
Analysis of Arithmetical Congruences on Low-Level Code
Stefan Bygde

Mälardalen University
Västerås, Sweden

stefan.bygde@mdh.se

Abstract

Abstract Interpretation is a well known formal framework for abstracting programming language
semantics. It provides a systematic way of building static analyses which can be used for optimi-
sation and debugging purposes. Different semantic properties can be captured by so-called abstract
domains which then easily can be combined in various ways to yield more precise analyses. The most
known abstract domain is probably the one of intervals. An analysis using the interval domain yields
bindings of each integer-valued program variable to an interval at each program point. The interval
is the smallest interval that contains the set of integers possible for that particular variable to assume
at that program point during execution. Abstract interpretation can be used in many contexts, such
as in debugging, program transformation, correctness proving, Worst Case Execution Time analysis
etc.

In 1989 Philippe Granger introduced a static analysis of arithmetical congruences. The analy-
sis is formulated as an abstract interpretation computing the smallest (wrt. inclusion) congruence
(residue) class that includes the set of possible values that that variable may assume during execu-
tion. The result of the analysis is a binding of each integer-valued variable at each program point to
a congruence class. Applications for this analysis include automatic vectorisation, pointer analysis
(for determining pointer strides) and loop-bound analysis (for detecting loops with non-unit strides).
However, in the original presentation, the analysis is not well suited to use on realistic low-level code.
By low-level code we mean either compiled and linked object code where high-level constructions
has been replaced with target-specific assembly code, or code in a higher-level language written in
a fashion close to the hardware. A good example of low-level code is code written for embedded
systems which often is using advantages of the target hardware and/or using a lot of bit-level oper-
ations. Code for embedded systems is an increasingly important target for analysis, since it is often
safety-critical. The reason that the congruence domain in its original presentation is not suitable for
low-level code is mainly due to the three following properties of low-level code: A) Bit-level opera-
tions are commonly used in low-level code. Programs that contain bit-operations are not supported
in the original presentation. For any computation of an expression which contain operations that has
not been defined in the analysis, it has to assume that nothing is known about the result and assign
the result to the largest congruence class (equal to Z). This can potentially lead to very imprecise
analysis results. B) The interpretation of the values of integer-valued variables is not obvious (e.g.
they can be signed or unsigned), the original presentation assumes that values has unambiguous rep-
resentations. C) The value-domain is limited by its representation (integers are often represented by
a fixed number of bits). In Grangers presentation integer-valued variables are assumed to take values
in the infinite set of integers. Our contribution is to extend the theory of the analysis of arithmeti-
cal congruences to be able to handle low-level or assembly code, still in the framework of abstract
interpretation.

This paper provides accurate definitions to the abstract bit-operations AND,NOT,XOR, left- and
right shifting and truncation for the congruence domain in order to make the domain support these
operations. We provide definitions for the operations together with proofs of their correctness. In
these definitions care has been taken to the finite, fixed representation of integers as well as their
sometimes ambiguous interpretations as signed or unsigned. With these definitions, congruence
analysis can efficiently be performed on low-level code. The paper illustrates the usefulness of
the new analysis by an example which shows that variables keep important parity information after
executing a XOR-swap.

1


