
Licentiate Thesis Abstract:
Evaluating Test Techniques

using Fault and Failure Analysis
 Sigrid Eldh

Ericsson AB & Mälardalens University
Stockholm & Västerås

sigrid.eldh@mdh.se

ABSTRACT
Testing is an important and costly activity in software industry
today. This licentiate thesis is a product of four published papers,
which are all case studies performed in an industrial setting. This
work has led to the insight of how important – and difficult -
preparations of controlled software experiments are. Our aim is to
understand how to relate faults and their propagation to failures to
different test techniques. We will give an overview of our four
different papers, and some of our conclusions. The first paper
presents a case study of testing in practice within the telecom
domain. Next we performed an improvement in component test,
by using known quality enhancing methods, and familiar test
techniques, e.g. code coverage. This work resulted in a case study
comparing the deployment in several design teams. With this as
our basis, we created our position paper that describes a
framework for evaluating test design techniques, and the process
to do so. The final paper presents an attempt to conduct the first
part of this process. We aimed to create a series of software
components prepared with faults to serve as our controlled
experiment, but the study resulted in an analysis of failures and
corresponding faults in real industrial software. This failure-fault
distribution is a partial result that clarified the difficulty in our
endeavor. Based on this work, we have now outlined a series of
problems that needs to be addressed before we will be able to
continue creating our experiments and perform evaluations as
originally planned.

Categories and Subject Descriptors

D.2.5 Testing and Debugging

General Terms
Experimentation, Verification.

Keywords
Fault, Failure, Test, Evaluation, Efficient test, Software

1. INTRODUCTION
Testing is an important area for research. The systems are
becoming more complex and the amount of code is constantly
increasing. The quality of the software is becoming more
important. Industries are driven by business needs to minimize
the cost of development and maintenance of systems. The
majority of systems need to rely on its testing to demonstrate
functional and non-functional aspects of the software. This

licentiate thesis have has its base and is performed in an industrial
setting. Even if an entire telecom node is available for our
research, this system encompasses a code so large that to used it is
causes difficulties in learning and adapting it.
The licentiate thesis is based on four published papers. Our first
paper captures the industrial testing performed in everyday
practice. Our second paper is post-case study, which compared
quality and the application of the scheme called “Software
Quality Rank” on more than 20 test design teams. This
improvement program showed us the difficulty in deploying
established research in reality. Then we found our mission – to
focus on evaluation of suitable test design techniques for different
levels, (e.g. component, integration and system level). By creating
controlled experiments in an industrial setting, and performing a
series of case studies on test techniques, we want to provide
guidelines to industry. We are particularly interested in the
following three aspects of test design techniques:

• Effectiveness – finding a variety of failures, amount
• Efficiency - how fast a failure can be found, i.e. in

the entire process
• Applicability – how easy, straight-forward, and

“useful” the technique is in an industrial setting.
Our third paper describes this approach, by defining a test

framework and process. In this process, the first step is to create a
controlled experiment. In our fourth paper, we performed a
failure-fault analysis, to be able to re-inject “true” failures and
their actual corresponding faults back into the code. During
analysis, we encountered a series of difficulties, which have led
us to refine our experiment set-up.
Most test techniques evaluations – and research on test techniques
is based on software with very limited number of faults in fictive
research settings. This makes it possible to draw conclusions only
on that particular setting – or for that particular fault set. Drawing
conclusions based on these limited results, poses problems for
industry.
 Therefore, we need a more substantial research in this area that
makes it possible to utilize these results to advice on strategy for
performing tests. Our current status and attention has through the
work in this licentiate thesis culminated in an understanding of
how to set up experiments. We hope to continue our work to
improve software test technique evaluations.

