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OBSAI RP3-01 6.144 Gbps Interface Implementation
Christian F. Lanzani∗

RADIOCOMP ApS
and

Technical University of Denmark, NET•COM•DTU

Abstract

A cost-efficient digital hardware implementation for
high speed RP3-01 serial interface at 6.144 Gbps is
presented for OBSAI compliant BTS systems. Such
data rate represents a 8x increment of the lowest RP3-
01 rate and it might enable transmission of multi-
ple wide-band carriers across multi-node RRH network
infrastructures for use in WiMAX 802.16e-2005 and
3GPP LTE wireless applications. The implementation
is based on Altera EP2SGX90FF1508 FPGA device,
which transceivers handles the electrical physical layer.
The optical physical layer is implemented by Finisar
SFP+ FTLX8571D3BCL devices. The upper layers
of the RP3-01 protocol stack are implemented using
Radiocomp’s OBSAI RP3-01 IP core. The implemen-
tation is backward compatible with existing RP3-01
line rates and the design methodology of the IP core
makes it usable also on lower cost FPGA families. The
FPGA design flow is based on Altera Quartus II pro-
gramming environment for simulations, synthesis and
mapping onto the target device. The system’s perfor-
mance is measured with internal BER counters and eye
diagram evaluation using Agilent 86105 DCA.

Keywords: OBSAI RP3-01, 6.144 Gbps, Remote
Radio Head, High Speed.

INTRODUCTION

New approaches are recently being introduced in
wireless infrastructure networks for distributing and
de-centralizing Base Transceiver Station (BTS) nodes.
Such approaches aims at reducing the relative capital
(CAPEX), operating (OPEX) expenditures and the
development efforts while increasing system perfor-
mances and flexibility by defining a modular and
standardized internal BTS architecture and interfaces.
The BTS is an integral part of the radio access
network and is the bridge between the handset and the
wireless infrastructure core network. In a distributed
BTS network architecture, the radio module is remote

∗email: cla@com.dtu.dk

relative to the channel card (base-band processing) and
communicates with the channel card via a standardized
digital optical interface. Distance ranges over the fiber
vary from indoor coverage up to a few kilometers.
This is done to improve site performances and reduce
site footprint as well as enable high efficiency sector
coverage with multiple remote radio nodes.
The Open Base Station Architecture Initiative
(OBSAI) [1] defines a modular architecture with
standardized functions split and inter-module inter-
faces into a modern wireless BTS. OBSAI defines
the Remote Radio Head (RRH) concept as a radio
module connected to the base-band through the
Reference Point 3-01 (RP3-01) interface, as defined in
[2]. The RP3-01 interface realizes a high speed optical
communication link between the Local Converter (LC)
module and a RRH. This interface is used to provide
bi-directional transfer of digitized base-band radio data
together with control and air-interface synchronization
information [2].
Emerging wireless standards like WiMAX 802.16e-2005
[4] and 3GPP Long Term Evolution (LTE) [5] enhance
throughput and radio signal quality performance also
by defining wide-band radio channels and advanced
modulation schemes for uplink and downlink channels.
Currently, RP3-01 interface definitions set the line
rates up to 3.072 Gbps [1], which is a bottle-neck
to provide wide-band carrier support in multi-node
RRH setups. The impact that a 6.144 Gbps data
rate increment will have on the existing RP3 standard
specifications is as today under consideration as a
number of challenges exist in defining a cost-efficient
solution. These challenges are the identification
of suitable technologies for the physical layer, the
protocol design choices, the definition of electrical
specifications for compliance and the evaluation of
the system performances and limitations for such
interfaces.
This work describes a suitable physical layer technol-
ogy and the design choices required to demonstrate
an optical 6.144 Gbps RP3-01 interface which requires
minimal changes to the existing OBSAI standard. The
design is targeting an FPGA-based implementation



usable for both BTS and RRH applications. The test
setup consists of a full-duplex point-to-point optical
communication at 6.144 Gbps between two Altera
Stratix II GX Audio/Video (SIIGXAV) evaluation
boards using Enhanced Small Form-Factor pluggable
(SFP+) transceiver modules and a RP3-01 engine.
The RP3 bus clock and frame synchronization (SYNC)
signals [3] are provided externally and the signal’s
quality is measured via internal Bit Error Rate (BER)
counters in the design blocks and the signal eye
diagram using Agilent 86105 equipment.

This paper is organized as follows: Section II out-
lines the bandwidth increment requirements for multi-
node wide-band carriers RRH networks. Section III de-
scribes RP3-01 functional architecture and blocks. Sec-
tion IV briefly describes the SFP+ transceiver technol-
ogy benefits and shows measurements of the optical sig-
nal performances. Section V describes briefly the GX
transceivers features shows measurements of their elec-
trical performances. Section VI illustrates the RP3-01
design considerations for 6.144 Gbps and for low cost
FPGA-based implementations. Section VII illustrates
the hardware test setup and BER measurement results.
The conclusions are given in Section VIII.

II - BANDWIDTH REQUIREMENTS

In [4] a number of Orthogonal Frequency Division Mul-
tiple Access (OFDMA) profiles and radio channel band-
widths up to 28 MHz are defined in WiMAX [5]. 3GPP
LTE [5] also supports a number of profiles and radio
channels with bandwidths up to 20 MHz. Each channel
bandwidth is associated with its base-band digital sam-
ple rate, where the samples are given in In-phase (I) and
Quadrature (Q) format of 16 bits each at the RP3-01
stage [2]. For such wireless standards, performance op-
timization on the radio link can be achieved by exploit-
ing advanced Multiple-Input Multiple-Output (MIMO)
antenna techniques1, which is increasing the number of
antenna carriers required into a single radio node. Site
coverage optimization can be obtained by exploiting
multiple RRH in a number of possible topologies, like
daisy-chaining, ring or tree-and-branch.
RP3-01 link has a limited support in terms of band-
width available to transport multiple wide-bad radio
carriers signals across multiple RRH nodes using mul-
tiple virtual RP3 links [2]. Table 1 shows an example
of how many (X) wide-band carriers at 20 MHz can be
transported over a 3.072 Gbps virtual RP3 link [2]. In
this case the whole link is allocated for the same stan-

1MIMO technology configurations offers significant increases
in data throughput and link range without requiring additional
channel bandwidth or transmit power, giving thus higher spectral
efficiency and link reliability reduced fading.

dard data and we assume that the RP3 virtual channel
is specified by parameters (index,module) with value
(0,1) [2].

WiMAX LTE
Line Rate 3.072 Gbps 3.072 Gbps
Channel BW 20 MHz 20 MHz
Sample Rate 22.4 Msps 30.72 Msps
Carriers (X) 2 2

Table 1: Amount of 20 MHz carriers to fit into a virtual
RP3 link at 3.072 Gbps.

In case of modern radio setups using MIMO tech-
niques, the amount of carriers (X) [2] required per
RRH node can be 2 (2x2 MIMO) or 4 (4x4 MIMO)
for common configurations. Thus current OBSAI RP3-
01 line rate definitions2 are not sufficient to provide
bandwidth enough3 to support multi wide-band carri-
ers across multiple RRH nodes as shown in Table 1. A
6.144 Gbps line rate would allow the bandwidth incre-
ment necessary for supporting multi node RRH network
architectures.

III - IMPLEMENTATION ARCHITECTURE

The functional architecture of the RP3-01 interface de-
sign is represented in Fig.1, showing the split between
the physical and the higher layers (Application, Trans-
port, Data Link).

SERDES
8b10b coding

(Altera GX)

RP3-01
Data Link
Transport

Application
Layers

(Radiocomp IP)

Optical
SFP+

(Finisar)

TXP/TXN

RXP/RXN

RP3-01
Physical Layer

To
Baseband/RF

To BTS/RRH

RP3-01 Protocol Stack

Figure 1: OBSAI RP3-01 6.144 Gbps architecture and data-

path.

In this implemenation the RP3-01 physical layer con-
sists of high speed Stratix II GX transceivers and of
optical SFP+ transceivers, while the logical layers are
part of the Radiocomp’s IP. The higher layer (Appli-
cation) can be interfaced with Base-band or RF cards,
while the lower layer (Data Link) is interfaced with the

2Existing OBSAI RP3-01 rates are 768 Mbps, 1536 Gbps and
3.072 Gbps.

3Mapping of WiMAX and LTE digitized radio samples into
the OBSAI RP3-01 link is done using (index,module) and dual
bit maps algorithm as defined in [2].

Copyright c©FPGAworld.com 2007 2



physical layer. The whole high speed design is hosted
from the SIIGXAV evaluation board.

IV - SFP+ OPTICAL TRANSCEIVER TECHNOLOGY

The SFP (Small Form-Factor Pluggable) compact opti-
cal transceivers are commonly used in optical commu-
nications for both telecommunication and data com-
munication applications and they are Commercial-Off-
Ther-Shelf (COTS) available devices with capability
for data rates up to 4.25 Gbps. The latest genera-
tion of such transceivers, called Enhanced Small Form-
Factor Pluggable (SFP+), has been designed within
the same form-factor for higher data rates up to 10
Gbps, for lower power consumption, less complexity,
and as a lower cost alternative to the 10-Gbps XFP
form factor4. The measurements have been done using
FTLX8571D3BCL 10Gbps 850nm Multimode Datacom
SFP+ Transceiver. Optimized results may be achieved
in the near future by using the FTLF8528P2BNV 8.5
Gbps Short-Wavelength SFP+ transceivers. In Fig.4
and Fig.5 are shown the eye diagram measurements of
RP3-01 optical signals at 3.072 Gbps and 6.144 Gbps
rates respectively on the SIIGXAV. The signal mea-
sured consist of valid RP3-01 frame structure5 with
data in every RP3-01 message slot.

These measurements are taken using Agilent 89105
DSO equipment over 1 m distance with multimode
850 nm fiber. The instrument has been configured with
a 153.6 MHz trigger reference locked to the transmitted
data, which consist of valid RP3-01 data messages. At
3.072 Gbps rate a 3.125 Gbps rate filter is applied. At
6.144 Gbps a 9.125 Gbps rate filter is applied, since the
6.250 Gbps filter option was not currently installed in
the instrument.
In [2] the indicative minimum values for eye mask com-
pliance relative to the eye width for transmitter and
receiver are 0.656 UI and 0.45 UI respectively. The
eye diagram measurement at 3.072 Gbps rate shows a
peak-to-peak jitter value at 48.71 ps with a eye width
value at 0.848 Unit Interval (UI).
The eye diagram measurement at 6.144 Gbps rate
shows a peak-to-peak jitter value at 60.16 ps with a
eye width value at 0.685 UI.

V - HIGH SPEED SERDES TECHNOLOGY

The physical electrical layer is implemented by the
Altera Stratix II GX device family, which combines up

410 Gigabit Small Form Factor Pluggable - Vendors in the
cost-sensitive 10-Gigabit Ethernet (10 GbE) market are making
a strong push to standardize SFP+ technology for use in 10 GbE
applications and similar as an alternative to the XFP form factor.

5Which includes frame boundary marking characters (K28.7)
and Message Group boundary marking characters (K28.5).

Figure 2: 3.072 Gbps RP3-01 optical signal.

Figure 3: 6.144 Gbps RP3-01 optical.

to 20 duplex channels capable of operating between
600 Mbps and 6.375 Gbps into a single FPGA. The
low power transceivers offer optimal signal integrity
and provide a number of features such as Dynamic
Pre-emphasis, Equalization and Adaptive Equalization
to simplify board design. The transceivers also provide
optimal jitter performance, meaning they comply
electrically with the majority of serial standards being
used today, including many of the telecom standards.
For OBSAI RP3/RP3-01 applications, they offer
compliance to the XAUI electrical interface specified
in Clause 47 of IEEE 802.3ae-2002 [10] up to 3.072
Gbps and to the Common Electrical I/O (CEI) for
both the Short Reach and Long Reach 6.25 Gbps
standards (CEI-6G-SR and CIE-6G-LR) [6], which is a
candidate standard recommendations for applications
above 3.072 Gbps.
The GX transceiver includes dedicated digital building
blocks to support the PCS-sublayer of many key
protocols, this means many of the physical layers of
a protocol can be built inside the transceiver. In the
case of OBSAI RP3/RP3-01, the 8b10b encoding and
word alignment blocks are embedded in the transceiver
block and do not need to use dedicated FPGA logic.

Copyright c©FPGAworld.com 2007 3



The relevant GX transceiver configuration used is as
it follows:

Parameter (tx/rx) Value
double data mode true
data rate 6144
protocol 6G basic
equalizer 0
preemphasis 0
8b10b enc/dec cascaded
ref clk 153.6 MHz
rx cru pll tx clk

Table 2: GX Transceiver configuration

Also dynamical reconfiguration of each transceiver
from one operating mode to another is supported. This
mode reconfiguration involves reconfiguring of the data
rate, data path, or both [7]. For this implementation a
fixed double-width data-path of 32-bits is chosen and
only data rate settings are set being dynamically recon-
figurable from the user6.
Fig.2 and Fig.3 shows the eye diagram measurements
of 3.072 Gbps and 6.144 Gbps electrical signals respec-
tively on the SIIGXAV7. The signal measured consist
of valid RP3-01 frame structure8 with data in every
RP3-01 message slot.

These measurements are taken using Agilent 89105
DSO equipment that has been configured with a 153.6
MHz trigger reference locked to the transmitted data,
which consist of valid RP3-01 data messages.
In [2] the indicative minimum values for eye mask
compliance relative to the eye width for transmitter
and receiver are 0.656 UI and 0.45 UI respectively.
The eye diagram measurement at electrical 3.072 Gbps
rate shows a peak-to-peak jitter value at 34.28 ps with
a eye width value of 0.913 Unit Interval (UI).
The eye diagram measurement at electrical 6.144 Gbps
rate shows a peak-to-peak jitter value at 39.29 ps with
a eye width value at 0.810 UI.

VI - RP3-01 TIMING AND CONFIGURATION

The OBSAI BTS has a reference system clock (SCLK)
of 30.72 MHz [3]. This is used as a convenient frequency
for operations at a value eight times multiple of the

6In case of dynamic reconfiguration enabled in double-width
mode, only the 768 Mbps line rate is not supported from the
transceivers since only line rates between 1 Gbps and 6.25 Gbps
are allowed.

7These measurements are performed with the standard ana-
log pre-emphasis and equalization settings on the ALT2GXB
Megawizard.

8Which includes frame boundary marking characters (K28.7)
and Message Group boundary marking characters (K28.5).

Figure 4: 3.072 Gbps RP3-01 electrical signal.

Figure 5: 6.144 Gbps RP3-01 electrical signal.

WCDMA chip rate9. The RP3-01 interface reference
frequency is different from SCLK, since an overhead of
3 bytes per RP3 message and control bandwidth are
defined in [2], and the next convenient way if getting
this extra bandwidth is a higher frequency reference
multiple of 12.5 (×10/8) times the SCLK, thus 38.4
MHz. The RP3-01 byte clock frequency is a multiple
of 38.4 MHz and it is defined being a factor of 10 the line
rate used due to the 8b10b coding and phase locked to
SCLK [2]. Table 3 illustrates the core clock frequencies
according to the data path chosen.

Rate (Mbps) 8DP clk (MHz) 32DP clk (MHz)
6144 614.4 153.6
3072 307.2 76.8
1536 153.6 38.4
768 76.8 19.2

Table 3: OBSAI RP3-01 core clock frequencies for 8-
bits and 32-bits data paths reespectively.

In order to run design into lower cost FPGA tech-
nology while maintaining the same serial throughput,
higher data-path parallelization is chosen to lower the
operating core clock frequency. In this design 6.144

9The WCDMA chip rate is 3.84 Mcps.
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Gbps and 32 bits data-path are chosen, giving a 153.6
MHz frequency.
This operating frequency enable usage of the RP3-01 IP
block also in low-cost Altera Cyclone II and Cyclone III
families, which internal logic supports maximum oper-
ating frequencies of around 167 MHz [8] and around 180
MHz [9] respectively. In this case an external physical
layer is required.
The RP3-01 frame structure parameters are defined in
[2] and reported in Table 4, and they are invariant for
WCDMA, WiMAX and LTE configurations. i defines
the frame structure according to the line rate used, and
it takes integer values according to Table 5. IIn this im-
plementation value eighth (i=8) is chosen. Thus only
reconfiguration of i and of the core clock frequency is
required to enable dynamic line rate re-configuration
from the RP3-01 IP core.

