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Abstract

Real-time embedded systems typically include concur-
rent tasks of different priorities with time-dependent opera-
tions accessing common resources. In this context, unsyn-
chronized parallel executions may lead to hazard situations
caused by e.g., race conditions. To be able to detect such
faulty system behaviors before implementation, we intro-
duce a unified model of resource constrained, scheduled
real-time system descriptions, in Alur’s and Henzinger’s
rigorous framework of timed reactive modules. We take a
component-based design perspective and construct the real-
time system model, by refinement, as a composition of real-
time periodic preemptible tasks with encoded functionality,
and a fixed-priority scheduler, all modeled as timed mod-
ules. For the model, we express the notions of race condi-
tion and redundant locking, formally, as invariance proper-
ties that can be verified by model-checking.

1. Introduction

As the functionality implemented by embedded systems
tends to increase, the system developers are faced with an
ever greater challenge of ensuring proper operation of in-
creasingly complex systems. A promising software engi-
neering approach to handle the complexity of software sys-
tems in general is to adopt a component-based development
(CBD) approach. In CBD, components are introduced as
software modules that can be composed into larger systems.
For this approach to be successful, it is of decisive impor-
tance that a system can be modeled in a modular, com-
positional fashion. Consequently, the designers should be
equipped with adequate analysis techniques and tools (such
as simulation- and model-checking, and compositional rea-
soning), to minimize the number of faults to be found in
later system life-cycle stages.

An embedded system is often designed as a set of pre-
emptible software modules called tasks, which are assigned
priorities, and executed at runtime by a real-time operat-
ing system following some scheduling policy, e.g., fixed-

priority preemptive scheduling [16, 17].
A suitable component model for this class of systems

should preferably be able to capture the particular problems
that may arise when a real-time system is executed accord-
ing to a given real-time scheduling policy. In this setting,
the challenge is to eliminate problems such as the so-called
race conditions, which can produce unpredictable program
behaviors [9].

Hazardous situations can also arise if high-priority tasks
are blocked and delayed by lower priority ones – a phe-
nomenon with potentially catastrophic consequences espe-
cially in safety-critical real-time applications. To minimize
blocking delays, safe resource allocation mechanisms such
as, e.g. the priority ceiling protocol [20], are enforced on
the program.

Concurrency defects are extremely difficult to recognize.
There is no general purpose approach to finding them. Tech-
niques such as simulation and testing, which provide only
partial exploration of the system state-space are of limited
help in finding, e.g., intricate race conditions. Formal tech-
niques, such as model-checking, which explore the com-
plete state-space could potentially provide the designer with
a much higher degree of assurance.

In this paper, we propose to use the timed modules for-
malism [4] of Alur and Henzinger, as a component-based
framework of embedded real-time systems. Timed modules
is an expressive and modular modeling language for dense
timed systems for which refinement and model-checking of
Alternating–time Temporal Logic (ATL) formulas are de-
cidable. Moreover, the framework has tool support im-
plemented in the MOCHA tool [3]. In order to facilitate
modeling of embedded real-time systems, we show how to
encode real-time tasks with both functional and timing be-
havior in the form of parameters such as computation time
and relative deadline. We further show how to formalize
and verify important properties of embedded real-time sys-
tems, such as schedulability, race condition freeness, and
lack of redundant locking. Further, we sketch an encoding
of the priority ceiling protocol in the model, which allows
for deadlock- and race-free systems, by construction. The



salient point of our approach, as compared to other similar
works [10, 12, 19], is that we provide a formal model that
can be model-checked for functional correctness, as well as
for timing properties and concurrency error freeness. More-
over, we construct the scheduled real-time system model by
applying the compositional correctness-preserving refine-
ment techniques of timed modules. Hence, the functional
correctness can be proved once and for all on the set of
unscheduled real-time tasks, as it is guaranteed to be pre-
served after the transformations required by the encoding
of the scheduling policy.

The rest of this paper is organized as follows. In the next
section we recall the basics of timed modules and unipro-
cessor real-time scheduling. Then, we show how to model
generic preemptible tasks with functionality (Section 3),
and how to schedule such tasks and verify the real-time cor-
rectness of the result (Section 4). In Section 5, we formalize
and show how to check properties related to resource shar-
ing, and we introduce the priority ceiling protocol in our
model. Our results are applied on an illustrative example
in Section 6. Finally, Section 7 concludes the paper and
compares to related work.

2. Preliminaries

2.1 Timed Modules

The timed modules formalism, introduced by Alur and
Henzinger [4] supports compositional refinement checking,
ATL model checking, and reachability analysis of real-time
systems.

