. The synthetic benchmark 5x3 (with N=5 columns, M=3 rows)

Table 1. Benchmark results: we use ⊥ to denote that the experiment did not terminate
in 30 minutes

Method 3x2 3x3 3x4 4x3 4x4
global 264/0.16s 499/0.22s 838/0.31s 2553/0.65s 4778/1.6s
strict 19/0.14s 105/0.19s 443/0.47s 105/0.26s 990/1.7s
local 19/0.14s 65/0.18s 275/0.43s 93/0.25s 336/1.0s

4x5 5x4 5x5 6x5 6x6
global 8146/3.8s 26108/12s 48096/36s 481318/11m16s ⊥
strict 7549/21s 990/3.5s 15892/33s 15892/2m59s ⊥
local 2380/10s 598/2.8s 2156/20s 4316/1m08s 15101/7m36s

the algorithm without partial order reduction, and that weak synchronization
performs better than the strict. We also note that global cover more states per
second, this is because of the overheads when synchronizing components and
constructing ample sets.

5 Conclusion

In this paper, we have applied and improved existing symbolic partial order re-
duction techniques for timed automata to develop an efficient model-checking
technique for real-time components. The behavior of components are internally
described as timed automata that can be hierarchical in the sense that a compo-
nent can be described as a composition of components. To compose components
explicit data and control flow is modeled, a property that is exploited in order to
increase the independence between components, and thus to reduce the growth
of the state-space caused by interleavings. We give a concrete and symbolic lo-
cal time semantics for the component model, as well as a symbolic reachability
analysis algorithm that uses an ample set construction to select symbolic transi-
tions to explore. We also describe a heuristics that can be used for accelerating
the analysis of local reachability properties (e.g., reachability of a location in a
single component).
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Our experiments suggest that our technique can achieve substantial reduc-
tion in the time and space needed to analyze a real-time system described in
the studied component model. As future work we plan to further evaluate the
reduction in a case study for the component model. We will also complete our
implementation of the proposed reachability analysis and evaluate the achieved
reduction with respect to existing techniques, such as the event zones of [15].
We also plan to further enrich the component model with more complex inter-
action structures, and support for modeling of other non-functional properties
than real-time.
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