M MG N MG K MG i
21 1920 1 variable

Table 4: RP3-01 Frame structure for WCDMA, 802.16
and LTE.

Line Rate (Mbps) i
768 1
1536 2
3072 4
6144 8

Table 5: Line rate and “i” values definition.

VII - TEST SETUP AND RESULTS

The test setup block architecture is illustrated in Fig.6
where two SIIGXAV boards are connected to imple-
ment a full duplex optical communication at 6.144 Gbps
of valid RP3-01 traffic. The measurements was also per-
formed at 3.072 Gbps for comparing the 6.144 Gbps line
rate results to the existing RP3 specifications Setup op-
tions for the RP3-01 IP and GX transceivers are done
via DIP switches. External clock generator is used to
generate 153.6 MHz for both the boards and the trigger
signal to the 89105 DSO.

The Pseudo Random Bit Sequence (PRBS) genera-
tor blocks implements a simple 3-bytes counter for the
RP3-01 message header and a 16-bytes counter for the
RP3-01 message payload for each message slot10 in a
Message Group. A PRBS validator checks the received
messages counters values and the BER counter mea-
sures the amount of bit errors received. A picture of
the setup while it is running is given in Fig. 7, where
the 7-segments display on each board shows the BER
counter values and the LED bank shows that the sys-

10RP3/RP3-01 message slot size is defined as 19 bytes [2].
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Figure 6: Block diagram of the test setup.

tem is operating correctly according to the mapping in
Table 6.

LED Signal High Low
1 TX PLL unlocked locked
2 RX PLL unlocked locked
3 RP3-01 RX IDLE false true
4 RP3-01 RX SYNC false true
5 PRBS Errors present not present
6 LCV Errors present not present
7 RE-SYNC on off
8 N.A. - -

Table 6: Status LED signals mapping.

The results indicates that the transmission at 6.144
Gbps over each link is error free (zero value is constant
on both the receivers end) measured over a time window
of a few hours. It is possible to verify the correct op-
erational status of the interface through the LED bank
status indication that are mapped as indicated in Table
6 and they all shows “low” logic values as expected.
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Figure 7: Hardware setup.

VIII - CONCLUSIONS

A 6.144 Gbps OBSAI RP3-01 point-to-point full-duplex
transmission test setup was built running at 153.6 MHz.
The OBSAI RP3-01 IP is supporting all OBSAI RP3-01
line rates, including the 6.144 Gbps one via register in-
terface requiring reconfiguration only of the core clock
frequency and frame structure parameter i. Stratix II
GX dynamic channel reconfiguration also is support-
ing multiple rate configurations and backward compat-
ibility with 3.072 Gbps link have been demonstrated

using SFP+ FTLX8571D3BCL optical transceivers as
RP3-01 physical layer. The measurements of the sig-
nal integrity compare the 3.072 Gbps with the 6.144
Gbps eye diagram with acceptable eye quality, proving
an error-free communication with internal BER mea-
surements.
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Abstract 
 
This paper suggests a set of reusable hardware functional 
blocks and a platform architecture composed of such, for 
implementing a wide range of combinatorial search 
algorithms with a relevant development speed-up. Their 
conception was based on careful analysis of various 
classical algorithms of that kind, amongst which important 
similarities and differences have been identified. An 
overview of the relevant grounding is presented. 
Making use of a control unit reprogramming strategy and a 
recently developed prototyping platform, the proposed 
hardware architecture is easily combined with a software 
application running in any general-purpose computer, 
allowing the user to load different combinatorial search 
algorithms, submit new problem instances and get the 
correspondent results, all in run-time. 
 
1. Introduction 
 
Combinatorial search algorithms (CSAs) continue to 
evolve in response to important combinatorial optimization 
problems (COPs) that arise within different areas, namely 
synthesis, optimization and testing of digital circuits [1, 2], 
mapping, placing and routing for integrated circuits design 
components [3], topology and cartography [4], artificial 
intelligence [5], etc. Some of the CSAs gain big relevance 
because they provide solution for classical COPs, such as 
determining a shortest or longest path within graphs, graph 
coloring, Boolean function optimization and minimal 
coverage problems, which have wide application scopes. 
Hardware accelerators have been developed, but each COP 
is commonly addressed independently. In order to get the 
speed-up that hardware can provide, designing effort is 
generally targeted to CSA-specific accelerators, despite the 
significant similarities one can find amongst them. 
The approach carried out in this research began with the 
detailed identification of those similarities as well as the 
differences. By taking advantage of the former and finding 
the best way to cope with the latter, the objective was to 
achieve: 
− A thorough set of hardware component 

specifications which are reusable for a wide range 
of CSAs; 

− A reprogrammable platform architecture able to 
enforce different CSA specifications provided in 
run-time. 

 

2. Overview on CSAs 
 
Before pointing out important similarities and differences 
amongst CSA implementations, let us consider some CSA 
examples, each addressing a different classical COP. 
The Matrix Covering (MC) problem consists of finding the 
smallest row set of a given binary matrix that includes at 
least one value 1 in each column [6]. The approximate 
algorithm proposed in [7] to solve this problem is depicted 
in Fig. 1. When the algorithm has finished, the solution is 
the set of rows that have been removed. 
 

Identify a column C 
which has the minimal 

number N of 1s

Yes

No

No

Yes

Remove row R 
and all columns 
with a 1 in row R

Unsolvable

All columns 
removed?

N=0?

Solution found
Identify a row R,

with a 1 in column C, 
which has the most 1s

 
Fig. 1 -  Approximate algorithm for the MC problem 

 
Fig. 2 demonstrates the resulting steps of this algorithm 
with a practical example, depicting the 3 iterations of the 
algorithm cycle which lead to the solution. The row and 
the columns which are removed at each iteration are 
presented with a black background while a grey 
background indicates previously removed matrix parts. In 
the first iteration, row 5 gets to be removed because no 
other row contains more values 1 and then columns A, C 
and F are removed, as these contain a value 1 in that row. 
With 2 more iterations the algorithm reveals the solution 
composed of the removed rows 2, 5 and 8. 
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Fig. 2 -  Solving a MC problem instance example 

 
The Boolean Satisfiability (SAT) problem consists of 
determining whether the variables of a given Boolean 



formula can be assigned in such a way as to make the 
formula evaluate to true. Conversion between Boolean 
formulas expressing SAT problem instances and their 
equivalent ternary matrices can be found in [8]. SAT-
solving CSAs are typically based on operations over such 
matrices. In this approach, solving the problem 
corresponds to finding a ternary vector which is orthogonal 
to every row in the matrix that expresses the problem 
instance at hand. Note that i) a ternary value is either 0, 1 
or “don’t care” and that ii) two ternary vectors are 
considered orthogonal if at least one of their pairs of 
homologous elements is composed of a 0 and a 1. 
Throughout the solving process, it is some times possible 
(and advantageous) to simplify the matrix obtaining an 
equivalent. This simplification is called reduction and it 
does not change the search route. However, when no 
further reduction operations can be performed, the solver 
might have to try alternative paths in order to check 
whether there is one which leads to a solution. The set of 
operations that determine which path to follow is called 
selection. When a chosen path fails, it is necessary to 
backtrack and select another, if available. Such a strategy 
requires a CSA like the one shown in Fig. 3. 
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Fig. 3 -  Basic combinatorial search algorithm 

 
This generic algorithm can be used to solve many COPs, 
and it was used for the SAT solver presented in [8], in 
which the “Has the problem been solved?” condition test is 
verified if all matrix rows have been deleted and the “Is it 
known that the problem is not solvable?” condition test is 
verified if all matrix columns have been deleted. The 
reduction rules used in that example are the following: 

1.  If a column contains just “don’t care” values, it 
must be deleted from the matrix; 

2.  All rows that are orthogonal to an intermediate 
vector w (that incrementally forms a solution) 
must be removed from the matrix. All columns 
that correspond to the components of the vector w 
with values 1 and 0 must be deleted from the 
matrix; 

3.  If the matrix contains a row with just one 
component 0 (1) with an index i, then the element 
i of the vector w must be assigned the value 1 (0), 
i.e. the inverted value; 

4.  If there is a column j in the matrix without values 
1 (0) then the element j of w must be assigned the 
value 1 (0). 

Finally, the selection rule used in this example was the 
following: A column Cmax is selected that contains the 
maximum number of values 1 (let us designate this N1) and 
0 (let us designate this N0); i.e. Cmax has a minimum 
number of “don’t care”s. If N1 ≥ N0, then the value 0 for 
the column Cmax is included in w. If N0 > N1, then the 
value 1 for the column Cmax is included in w. This creates a 
sub-matrix that will be examined in the next step. If this 
path fails, the solver backtracks and repeats the attempt 
including the alternative value for the column Cmax in 
vector w. 
Fig. 4 illustrates the resulting search steps when applying 
these rules to a practical example matrix, representing 
“don’t care” values with the character “-“. Once again, the 
rows and columns which are removed at each iteration are 
presented with a black background while a grey 
background indicates previously removed matrix parts. 
When an element of vector w is assigned a value, its cell is 
also highlighted with a black background. 
 

10-0w:10--w:00-0w:

-1--5-1--5-1--5
100141001410014
1--131--131--13
0--020--020--02
0--110--110--11
DCBADCBADCBA

f)e)d)

00-0w:00--w:-0--w:

-1--5-1--5-1--5
100141001410014
1--131--131--13
0--020--020--02
0--110--110--11
DCBADCBADCBA

c)b)a)

 
Fig. 4 -  Solving a SAT problem instance example 

 
Let us focus on the selection rules only. After Fig. 5-a, no 
more reduction can take place and there are still rows and 
columns left, so in Fig. 5-b the value 0 for column D is 
included in vector w. Then, some reduction takes place and 
after Fig. 5-d there is still one row left (namely row 2), 
which means a solution was not yet found, but all columns 
have been removed, meaning this search path cannot 
provide a solution. Thus, the algorithm backtracks in order 
to try the search path alternative to the one chosen in Fig. 
5-b. This time (Fig. 5-e), the value 1 for column D is 
included in vector w and then reduction rules are applied 
again. Finally (Fig. 5-f), all rows have been removed, 
meaning a solution has been found. Vector w (“0-01”, at 
the end) has been constructed throughout this process and 
is now orthogonal to all given matrix rows. 
The Graph Coloring (GC) problem consists of assigning 
one color to each vertex of a given graph, using the 



minimum number of colors and taking into account that 
connected vertices must be assigned different colors. 
Solvers for the GC problem are also commonly based on 
algorithms that execute condition tests and operations over 
matrices that express the problem instances. In this third 
example, let us focus on how a graph that has to be colored 
can be converted to a ternary matrix in such a way that 
solving the problem over the matrix is equivalent to 
solving the problem over the graph. As shown in previous 
research [9], this conversion can be done using the 
following steps: 

1.  Have a matrix with N rows and N columns, N 
being the number of vertices in the graph; 

2.  Fill the main diagonal up with 0s; 
3.  Within the lower triangle (as filling the upper one 

would be redundant and unnecessary), insert a 1 
in every cell with coordinates corresponding to 
connected edges in the graph; 

4.  Exclude every column that has no cells with a 1 
(keeping track of which vertex each column 
corresponds to); 

5.  Fill all empty cells up with “don’t care” values. 
Fig. 5 presents a practical example of this conversion 
method. The graph that has to be colored (Fig. 5-a) is 
composed of 8 vertices and 11 edges. Fig. 5-b shows the 
results of this conversion right until the initial 8x8 matrix 
gets reduced. At step 4, columns E, G and H (highlighted 
with a black background) get excluded and the final 8x5 
ternary matrix is presented in Fig. 5-c. 
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Fig. 5 -  Converting a GC problem instance example 
 
As mentioned above, two ternary vectors are considered 
orthogonal if at least one of their pairs of homologous 
elements is composed of a 0 and a 1. The method used to 
convert graphs to matrices guarantees that connected 
vertices correspond to orthogonal rows. Therefore, solving 

the GC problem corresponds to discovering a set with the 
minimum number of row subsets, each one having no 
orthogonal pair of rows and together including all rows. 
The number of compiled row subsets expresses the 
minimum number of colors the given graph requires, while 
rows grouped in a same subset correspond to vertices 
assigned the same color. 
The exact algorithm presented in [9] is based on four steps 
that are common for combinatorial search problems and 
that are repeated sequentially until the solution is found: 

1.  Reduction: the matrix is reduced as much as 
possible applying some pre-established rules; 

2.   Splitting: the problem is decomposed in less 
complicated sub-problems; 

3.  Termination: The current step is terminated as 
soon as a new incomplete solution is of the same 
order (i.e. contains the same number of colors) as 
any previous solution that has already been found. 

4.  Search for the optimal result: steps 1, 2 and 3 are 
repeated until all possible solutions have been 
implicitly examined. 

Because what was addressed so far already constitutes a 
good CSA overview (for our goal), let us skip other details 
on the GC algorithm and move on. 
 
3. Similarities and Differences amongst CSA 

Implementations 
 
Matrices are clearly the data structure most used as cores 
of COP solvers and the reason for this is the combination 
of 2 facts: 
− Usually, any COP can be expressed in several 

equivalent mathematical formulations based on 
different standard data structures [10], such as 
graphs, matrices and Boolean functions; 

− Matrices are the standard data structure which has 
proven itself more advantageous for storing and 
processing in digital systems [10]. 

Binary and ternary matrices are the most used in CSAs, 
e.g. in those considered in the previous section. If we think 
of digital circuits (with which designers can achieve best 
time performances), while a binary value requires a single 
bit that explicitly states its value, a ternary value can be 
coded using 2 bits. Thus, 2 binary matrices can be used to 
compose a ternary matrix. 
A second criterion regarding the matrix CSA core divides 
COP solvers in 2 groups: one with simple access to the 
matrices (by rows or by columns) and the other one 
needing dual access (by rows and by columns). All 3 CSAs 
considered in the previous section make use of ternary 
matrices. 
Combining these 2 criteria, 4 CSA classes emerge with 
direct correspondence to 4 kinds of matrix: Single Access 
Binary Matrix (SABM), Single Access Ternary Matrix 
(SATM), Dual Access Binary Matrix (DABM) and Dual 
Access Ternary Matrix (DATM). Again in the context of 
digital circuits, aiming for good time performance 
provided by RAM-based logic-vector arrays, dual access to 



a matrix calls for a replication of its data. One copy is 
organized as an array of rows and the second as one of 
columns. As a result, the number of RAM-based logic-
vector arrays used to implement COP solvers in function 
of matrix and matrix access types is presented in Table 1. 
 
Table 1 -  Number of logic-vector arrays in function of 

matrix and matrix access types 
 Binary Matrix Ternary Matrix 

Simple 
Access 

(SABM Class) 
1 array required 

(SATM Class) 
2 arrays required 

Dual 
Access 

(DABM Class) 
2 arrays required 

(DATM Class) 
4 arrays required 

 
As mentioned before, a CSA usually starts with a matrix 
that expresses the problem instance to solve (the search 
tree root) and then rows and columns are removed as the 
algorithm runs forward in some search path. Eventually it 
can backtrack, which implies recovering rows and columns 
that were previously removed. This requirement is 
commonly satisfied with the use of masks, which are easily 
implemented with logic-vectors. A row mask contains 1 bit 
per matrix row, indicating whether that row has been 
removed or not. The same approach is applied for the 
column mask. The use of masks has nevertheless an 
implication: the operations over rows and columns must be 
designed in such a way as to correctly cope with partial 
vectors. 
Regarding the problem instances, there are 2 kinds of 
COPs: those for which any instance is solvable (e.g. the 
GC problem), and those for which there are instances with 
no solution (e.g. the SAT problem). Depending on the kind 
of COP, it becomes possible to conceive solving CSAs 
from 3 algorithmic flow (AF) categories: 
− Single path; 
− Preemptive search tree; 
− Exhaustive search tree. 