A timed module M has a finite set of typed variables, out
of which some are assigned only discrete values, whereas
others change continuously when time passes; the latter
are real-valued clocks. Clock variables are of type clock.
Since M represents a system that interacts with the envi-
ronment, the set of module variables is partitioned in con-
trolled variables, which are updated by the module, and ex-
ternal variables, updated by the environment. Further, the
set of controlled variables is also partitioned in private vari-
ables, which are not visible to the environment, and inter-
face variables, which are visible to an external observer, as
are the external variables, too. The interface variables can
be modified either by the module or the environment. Both
controlled and external variables can be either discrete or
clock variables.

A timed module (TM) is made of one or more timed
atoms. A (timed) atom AM consists of a declaration and
a body. The atom declaration introduces the atom’s con-
trolled variables and it’s awaited variables, a subset of the
external variables of the module. The atom body consists
of an executable initial action, an executable update action,
and an executable delay. The atom’s variables are preceded
by keywords such as controls, reads, awaits. Initial and

update actions are specified by the keywords init and up-
date, followed by guarded assignments. Delays are speci-
fied by the keyword delay followed by guarded invariants,
where the guard constrains unprimed variables (before tak-
ing the transition) and the invariant constrains primed (af-
ter the transition) clock variables. An invariant permits all
durations that do not invalidate the invariant. Basically, a
timed atom is a state-machine as follows:

AM :: = atom controls x, y
reads x, y, z awaits z
init
x′ := 0; y′ := 0
update
[] x ≤ 3 ∧ z′ → y := y + 1
[] x ≤ 3 ∧ ¬z′ → y := y + 2
[] x ≥ 3 ∧ ¬z′ → y := y + 3
delay
[] x < 3 → x′ ≤ 3
[] x ≥ 3 → x′ ≤ 5

Let us see how the atom described above executes. During
the initialization round, the atom AM waits for the initial
values of the awaited variable z before initializing the con-
trolled variables, x, y. During each subsequent round, the
atom reads the values of the variables at the beginning of the
round and decides which duration (possibly 0) it is prepared
to let elapse. If the duration of the round is decided to be
0, then we have an update round, and the atom waits for the
updated value of z before updating y, so we have two pos-
sibilities: if the environment sets z to true, the first guarded
command is executed, by assigning y + 1 to y. In case z′

is false, the second action is executed, that is, y := y + 2.
Then the sequence of execution rounds proceeds according
to the action guards and the guards of the delay invariants,
until no guard holds anymore. Notice that action two and
three are nondeterministically chosen for execution, one at
a time, for x = 3. Whenever the values of the awaited vari-
ables do not change, the values of the controlled variables
may remain unchanged.

A (timed) module M consists also of a declaration and a
body. For our example, the timed module containing atom
AM is as follows:

module M external z : bool
interface y : nat
private x : clock
AM

Module execution. During the initialization round, first
the external variables (z above) are assigned arbitrary val-
ues of the appropriate types, and then the atoms (in case
there are more) in M are executed in a consistent order.
Each subsequent round is either an update round or a time
round whose duration is permitted by all atoms. During an
update round, first the external variables are assigned arbi-
trary values, and then the update actions of the atoms are
executed in a consistent order. If several guards are true,



then one of the corresponding assignments or invariants is
chosen nondeterministically. If none of the guards is true,
then all controlled variables stay unchanged and no positive
duration is permitted.

Parallel composition of TMs. We can combine two
or more compatible modules into a single module by
employing the parallel composition operator: M =
M1 ||M2 || . . . ||Mn. We say that the participating mod-
ules are compatible iff the sets of interface variables are dis-
joint, and the awaits dependencies among the observable
variables of the modules are acyclic.

Refinement of TMs. The refinement checking is per-
formed by standard language containment between the
specification module and the implementation one. We say
that module M2 refines (implements) module M1, that is,
M2 � M1, if every interface variable of M1 is an interface
variable of M2, every external variable of M1 is an observ-
able variable of M2, any variable awaited in M1 is also
awaited in M2, and the projection of any trace (sequence
of states) of M2, with respect to the observable variables
of M1, is a trace of M1. The refinement relation of timed
modules is a preorder [4], that is, a reflexive and transitive
relation. Moreover, as it is known, the existence of a timed
simulation relation is a sufficient condition for proving lan-
guage inclusion [4], hence refinement. Moreover, for two
compatible modules M2 and M1, M2 ||M1 � M1.