mailto:sigrid.eldh@mdh.se

2. RESEARCH IN AN INDUSTRIAL
SETTING
We can confidently say we understand the need to simplify,
minimize and abstract information from real systems to be able to
perform research. The scale of industrial and commercial software
systems surmounts the time and detail possible to encompass
within one PhD frame. For our type of research, a long term
focus is important to create an industrial guideline.
To perform experimental research on “real” software from
industry creates a lot of difficulty. Introducing failures in
commercial systems to study them is just not an option, and
software needs to be separated to allow experiments. An
alternative would be to use a small fraction of the software to
experiment on. Unfortunately, “small” software do not execute
sufficiently without its surrounding, and using simulators will not
yield the same test results, which makes the results dubious. This
meant that we needed to have some form of sub-system that can
execute real industrial and commercial software. In telecom, these
systems are often large and complex to use.
Our preparations of creating this controlled research experiment
have led us to move an entire telecom node in a secluded
environment to make us perform our experiments. It is difficult to
use the node and also to utilizing it to its full potential. We have
learned that we need extensive knowledge of the actual system
and this makes the work even harder. A second important factor
when performing research is the “observability” in the software.
Observability is how easy it is to “see” the characteristics you are
looking for. For us, this means if we introduce faults into the
code, we want them to be “visible” in some form at execution of
the software. We are experimenting further in this direction,
trying to establish different type of systems “observability”
factors. We want to see what makes a fault to propagate into a
visible failure. We conclude that it is very easy to understand why
most research in this area is using the prepared Space programs or
the Siemens suite, which exists in a combined set with additions,
in the system SIR [5].

3. TEST IN INDUSTRY, STATE OF
PRACTICE
In our first paper we did an overview of our research subject that
can be viewed as an initial case study. The title is “How to Save
on Quality Assurance –Challenges in Software Testing” [1].
An important strategy for Industry is to collaborate with academia
to find solutions to several difficult problems within software
testing. In particular, this paper discusses test automation and
component test. A lot of money can be saved by improving the
test area, and this paper share some of the lessons learned to aid
other businesses with the same endeavor. It can be viewed as
explaining the setting of where the experiments are to be
performed.

4. IMPROVING COMPONENT TEST
Our second paper titled “Experiments with Component Tests to
Improve Software Quality” [2] presents an experiment comparing
deployment of a special scheme for 23 different design teams in
real industrial setting. The idea was that in commercial systems,
time to market pressure often result in short-cuts in the design
phase, where component test is most vulnerable. It is hard to
define how much testing is cost effective by the individual

developers, and hard to judge when testing is enough.
Verification activities constitute a major part of the product cost.
Failures discovered during later phases of product development
escalate the cost substantially. To reduce cost in later stages of
testing by reducing failures is important not only for Ericsson, but
for any software producer. At Ericsson, we created a scheme,
Software Quality Rank (SQR). SQR is a way to improve quality
of components. SQR consists of five steps, where the first is
where the actual “ranking” of components takes place. Then a
selection of components is targeted for improvement in five
levels. Most components are targeted for rank 3, which is the
cost-efficient quality level. Rank 5 is the target for safety-critical
code. The goal of SQR was to provide developers with a tool that
prioritizes what to do before delivery to next system test phase.
SQR defines a stepwise plan, which describes how much and
what to test on component level for each rank. It gives the process
for how to prioritize components; re-introduces reviews; requires
usage of static analysis tools and defines what coverage to be
achieved. The scheme has been used with great success at
different design organizations within and outside Ericsson, and
we believe it supports industry in defining what cost-efficient
component test in a time-to market situation is.

5. A Framework for Test Evaluations
Our third paper “A Framework for Comparing Efficiency,
Effectiveness and Applicability of Software Testing Techniques”
[3], serves as the position paper for our entire research. It
describes our aim to compare test techniques in an industrial
setting. Although there is a multitude of test techniques, there are
currently no scientifically based guidelines for the selection of
appropriate techniques of different domains and contexts. For
large complex systems, some techniques are more efficient in
finding failures than others and some are easier to apply than
others are.

Figure 1. Overall process of evaluating test design techniques
From an industrial perspective, it is important to find the most
effective and efficient test design technique that is possible to
automate and apply. In this paper, we propose an experimental
framework for comparison of test techniques with respect to

2. Select a Test Design
Technique to Evaluate

1. Prepare code samples with
injected faults

3. Apply experiment. Collect
data and measure all steps of
the test.

4. Analyze and evaluate
result, compare with other
results (minimize
disturbances)

5. Expand
faults
injected

efficiency, effectiveness and applicability. We also plan to
evaluate ease of automation, which has not been addressed by
previous studies. We highlight some of the problems of evaluating
or comparing test techniques in an objective manner. We describe
our planned process for this multi-phase experimental study in
Figure 1. This includes presentation of some of the important
measurements to be collected with the dual goals of analyzing the
properties of the test technique, as well as validating our
experimental framework. Each of these process steps are
described in more detail in the paper.