Single path algorithms do not use backtracking, resulting 
in somewhat simple algorithms, like the approximate one 
considered for the MC problem (Fig.1). Search tree AF 
solvers require a more complex algorithm to support 
testing alternative paths. With preemptive search tree 
algorithms, such as the one considered for the SAT 
problem (Fig. 3), the search ends as soon as the first 
solution is found. With exhaustive search tree algorithms, 
such as the one considered for the GC problem, all 
branches of the search tree which can provide a solution 
are tested as to ensure that an optimal one is found. Note 
that both search tree AFs may include pruning techniques 
to shorten the search. 
CSAs can be quite different from one another and their 
constituting steps can have completely different meanings 
(within the context of how they approach the problem). 
Still, because the data structures they manipulate are, as 
mentioned above, basically the same, the operations used 
as basic blocks to implement those CSAs are in fact very 

much the same. Examples of generally used micro-
operations (the most basic ones) are the following: 
− Remove a row/column; 
− Read a row/column; 
− Count 1s/0s in a binary/ternary vector; 
− Find the address of the first 0/1 in a binary/ternary 

vector; 
− Check whether 2 binary/ternary vectors are 

orthogonal; 
− Combine 2 binary/ternary vectors. 

There are also composed operations (compilations of 
micro-operations) which are still very commonly used, 
such as: 
− Find the row/column with the most/least 0s/1s in a 

matrix; 
− Count the number of rows/columns which have no 

0s/1s in a matrix; 
− Check whether there are any matrix rows/columns 

orthogonal to some binary/ternary vector; 
− Combine all rows/columns of a matrix which are 

combinable with some binary/ternary vector. 
 
4. Reusable Functional Blocks 
 
Taking into account the similarities and differences 
amongst CSA implementations, the following functional 
blocks were prepared: 

1.  Memory permitting to store both binary and 
ternary matrices and to provide access addressing 
either lines or columns; 

2.  Mask registers making it possible to use the same 
storage for handling initial matrices and their sub-
matrices, which result from removing rows and/or 
columns; 

3.  Stacks for managing forward and backward 
propagation steps, which permit to sequentially 
construct sub-matrices and to return back to any 
intermediate sub-matrix if required; 

4.  General-purpose registers over which operations 
can be executed when required (namely by a 
control unit enforcing some algorithm); 

5.  Operational Unit (OU) implementing a variety of 
generic basic operations over binary and ternary 
vectors with and without mask as a parameter; 

6.  Reprogrammable Control Unit (RCU) to enforce 
CSAs by activating the operations on an OU. The 
algorithm enforced can be dynamically replaced 
through reconfiguration of the control circuit, 
which is modeled by a Reconfigurable 
Hierarchical Finite State Machine [11]. An 
example of such machine for implementing 
operations over Boolean and ternary vectors was 
considered in detail in [12]; 

7.  User Agent (UA) circuit to allow testing, 
debugging and interacting with the desired system 
through a general-purpose computer. 

Parameterization on the considered FBs was provided so as 
to make them fit any required scale, e.g. depending on the 



available hardware resources and on the targeted matrix 
maximum dimensions. 
There are many varieties of the operations required for 
CSAs, for example: use or not the contents of a mask 
register; store (in a general-purpose register) or not store 
the result; use just one vector of a binary matrix or two 
vectors of a ternary matrix. However the number of such 
operations is limited and thus the proper reusable interface 
can be described. 
Because the use of masks has different implications in 
each operation implemented by the OU, they are provided 
as a parameter and handled internally. 
 
5. CSA-Generic Platform Architecture 
 
Fig. 6 depicts the CSA-generic platform architecture 
developed. For the reasons previously presented, 4 binary 
vector arrays permit to store the problem instance matrices 
(left hand size of Fig. 6) for any of the 4 COP solver 
classes addressed: 
− SABM, using Rows ones; 
− SATM, using Rows ones and Rows zeros; 
− DABM, using Rows ones and Columns ones; 
− DATM, using all 4 binary arrays. 

The binary matrices stored in Columns ones and Columns 
zeros must be the exact transposes of those stored in Rows 
ones and Rows zeros, respectively, and they are used only 
with DABM or DATM solvers, as SABM and SATM ones 
access the matrix only by rows. 
With SABM solvers, Rows ones are used to explicitly map 
values 1 and values 0. With SATM solvers, Rows ones and 
Rows zeros map with 1s values 1 and values 0, 
respectively, while “don’t care” values are implicitly 
mapped where neither 1s nor 0s are. With dual access 

matrix solvers, this approach is also applied for Columns 
ones and Columns zeros. 
Row/Column addresses are used for reading or writing a 
whole row/column. In a binary context, these operations 
require one binary register to read from or to write to, 
while in a ternary context, 2 binary vectors are required. 
Row/Column masks indicate with 1s the rows/columns 
that the algorithm has set as removed from the matrix. In 
fact, the whole initial matrix remains stored until the 
algorithm finishes and stores a new one; only the FBs that 
implement the operations over its rows and columns take 
the correspondent masks into account in order to produce 
the correct result. 
An OU is used to operate over stacks, masks, addresses, 
rows, columns and general-purpose registers, as required 
by the algorithms that the RCU carries out. 
A UA interacts with a general-purpose computer (e.g. 
using USB or Bluetooth), allowing the user to: 
− Reprogram the RCU with a new CSA as explained 

in [11]; 
− Send a new problem instance (in the form of a 

matrix) which is stored in the logic-vector arrays; 
− Get back the solver results. 

Various stacks are used to store and restore context and 
HFSM support variables as the RCU calls and returns from 
different hierarchical level modules. 
The architecture is adjustable in respect to the following 
parameters: 
− Supported CSA classes (implicating a different 

number of logic-vector arrays and different 
available operations on the OU); 

− Matrix dimensions; 
− Stacks depth; 
− Number of general-purpose registers; 
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− Some other parameters regarding the RCU which 
can be found and explained in [11]. 

 
6. Validation, Implementation, Test and Future Work 
 
The proposed architecture is composed of 2 main 
components: 
− The control component, composed of the RCU and 

the UA together with the software application; 
− The operational component, which is composed of 

all the other FBs and implements the whole set of 
operations over the data structures considered. 

The operational component and all interaction between its 
FBs have been validated in a software application 
programmed in C# in which each FB was described by a 
class that emulates the behavior expected from its 
hardware implementation. Using the same objects, the 
application ran all 3 CSA-solvers considered in section 2: 
for MC, SAT and GC. A special class emulated the RCU 
behavior to validate enforcing those different algorithms. 
After validation, the architecture’s operational component 
was implemented and successfully tested using Handel-C 
[13] system-level specification language and the recently 
developed DEITUA-S3 prototyping board [14], which 
incorporates a Xilinx Spartan-3 FPGA (namely a 
XC3S400). The 4 binary vector arrays for storing the 
matrix were implemented using the FPGA’s embedded 
block RAM. A USB interface was used for data exchange 
between the hardware platform and the software. 
Hardware RCU and the UA modules were designed using 
VHDL, whilst a software application to interact with the 
UA was developed in C#. The expected run-time RCU 
reprogramming was successfully achieved. 
In future work, a set of good compromises regarding the 
assignment of the architecture’s parameters, taking the 
available FPGA resources and subtle CSA classes 
specialization into account, will be determined. For each 
resulting platform, various tests will be carried out, with 
the control and the operational components integrated, and 
compare the results with other solutions. The Handel-C 
code produced to implement the FBs and the platforms 
will be made available online [15]. 
 
7. Conclusions 
 
The significant applicability of combinatorial search 
algorithms in many different areas stimulates the 
implementations of hardware accelerators to run them. 
Despite the strong and frequent similarities that can be 
found amongst those algorithms, solver implementations 
are usually problem-specific. 
On the groundings of a thorough analysis of combinatorial 
search algorithms, a set of reusable functional blocks and a 
dynamically reprogrammable platform architecture 
supporting a wide range of those algorithms were 
developed. Such tools allow for significant reduction of 
solvers design time, as the design process can be realized 

at a high level of abstraction without losing sight of the 
details of a particular problem or reducing performance. 
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Abstract 

This article presents the application of a graphical 
methodology used to develop a Digital Signal Processor 
designed for FPGA. The instruction set and main 
features of this processor are introduced. Then, a 
modified Algorithmic State Machine methodology, 
named ASM++, is applied to fully describe the 
processor implementation. This processor has been 
simulated and physically tested on Xilinx Spartan-3 
devices, achieving 37.5~75 MIPS and up to 150 MOPS 
running at 75 MHz. 

 

1. Introduction 

Most intellectual property (IP) modules are designed 
as synchronous digital circuits using a standard hardware 
description language (HDL), usually VHDL or Verilog. 
Designers usually prefer a text-based tool to describe 
their circuits because editing and managing texts is 
easier than dealing with the arrangement of schematics. 
Compared to schematic entry, productivity is increased, 
mostly when parametrical modules are required. 

To assist designers in their daily job, several visual 
tools have been developed to facilitate the circuit 
behavior description and understanding, namely Finite 
State Machines (FSM) and Algorithmic State Machine 
(ASM) [1], [3]. However, these tools are limited in their 
scope, so they are applied only on small state machines 
and circuits. 

This paper presents several modifications of standard 
ASM diagrams with the aim of applying this 
methodology to design real-life circuits, document them 
and ease their supervision [8]. As an example, this 
methodology has been successfully applied in the design 
of an FPGA based DSP processor. 

2. The DSPuva18 processor 

The DSPuva18 processor is based on the former 
DSPuva16 [6], a Digital Signal Processor developed for 

Power Electronic applications [2]. These are the main 
features of this new processor and their improvements: 

• Its computational instructions are executed using 
two clock cycles, rather than four [6], thanks to the 
use of an FPGA hardwired multiplier. 

• Its control instructions (call, ret, jp, …) are usually 
executed in one clock cycle. 

• It has adaptive conditional jumps and returns: it 
introduces one or two wait states to leave previous 
operations to finish. 

• The program length can be up to 64K instructions. 
• It can execute from 16 to 128 nested subroutines. 
• The data memory is up to 64K words, with fast 

direct and indirect access (two clock cycles). 
• It has direct access to 256 ports/devices. 
• The instruction set, as shown in table 1, has been 

designed around 17 basic instructions, but most of 
these instructions lead to more possibilities. 

• It has access to immediate constants in program 
code to ease filter implementation. 

• An implicit access to last port used, with write back 
capability, has been introduced to speed up filters. 
It allows up to four operations per instruction. 

• The range of fixed-point registers and values can be 
selected at instantiation time between ±1, ±2, ±4 
and ±8. This feature eases in-circuit debugging. 

As can be seen, some of these features are common 
with other processors, but other ones are new. The basic 
instruction set of this processor is shown below. 

Table 1. DSPuva18 basic instruction set. 

OpCode Mnemonic Function 

0000 dddd dddd dddd call   <destination-address> Jump to a subroutine. 

0001 dddd dddd dddd goto <destination-address> Unconditional jump. 

0010  0fff   dddd dddd jpFLAG <relative-jump> Conditional jump. 

0010  1fff     ••••   •••• retFLAG Conditional return. 

0011 kkkk  kkkk kkkk imm K12 Prepare a constant. 

0100 kkkk  kkkk nnnn rN = port(K8) Read from a direct port. 

0101 kkkk  kkkk nnnn port(K8) = rN Write to a direct port. 

0110  ••••   bbbb nnnn rN = mem({rB,K16}) Read from memory. 



0111  ••••   bbbb nnnn mem({rB,K16}) = rN Write to memory. 

1000  sfff   bbbb nnnn ifFLAG rN = [–]{rB,K16} Conditional assignment. 

1001 xxxx  bbbb nnnn rN = fx({rN,*LP},{rB,K16}) Extra functions. 

1010 nnnn bbbb aaaa rN = {rA,*LP} + {rB,K16} Addition. 

1011 nnnn bbbb aaaa rN = {rA,*LP} – {rB,K16} Subtraction. 

1100 nnnn bbbb aaaa rN =    {rA,*LP} * {rB,K16} Multiply two values. 

1101 nnnn bbbb aaaa rN = – {rA,*LP} * {rB,K16} Multiply and change sign. 

1110 nnnn bbbb aaaa rN += {rA,*LP} * {rB,K16} Positive accumulation. 

1111 nnnn bbbb aaaa rN –= {rA,*LP} * {rB,K16} Negative accumulation. 

 
This basic instruction set is extended as seen on tables 

2 and 3. Additionally, most instructions allow the use of 
a register ('rB') or a 16-bit constant ('K16'), easing 
constant coefficient filter implementation. This constant 
is built using four bits of the current instruction and 
twelve bits of the previously executed 'imm' instruction. 

At the same time, a completely new feature has been 
added: when 'r0' is addressed as register 'rA', the last port 
used ('*LP') is read, the read value is used instead of r0's 
value, and then it is written back to the same port. As 
seen later, this feature speed up the implementation of 
large filters, requiring just one instruction per tap. 

The control instructions of this processor are easy to 
understand. First of all, 'call' and 'goto' execute an 
absolute jump to a 4K to 64K address in one clock cycle. 
As long as only twelve bits are available to give the 
destination address, its value is multiplied by 1, 2, 4, 8 or 
16, depending on the processor model, thus allowing 
larger programs. Consequently, all subroutines must be 
aligned to a reachable address, but the assembler can do 
it easily using the '#align' directive. 

Conditional jumps and returns are a bit different (see 
the eight available conditions on table 2, that shows 
conditional assignments): they execute their task, but 
they wait one clock cycle for arithmetic and logic 
operations to finish, and two clock cycles for 
multiplications. This way, the use of interleaving 'nop' 
instructions is avoided. When unconditional 'jp' or 'ret' is 
used, it is executed in one clock cycle. 

The access to external data is fast and flexible. The 
processor can address up to 256 direct ports, usually 
related to physical devices or small memories, maybe 
shared with other FPGA processors. When large 
amounts of data must be used, the processor implements 
a dedicated interface enabling the use of synchronous 
FPGA memories like Xilinx BlockRAM or Altera M4K 
and M-RAM. It can address up to 64K words per page, 
and different pages may be selected using a page-register 
controlled through a port. All these accesses are 
executed using two clock cycles. 

This processor can conditionally load a register with a 
constant or the value of another register (see table 2), 
and it also implements more functions as shown in 
table 3. Right and left shifts are a bit different than 

expected because most used shifts are the shortest ones, 
thus using shifts by 7, 3, 2 and 1 rather than 8, 4, 2 and 1 
it is on average better. The 'max' and 'min' instructions 
are also useful, particularly "rN = abs(rN)" is recognized 
by the assembler and replaced by "rN = max(rN,–rN)". 
All these instructions use two clock cycles for their 
execution, like additions and subtractions; their results 
are immediately available in the following instruction. 

The four multiplying instructions, with optional 
positive or negative accumulation, are executed using 
only two clock cycles, but the result cannot be used as an 
operand, except for accumulation, at the following 
instruction. If required, a one clock 'nop' (an assembler 
macro replaced by "jp <next-address>") must be added. 

Table 2. Conditional assignments of DSPuva18. 

OpCode Mnemonic Function 

1000 0000 bbbb nnnn        rN =   {rB,K16} Load a register. 

1000 0001 bbbb nnnn ifV   rN =   {rB,K16} Load if oVerflow. 

1000 0010 bbbb nnnn ifEQ rN =   {rB,K16} Load if EQual to 0. 

1000 0011 bbbb nnnn ifNE rN =   {rB,K16} Load if Not Equal to 0. 

1000 0100 bbbb nnnn ifGT rN =   {rB,K16} Load if Greater Than 0. 

1000 0101 bbbb nnnn ifGE rN =   {rB,K16} Load if Greater or Equal. 

1000 0110 bbbb nnnn ifLE rN =   {rB,K16} Load if Less or Equal. 

1000 0111 bbbb nnnn ifLT rN =   {rB,K16} Load if Less Than 0. 

1000 1000 bbbb nnnn        rN = –{rB,K16} Load changing sign. 

1000 1001 bbbb nnnn ifV   rN = –{rB,K16} Load if oVerflow. 

1000 1010 bbbb nnnn ifEQ rN = –{rB,K16} Load if EQual to 0. 

1000 1011 bbbb nnnn ifNE rN = –{rB,K16} Load if Not Equal to 0. 

1000 1100 bbbb nnnn ifGT rN = –{rB,K16} Load if Greater Than 0. 

1000 1101 bbbb nnnn ifGE rN = –{rB,K16} Load if Greater or Equal. 

1000 1110 bbbb nnnn ifLE rN = –{rB,K16} Load if Less or Equal. 

1000 1111 bbbb nnnn ifLT rN = –{rB,K16} Load if Less Than 0. 

Table 3. Extra instructions of DSPuva18. 

OpCode Mnemonic Function 

1001 0000 bbbb nnnn rN = rB >> 7 Right shift seven bits. 

1001 0100 bbbb nnnn rN = rB >> 3 Right shift three bits. 

1001 1000 bbbb nnnn rN = rB >> 2 Right shift two bits. 