Within this same framework, ATL model-checking ad-
mits and proves formulas of the form A G p, where p is a
state predicate (boolean condition). The formula states that
predicate p always holds (G p), for all possible execution
paths. The modular verification of timed modules is carried
out in the model-checker MOCHA [3].

2.2 Uniprocessor Scheduling of Real-Time Tasks

We characterize a real-time task T (i) by the following
attributes:

• minimum inter-arrival time, Pi,
• worst-case execution time, Ei,
• deadline, Di (we require that Di ≤ Pi), and
• priority, pri.

The systems that we consider are hard real-time systems
consisting of a set i ∈ (1..n) of tasks that are all required
to always complete the execution by their deadlines. In
this paper, tasks are periodic (although sporadic tasks can
also be modeled), meaning that they arrive at fixed intervals
equal to the periods Pi, respectively. The timing behavior
of a periodic task is exemplified in Figure 1.

The execution of tasks is governed by a scheduling pol-
icy. In this paper, we consider preemptive priority-based
scheduling, in which a high-priority task that is released
during the execution of a lower priority one will interrupt
(preempt) the executing task and start execution in its place.

More specifically, we will first consider a fixed-priority pre-
emptive priority-based scheduling policy in which each task
is statically (before execution) assigned a fixed and unique
priority. Later, we will consider that the initial task pri-
orities might change due to a concurrency protocol regu-
lating access to shared resources. In the first case, Le-
ung and Whitehead [16] have shown that assigning prior-
ities in Deadline-Monotonic (DM) order (giving tasks with
shorter deadline higher priority) is optimal in the sense that
if such priority assignment cannot guarantee that all tasks
meet their deadlines (often referred to that they are feasi-
ble or schedulable), then no other ordering will succeed ei-
ther. Joseph and Pandaya [14] proposed a method to deter-
mine the schedulability of a task by computing its worst-
case completion time relative to its release – the response
time Ri. In the following, we assume Σi Ei/Pi < 1 and
Ri ≤ Di, i ∈ (1..n), that is, the tasks are schedulable.

T(i) released T(i) releasedT(i) releasedDi Di

Pi Pi

Figure 1. The execution of a periodic task.

Fixed-priority preemptive priority-based scheduling.
Let us consider that n preemptible, (hard) real-time tasks,
T S = {T (1), ..., T (n)} execute on a single CPU. Un-
der the mentioned assumption, Di ≤ Pi,∀i ∈ (1..n), an
optimal set of priorities can be obtained such that (Di <
Dj ∨ (Di = Dj ∧ i < j)) ⇒ pri > prj , for all tasks
T (i), T (j)(T (i) �= T (j)). If the CPU is free, the highest
priority task among the waiting ones is scheduled.

3. Task Model

We chose to describe an arbitrary preemptible real-time
task as a timed module consisting of two main blocks: the
timing block and the functional block. The timing block is a
state-machine that encodes the timing behavior in the form
of parameters such as computation time and relative dead-
line. Each task can be in one of the four possible states, sl
(sleeping), wt (waiting for the CPU), ex (executing), and pt
(preempted). A state transition is fired only if the boolean
condition that guards it evaluates to true. The functional
block is a one-state transition system (ex → ex), which con-
tains the statements that model the task’s functionality. The
state-transition diagram (STD) that in fact models our real-
time task is described in Figure 2.

For this model, we also assume that the environment
makes arbitrary choices that we do not need to model ex-
plicitly, as one would do, e.g. in the timed-automata frame-



work [11]. Environment behavior is captured by the ex-
ternal variables of timed modules that can be awaited by
modules, in an acyclic manner.

pt ex

sl wt

ex sl

ex pt

wt ex

wt wt
sl sl

ex ex
pt pt

Figure 2. The STD modeling a preemptible
real-time task’s behavior.

3.1 Encoding the Preemptible Task

Concretely, we model the generic, preemptible, periodic
task T (i), i ∈ (1..n), as a TM made of an atom compris-
ing the following: a choice among five guarded commands
that correspond to the state transitions of Figure 2, a choice
among n (n finite) guarded actions that encode the task’s
functionality, and a delay element, as shown in Figure 3.
The model does not encode any explicit scheduling algo-
rithm. We describe the functional behavior as block func in
Figure 3.

The arrival clock cai measures the time from 0 to each
task’s release. We record the completion time of each task
by clock ci. There are as many clocks cai, ci as tasks. We
use the extra variable ri, which we initialize to Ei, to store
the time needed to complete the released task T (i) and pos-
sible higher priority tasks that preempted T (i) [11].