6. FAULT AND FAILURE ANALYSIS AND
DISTRIBUTION
The work with creating a detailed process for evaluation was very
valuable. We immediately started to tackle the first step in the
process in figure 1. We had hoped there was existing fault
classifications that could be injected. Instead, we found that the
existing classification did not fulfill our purpose and had many
limitations. We wanted to use more “intelligent” faults, and not
use simple injection (mutation) with faults that could easily be
found by the compiler. We want to create “high order semantic
faults”. We also wanted to use faults that would be visible at
different levels of testing (see figure 2). Our hope was that we
would find faults that would fulfill our needs. Since no existing
list was available, we decided to look in our own system, and
capture real faults that were found in testing, and see if we could
re-inject them back.

Figure 2. Fault propagation to failures, can be captured at different
levels
This resulted in the fourth paper called “Component Testing is
Not Enough - A Study of Software Faults in Telecom
Middleware” [4]. The paper describes a high level classification,
where we related failures to fault.
The interrelationship between software faults and failures is quite
intricate and obtaining a meaningful characterization of it would
definitely help the testing community in deciding on efficient and
effective test strategies. Towards this objective, we have
investigated and classified failures observed in a large complex
telecommunication industry middleware system during 2003-
2006. In this paper, we describe the process used in our study for
tracking faults from failures along with the details of failure data.
We present the distribution and frequency of the failures along
with some interesting findings unravelled while analyzing the
origins of these failures. Firstly, though “simple” faults happen,

together they account for only less than 10%. The majority of
faults come from either missing code or path, or superfluous code,
which are all faults that manifest themselves for the first time at
integration/system level; not at component level. These faults are
more frequent in the early versions of the software, and could
very well be attributed to the difficulties in comprehending and
specifying the context (and adjacent code) and its dependencies
well enough, in a large complex system with time to market
pressures. This exposes the limitations of component testing in
such complex systems and underlines the need for allocating more
resources for higher level integration and system testing.

7. HYPOTHESIS AND PROBLEM AREAS

This section presents the hypothesis and problems areas of the
thesis.

7.1 Hypothesis
It is possible to devise an efficient, effective and applicable test
design technique to be applied at a specific level and specific
phase, in a domain, given a failure-fault history. This is the main
hypothesis for the overall PhD work and this main hypothesis can
be divided in several problem areas, as explained below, where
the first part is addressed within the licentiate thesis work.

7.2 Problem Areas
Through the main hypotheses we are trying to show that you can
compare test techniques given some information, but it does not
say how. Herein lays the problem. It is relatively straight forward
to make results for one specific code in an instance of an
application, but our aim is to try and make results more general
and scalable. Below are the sub-hypotheses or “problem areas”
we need to address, and answer. They describe what we need to
provide to say that we have proved or disproved the hypothesis
above. These additional problem areas and questions will be
discussed in future work.

1. Fault-failure history analysis
To be able to draw conclusions from the fault-failure analysis, we
need to know distribution and occurrence, but also to assure the
main question, which is: What are the interesting faults to inject
into software to base the experiment on and be able to draw
conclusions from and makes it possible to generalize the result to
other software? The work in [4], have given us insights in some of
the questions that needs to be answered to be able to conclude this
phase.

2. Domain independence
To be able to draw conclusions on if our result has domain
independence, we need to understand what factors makes the
results useful for other domains, i.e. generalized and scalable. We
aim to approach this problem in a phased manner starting from a
single system to multiple systems within a single domain, and
then across domains. It should be possible to analyze software and
system through its fault-failure distribution, and answering the
above questions and draw conclusions on how that affects the
result in testing. We need to understand which part of our results
can be generalised and which cannot. Based on experience we can

Component
Level

Integration
Level x

Sub-system
Level

Code (faults)

System
Level

1

2

3

4

5

6

7

8

see the relation of observability is different in different types of
systems, as well as how easily some faults propagates into failures
in some types of systems compared to others. At this point in
time, we are not willing to draw any conclusions or make any
proposals, since we have not yet started to explore this line of
questions.

3. Efficiency and Effectiveness
We have suggested a set of measurements in [3] that would be
possible to use to measure test technique efficiency and
effectiveness. We have not yet had the possibility to test these
measurements. But as discussed in future work, we have also
different approaches on this.