1001 1100 bbbb nnnn rN = rB >> 1 Right shift one bit. 

1001 0001 bbbb nnnn rN = rB << 7 Left shift seven bits. 

1001 0101 bbbb nnnn rN = rB << 3 Left shift three bits. 

1001 1001 bbbb nnnn rN = rB << 2 Left shift two bits. 

1001 1101 bbbb nnnn rN = reverse rB Reverse all bits. 

1001 0010 bbbb nnnn rN = {rN,*LP} and {rB,K16} Logic AND. 

1001 0110 bbbb nnnn rN = {rN,*LP} or  {rB,K16} Logic OR. 

1001 1010 bbbb nnnn rN = {rN,*LP} xor {rB,K16} Logic XOR. 



1001 1110 bbbb nnnn rN = not rB Logic NOT. 

1001 0011 bbbb nnnn rN = min ({rN,*LP},{rB,K16}) Minimum of two values. 

1001 0111 bbbb nnnn rN = max({rN,*LP},{rB,K16}) Maximum of two values. 

1001 1011 bbbb nnnn rN = min({rN,*LP},–{rB,K16}) Minimum changing sign. 

1001 1111 bbbb nnnn rN = max({rN,*LP},–{rB,K16}) Maximum changing sign. 
 
A program example that implements an infinite 

impulse response filter (IIR) is shown below. Most 
instructions of this filter execute up to four operations: a 
read from last used port (through '*LP'), a write back of 
the read value to the same port (so it reads an old sample 
or output from a FIFO and returns it to the same FIFO 
for the next filter update), a fixed-point 18x18 product 
and a positive 32-bit accumulation. This means 37.5 
MIPS and 150 MOPS running at 75 MHz. 

 
/* 
 Demonstration program of DSPuva18 for FPGAworld'2007 
 2007/08/27    Santiago de Pablo (sanpab@eis.uva.es) 
*
 
/ 

#model E    // Programs up to 64K instructions 
#range 8    // DSP values between +-8.0 
#include “uva18std.h” // Several definitions 
  
// IIR filter implementation: 
//     Input X values are available at port 200. 
//     Output Y values are written at port 201. 
//     Old X values are stored in a small FIFO at port 202. 
/
 
/     Old Y values are stored in a small FIFO at port 203. 

 #define IN_X  200 
 #define OUT_Y  201 
 #define FIFO_X  202 
 
 

#define FIFO_Y  203 

 #define YC1  0.9345 
 // Define also YC2...YC4 and XC0...XC5 constants. 
  
0x0000:     // Programs begins here after reset 
  call InitFilter  // Prepare the filter 
Loop: call UpdateFilter // 14 + 2x(NX + NY) clks 
 
 

 jp Loop    // Infinite loop (2 MSPS at 70 MHz) 

#align 
InitFilter: 
 // First reset FIFO_X and FIFO_Y (not done here) 
 // Then load dummy values as old samples 
 r1 = 0.0 
 port(FIFO_Y) = r1 // Load four values on FIFO_Y: 
 port(FIFO_Y) = r1 //   they are y4, y3, y2 & y1. 
 port(FIFO_Y) = r1 
 port(FIFO_Y) = r1 
 port(FIFO_X) = r1 // Load five values on FIFO_X: 
 port(FIFO_X) = r1 //   they are x5, x4, x3, x2 & x1. 
 port(FIFO_X) = r1 
 port(FIFO_X) = r1 
 port(FIFO_X) = r1 
 ret 

#align 
UpdateFilter: 
 r2 = port(FIFO_Y) // Read y4 value (and loose it later) 
 r1 =           r2 * YC4 // … and multiply y4 by its coefficient 
 r1 = r1 + *LP * YC3 // Get y3 and multiply it by its coefficient 
 r1 = r1 + *LP * YC2 // Get y2 and multiply it by its coefficient 
 r1 = r1 + *LP * YC1 // Get y1 and multiply it by its coefficient 
 r2 = port(FIFO_X) // Read x5 value (and loose it later) 
 r1 = r1 +   r2 * XC5 // … and multiply x5 by its coefficient 
 r1 = r1 + *LP * XC4 // Get x4 and multiply it by its coefficient 
 r1 = r1 + *LP * XC3 // Get x3 and multiply it by its coefficient 
 r1 = r1 + *LP * XC2 // Get x2 and multiply it by its coefficient 
 r1 = r1 + *LP * XC1 // Get x1 and multiply it by its coefficient 
 r2 = port(IN_X)  // Get a new x0 value (from an A/D?) 
 r1 = r1 +   r2 * XC0 // … and multiply x0 by its coefficient 
 port(FIFO_X) = r2 // Put x0 value on its FIFO for later use 
 port(FIFO_Y) = r1 // Put y0 value on its FIFO for later use 
 port(OUT_Y) = r1 // Output of the IIR filter (to a D/A?) 
 ret     // Finish 

3. ASM++ diagram of DSPuva18 

The design of this processor has been entirely done 
using ASM++ diagrams. These diagrams, proposed at 
[8] and described further here, are an extension of 
Algorithmic State Machines [1], [3], a methodology used 
forty years ago for the development of microprocessors. 
As can be seen with this example, the ASM++ diagrams 
are now fully capable of describing whole IP modules. 

This diagram and the manually generated equivalent 
code use Verilog 2001, but VHDL may be used instead. 
An ASM++ compiler that accept standard Verilog and 
VHDL languages for input and output is in progress. 

The first ASM++ box of this design, as seen below on 
Fig. 1, is a "code box", able to introduce Verilog or 
VHDL code. It is used in this case to describe the 
processor interface. 

Figure 1. Design header using Verilog. 

 



Afterwards, a second code box specifies several 
internal signals. As long as this box has global meaning, 
other signals would be and will be declared later. 

Figure 2. Declaration of several signals. 

 
The third box introduces a first difference between 

ASM++ and the pure code. It specifies global defaults 
for synchronous and asynchronous internal signals and 
outputs. If the user does not assign anything to a 
synchronous signal in a state the default behavior is to 
keep its last value; for an asynchronous signal the 
compiler must implement a don't care logic value. 
Designer can easily change this default behavior using 
this box. 

Figure 3. Default values of signals and outputs. 

 
The following two code boxes are a combinational 

instruction decoder implemented using a C-like 
"#define" compiler  directive. Other directives are also 
available to include files and other purposes. 

Figure 4. Instruction decoder. 

 

After all these definitions, a box is used to specify the 
synchronism of this circuit. In this case there is a unique 
clock signal, named 'clk', but several clocks may be used 
instead. Then, three branches are initiated: the first one is 
a state machine named "ControlUnit"; the second one 
contains several synchronous and asynchronous 
components that assist at any time to the previous state 
machine; the last one is the data path of this processor, 
also described as an independent thread. Any 
dependence between branches may be implemented 
using the name of the state of each thread. This example 
shows how easily ASM++ diagrams may describe multi-
clocked or multi-threaded circuits. 

Figure 5. Parallel circuits description. 

  
The first branch, which state variable is named 

'ControlUnit' as seen on Fig. 6, begins with an 
asynchronous reset sequence controlled by the active 
high 'reset' signal. This box increases the ASM 
possibilities: standard diagrams cannot describe properly 
reset sequences. 

Then, a first state named 'Main', which begins with an 
oval "state box", executes several overlapped operations 
from the previous instruction and decodes the current 
instruction. For 'call', 'goto', 'jp' and 'ret' instructions only 
one clock is needed, so the next state is 'Main' again; 
other instructions require a 'Second' state. 

Figure 6 shows more ASM++ features: 
– Synchronous operations, those that are executed 

when the current clock cycle finishes, like "SP <= 
SP + 1", are described using a rectangular box 
anywhere. This is a difference with traditional 
ASM diagrams, where only unconditional 
operations use these boxes at the beginning of any 
clock cycle. 

– Asynchronous operations, executed all through the 
current clock cycle, like "nextPC <= PC + 1", use a 
box with bent sides. This is a nice feature, that 
shows the difference in the behavior between 
synchronous and asynchronous signals. When 
Verilog language is used, the equal operator ('=') 
may also be used for asynchronous assertions. 

– Conditions are expressed in the same way than 
standard ASM diagrams, but also multiple output 
decisions are included. 

– The use of VHDL/Verilog expressions allows an 
easy implementation of complex functions, like a 
register file or a returning address stack, that need 
vector notation. 



Figure 6. Processor control unit (I). 

  
The following state named 'Second', seen at Fig. 7, 

executes all computational instructions after receiving 
operands from the previous clock cycle. Actually, this 
state just activates all the required control signals, 
because data path and external devices do the real job. 

Figure 7. Processor control unit (II). 

 
Readers are kindly invited to translate this state 

machine to HDL code1, either using VHDL or Verilog. 
                                                           

1 During the translation process, at least two processes or always 
blocks are needed, one of them for all clk-dependent synchronous 
operations and the other one, unconnected from the former, for the 
asynchronous operations. ASM++ diagrams join both worlds. 

Then, the relationship between ASM++ and HDL arises, 
and the advantages of using a graphical tool to design 
and/or document complex circuits also becomes clear. 

To complete control tasks a second thread is more 
than convenient (see Fig. 8). Several operations must be 
done during or at the end of all clock cycles. Writing 
these operations in the previous thread is at least 
uncomfortable and prone to mistakes. Real life circuits 
require the possibility of writing parallel threads, but 
standard ASM diagrams cannot do it. 

A second detail of Fig. 8 is that, from the point of 
view of the 'PC' signal, this is a state-less state machine: 
it needs no state at all because it has just one state. 
Additionally, the only reference to a clock here is the 
rectangular box used for 'PC'; in absence of it, this could 
be a clock-less thread, a pure-combinational circuit 
properly described using ASM++ diagrams. 

Figure 8. Processor control unit (III). 

 
Following figures, from 9 to 13, implement the data 

path of this processor. First of all, a register file keeps 
the 32-bit values of r0 to r15 registers. Its design is based 
on two dual-ported distributed memories, allowing up to 
four asynchronous reads and one synchronous write on 
every clock cycle; only three reads are actually needed. 
During the state 'Second', if 'aluCE' signal is asserted, 
two operands are stored at register 'regA' and 'regB' for 
their operation during the following 'Main' state. 

Figure 9. Processor data path (I). 

 
After operand selection, several computational units 

calculate different results throughout the clock period: a 



right or left shifted value, a logic or arithmetic result [4], 
[7], and an update value used for conditional 
assignments and maximum and minimum evaluation. 

Figure 10. Processor data path (II). 

 
The core of this processor, a fixed-point 18x18 

multiplier with 32-bit result, is described below in such a 
way that most synthesis tools infer a wired synchronous 
multiplier: it registers two operands during one clock 
cycle and gives the product of them at the end of the 
following cycle. This segmentation stage introduces a 
one clock latency, so a 'nop' or any dummy instruction 
must be used before retrieving the product result. 

Figure 11. Processor data path (III). 

 

When all partial results are available, they are 
multiplexed in order to store the final value in the 
register file and to update flags. In these diagrams, it is 
not important if a signal like 'busN' has been used before 
its declaration (see Figs. 9 and 12). 

Figure 12. Processor data path (IV). 

 
 

Figure 13. Processor data path (V). 

 



4. Conclusions 

This article has presented a small and easy to 
understand digital signal processor developed using 
Verilog and ASM++ diagrams for FPGA. Throughout 
this paper, the capabilities of ASM++ for the 
development and documentation of IP modules has 
arisen. Additionally, supervision of complex designs 
would be ease when using this methodology. Compared 
with classic HDL description, the learning curve of 
ASM++ is shorter and the possibility of mixing 
synchronous and asynchronous signals is also a great 
advantage. 

The proposed DSP processor executes all its 
instructions in one or two clock cycles, achieving up to 
150 MOPS at 75 MHz on Xilinx Spartan3 devices. It 
introduces several new features: a variable code length 
between 4K and 64K, a variable range at implementation 
time between ±1 and ±8 for numerical values, a 
transparent access to constants and a built-in read with 
write back capability to speed up filter implementation. 
This processor is currently been used in power 
electronics applications. 
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Abstract—Dependence graphs (DGs) constitute the initial step
of an algorithm to a systolic array (SA) transformation. The
derivation of the intermediate signal flow graph representation
from the DG using proper scheduling and projection vectors,is
crucial for the final form of the generated SA. In this paper, a
set of DG to SA transformations and its further implementation
on FPGAs are presented. Examining the generated results the
implemented architectures are evaluated with respect to their
constituting logic elements and their timing performance.

I. I NTRODUCTION

Since the appearance of the first computer in the early
50s, it was clear that parallel computations is an attractive
alternative to sequential computations. While sequentialcom-
putations are dominated by a single calculation model, i.e.,
von Neumman’s model, that incorporates the basic principles
of Turing’s study in a practical design, in parallel computations
there is a plethora of different processor arrays models. They
can be categorized in four major types, i.e., systolic arrays
that are regular arrays with synchronous data flow, wavefront
arrays that have asynchronous data flow, simple instruction
multiple data (SIMD) arrays, and multiple instruction multiple
data (MIMD) arrays. Processor arrays are very important for
a wide area of applications (e.g., digital signal processing
(DSP), image processing, image compression etc.), that require
high performance intensive computations, because of their
regular structure and ease of hardware realization. Numerous
algorithms and architectures have been developed the past 3
decades targeting these applications, some examples are given
below.

In the region of DSP, Kortke [1] presented affine recurrence
equations mappings onto local memory processor array sys-
tems, consisting of TMS320C40 and TMS320C44 processing
elements (PEs). Lange [2] explored the use of CORDIC pro-
cessors as a design element for processor arrays, implementing
real time DSP applications algorithms.

In image processing, Johannesson [3], [4] developed two
processor arrays architectures called radar video image proces-
sor (RVIP) and infra-red VIP (IVIP), targeted in radar image

processing and autonomous vehicle navigation applications
respectively. Lin [5] presented proper parallel algorithms for
contour extraction and its approximation with line segments.
The algorithms were implemented to MasPar MP-2 processor
array, which comprises fromp×p PEs and two level memory,
corresponding to local memory and I/O memory. Tang [6]
presented a horizontal-vertical regional integration algorithm
implementation, on a processor array architecture. Finally
Frimou [7] implemented a pel-recursive motion estimation
algorithm in a processor array, where every PE consists off
an initialization, a routing, and an updating part.

In video compression, Mayer [8] presented a video decod-
ing architecture, which uses regular hardware and software.
Baglietto [9] proposed a motion estimation block matching
algorithm, implemented onto a parallel processor array, used
to calculate motion estimation in compression algorithms like
H.261 and MPEG-1 & 2.

Although numerous implementations were presented, most
of them were targeted on custom VLSI processor arrays and
only a small fraction was realized on FPGA devices. In this
paper, a complete platform for the implementation of regular
iterative algorithms (RIAs) onto FPGA devices is utilized in
order to study the interrelation between the embedded archi-
tectures and the capacity of the targeted devices. As shown
is Section III, the presented matrix by matrix multiplication
algorithm implementations, reach and in a lot of cases exceed
the FPGA devices’ resource limits. In Section IV, the timing
characteristics of the generated architectures are examined.
The conclusions of this work are summarized in Section V.

II. SCOPE OF THEWORK.

In this paper the effect of the DG’s size and complexity, on
the basic implementation logic elements and the input/output
resources and on the time performance of the implemented
architectures is studied. In order to examine this behaviora
platform that consists of four implementation stages is utilized.

As shown in Fig. 1, at first the RIA, in DG form, is written
in a text file using the graph description interchange format



GDIF file

HEARTS

SIS
+

FlowMap/FlowPack

T-Vpack

VPR

placement &
routing files

Logic optimization

Tecnology mapping

FFs and LUTs into
Logic Blocks packing

Placement & Routing

RIA to systolic
array mapping

Fig. 1. Platform flow

Fig. 2. Island type FPGA

(GDIF) [10]. HEARTS [11] reads the file, converts the DG in a
systolic array and outputs aBLIF file format. SIS [12] reads the
BLIF file and performs technology mapping through FlowMap
and FlowPack [13]. A newBLIF file consisting of LUTs and
flip flops is produced. The file is read by T-Vpack [14] and
is converted into logic blocks. Next, it will be used by VPR
[15], along with an FPGA architecture definition file, for the
generation of placement and routing files.