Since the tasks are periodic, their actual arrival times are
fixed, that is, successive arrivals of the same task are sepa-
rated by Pi time units, respectively. We model this behav-
ior by requiring the clock cai to be equal to Pi, for the task
T (i) to become available. If we consider the collection of
available tasks, and the initial model of a task (in Figure 3),
should T (i) wait for the CPU, it could start executing right
away (the guard of the second command holds), or its ex-
ecution could be postponed for an arbitrary time bounded
from above by Di − Ri. When selected, the task changes
its state to ex, and clock ci is reset. Upon completion of
execution, when ci = ri, the respective task returns to state
sl and the execution clock is set to 0. If the task is execut-
ing and, implicitly, its permission is removed by the virtual
scheduler, the task takes the transition to state pt. When the
scheduler restores the task’s permission to execute, the latter

returns to ex right away, or a delay step is executed, letting
cai advance up to at most (Di − Ri) + ri, provided that
ci ≤ ri. The variable statei stores the current state of task
T (i). Note that, in Figure 3, we assume the worst-case exe-
cution time of the task plus preemption time, thus, we check
for ci = ri, in order to establish if the task has finished its
execution. Observe also that the choice of the update state-
ment is deterministic, except for the one between command
ex → pt and the first command of block func. Hence, to re-
duce the model’s nondeterminism, we did not consider the
more realistic case of ci ≤ ri for action ex → sl.

module T (i) external state1, .., statei−1,
statei+1, .., staten : {sl, wt, ex, pt};
r1, . . . , ri−1, ri+1, . . . , rn : nat;
ca1, . . . , ca(i−1), ca(i+1), . . . , can : clock;
c1, . . . , ci−1, ci+1, . . . , cn : clock

interface statei : {sl, wt, ex, pt};
ri : nat; cai, ci : clock

private pci : nat
atom controls statei, cai, ci, ri

reads state1, . . . , staten, cai, ci, ri

init state′i := wt; c′ai := 0;
c′i := 0; r′i := Ei; pc′i := 0

update
[] statei = sl ∧ cai = Pi sl → wt
→ state′i := wt

[] statei = wt ∧ cai ≤ Di − Ri wt → ex
→ state′i := ex

[] statei = ex ∧ ci = ri ex → sl
→ c′ai := 0; c′i := 0; r′i := Ei;

state′i := sl;
[] statei = ex ∧ ci < ri ex → pt
→ state′i := pt;
( [] (∀j �= i · statej = ex ∧ state′j = sl)
→ r′i := ri + Ej)

[] statei = pt ∧ ci ≤ ri pt → ex
∧ cai − ri ≤ Di − Ri

→ state′i := ex
[] statei = ex ∧ ci < ri ∧ pci = 0 func
→ S′

1; pc′i := 1
. . .
[] statei = ex ∧ ci < ri ∧ pci = n − 1
→ S′

n; pc′i := n
[] statei = ex ∧ ci < ri ∧ pci = n
→ pc′i := 0

delay
[] statei = sl ∧ cai < Pi delay1

→ c′ai ≤ Pi

[] statei = wt ∧ cai < Di − Ri delay2

→ c′ai ≤ Di − Ri

[] statei = ex ∧ ci < ri delay3

→ c′i ≤ ri

[] statei = pt ∧ ci ≤ ri delay4

∧ cai − ri < Di − Ri

→ c′ai − ri ≤ Di − Ri ∧ c′i ≤ ri

Figure 3. A preemptible task as a TM.

The parallel composition of tasks is then equated with
the real-time system described by the timed module below:

module RTS � ||ni=1 module T (i),
where

||ni=1 module T (i) � module T (1) || . . .
||module T (n)



4 Fixed-Priority Scheduling of TMs

In order to describe an arbitrary real-time task scheduled
by the Deadline-Monotonic (DM) priority assignment, we
introduce the auxiliary variable qi, which stores the task
T (i)’s priority, pri > 0, i ∈ (1..n); when a task i is in
state wt, its priority is stored in qi; when the same task has
finished execution, its priority is removed from qi, by the
assignment qi := 0. The variable qi is initialized with the
task’s T (i) priority, as we assume that all participating tasks
are concurrently waiting for the CPU, at time 0. We also
introduce the external variable oki : Bool. This variable en-
codes the permission for execution given by the scheduler
to T (i); oki is set or reset, by the scheduler, according to
the DM scheduling policy rules.