4. Applicability
The area of applicability – or usability of a test techniques opens a
wide set of questions that need to be answered to be able to
continue our research. We believe measuring applicability is
novel and will cast a light on test techniques in a new way. Not
only have we in [3] identified a set of measurements to be used,
but we also hope that dividing the test design and execution
process will aid in focusing on the right problems.

8. RESEARCH RESULTS
This licentiate thesis has focused on establishing the

industrial state of practice, and then defined a process to evaluate
test techniques for efficiency, effectiveness and applicability. In
principal, the contribution of creating such a process is not novel,
but on a detailed level, applicability of test techniques is new. In
particular how to create guidelines out of research, so results are
both scalable and re-usable, is not an easy task – and the approach
to applicability will contribute to better use of the techniques.

The status of this thesis is not so much in finding a lot of
data and producing ready to use result, but to ask the right
questions. The knowledge needed to be able to ask the right
question is the main achievement, which challenges most
previous test technique evaluations to the core. This gives a
research result that opens up a series of areas for further studies.
We are below summarizing the research result and what needs to
be conducted to fulfil the goal of the area. We have also
understood that the scope in this proposed PhD thesis might not
fit the time-frame availability, and that we might need to take
some short cuts to achieve partial goals within the given time.

9. CONCLUSIONS & FURTHER WORK
The described work has led us in a direction of truly aiming to
connect a test technique to a failure (and its corresponding fault).
The main difficulty is to define faults in a way that would transfer

into many systems. Even if faults are not as unique as we thought,
the high order semantics, the context and the fault constructs often
contains a series of dependencies that behave or propagate
differently in different systems. Therefore, better knowledge on
faults, how they propagate to failures, observability related to the
system, and ways to inject more complex “and real” semantic
faults is our concern. We have planned a series of experiments
that will run in parallel with other work. The second line of
research is to better prepare and start evaluating the test design
techniques. There is a need to find better description and
definitions and start experimenting with test design techniques in
different settings. We have already commenced work with
different trials of evaluations.

10. ACKNOWLEDGMENTS
I would like to thank my supervisors Prof. Hans Hansson and
Prof. Sasikumar Punnekkat. for their contribution to this licentiate
thesis. The SAVE-IT Program at the Knowledge Foundation in
cooperation with Mälardalens University and Ericsson AB
funded this research.

11. REFERENCES
[1] Eldh, S.: How to Save on Quality Assurance – Challenges in

Software Testing, Jornadas sobre Testeo de Software, p 103-
-121, ITI, Universidad Politecnica de Valencia, Valencia,
Editor(s): Tanja E.J. Vos (2006)

[2] Eldh, S., Punnekkat, S., Hansson, H.: Experiments with
Component Test to Improve Software Quality, Proc. ISSRE,
IEEE Trollhättan, Sweden (2007)

[3] Eldh, S., Hansson, H., Punnekkat, S., Pettersson, A.,
Sundmark, D.: A Framework for Comparing Efficiency,
Effectiveness and Applicability of Software Testing
Techniques. Proc. TAIC, IEEE, London, UK (2006)

[4] Eldh, S., Punnekkat, S., Hansson, H., Jönsson., P.:
Component Testing is Not Enough - A Study of Software
Faults in Telecom Middleware, 19th IFIP International
Conference on Testing of Communicating Systems
TESTCOM/FATES, Springer LNCS, Tallinn, Estonia
(2007)

[5] Hyunsook, D., Elbaum, S., Rothermel, G.: Infrastructure
support for controlled experimentation with software testing
and regression testing techniques, Proc. Int. Symp. On
Empirical Software Engineering, ISESE '04, ACM Aug.
(2004), 60 – 70

	INTRODUCTION
	RESEARCH IN AN INDUSTRIAL SETTING
	TEST IN INDUSTRY, STATE OF PRACTICE
	IMPROVING COMPONENT TEST
	A Framework for Test Evaluations
	FAULT AND FAILURE ANALYSIS AND DISTRIBUTION
	HYPOTHESIS AND PROBLEM AREAS
	Hypothesis
	Problem Areas

	RESEARCH RESULTS
	CONCLUSIONS & FURTHER WORK
	ACKNOWLEDGMENTS
	REFERENCES