An island type FPGA architecture is used, where an array
of logic blocks is surrounded from interconnection lines, as
shown in Fig. 2. The I/O pads are uniformly allocated in
the perimeter of the device. The structure of the logic block
(LB), used in the presented test-cases is of the clustered based
logic block (CLB) type and is presented in Fig. 3b. Each
CLB consists of four basic logic elements (BLEs), which are
connected to the 16 input of the cluster. The BLE shown in
Fig. 3a, consists of a 4-LUT and a register, that feeds a two
input multiplexer.

In order to create the test-cases, DGs that compute the
product of two matrices were generated, with sizes ranging
from 4 × 4 to 8 × 8, constituting of elements with bit
sizes: 8, 12, 16, 24, and 32. The DGs that perform these
computations have dimensions4 × 4 × 4 - 8 × 8 × 8,
respectively. For every DG the implementation process was

(a) Basic Logic Element

(b) Cluster Based Logic Block

Fig. 3. FPGA model

TABLE I
HEARTS LUTS RESULTS FOR[0 0 1]T − [1 1 1]T VECTORS.

Element bit Size
DG Size 8 12 16 24 32
4x4x4 3504 7568 13168 28976 50928
5x5x5 5495 11855 20165 45335 79655
6x6x6 7932 17100 29724 65340 114780
7x7x7 10185 23303 40495 88991 156303
8x8x8 14144 30464 52928 116288 204224

performed for 3 different couples of projection and scheduling
vectors, namely:[0 0 0]T − [1 1 1]T , [0 1 0]T − [1 1 1]T , and
[1 0 0]T − [1 1 1]T .

III. T HE EFFECT OF THEDG’S SIZE AND ITS INPUT BIT

SIZE IN THE IMPLEMENTATION MODULES.

In this section we examine the evolution of the basic
implementation modules, i.e., the number of LUTs, and the
communication resources, i.e., the number of input and output.
The required data are collected, during the execution of the
platform, through the usage of specifically created scripts.
Tables I, II, and III, present the results derived from the
application of the first pair of vectors. Each table corresponds
to the results collected from the execution of the previously
introduced toolsHEARTS , FlowMap and FlowPack. Tab. I
contains in each column the trade-off between the number of
logic gates and the DG size, and in each row the trade-off
between the number of logic gates and the elements’ bit size
of the input matrices. Tab. II and III contain in each column
the trade-off between the number of LUTs and the DG size,
and in each row the trade-off between the number of LUTs
and the elements’ bit size of the input matrices. Similar tables
are formed for the other two pairs of vectors.

Closely examining these tables, it is noted that the number
of used LUTs decreases, during the implementation process
(starting from HEARTS and ending in FlowPack) for every
projection and scheduling vector pair. On the contrary the
number of utilized LUTs is increasing during the implemen-
tation of larger DGs or the increment of the number of bits



TABLE II
FLOWMAP LUTS RESULTS FOR[0 0 1]T − [1 1 1]T VECTORS.

Element bit Size
DG Size 8 12 16 24 32
4x4x4 3056 6896 12272 27632 49136
5x5x5 4775 10775 19175 43175 76775
6x6x6 6876 15516 27612 62172 110556
7x7x7 9359 21119 37583 84623 150479
8x8x8 12224 27584 49088 110528 196544

TABLE III
FLOWPACK LUTS RESULTS FOR[0 0 1]T − [1 1 1]T VECTORS.

Element bit Size
DG Size 8 12 16 24 32
4x4x4 2352 5104 8880 19536 34224
5x5x5 3675 7975 13875 30525 53475
6x6x6 5292 11484 19980 43956 77004
7x7x7 7203 15631 27195 59829 104811
8x8x8 9408 20416 35520 78144 136896

TABLE IV
LUTS RESOURCES% GAIN IN TECHNOLOGY MAPPING STAGE FOR

[0 0 1]T − [1 1 1]T VECTORS.

Element bit Size
DG Size 8 12 16 24 32
4x4x4 32.88% 32.55% 32.56% 32.58% 32.80%
5x5x5 33.12% 32.72% 31.19% 32.67% 32.87%
6x6x6 33.28% 32.84% 32.78% 32.73% 32.91%
7x7x7 29.28% 32.92% 32.84% 32.77% 32.94%
8x8x8 33.48% 32.98% 32.89% 32.80% 32.97%

TABLE V
LUTS RESOURCES% GAIN IN TECHNOLOGY MAPPING STAGE FOR

[0 1 0]T − [1 1 1]T AND [1 0 0]T − [1 1 1]T VECTORS.

Element bit Size
DG Size 8 12 16 24 32
4x4x4 36.65% 35.29% 34.70% 34.07% 33.94%
5x5x5 36.13% 30.72% 34.40% 33.86% 33.78%
6x6x6 35.79% 34.66% 34.21% 33.72% 37.15%
7x7x7 35.54% 34.48% 34.06% 33.62% 33.59%
8x8x8 35.36% 34.35% 33.96% 33.54% 33.54%

that represent the elements of the input matrices.
Analyzing furthermore the contents of the tables, the per-

centage value of the optimization level succeeded during the
technology mapping stage, is calculated. The percentage value
refers to the decrement of the circuit resources initially consid-
ered as logic gates and finally as LUTs. Tab. IV and V display
the percentage values for the vector pairs. The implementa-
tions derived from the application of[0 0 0]T ] − [1 1 1]T and
[0 1 0]T − [1 1 1]T , have the same optimization level, because
the systolic arrays that are generated have the same geometry
and differ only in the direction of the applied input and derived
output.

The required Input/Output resources are stored in Tab. VI
and VII, where each column contains the trade-off between the
summation of the I/O and the DG size, and each row contains
the trade-off between the summation of the I/O and the bits
size that corresponds to the utilized input data precision.The
equations that calculate the numbers of input and output are

TABLE VI
INPUTS/OUTPUTSRESULTS FOR[0 0 1]T − [1 1 1]T VECTORS.

Element bit Size
DG Size 8 12 16 24 32
4x4x4 321 481 641 961 1281
5x5x5 481 721 961 1441 1921
6x6x6 673 1009 1345 2017 2689
7x7x7 897 1345 1793 2689 3585
8x8x8 1153 1729 2305 3457 4609

TABLE VII
INPUTS/OUTPUTSRESULTS FOR[0 1 0]T − [1 1 1]T AND

[1 0 0]T − [1 1 1]T VECTORS.

Element bit Size
DG Size 8 12 16 24 32
4x4x4 225 337 449 673 897
5x5x5 321 481 641 961 1281
6x6x6 433 649 865 1297 1729
7x7x7 561 841 1121 1681 2241
8x8x8 705 1057 1409 2113 2817

PI = a · x + 1 and PO = 32 · a respectively, wherea
is the number of bits andx is the number input or output
variables used in the systolic array. The maximum I/O pin
number and the maximum number of LUTs for 4-LUT FPGA
architectures, based on the current VLSI technology, is 1203
and 79040 correspondingly for ALTRERA’s Startix devices
[16] and 960 and 178176 for Xilinx’s Virtex-4 devices [17].
According to these numbers, there are limitations imposed to
the systolic array architectures that can be implemented. For
the models studied in this paper, it is obvious that the if the
DG is projected to[0 0 1]T direction, then it is impossible to
implement products of matrices greater than5× 5 with 16-bit
elements and greater that4×4 with 24-bit elements. It is also
noted that there can be no implementation of DGs between
4 × 4 × 4- 8 × 8 × 8 with 32-bit elements for the specified
projection vector.

In the case where projection vectors[010]T and[100]T are
used, the limitations are displayed in matrices with size7× 7
with 16-bit elements,5 × 5 with 24-bit elements, and4 × 4
for 32-bit elements.

Defining asabsolutenumber of LUTs and I/O for each
FPGA device, the number of LUTs and I/O that are used for
the implementation of the DG for every vector pair and asused
number of LUTs and I/O, the number of LUTs and I/O that
an FPGA device consists of, a utilization study is performed.

Comparing the values of absolute and used LUTs and I/O
for every pair of vectors, graphs are generated that depict the
evolution of the number of LUTs and the number of I/O,
in accordance to the DG size and the input data bit size.
The graphs are shown in Fig. 4a, 4b, 5a and 5b, where an
extra surface is added to denote the upper bound of LUTs or
I/O respectively. From the difference between the two graphs
on each figure and the evaluation of the graphs for every
pair of vectors, the advantages and disadvantages of each
architecture with respect to the implementation elements and
the communication resources, are derived.

The architecture that is generated from the projection vector
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Fig. 4. FPGA resources utilization plots for[0 0 1]T − [1 1 1]T .
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Fig. 5. FPGA resources utilization plots for[0 1 0]T − [1 1 1]T and [1 0 0]T − [1 1 1]T .

[0 0 1]T , as shown from Fig. 4a and 4b, uses less LUTs than
than those provided by the targeted FPGA device. As the DG
size increases, this phenomenon becomes more intense. Thus,
this architecture causes a potential loss in the usage of logic
elements that overcomes 50% of the total number of LUTs. In
the contrary the level of I/Os usage begins from 80% of the
total number of I/O and approximates 100%.

Evaluating the architectures that are derived from the projec-
tion vectors[0 10]T and[1 00]T by examining Fig. 5a and 5b,
it is noted that they utilize less I/O than those provided by the
targeted device. As the DG size decreases, this phenomenon
eliminates. Thus, these architectures cause a potential I/O
communication loss of 40%. Conversely, the level of used
logic elements begins from 89% of total logic and remains
in a high value approximating 100%.

IV. T HE EFFECT OF THEDG’S SIZE AND ITS INPUT BIT

SIZE IN THE TIMING CHARACTERISTICS OF THE

IMPLEMENTED MODELS.

In this section the timing characteristics of the implemented
architectures, in terms off the total logic delay, the totalnet
delay, and the critical path with respect to DG size and input

data bit size are examined. During the creation of the test-
cases and the derivation of the results, VPR was unable to
process the8×8 systolic arrays that multiply 32 bit elements.
In order to have complete and solid graphic representations
the values derived from the7× 7 systolic arrays that multiply
same size (i.e. 32 bit) elements, were used instead.

Forming2 − Dimensional graphic representations having
a constant DG size and a variable element bit size, the
differences that are presented on every form of delay, are
examined. Observing the graphical equations on Fig. 6a, 6b
and 6c it emerges that the architecture produced by projecting
the DG in the[0 0 1]T direction has a faster critical path than
the other architectures.

Moreover, it is observed that although the architectural
structure, before placement and routing, of the systolic arrays
derived from the projection vectors[0 1 0]T and [1 0 0] are
almost identical (see section III), the results from placement
and routing describe different timing characteristics foreach
architecture.

Finally, it is noted that the total net delay and the critical
path have incremental tendencies, with respect to the incre-
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Fig. 6. FPGA critical path plots for[0 0 1]T − [1 1 1]T , [0 1 0]T − [1 1 1]T

and [1 0 0]T − [1 1 1]T vectors.

ment of the DG size and/or the increment of the elements bit
size. Conversely, the total logic delay decreases with respect
to the increment of the elements bit size (Fig. 8b and 8d) and
increases with respect to the increment of the DG size (Fig.
8a and 8c). This phenomenon might be a result of the direct
association that exists between the BLEs and the logic delay.
Thus, a potential decrement of the BLE levels, that is faster
than the increment of the BLE’s delay, could have as a result
the decrement of logic delay.

V. CONCLUSIONS

The existence and the usage of a complete platform for the
transformation of regular algorithms into processor arrays and
their implementation onto FPGA devices, has many advan-
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Fig. 7. FPGA net delay plots for[0 0 1]T − [1 1 1]T , [0 1 0]T − [1 1 1]T

and [1 0 0]T − [1 1 1]T vectors.

tages. During the implementation process numerous resultsare
derived, that with certain processing generate valuable feed-
back information to the designer. Acquiring this knowledge,
important decisions like the type of the architecture that is
going to be selected, in order to fulfil the design goals, are
easily made. Thus, it is possible to explore all the possible
architectures, based on the requirements for constraints in logic
and communication resources (LUTs, I/O, etc.), the demand
for high speed designs or the case where a trade-off of these
conditions is required.

During the experimentation with different models, the need
for the incorporation of DG partitioning methods intoHEARTS

was detected, in order to be able to design large and complex
architectures into current FGPA devices. This, along with the
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Fig. 8. FPGA logic delay plots for[0 0 1]T − [1 1 1]T , [0 1 0]T − [1 1 1]T and [1 0 0]T − [1 1 1]T vectors.

enhancement of the library with more PEs models are going
to be the main future objectives for the development and
improvement of the platform.
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Busy Generation in a large Trigger Based Data Acquisition
System
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Abstract

This paper gives an overview of a specific trigger and data acquisition system used in
experimental nuclear physics, and describes one of its many components, which generates the
busy signal. It is a FPGA based device that continuously keeps track of the number of issued
triggers and computes the number of free buffers in the Front End Electronics.

I INTRODUCTION

The Large Hadron Collider at CERN accelerates
two separate, circular beams of nuclei. The two
beams move in opposite directions and at four
points they intersect, allowing for collisions. AL-
ICE (A Large Ion Collider Experiment) [1] is
placed at one of these points and comprises sev-
eral detectors. Recording and transfer of event
data will be controlled through trigger signals,
which are based on inputs from fast detectors.
The Time Projection Chamber (TPC) [2] is one of
the main tracking detectors in ALICE. It has ap-
proximately 560000 channels and generates data
at a rate of up to 25 GB/s. For Lead-Lead colli-
sions the maximum interaction rate will be about
8 kHz. In proton-proton collisions it will be
higher, about 200 kHz in ALICE. Not all inter-
actions will be recorded and kept for later anal-
ysis, and it is the trigger system that controls
which. On average the collision rates will there-
fore be somewhat higher than the transfer rate to
the Data Acquisition System (DAQ). For this rea-
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Figure 1: Illustration of ALICE

son the detector Front End Electronics (FEE) [3]
has some buffer memory. To prevent overflow in
the FEE buffers, a mechanism to halt the issuing
of new triggers is required. This is what is re-
ferred to as busy generation and will be provided
by a dedicated device called the Busy Box. The
Busy Box will be used in several of the detectors
of ALICE and it is the subject of this paper.

II THE TRIGGER SYSTEM

ALICE has one Central Trigger Processor (CTP)
[7]. It receives information from all sub detectors
and makes decisions on what triggers to issue. All
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triggers are forwarded to the Local Trigger Units
which distribute them to the FEE over an optical
fiber channel. The global system clock will be
distributed over the same fiber. This clock signal
drives all of the digital electronics in the detec-
tor and runs at the nominal bunch crossing rate of
40.08 MHz. The clock is also used as reference
when creating Event IDs for collisions. Event IDs
will be distributed with the triggers and makes it
possible to compare data from different sub detec-
tors when analyzing events. Event IDs also play
an important role in the busy handling, as will be
explained later.

The hardware trigger system for ALICE has
three levels - Level 0, Level 1 and Level 2, and
they are issued in sequence. A trigger sequence
is started by a Level 0 trigger, which will be is-
sued once a collision has been detected. Some
time after that a Level 1 trigger will be issued if
the collision satisfies certain conditions. If not the
Level 1 trigger is suppressed, the trigger sequence
is aborted and any data recorded so far discarded.
Provided a Level 1 trigger was issued, a Level 2
trigger will be issued. The Level 2 trigger will in-
dicate whether the event was accepted or not. If
the event was accepted the FEE will mark the data
in its buffers for transmission to the DAQ sys-
tem. The DAQ system will receive the event data
whenever there is capacity available. If a Level 2
Reject trigger is issued then FEE will overwrite
its buffer when new triggers are received.

The TPC is constructed like a barrel filled with
gas (see figure 1). When particles from a collision
travels through the TPC, they will ionize the gas
in their path leaving a trail of ionized atoms. Elec-
tric fields will cause the freed electrons to drift to-
wards the ends of the barrel where they can be de-
tected. To fully record an event the TPC requires
about 90 µs. This makes the TPC a slow detector
and new collisions can occur while there still are
drifting electrons from a previous collision. How-
ever, during analysis one is able to distinguish up
to a certain number of events, the number depend-
ing amongst other things on the quality of the re-
construction algorithms. If too many collisions
occur after a trigger has been issued, the CTP will
issue a Level 2 Reject trigger and the data will

be discarded as explained earlier. This feature is
called the past-future protection and is meant to
discard data from events that can not be analyzed.