module SchedDM

external
r1, . . . , rn, q1, . . . , qn : nat;
state1, . . . , staten : {sl, wt, ex, pt};
ca1, . . . , can, c1, . . . , cn : clock

interface ok1, . . . , okn : bool
atom controls (∀i · oki)
reads (∀i · oki, ri, qi, statei, cai, ci)
awaits (∀i · qi, statei, cai, ci)
init (∀i · ok′

i := false)
update

[]i Di − Ri = 0 ∧ state′i = wt
→ ok′

i := true
[]j �=i (Di − Ri �= 0 ∨ state′i �= wt)
∧¬okj ∧ prj = Max(q′1, . . . , q

′
n)

∧ state′j = wt ∧ c′aj ≤ Dj − Rj

→ ok′
j := true

[]i oki ∧ state′i = sl
→ ok′

i := false
[]i oki ∧ pri �= Max(q′1, . . . , q

′
n)

∧ state′i = ex ∧ c′i < ri

→ ok′
i := false

[]i ¬oki ∧ pri = Max(q′1, . . . , q
′
n)

∧ state′i = pt ∧ c′i ≤ r′i
∧ c′ai − r′i ≤ Di − Ri

→ ok′
i := true

Figure 4. The DM Scheduler module.

We want to represent the real-time scheduled system,
modularly, hence, in the following, we identify each task
with a timed module, denoted by TDM (i), and the sched-
uler with timed module SchedDM , described in Figure 4.
Due to potential state-space explosion during verification,
we assume that the time required by the scheduler to decide
what task should be permitted to execute is 0. This is based
on the assumption that the scheduler’s computation time is
already contained in each Ri, respectively.

In the scheduler component of Figure 4,
pri = Max(q′1, . . . , q

′
n) is equivalent to the boolean

expression
q′i = pri ∧ (∀ j �= i · (q′j < q′i ∧ q′j = prj) ∨ q′j = 0),

which is used to pick the task of maximum priority out of
the set of waiting or preempted tasks. Here, we also need to

consider the case of urgent tasks, for which Di − Ri = 0.
In case such a task is not the maximum priority one among
waiting tasks, it will initially be permitted to execute before
the highest-priority task; after that, it may be preempted by
the higher-priority tasks. The first two guarded commands
of the scheduler encode this rule (the second command’s
guard contains the negation of the first command’s guard).

In order to encode the scheduled task, TDM (i), correctly,
we start from the template task described in Figure 3; first,
we add oki to the list of external variables that are read
by T (i). Then, we just strengthen the guards of actions
sl → wt, wt → ex, ex → sl, ex → pt, and pt → ex,
with the boolean conditions: ¬oki, oki, oki,¬oki, oki, re-
spectively. Similarly, the guards of the functional block
are all strengthened with oki, and the delay invariants are
modified accordingly: ¬oki is added to the guard of delay1,
obtaining delay′1, and oki to the guards of the remaining de-
lays, respectively, getting delay′2, . . . , delay′4. Since variable
oki is updated by the scheduler and is awaited by the task, it
will be read by the latter in order to establish which transi-
tion will be fired by the module’s atom. The first refinement
step is followed by a second one: declaring and updating
qi, as explained at the beginning of the section. This step is
basically affecting the actions sl → wt and ex → sl.

If we denote transition sl → wt of Figure 3 by A1(i), and
transition ex → sl by A3(i), we get the following refined
guarded commands, after applying the transformations
mentioned earlier:

A′
1(i) = statei = sl ∧ cai = Pi ∧ ¬oki

→ state′i := wt; q′i := pri

A′
3(i) = statei = ex ∧ ci = ri ∧ oki

→ c′ai := 0; c′i := 0; r′i := Ei;
q′i := 0; state′i := sl

Similarly, transition wt → ex, denoted by A2(i), be-
comes A′

2(i), etc. Also, the correctness-preserving guard
strengthening changes all transitions within the functional
block func, and we define the set of refined “functional”
transitions by the generic term func′. Then, the refined
task, with the encoded fixed-priority policy is:

module TDM (i) . . .
atom . . .
update

[] A′
1(i) [] . . . [] A′

5(i) [] func′

delay
[] delay′1 [] . . . [] delay′4

With MOCHA, we could prove that module TDM (i)
is an implementation of module T (i), that is,
module TDM (i) � module T (i) (it is easy to check
that the two modules are compatible). The refinement is
straightforward: if tr is a trace of module TDM (i), then
the projection of tr with respect to the observable variables
of module T (i) is a trace of the latter.

By composing in parallel all the TMs that describe the



task set, together with the scheduler module, we get:

module RTSDM � (||ni=1 module TDM (i))
|| module SchedDM

As TDM (i) � T (i) and TDM (i) || SchedDM �
TDM (i), we can infer, by transitivity of the implementation
preorder, that TDM (i) || SchedDM � T (i).