III BUSY HANDLING

The task of the Busy Box is to let the trigger sys-
tem know when the detector is busy and can not
handle new trigger sequences. As long as the busy
signal is asserted, the CTP will not issue addi-
tional trigger sequences. The generation of the
busy signal is a logical OR between two separate
processes inside the Busy Box. One is a simple
timer started whenever a Level 0 trigger is re-
ceived. In the case of the TPC the timer is set
to approximately 90µs, which is the time it takes
to record one event. The other process will flag
busy when all buffers on the FEE are occupied.

If a Level 2 Accept is issued for an event,
the FEE will tag the data with the Event ID and
push it over optical fibre links to DAQ computers.
These are regular PCs with special data adapters
called D-RORCs (DAQ-Read Out Receiver Card)
connected to a PCI bus. Instead of communi-
cating directly with the FEE to find the number
of buffers in use, the Busy Box queries the D-
RORCs. Once a D-RORC has received the data
for an event from the FEE, it extracts the Event
ID and transmits it upon request to the Busy Box
over LVDS lines. The Busy Box also extracts
the Event ID from the Level 2 Accept trigger, but
stores it in a local queue. Once an Event ID en-
ters the queue, the Busy Box will start polling the
D-RORCs and compare the Event ID from the
trigger with that from every D-RORC. If all the
Event IDs match it can be safely assumed that all
the corresponding buffers are freed, and the used
buffers counter will be decremented. In this way
the number of free FEE buffers can be calculated
indirectly.

Traditionally the FEE in the detectors has gen-
erated its own busy signals. For the TPC alone,
however, there are more than 4000 Front-End
Cards but only 216 D-RORC cards. Communi-
cating with the D-RORCs therefore significantly
reduces the need for connections. Also, the D-
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Figure 2: Illustration of Busy Box concept

RORC cards are placed in a counting room, away
from the radiation environment close to the de-
tector. By also placing the Busy Box in the same
counting room easy access is assured.

IV BUSY BOX

In the case of the TPC, the Busy Box needs to
communicate with the 216 D-RORCs over 15 me-
ters TP (Twisted Pair) cables with RJ-45 connec-
tors. Many of the other sub detectors have fewer
data links and hence, fewer D-RORCs. For this
reason the Busy Box is made modular (see fig-
ure 3). The motherboard has 40 ports for RJ-
45 connectors. If more ports are needed, mez-
zanine cards with 48 ports can be attached with
ribbon cables. The boards/cards are built in stan-
dard 19” rack cases up to five units in height. The
logic resources are provided by one or two Virtex-
4 FPGAs, depending on the number of ports re-
quired. The Virtex-4 FPGA in the ff1148 package
was chosen because it has many IO pins, supports
LVDS and supports programming by SelectMAP
[6].

Attached to the motherboard is a DCS card.
The DCS card is part of the DCS (Detector Con-
trol System) which monitors, configures and con-
trols most of ALICE. The DCS card is mainly
composed of an Altera EPXA1 (containing a 32
bit ARM processor), 8 MB Flash ROM, 32 MB
SDRAM and an Ethernet transceiver. With these

components it is able to run a lightweight version
of Linux. Device drivers for Linux have been de-
veloped so that programming the FPGA with Se-
lectMAP from a remote location is possible. This
feature, although very handy for the Busy Box,
was initially developed for the FEE which resides
inside the detector and is unreachable once the ac-
celerator has been started. The DCS card also has
a 16 bit wide bus interface to both FPGAs, allow-
ing software to access memory mapped registers
inside the FPGAs. The DCS board provides con-
nectivity to the trigger system and the Detector
Control System.

The main requirements for the firmware are to
provide communication with the D-RORCs and
an interface to the DCS bus and triggers. In ad-
dition it will do most of the work of processing
the incoming messages from the D-RORCs. It is
essential to implement as many of the low-level
functions in firmware as possible since it is faster
than the software. There will be two versions of
the motherboard, with one or two FPGAs. The
first FPGA is connected to the first 120 of the
RJ45 ports and the second to the 96 remaining.
Since the number of ports will vary for different
Busy Boxes, the firmware is designed to be scal-
able at compile time (by generics) to include any
number of ports from 1 to 120. The two FPGAs
will operate in parallel, with some simple logic in
the first FPGA to coordinate the busy-signal.

Every received message from the D-RORCs
will be stored in memory that is available to the

Figure 3: Picture of the inside of the Busy Box
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software. The firmware also provides registers
for transmitting messages to any or all of the
connected D-RORCs. This allows software to
communicate with the D-RORCs directly so that
higher level error handling can be done in soft-
ware. It is also very useful for debugging in the
development phase.

Messages from the D-RORCs will also be
pushed into a FIFO queue for processing by the
firmware. Internal status registers for each D-
RORC will be updated as messages are processed.
The information in these registers will be used to
determine when all D-RORCs have received data
for the current Event ID or, if not, determine the
next appropriate action.

As described earlier, the Busy Box will request
the Event IDs from the D-RORCs. It will re-
ceive messages from all active D-RORCs contain-
ing the requested Event ID or a message saying
that the Event ID has not been received yet. The
Busy Box will wait until it has received messages
from all D-RORCs or until a programmable time-
out runs out and then re-request from those that
had not received the Event ID. The firmware will
retry this procedure a few times before it sets ap-
propriate error registers and allows software to re-
solve the error or report it to the DCS.

The communication logic on both sides (Busy
Box and D-RORC) runs on 200 MHz. Dedicated
hardware inside the Virtex-4 called Digital Clock
Managers are used to generate this clock in the
Busy Box. The D-RORCs are referenced to the
clocks of their host computer. This means that the
two devices do not share clock source and clock
skew and jitter noise is to be expected. A proto-
col that includes a bit clock in the encoded sig-
nal is desirable but due to the large number of
receivers that have to be implemented into a sin-
gle FPGA, Non-Return-to-Zero encoding is used.
Currently, the receivers utilizes 5x oversampling
which gives a bit rate of 40 Mbps. The receivers
will push samples into a shift register long enough
to contain samples for a complete word. When
the receiver sees valid start and stop bits in the
samples, it will use majority gates to determine
the value of each bit and store the resulting bits
in an output buffer. Parity checks are also im-

plemented to maintain data integrity. A message
from a D-RORC to the Busy Box is 48 bits. To
make the protocol more tolerant of jitter and keep
the receivers small, the 48 bits are transmitted as
3 times 16 bit words (with a very short timeout
between the words). This allows the receiver to
resynchronize to the bit stream more often. It also
reduces the probability that noise from floating
inputs produce garbage data by accident because
it is less likely that this noise will produce three
valid words consecutively.

V VERIFICATION

The design has been tested in simulations with the
QuestaSim software. For this purpose testbenches
has been written in VHDL that emulates the de-
vices that the Trigger Busy Box firmware will in-
terface with. For some of the emulated devices,
a dedicated VHDL entity has been written, others
are emulated by VHDL procedures that drives the
signals of the interface. A main test sequence pro-
cess calls procedures that controls the emulators
to interact with Busy Box firmware. The main test
sequence can easily be modified to simulate spe-
cific scenarios. The testbench does not automat-
ically verify the result but gives the opportunity
to study the functional operation of the design in
operation.

The first priority of the hardware tests was
to verify a reliable communication between the
Busy Box and the D-RORC. Several test setups
have been used in the different stages of devel-
opment. The first was a loopback test where the
Busy Box transmitted messages to itself through a
TP cable. By using the DCS board to access reg-
isters of the FPGA, messages can be sent, and the
received messages can be read out and verified by
software.

After some modifications to the firmware the
Busy Box was brought to CERN for testing with
the D-RORC. These tests were concluded with
a ”proof-of-concept” test where software running
on the DCS board controlled the communications
of the Busy Box. The test included retrieval of
an event ID form the D-RORC and successfully
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comparing it with the event ID which was sent
from the LTU in emulator mode.

Further test of the communication has been per-
formed with another FPGA based device were
firmware have been developed specifically to em-
ulate the D-RORC in the absence of the real D-
RORC and the remaining components of a real
test setup.
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Figure 4: Illustration of test setup.

Integration tests at CERN

Recently tests have been performed with the
current Busy Box design at CERN in a real test
environment, including real components and sev-
eral channels. The setup is illustrated in fig-
ure 4. On the detector side four complete FEE-
units have been used simultaneously (the TPC has
a total of 216 FEE-units). The FEE sampled float-
ing inputs instead of real detector signals to sim-
ulate data, and on the trigger side a real LTU has
been used. The LTU receives the BUSY-output
from the Busy Box and passes it on to the CTP.
Trigger inputs to the LTU will come from the CTP
in the final setup, but so far a CTP emulator has
been used instead. The CTP emulator will issue
triggers at a variable rate, as is expected in the
real system under normal operation. In the test
the Busy Box verifies that all event data has been
successfully transfered to the D-RORCs by com-
paring the Event IDs from the D-RORCs with the
Event IDs from the trigger system.

VI CONCLUSION

The modular design of the Busy Box and its scal-
ability makes it possible to use it with several AL-
ICE sub-detectors. This also allows independent
testing of different functionalities and makes it
easy to add new or modify existing ones. Both
during development and integration of the Busy
Box in a detector system, the combination of soft-
ware and firmware gives flexibility. So far labo-
ratory tests have been performed to verify basic
functionality, and error handling will be added.
Further commissioning tests using more channels
will be performed in the near future.

REFERENCES

[1] ALICE Collaboration, Technical Proposal For A
Large Ion Collider Experiment at the CERN LHC.
CERN/LHCC 1995-71, 1995.

[2] ALICE Collaboration, Technical Design Report of the
Time Projection Chamber, CERN/LHCC 2000-001,
ALICE TDR 7, 7 January 2000. ISBN 92-9083-155-3
https://edms.cern.ch/file/398930/1/ALICE-DOC-
2003-011.pdf

[3] L. Musa et al., The ALICE TPC Front End Electron-
ics, in proc. of the IEEE Nuclear Science Symposium,
Portland, October 2003.

[4] ALICE Collaboration, Technical Design Report of
the Photon Spectrometer (PHOS) CERN/LHCC
99-4, ALICE TDR 2, 5 March 1999. ISBN 92-9083-
138-3 https://edms.cern.ch/file/398934/1/Cover-
Contents.pdf

[5] Rossebø Anders, BUSY-logikk for ALICE TPC, Mas-
ter thesis, University of Bergen, 2006.

[6] Xilinx Inc., Virtex-4 User Guide v.1.5, January 2006.

[7] D. Evans, S. Fedor, G. T. Jones, P. Jovanović, A.
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ABSTRACT

This paper is intended to serve as an introduction to how to
build a customized backend tool for a Xilinx based design
flow. A Python based library called PyXDL is presented
which allows a user to manipulate XDL files which contain a
placed and routed design. Three different tools are presented
which uses this library, ranging from a simple resource uti-
lization viewer to a tool which will insert a logic analyzer
into an already routed design, thus avoiding a costly com-
plete rerun of the place and route tool.

1. INTRODUCTION

Traditionally, users are not very interested in the inner work-
ings of the FPGA tool chain they are using. As long as ev-
erything is working correctly there is no perceived need to
invest time and effort on learning about obscure implemen-
tation details. Although most users have probably looked
at a routed design in for example Xilinx’ FPGA editor rela-
tively few users have modified such a design.

There are however large opportunities for those who are
interested in inspecting and modifying placed and routed de-
signs. For example, a design viewer could be constructed
that not only shows the slices of the design, like the floor-
planner does, but also figures out the functionality of a slice
and shows a symbol for a mux, adder, inverter, and so on.
This will allow a user to quickly see if the synthesizer has
created reasonable logic without having to load the FPGA
editor which usually shows much more detail than neces-
sary.

In terms of modifying a placed and routed design, most
users are probably interested in tools that are helpful for de-
bugging a design such as instrumenting a design to improve
the visibility of internal signals. The FPGA editor has in-
cluded functionality to insert probes into a design and route
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Strategic Research

those signals to external pins for a long time and the Chip-
Scope [1] product has improved on this functionality by al-
lowing the user to insert a full logic analyzer into the FPGA.

Finally, when the usage of partial reconfiguration of FP-
GAs is more widespread it is likely that already placed and
routed designs will have to be modified before deployment.

This paper presents a simple way to write useful pro-
grams capable of inspecting and modifying placed and
routed Xilinx designs. The used method is to use the xdl
tool to translate Xilinx proprietary NCD (Native Circuit De-
scription) files into XDL (Xilinx Design Language) text files
which can easily be processed by an application. A Python
library called PyXDL has been developed to analyze and
modify XDL files and three different backend tools written
in Python has been written to demonstrate the capabilities
of this library. The first tool can take a design and report
the resource utilization of individual modules in the design.
The second tool is a design viewer capable of showing the
type of logic in each LUT as described above. The final tool
allows a logic analyzer core to be inserted into an already
routed design and present a user interface over RS232.

While it might seem esoteric and cumbersome to write
your own backend tool the main parts of the Python library
and tools described in this paper were actually written over
a period of less than two weeks (except for the logic an-
alyzer core which was already written for another project
where it had to be manually instantiated in the RTL source
code). It is therefore feasible for even smaller developers to
write their own customized tools and we hope that this paper
might serve as an inspiration for like-minded developers.

2. RELATED WORK

As previously mentioned, the FPGA editor included in ISE
can show a design in more detail than most users care for. It
is also possible to change the design although this is proba-
bly impractical for larger changes. There is also a command
line version of the FPGA editor available called fpga edline



which is capable of executing scripts created by the FPGA
editor.

Unfortunately there is no documented way to control the
FPGA editor from a user written program. The included
scripting support is just a way to repeat previously defined
commands, the script language is not a complete program-
ming language. This makes it unsuitable for an application
that needs to read data from a design as opposed to making
changes to a design at fixed locations.

A much more interesting alternative is the JBits SDK [2]
from Xilinx. This allows Xilinx designs to be manipulated
from Java. In fact, it probably contains all the functionality
that a user could want in terms of design manipulation. It
isn’t publicly available and users have to ask for access to it.
The main drawback is that JBits has been discontinued and
there is no support at all for newer FPGAs in it (newer than
Virtex-II) and there seems to be little interest from Xilinx
to add such support. In fact, if JBits was publicly available
with support for all new FPGAs from Xilinx, there wouldn’t
have been any need to write this paper.

Finally, abits [3] is a tool similar in spirit to JBits which
allows Atmel bit streams to be manipulated.

3. THE XDL FORMAT

The XDL file format is an ASCII based translation of Xilinx’
proprietary NCD file format. It will typically contain two
types of statements, instances and nets. An instance can be
any logic element in the FPGA such as for example a slice,
ram block, or DSP block. It may or may not be placed at a
certain location. A net statement will describe the name of
a certain net and the instances it is connected to. It may also
contain routing information. An example of a very simple
XDL file is shown in Figure 1.

A drawback of the XDL file format is the scarcity of
documentation. Earlier releases of ISE such as 6.3 con-
tained written documentation about the file format [4]. Un-
fortunately this documentation has been removed in later
versions of ISE. Even so, some details of the XDL format
wasn’t documented in 6.3 either. Luckily some basic infor-
mation about the format is included in every XDL output file
created by the xdl tool unless the -noformat switch is given.

4. PYXDL - PYTHON BASED XDL
MANIPULATION LIBRARY

A Python based library called PyXDL has been developed
to simplify development of backend applications. The basic
idea behind the library is to convert a placed and routed de-
sign into XDL by using the xdl tool included in ISE. This file
can be modified as required and converted back into Xilinx
native NCD format. This allows small changes to be made
to a design without requiring a complete and often time con-

net "simple_net" ,
outpin "slice1" XQ ,
inpin "slice2" BX ,

;

inst "slice1" "SLICEL",unplaced ,
cfg "BXINV::BX CEINV::CE CLKINV::CLK

DXMUX::BX FFX:slice1_r:#FF
FFX_INIT_ATTR::INIT0" ;

inst "slice2" "SLICEL",unplaced ,
cfg "BXINV::BX CEINV::CE CLKINV::CLK

DXMUX::BX FFX:slice2_r:#FF
FFX_INIT_ATTR::INIT0" ;

Fig. 1. An example of a simple XDL file which shows two
slices each containing one flip flop connected by a wire.

suming synthesize, placement, and routing iteration. This is
accomplished by telling par (the place and routing tool) to
only route un-routed nets and only place unplaced instances.
(The guide-file feature of par is used for this purpose.) This
flow is illustrated in Figure 2.

4.1. Constraints

One problem which occurs when merging two designs, which
isn’t immediately obviously when looking at the XDL files,
is the constraints files. The timing constraints in these must
also be merged if reliable timing estimates is expected.

4.2. Resource analyzer script

The design resource analyzer is a small tool written for a de-
signer who wants to know the resource utilization of a cer-
tain module or modules in larger design. One way to figure
this out is to synthesize that particular module separately.
This method may or may not work depending on the prop-
erties of the larger design. For example, if the synthesizer
can determine that only relatively few values can appear on
a certain input port of a module included in a larger design,
the synthesizer could potentially remove large parts of the
module.

As hinted at in the previous section it would be better to
be able to analyze a large design directly to find the resource
usage of individual components. This is exactly what the re-
source analyzer script does as shown in Figure 3. The script
itself is very simple and the most complex part is actually
printing the design usage in a hierarchical and cumulative
fashion. This kind of XDL parsing, although easy, can still
lead to useful results. A regression test incorporating this
script could for example warn about a submodule which has
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Fig. 3. Using the resource analyzer script to view the re-
source utilization of various parts of a design.

grown (or shrinked) by a large factor when compared to the
previous run.

4.3. Design viewer

The design viewer is capable of viewing a design and show-
ing the configuration of the slices. It is similar in function-
ality to the floorplanner. In Figure 4 a part of an OpenRisc
based design is analyzed by the design viewer.

4.4. Logic analyzer

Putting a logic analyzers into a chip is not a new idea. Both
Xilinx and Altera already offers such products (ChipScope
and SignalTap). There are also some logic analyzers written
by hobbyists available on the net such as Fpgadbg [5].

The main idea behind this section is to show that it is
easy for any user to duplicate the main selling point of Chip-
Scope, i.e. the capability to insert a core into an already
synthesized and routed design. While it would be easy to
create a logic analyzer core which fully mimics ChipScope
by connecting to the internal boundary scan primitive we
did not intend this tool to be a ChipScope clone. Instead,
the intention was that this tool should be useful in systems
that might not easily be connected to a PC with a ChipScope
client such as remote systems. Therefore the logic analyzer
core is operated via a simple serial port interface.

An example of the output of the logic analyzer is shown
in Figure 6 and an example of a simple GUI which allows
the core to be easily inserted into a design is shown in Fig-
ure 7.

4.4.1. Implementation details

The design of the the logic analyzer is shown in Figure 5. It
consists of a simple 8 bit microcontroller which is responsi-
ble for presenting a text based user interface to a serial port.
The MCU is connected to a logic analyzer core via a Wish-
bone bus. This bus also creates an easy way to extend the



Fig. 4. An example of the output from the design viewer
when run on a OpenRisc 1200 based design.

functionality of this core with additional modules. The logic
analyzer is currently hardcoded for a maximum of 64 signals
which is stored to a 2 kilo-word large buffer.

The Python GUI allows the user to load an XDL design
and select which nets to monitor. After the user is satisfied
with the selection the program will load the synthesized ver-
sion of the logic analyzer and remove any elements which
will make it hard to merge the logic analyzer into the design
(e.g. IOBs and BUFGs). The appropriate flip-flops in the
logic analyzer is added as an extra destination of the selected
nets. The program memory of the MCU is also modified so
that net information such as name and width is available to
it. Finally, a user selected clock net is connected to all flip-
flops in the logic analyzer core.

The curious reader is also referred to Appendix A which
contains an example of how PyXDL can be used to merge a
small design into a large design.

4.5. Availability of PyXDL

The PyXDL library will be published under the GPL at
http://www.da.isy.liu.se/˜ehliar/pyxdl/
together with the sample applications described in the pre-
vious sections. The RTL code of the logic analyzer core
will also be made available under the MIT license so that
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Fig. 5. An overview of the logic analyzer module.

users can use and distribute merged designs without worry-
ing about the stricter terms of the GPL license.

5. DISCUSSION

The applications presented in this paper shows only a few
of the many possibilities that could be tapped by a creative
designer. The applications described earlier could of course
be improved by improving them. The design viewer could
be improved to show more points of interest to a designer
such as clock domain crossings, pipeline depths, and per-
haps even show some sort of design complexity metrics for
different parts of the design (a long pipeline without feed-
back is far less complicated and probably easier to test and
verify than a state machine with many feedback paths).

The logic analyzer could be improved by adding addi-
tional modules to it such as counter modules for statistic
gathering. Another interesting addition would be to replace
the RS232 interface with another interface such as for ex-
ample Ethernet or USB.

5.1. Other possible applications

There are many other interesting applications which would
be possible to develop. One example would be for those in-
terested in very large FPGA designs that must be mapped
onto several FPGAs. A tool could be created that automati-
cally partitioned the XDL file into more than one FPGA.

A similar tool could be made that partitioned a design for
a large FPGA into different region of such an FPGA. The ad-
vantage of such a design would be that the time consuming



Fig. 6. The logic analyzer user interface showing instruction
fetches on a Wishbone bus. The analyzer has been set to
trigger when STB and ACK are both asserted.

placement and routing of the partitioned design could easily
be parallelized on a cluster of computers.

5.2. Remaining issues

There are unfortunately some issues that are hard to solve in
a satisfactory fashion. The main problem is that there is very
little information available about routing. Whereas place-
ment is relatively straightforward, reliably routing a design
requires detailed timing information about the internals of
the FPGA, something which Xilinx hasn’t released for mod-
ern FPGAs and most likely will not release for the foresee-
able future.

Another problem that any tool of this kind will face is
that the synthesized design isn’t exactly the same as the RTL
source code. The various optimizations employed by the
synthesizer will remove and rename many nets, making it
harder to find the correct signal/bus to inspect. This could be
mitigated if more back-annotation information was available
to the tools.

Finally, the PyXDL library has only been tested on Virtex-
4 based designs.

6. CONCLUSION

We have shown that it is easy to create powerful backend
tools for a Xilinx based design flow such as a logic analyzer
inserter. By manipulating the design file directly a time con-
suming full synthesis/placement/routing iteration is avoided

Fig. 7. The GUI used to insert the logic analyzer core into a
design.

and therefore increasing productivity. It is our intention that
this paper will inspire other designers to explore these pos-
sibilities as well.
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Appendix A. PYXDL EXAMPLE

This appendix contains an example of how to use PyXDL to merge a synthesized design into a larger design. The example
consists of a design which will monitor a signal and assert an external signal forever if an internal signal has ever been asserted
(e.g. an error signal of some sort). In order to shorten the example, the constraints file is not updated with the timing group
from the small design. Some values are also hardcoded instead of dynamically getting the values from the XDL files such as
the name of the clock networks.

PyXDL source code to merge a synthesized design (test.xdl)
into a large design (system.xdl):
from xdl import xdl,xdlnet

from pcf import pcf

from xdlutil import par with guide

largedes = xdl("system.xdl")

largedespcf = pcf("system.pcf")

# Clock network for the large design

clocknet = largedes.netsbyname["clk i BUFGP"]

tinydes = xdl("test.xdl")

# Unplace stuff we don’t need

tinydes.unplace design()

tinydes.remove unused dcminsts()

tinydes.remove inst("clk")

tinydes.remove net("clk")

# Create a unique prefix for the other design so

# that we don’t have to worry about name clashes

tinydes.add prefix("TEST/")

# Convert flip flop in the IOB to an internal signal

myiob = tinydes.insts["TEST/testin"]

testinpin = tinydes.convert input to internal(myiob)

oldclknet = tinydes.netsbyname["TEST/clk BUFGP"]

# Remove old clock network

tinydes.remove net("TEST/clk BUFGP")

tinydes.remove inst("TEST/clk BUFGP/BUFG")

# Merge designs

largedes.mergedesign(tinydes)

# Merge old clock network into new design

for pin in oldclknet.inpins:

largedes.add inpin to net(clocknet,pin[0],pin[1])

# Select signal to monitor

thenet = largedesign.netsbyname["traceit/state r FFd1"]

largedes.add inpin to net(thenet,testinpin[0],

testinpin[1])

# Add the IOB to the PCF constraint file and

# select where to place it (at pin AC6)

largedespcf.addiob("TEST/testout","AC6")

# Place and route the design

par with guide(largedes,largedespcf,"new.ncd","tmp")

Verilog source code for a simple monitor application. testout
will be asserted if testin has ever been asserted:

module test(

input clk,

input wire testin,

input wire rst,

output reg testout);

reg tmp,sample;

wire fbloop;

always @(posedge clk) begin

sample <= testin;

tmp <= fbloop;

testout <= tmp;

end

FD monitorfd(.C(clk),.D(fbloop | sample),

.Q(fbloop));

endmodule // test
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Abstract 

 
This paper describes the limitations of integrating 

an FPGA in schematics driven board design flow and 
how some of these can be effectively addressed in a 
spreadsheet based flow. Allegro System Architect© 
gives a spreadsheet based view of the design. The 
advantages and ease of integrating an FPGA in a 
spreadsheet driven board flow are presented. A new 
methodology for managing large pin-count FPGAs on 
the board and efficiently handling FPGA driven ECOs 
that come late in the design cycle, is also discussed. 
 
1. Introduction 

FPGAs are no longer considered to be just a means 
for fast prototyping. With the advent of high 
performance, high density FPGAs, they are increasingly 
being used in production boards, replacing even ASICs 
in some cases [1, 2]. These high pin-count FPGAs are 
advantageous since they are very adaptive to design 
changes during and after the product development. 
PCB technologies, like the support for high data rates, 
high density interconnects with microvias and 
embedded components also make it easy to use large 
FPGAs in the board. Aggressive time-to-market dictates 
that the FPGA and board designs proceed 
concurrently. This poses the challenge of importing 
and maintaining such high pin -count FPGAs in the 
board design and need a tight PCB-FPGA design flow 
integration. This integration requires effective and 
efficient transfer of a large amount of data from one 
design flow to the other [3].  

 
FPGA driven ECO can happen to achieve timing 

closure and it triggers a board synchronization and 
verification cycle that is very time consuming [4]. 
Similarly, there can be a PCB driven ECO because of 
signal integrity constraints or routing optimizations in 
the board layout that will require the FPGA designers to 
again achieve timing closure with the new pin 
assignments. A broad picture of the PCB and FPGA  
design flow and their interaction at various stages is 
shown in Figure 1.  

 
 

The following section will present the challenges of 
concurrently designing FPGAs and its board. Section 3 
explains the inherent limitations of the FPGA import and 
PCB-FPGA integration in schematic driven flow. 
Section 4 discusses the FPGA import and integration 
with board design in a spreadsheet based environment. 
Future needs for better PCB-FPGA design integration 
discussed in Section 5. 

2. Concurrent PCB-FPGA Design Challenge 
Concurrent PCB and FPGA design demands certain 

amount of transparency, large amount of data transfer 
and proper synchronization of this data between the 
two design flows. 

 
 FPGA design flow needs to take in pin-assignment 

recommendations and constraints from the board 
layout. The layout should understand the FPGA design 
rules, pin directions, pin-bank details, differential pins 
and simulation models for pins, to facilitate effective pin 
assignment recommendations with proper signal 
integrity analysis and routing optimizations. A board 
may use more than one such large pin-count FPGAs, 
thereby, increasing the amount of data synchronization 
involved. 

 
There is also the challenge to achieve a high degree 

of automation in the ECO process to make it error-free 
so that precious time is not wasted in synchronizing the 
board and the FPGA design. Any solution for the PCB-
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FIGURE  1. Flow of PCB-FPGA integration. 
 



FPGA integration must have an effective FPGA import 
in the board flow and fairly automated ECOs to reduce 
the time-to-market. 

 
3. Limitations of the schematic based FPGA 
import and PCB-FPGA integration 
 

The problems in a schematic based FPGA import and 
PCB-FPGA integration [4] are discussed here.  
 
3.1 FPGA as a hierarchical block in schematic 

Preliminary pin-assignment of the FPGA is the first 
step in concurrent PCB and FPGA design process and 
this step means generating the part along with the 
symbol of the FPGA and instantiating the symbols in 
the board design. This step has some problems in 
schematic flow. 

 
Hierarchical encapsulation: Most PCB designers 
encapsulate the FPGA symbols within a hierarchical 
block exposing the pins of the FPGA as ports of the 
block. This insulates the top design from frequent 
FPGA symbol changes, but hierarchical symbol does 
not show the logical to physical pin mapping and this is 
a serious limitation during debugging. It forces the use 
of hierarchical design that increases the flow 
complexity.  
 
Block size and signal short: The hierarchical block 
symbol size is an issue for a large pin-count FPGA . 
Most schematic driven board flow does not support 
splitting hierarchical block symbol. Power pins can be 
removed from the hierarchical block symbol and 
declared as globals, to reduce the size but this causes 
an unintentional short of these power pins in case there 
are more than one FPGA s in the same design. 
 
 3.2 Split Symbols for FPGA in schematic 

Front-end engineers  can tackle the size of the FPGA 
symbol inside the hierarchical block by splitting it into 
multiple small symbols. Splitting the symbol has some 
limitations. 

 
Connecting through symbols: Split symbols are created 
by Librarian during part generation. The split symbols 
need to be individually placed and connected in the 
schematic. Since the pin count is large and pins are split 

over many symbols, this step is  extremely tedious and 
error-prone. 
 
Updating connections in schematic: ECOs, whether 
Board or FPGA driven, place tall demands on the 
schematics flow. The designers need a design preview 
showing the current state of the FPGA and the board. 
They need some comprehensive way to figure out the 
differences and trigger automatic updations of split 
symbols and their connections in the board  schematic. 
Providing all this in a schematic based flow is very 
difficult and hence, ECOs are still largely manual. 
 
4. Spreadsheet based FPGA import 
methodology 

There are a number of advantages offered in a 
spreadsheet based view of the design. This section 
talks about the FPGA import methodology as 
implemented in Allegro System Architect© and explain 
ways to exploit the spreadsheet based view for easy 
and highly automated ECOs.  
 
4.1 Introduction to Spreadsheet view 

Spreadsheet view presents the design and it’s 
connectivity in the form a table. A table view helps 
focus on design entry and the Front-end engineer need 
not worry about schematics at this stage.  A snapshot 
of Cadence Allegro System Architect© presenting the 
table view of the design is shown in Figure 2. It shows 
the list of component instances and nets in the design 
and their connectivity is shown in the connectivity 
details pane.  

 
The table is fully customizable with the user 

deciding the visibility of columns, thereby making 
optimum use of real-estate on the pane to avoid 
cluttering. There are pattern matching filters for 
columns with sorting capability. These features go a 
long way in helping the designer in ma king connections 
without being overwhelmed by the number of pins. 
Auto-connection options are also available where the 
user has the option of creating signals from the pin 
names (same as pin name or with some prefix/suffix) and 
making corresponding connections. There are a number 
of other features provided in the tool that make design 
entry very easy and automatic as compared to 
schematics view. This is extremely useful when we have 
large pin-count devices, especially large FPGAs. 



 4.2 Importing FPGA through wizard 
Allegro System Architect© can directly import the 

FPGA into the board design using an Import FPGA 
wizard. The wizard supports FPGA families from three 
major FPGA vendors: Xilinx, Altera (Qu artus and 
MaxplusII) and Actel. It guides the user through a 
series of steps that take as input the FPGA files 
supplied by the FPGA design team and automatically 
generate a part from those files. Some steps in the 
import process are shown in Figure 3. Once the wizard 
finishes its job, the user has the option of automatically 
adding any number of instances of that imported FPGA 
part in the board design. The use of a wizard provides 
seamless and direct FPGA import in the board design 
and makes it very easy as compared to the existing 
schematics based import methodology. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3(a) : FPGA Families and Import file 
 
The user can create two types of parts during FPGA 

import as shown in Figure 3(b): Custom and Standard . 
In custom component, the pin names are generated 
from the pins used in the logic mapped to the FPGA. In 
standard component, the pin names are made from the 

FPGA device pins. For standard component, the wizard 
generates a logical-pin-name to physical-pin-number 
mapping in the form of a file. This file is used to overlay 
the logical pin name s over the physical pin names in the 
spreadsheet view. This greatly simplifies the process of 
making connections to the pins because the engineer 
directly sees the logical pin to physical pin number 
mapping.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3(b) : Standard and Custom Part  
 
Using this import methodology helped in 

overcoming the limitations of schematics based FPGA 
import. There is no need to go outside the tool to create 
FPGA parts, the logical-pin-name to physical-pin-
number mapping is available to the user, there is no 
need for hierarchy or split symbols, unintentional short 
of power pins is done away with and use of filters in 
making connection makes the design entry very fast. 
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FIGURE 2: Spreadsheet View in Allegro System Architect. 
 