Moreover, since the preorder is a congruence with re-
spect to parallel composition [4], we get the following im-
portant result: module RTSDM � module RTS. This
means that the properties that have been verified on the un-
scheduled system are guaranteed to hold on the scheduled
system as well.

4.1 Verifying Model Correctness

The model RTSDM assumes that the set of tasks un-
der analysis is schedulable, that is, Di ≤ Ri, ∀i. Never-
theless, in order to verify the correctness of the proposed
scheduled real-time system model, we can model-check the
latter against the following ATL formula:

G
∧

i

¬(ci < ri ∧ cai = Di)

Satisfaction of the property above ensures that all real-
time tasks complete by their deadlines. The verification
could be carried out with the model-checker MOCHA [3],
however, verifying ATL formulas for timed modules is not
yet supported by the tool. Despite this, we can still verify
with MOCHA that module RTSDM preserves the invari-
ant

inv
∧

i

¬ (ci < ri ∧ cai = Di),

meaning that no deadline should ever be reached before the
respective task has completed execution.

5. Resource Management

In almost any meaningful application, the real-time pro-
cesses need to interact not only by using the same processor,
but also other resources such as shared variables or common
I/O channels. Processes can interact safely by some form
of protected shared data (using, for example, semaphores)
[6]. This feature leads to the possibility of a process being
suspended until some necessary future event has occurred.
If a process is suspended and it waits for a lower-priority
process to complete its execution, that is, the higher pri-
ority process is blocked, we then say that priority inversion
has occurred. Consequently, blocking should be minimized,
and also situations like deadlocks should be avoided. The
priority ceiling protocols [20] provide a good solution to the
just mentioned possible inconveniences.

In the following, we first formalize the notion of race
condition; next, we show how to detect unsafe resource us-
age in the particular case of sets of real-time tasks scheduled

by a DM policy. Then, on the model of Figure 3, we de-
scribe how to enforce priority-ceiling-based constraints for
safe resource sharing.

Below, we introduce the preemption relation between
tasks, which lets us simplify reasoning about resource man-
agement properties.

Definition 1 Consider the tasks T (i) and T (j), i, j ∈
(1..n), i �= j, as timed modules described following the
template of Figure 3. We say that T (j) preempts T (i), de-
noted by T (i) 
 T (j), iff the following predicate holds:

statei = ex ∧ ci < ri ∧ statej = wt
∧ state′i = pt ∧ state′j = ex

5.1 Detecting races and redundant locking

A race condition may occur if task T (i) can be pre-
empted by T (j), when both tasks are accessing a common
resource. In order to eliminate such problems, the access to
shared resources is controlled by locks (boolean variables)
that ensure mutual exclusion.

Let us denote by ownsi the set of locks held by task
T (i), at some point in time. In order to specify whether a
resource is shared or not, we introduce the variable res :
{ns, s}, where ns stands for non-shared resource and s for
the opposite case. In the following, unless otherwise stated,
we assume that res = s, and, for brevity, we omit this con-
dition from our formalizations.

Locking and releasing the lock lQ protecting shared re-
source Q, by task T (i), are encoded by owns′i := lQ, when
statei = wt, and owns′i := 0, after executing the critical
section, respectively.

We assume that a task T (i) can own, at any time point,
a (possibly empty) set of locks l1Q, . . . , lnQ that protect the
shared resource Q, that is, ownsi = {l1Q, . . . , lnQ}.

Taking resources into consideration, we can use the
following shortcut for the preemption relation, provided
that two arbitrary tasks T (i), T (j) own protecting locks
l1Q, l2Q, respectively:

T (i) l1Q

 l2Q

T (j)
≡ l1Q ∈ ownsi ∧ l2Q ∈ ownsj ∧ T (i) 
 T (j)

In case there is just one lock lQ to protect shared resource
Q, which is owned by T (i), the syntax for T (j) preempts
T (i), in spite of T (i) owning the lock, is T (i) lQ 
 T (j).