 
4.3 Automatic Schematic Generation and 
PCB-FPGA integration 

Allegro System Architect© has a schematic generator 
that takes the component connectivity from the design 
files and symbols from the part libraries to automatically 
generate a schematic view of the design. While the 
board designer imports the FPGA in the design and 
make connections, the Librarian can generate split parts 
for the FPGA in parallel. Then the designer can 
automatically generate the schematics  and the utility 
will automatically place and connect those split parts in 
the schematic. The schematic can also be updated 
automatically in preserve mode if there are updations in 
FPGA symbols or their connectivity because of ECOs. 
This degree of automation makes the schematic 
generation and updation step very fast. 
 
4.4 Update ECO through Import Wizard 

The Board and the FPGA can go out of sync in two 
scenarios: the board layout changed the FPGA pin-
assignment by swapping pins from the same pin-bank 
or the FPGA team came up with a new pin assignment 
or a pin model change.  
 

Whenever the FPGA files undergo a change, the 
board designer will need to update the FPGA part. In 
Allegro System Architect©, we can handle FPGA 
triggered Board ECOs. The import FPGA wizard has an 
Update ECO option for updating the FPGA part. The 
user is presented with a preview of the part differences 
in a tabular form with an option of creating a new part. 
Once this new part is created, the front-end engineer 
has  the option to update the old FPGA part and 
preserve the connectivity in a Replace Compoent 
wizard shown in Figure 4. This ECO will be much easier 
in a spreadsheet view than in a schematic view because 
symbols are not involved in updation. The schematic 
view can be automatically updated by running the 
schematic generation utility.  
 
5. Future Direction 

The use of spreadsheet view and its new 
methodology for importing FPGA addresses  some of 
the PCB-FPGA integration challenges; we have to 
address some requirements for complete PCB-FPGA 
design flow integration.  
 
Support for cache: We have to automatically recognize 
the need for a Board ECO triggered by FPGA changes . 
This can be done through caching. Automatic polling 
at load time will tell the tool whether the imported FPGA 

is stale or not by comparing the cached information 
about the FPGA  [1].  
Layout Triggered FPGA ECO: In case FPGA pin 
assignments are modified in the board layout, the user 
should have the option of generating a vendor specific 
pin map constraints file which can be taken in by the 
FPGA vendor’s P&R tool to update the FPGA  [1,2,3].  
Recognizing Pin Banks and LVDS in board design 
flow: Current FPGA architectures group pins with 
common characteristics into banks that share same IO 
standard model. They also have support for LVDS (Low 
Voltage Differential Signal) pins. The current PCB-
FPGA integration at the front-end must have support 
for pin banks and LVDS pin-pair data so that this can 
be annotated to the board layout, where this can be 
understood and handled [1, 2, 3]. 
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ABSTRACT 

This paper presents a Digital Data Processor (DDP) for 
Synthetic Aperture Radar (SAR). The DDP captures SAR 
data at a 1 GHz sample rate and processes data at 350 
MB/s. Data reduction is performed by a digital down 
converter, programmable decimating filter and a fully 
programmable presummer. The total processing power 
amounts to 12.6 GOPS/s. 

Configuration of the DDP on a pulse to pulse basis is 
achieved by means of a high speed LVDS serial data link 
capable of transferring up to 500 k messages per second 
with deterministic timing. The DDP has been implemented 
on a commercial FPGA digitizer board. 

1. INTRODUCTION 

Synthetic aperture radar (SAR) provides a capability for all 
weather, day and night ground observation of static objects. 
Moving target indication (MTI) adds the capability to detect 
moving objects . Within the MiniSAR project TNO Defence 
Security and Safety, located in the Netherlands, is 
developing a combined SAR/MTI radar system operating 
on X-band (3 cm wavelength).  
This scalable and modular radar system has an active 
electronically steered antenna array and makes use of 
commercial off-the-shelf components where relevant. It is 
designed for use within small airborne platforms, in 
particular tactical UAV and small civil airplanes. The latter 
requirement results in a compact (50x50x30 cm) and light 
weight (50 kg) design which consumes limited power (max. 
500 W).  

 

 

The MiniSAR radar operates by emitting pulses to the 
ground and receiving the resulting reflections. These 
reflections are amplified, down converted and filtered by 
analogue components, and then fed to the DDP where they 
are digitized and signal processing is performed. 
The next section describes the architecture of the DDP with 
its different signal processing blocks. The implementation 
of these blocks inside an Altera Stratix FPGA is described 
in the following section and finally conclusions are 
summarized.          

2. DDP ARCHITECTURE 

An architectural overview of the Digital Data Processor is 
shown in Figure 2. The DDP data path can be decomposed 
into a pulse acquisition block, a digital down converter, 
programmable range filters, programmable presummer and 
finally a DMA engine block. Components shown in gray 
are implemented inside the FPGA. 
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Figure 2   DDP architecture 

2.1. Pulse Acquistion 

The input of the DDP is an analogue signal with a 
bandwidth of almost 500 MHz centred round an IF 
frequency of 250 MHz. This signal is sampled with 8-bit 
resolution at 1 GHz. 

Figure 1   MiniSAR 



Although this results in a peak data flow of 1GByte/s, the 
actual required data processing rate is lower due to the 
pulsed behaviour of the radar system. The maximum 
acquisition duty cycle is 35%, resulting in an average data 
flow of  350Mbyte/s. 

2.2. Digital Down Converter 

After data acquisition the signal needs to be down 
converted to in-phase (I) and quadrature-phase (Q) 
baseband signals. In fact the signal which is centred around 
250 MHz is shifted to DC. This function is performed by 
the digital down converter block which performs mixing 
with a 250 MHz carrier component.  

2.3. Programmable Range Filters 

The I- and Q-channels from the down converter need 
additional filtering. These filters improve the selectivity by 
removing receiver noise outside the transmitted bandwidth. 
They also remove aliasing products introduced by the 
Digital Down Converter. For low bandwidth modes the 
filters can perform decimation, resulting in a lower data 
rate. Programmable decimating FIR filters are used for this 
purpose.   

2.4. Programmable presummers 

Complete radar lines coming out of the range filters are in 
fact samples of what is called an azimuth spectrum. For a 
typical radar mode, the sample frequency (i.e. the pulse 
repetition frequency) might be 5 kHz whereas the band-
width of interest is 85 Hz. The presummers are decimating 
FIR filters which reduce the data rate and improve signal 
to noise ratio. 
The filter architecture differs from a common decimating 
FIR because these presummer filters process complete 
radar lines instead of separate radar pulse samples. The 
filter output vector O is the sum of input vectors I 
multiplied by coefficients C: 
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When an input vector In arrives, we immediately multiply 
it by the proper coefficient Cn and add the result to the 
previous sum, which is initialized to zero at the start: 
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Therefore, only a single line of storage is required and the 
end result is immediately available after the last line has 
been processed. The formula above can in fact be 

implemented on a per input sample basis , which nicely 
matches the preceding stage. 
A large reduction in data is performed at this stage because 
only the result of multiple accumulated radar lines is 
forwarded to the DMA engine, which we don’t describe 
here.  

2.5. Control 

Many settings throughout the MiniSAR radar can change 
on a per pulse basis, i.e. at a rate of 20 kHz. Because the 
total message rate can exceed 120 k/s and deterministic 
timing is required, a dedicated communication bus was 
developed. 
This radar bus is based on point to point links using Altera 
high speed LVDS serializers running at 500 Mbit/s. The 
bus has a ring topology, where every node either repeats its 
incoming data, or inserts its response in the data stream. We 
use a master/slave protocol with a single master issuing 
messages. The maximum message rate is in excess of 500 
k/s, which leaves ample room for growth. 

3. IMPLEMENTATION 

The DDP has been implemented on a commercially 
available high speed digitizer card. This 3U CompactPCI 
card contains a high speed AD converter, FPGA, Double 
Data rate SDRAM memory, cPCI interface chip and the 
necessary power supplies.  
All signal processing functionality is written in VHDL for 
implementation on an Altera Stratix EP1S25 FPGA. This 
FPGA contains 25,660 Logic Elements, 80 dedicated 9x9 
DSP multipliers, 224 M512 RAM blocks (32 × 18 bits),  
138 M4K RAM blocks (128 × 36 bits) and 2 M-RAM 
blocks (4K × 144 bits). 

3.1. Pulse Acquisition 

Digitization of the received radar pulse is performed with a 
1 Gsps MAX108 AD converter. This ADC has an internal 
8:16 demultiplexer which allows for interfacing to the 
FPGA by means of a 16 bit wide differential LVPECL bus 
running at 500 MHz.  
In order to better match the lower clock speed of the signal 
processing blocks inside the FPGA, the 16 bit/500 MHz 
input bus is further demultiplexed inside the FPGA to 64 
bit/125 MHz by means of dedicated high speed 
deserializers.  
The 64 bit wide words enter the line storage buffer which 
is implemented as a FIFO. This FIFO is capable of storing 
2048 x 66 bits words. Two additional memory bits are 
needed to indicate the start and stop of a radar pulse.  
The secondary side of the line storage FIFO runs at a 175 
MHz clock rate. This is the clock speed where the actual 



signal processing is performed. We use a fully 
synchronous data driven approach of the data path where 
the FIFO is automatically read if it is not empty and all 
subsequent units are required to process data sent to them. 
The large amount of memory needed for this line storage 
FIFO is implemented with Trimatrix M4K memory blocks.  

3.2. Digital Down Converter 

Every fourth clock cycle a 66 bit word representing 8 ADC 
samples is pulled out of the FIFO.  These are regrouped to 
2 ADC samples for every single clock cycle.  These 
samples are multiplied by the appropriate sine or cosine 
terms to obtain the I-path and Q-path.  
Due to the fact that the carrier frequency equals a quarter 
of the sample rate Fs, efficient Fs/4 mixing can be 
performed. With this well known technique the sine and 
cosine components are reduced to {0,1,0,-1} and 
{1,0,-1,0} sequences. Multiplication by -1 (and 1) is of 
course very simple. Additionally, in real hardware the 
multiplications with the zeros are omitted and a factor two 
reduction in processing rate is achieved. In our case, the 
processing rate at the I- and Q-path output is reduced to 
175MByte/s per channel. 

3.3.   Programmable Range Filters 

The following stage consists of two decimating FIR filters, 
one for the I-path and one for the Q-path. Matlab 
simulations indicate that the required frequency response 
for these filters can be achieved using 32 taps for each 
filter. 
However, due to the Fs/4 mixing scheme in the digital 
down converter which discards the ‘zero’ samples, each of 
the filters actually uses only half of its taps whilst the other 
half would always receive zeros as input. The original 32 
tap impulse response is  thus reduced to the 16 odd taps 
only for the I-path and the 16 even taps for the Q-path. 
Therefore, the Fs/4 mixing scheme also saves 50% in 
required filter resources. 
For lower bandwidths longer impulse responses are needed 
which can easily be supported when a polyphase imple -
mentation of the FIR filters is chosen. With a polyphase 
filter implementation it is possible to exchange hardware 
resource count against speed and vice versa. The 
architecture in Figure 3 shows a minimum resource version 
of a polyphase decimating filter with an impulse response 
length of twelve taps. The original impulse response h(0) .. 
h(11) is separated into three phases containing four taps 
each. The three different tapsets on the multipliers are 
changed sequentially at the high input rate. The 
intermediate multiplication results of the input data with 
the different coefficients are accumulated and after each 
new filter output cycle the accumulated results are shifted 
right into the adder chain.  

Note that the transposed FIR filter requires an adder chain 
instead of an adder tree. The Stratix DSP block contains a 
fast adder, however this DSP block is optimized for adder 
trees. For this reason the fast adder block in the Stratix 
DSP cannot be used and therefore the adder chain needs to 
be implemented with LEs.  
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Figure 3   Minimum resource polyphase decimating filter 

 
The two FIR filters need to operate at 175 MHz in order to 
achieve the required throughput of 350 MByte/sec in the 
data path. The effective processing rate of the FIR filters is 
11.2 GOPS/s. 
The combination of high speed and programmable 
decimation functionality forces the usage of embedded 
DSP block multipliers and fast M512 Trimatrix memory 
blocks for a final implementation of these FIR filters.  
A total of  32 embedded 18x18 multipliers are needed for 
implementing both FIR filters. This is equivalent to 64 of 
the available 80 embedded 9x9 multipliers on a Stratix 
EP1S25.  
Each of the 2 x 16 taps requires a dedicated memory block 
for coefficient storage. A total of 32 separate M512 
memory blocks are used. Each M512 memory block has 
storage capability for 32 different coefficients which 
allows a maximum decimation factor of 32 for the 
polyphase FIR filters. 
Finally a programmable scaler is added at the outputs of 
both filters. This scaler performs output scaling to 18 bit 
words for both output channels.  The coefficient memories, 
decimation factor and output scale factor are programmed 
through the high speed radar bus. 

3.4. Presummers 

The presummer is a FIR filter where each sample is a 
complete radar line. Every radar line is weighted with a 
different coefficient and added to the intermediate summed 
radar line. The basic elements for the presummer consist of 
a large memo ry block and a fast multiplier. 
 
Figure 4 shows the architecture of a single presummer. The 
presummer has a data input, data input valid control line, 
data output, coefficient input, and three control lines 
named first_line , last_line and start_line.  



The presummer operates on multiple lines and therefore 
some control mechanism is needed to indicate that a) the 
first radar line enters the presummer memory or b) that the 
presumming of multiple lines has ended and the 
accumulated output result can be forwarded to the final 
formatter block. This is achieved with the first_line and 
last_line control signals.  
The start_line signal is high during one clock cycle and 
indicates the start of a new radar line. This signal resets a 
pixel counter which is normally counting up at the same 
rate where input data arrives. The counter points to the 
read location of the presummer memory which is 
equivalent to the next pixel location within a radar line. 
The pixel counter pointer is also delayed to achieve the 
write address on the memory. This delay is equal to the 
pipeline delay which is introduced by the multiplier and 
adder. The states of the switches drawn in Figure 4 belong 
to the situation where their control signals are ‘0’.  
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Figure 4  Single Presummer Architecture  
 
During the first radar line which enters the presummer, the 
first_line signal is held active high. Therefore previous 
stored data from the memory is not fed to the adder. 
Instead, the output of the adder represents the multi-
plication of the input data of the presummer and the 
coefficient value for that specific radar line. This result is 
then written into the presummer memory.  
During the next line, a new coefficient is applied to the 
multiplier and new data enters the presummer. The 
first_line signal is held inactive now which means that the 

adder also accumulates the corresponding radar pixel from 
the previous weighted line which was stored into memory. 
This process can continue for several adjacent radar lines. 
When last_line is active the switch is connected to the 
output of the adder and the accumulated results of several 
radar lines are send to the output.  
A special situation occurs when both the first_line and 
last_line signals are held active; in that case the presummer 
is effectively bypassed. For the final architecture which 
contains four presummers this provides a manner to 
control which of the presummers are active during a radar 
line. 
 
Both the I-path and the Q-path need 4 presummers which 
are independently controlled through the radar bus on a 
pulse to pulse timing scheme. With 8 presummers running 
at 175 MHz, the total processing rate is 1.4 GMAC/s 
whilst memory is accessed at a rate of 6.3 GB/s. 
A total of 8 memories and 8 dedicated multipliers are 
needed. Each memory must have enough capability to 
store a complete radar line which means a maximum size 
of 8K x 18 bit samples each. The large memory resource 
for the presummers is implemented in the only two 
available large M-RAM blocks on the EP1S25, one block 
for the presummers in the in -phase path and one block for 
the presummers in the quadrature path. Both M-RAM 
blocks lie adjacent to each other on the physical die close 
to the DSP multiplier blocks which gives a logical 
partitioning between the I-path and the Q-path. The M-
RAM blocks are configured as two 8K x 72 bit memories 
to support 4 presummer memories for each channel.  

4. CONCLUSION 

Using a moderately sized FPGA we are able to perform 
high speed signal processing using limited room and 
power. With the complete data path running at 175 MHz, 
we achieve a processing power of 12.6 GOPS/s and a 
memory access rate of 6.3 GB/s. 
The signal processing functions implemented in hardware 
allow us to reduce a 350 MB/s input data stream about 
tenfold, which makes further processing in software 
manageable. 
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