Consider that two tasks T (i), T (j), i �= j, need
access to shared resource Q. The requirement that task
T (j), assumed to have higher priority than T (i), can not
preempt T (i) when this holds lQ can be encoded as follows:

¬(T (i) lQ 
 T (j))
≡

prj > pri ∧ lQ ∈ ownsi

∧ ¬(statei = ex ∧ ci < ri ∧ statej = wt
∧ state′i = pt ∧ state′j = ex)



If resource Q, which needs to be accessed by tasks
T (i), T (j) is not properly protected in both tasks, we
may encounter a data race. A statement or sequence of
statements that involve variables that are concurrently
read/written by T (i), T (j), respectively, is called a
critical section. Let us assume that pri > prj . Con-
sider also that we have a write-read conflict, that is,
Q ∈ interface T (i) ∧ Q ∈ controls T (i) ∧ Q ∈
external T (j) ∧ Q ∈ reads T (j), and that Q is not
protected in T (i). Given the fact that pri > prj , T (i)
could start executing first. Then, T (i) could be preempted
by the lower priority task T (j), after the latter has locked
the lock lQ that protects the shared resource Q, on its side.
Such a situation gives rise to the data race formalized below:

race(T (i), T (j), Q)
≡ pri > prj ∧ i �= j ∧ T (i) 
 lQ T (j)

In case l1Q, l2Q are the locks protecting Q, and at some
point in time they are held by tasks T (i), T (j), respectively,
a variant of race condition can then be formally defined as:

race(T (i), T (j), Q) ≡ i �= j ∧ T (i) l1Q

 l2Q

T (j)
This definition comes close to the one proposed by Regehr
and Reid, in their task scheduler logic [19].

Verifying a composition of timed modules, e.g.
module RTSDM , against race conditions reduces to
checking that the invariant inv ¬ race(T (i), T (j), Q) is pre-
served by the respective composition.

Sometimes, a component that implements correct lock-
ing happens to be instantiated in a scenario where concur-
rent access to a shared resource is impossible [19]. This
case is called redundant locking, meaning that, under such
scenario, any sort of synchronization is useless. Detecting
redundant locking could serve optimization purposes, as it
may be followed by dropping those locks that are not nec-
essary.

A redundant locking occurs if the boolean condition
below

rdnt−locking(T (i), T (j), Q)
≡ lQ ∈ ownsj ∧ (res = ns ∨ ¬(T (i) 
 T (j)))

holds in a composition of timed modules. The formula
says that unnecessary locking, lQ, appears either if the re-
source Q is not shared, or if the concurrent tasks are non-
preemptible.

5.2 Enforcing Safe Locking

Priority Ceiling Protocol. One way of ensuring race-
freeness, beside bounding priority inversion is by encod-
ing the priority ceiling protocol (PCP) rules into our model.
When using PCP, each lock is assigned a fixed ceiling that is
equal to the highest priority among the tasks that need that
lock. If some lock lQ is owned by T (i), then tasks of prior-
ity higher than T (i) and lower than or equal to the ceiling

of lQ might become blocked by T (i). The rule for entering
critical sections is based on the priority of the requesting
task and the ceiling of the locks already owned by any other
task:
A task T (i) that owns lQ is granted access to Q if the

priority of T (i) is strictly higher than the ceiling of
any lock held by a task other than T (i). Otherwise,
T (i) becomes blocked and Q is not allocated to T (i).

Beside the above rule, a task T (i) is said to block T (j) if
T (i) has lower priority than T (j) and owns a lock of ceil-
ing at least equal to the priority of T (j). Such a task T (i)
prevents T (j) from entering a critical section. If T (j) owns
a lock, then T (j) becomes blocked and task T (i) inherits
T (j)’s priority [10].

Timed Modules with Priority-Ceiling-based Locking.
Let us consider a set of shared resources Q1, . . . , Qn pro-
tected by locks lQ1, . . . , lQn. The length of ownsi is given
by the number of locks needed by the real-time task T (i).
Next, we define the ceiling of a lock on resource Qi as
ceil(lQi) = Max(pri), where pri is the priority of any task
T (i) that needs lQi in order to access Qi.

Enforcing correct (safe) locking reduces to transforming
timed module TDM (i) and the DM scheduler of Figure 4,
such that the priority-ceiling resource allocation properties
are encoded. However, we skip this process here and chose
to only describe the properties to be checked against.

Considering that Lj is the set of locks owned by T (j),
and that ceil(Lj) is the shortcut notation for the ceiling of
any lock in Lj , we formalize that task T (i) is granted access
to resource Qi as follows:

lQi ∈ ownsi ∧ statei = wt ∧ qi = pri ∧ statej = wt
∧ (∀j �= i, Lj ∈ ownsj · qi > ceil(Lj))
⇒ state′i = ex ∧ state′j = statej

A task T (i) is blocking task T (j) iff:

statei = wt ∧ statej = wt ∧ qi = pri ∧ qj = prj

∧ qi < qj ∧ (∀k · ∃lQk ∈ ownsi · ceil(lQk) ≥ qj)
⇒ state′j = statej ∧ state′i = ex ∧ q′i = qj

The boolean condition q′i = qj means that the blocker
task T (i) inherits the higher priority of the blocked task
T (j).

Since in the actual implementation of MOCHA we can
not prove refinement of timed modules, we need to verify
that the new composition of tasks and scheduler is indeed
implementing the protocol’s safe locking mechanism. For
this, we have to check the composition against the invariant
saying that, if, for two given distinct tasks T (i) and T (j),
with pri ≤ prj ≤ ceil(lrk), lrk is owned by task T (i), then
T (j) does not own any lock:

∀i, j, rk · i �= j ∧ lrk ∈ ownsi ∧ statei = wt
∧ qi = pri ∧ qj = prj ∧ qi ≤ qj ∧ qj ≤ ceil(lrk)
⇒ ownsj = ∅



In principle, this invariant suggests the way locks should
be requested by tasks, hence, how to correctly transform
module TDM (i).

6. Example: Three Periodic Real-time Tasks

We consider building a DM scheduler and resource man-
ager for the schedulable task set of Figure 5. We assume that
resource Q is shared between tasks T1 and T3, whereas task
T2 does not share any resources other than CPU time.

Parameters (i [1..3])

Task

Pi Ei Di Ri pri Resources

T1 7 3 5 3 3 Q
T2 12 3 10 6 2 -
T3 20 5 20 20 1 Q

Figure 5. Periodic tasks with shared re-
sources.

At first, we abstract from Q and we assume that all
tasks are sharing a critical instant (all wait for CPU). The
correct model of our three task real-time system is an
instantiation of the generic model module RTSDM �
(||i module TDM (i)) || module SchedDM , with i ∈
(1..3). Note that the scheduler model encodes the urgency
of task T (3). Hence, at time 0, this task is scheduled first,
after which it is preempted right away by higher-priority
task T (1), and later also by T (2).

We have encoded this particular model in MOCHA, ig-
noring functionality and resource sharing. For this model,
we have proved the correctness of the real-time encoding, in
MOCHA, by model-checking it against the following tim-
ing property:

inv ′′timing′′ ¬ ((c1 < r1 ∧ ca1 = 5) ∨ (c2 < r2

∧ ca2 = 10) ∨ (c1 < r3 ∧ ca3 = 20))

Let us now assume that tasks T (1) and T (3) are control-
ling a First-In-First-Out (FIFO) memory buffer (or a Last-
In-First-Out buffer, for that matter) [5]. A specific pro-
ducer, described by T (3), adds data to the buffer, while
a particular consumer, modeled by T (1) takes away data
from the buffer, with respect to predefined rules. This kind
of pipelined controller could be useful, for instance, in the
design of hardware devices.

Our goal is to ensure that the buffer stays within its lower
and upper bounds, after the producer and the consumer have
updated it, respectively.

The tasks T (3) and T (1) take turns and update the buffer
according to the following rules:

• each time the system executes, T (3) has to add one or
two items into the virtual buffer (it can not add zero);

• the consumer, T (1), may choose to remove at most
two items at a time, or leave the number of items un-
changed, depending on the sizes of the respective data
packages:

- T (1) is allowed to remove zero items, if it has
removed one item from the buffer, in the immediately
preceding step;

- if T (1) has removed zero in the previous round,
it has to remove two items, in the current one;

- if T (1) has removed two items, it is mandatory
that it removes only one item during the current round.

The variables of the system model are:

• C : (0..7) - models the number of items in the buffer,
as updated by the consumer T (1), at the end of an ex-
ecution round;

• nr : {0, 1, 2} - represents the number of items re-
moved by T (1), from the buffer;

• P : (0..7) - models the number of items in the buffer,
as updated by the producer T (3).

Next, we introduce variable res : {ns, s} to specify when
the considered resource Q is shared and when it is not, and
we initialize it to shared: res := s. We identify resource
Q with the group of variables C, P , and nr. We also con-
sider that task T (3) is using resource Q during its entire
execution time, whereas task T (1) for the first 3 time units
only. Here, we detail the functionality of just these two
tasks, and their sharing of Q. Let us assume first the en-
coding of an incorrect synchronization mechanism between
T (1) and T (3).

Rather than using locks lP , lC to protect P,C in both
tasks, we assume that only lP is used, so it is being held by
task T (3), that is, owns3 := lP . We deliberately model the
fact that once locked, the lock is not released until the end
of T (3)’s execution time.

The functionality of module T (1) and module T (3)
is given in Figure 6. Because of lack of space, we only
show an excerpt of the scheduler module, which now acts
as a resource manager too. The scheduler’s initialization
contains res′ := s; it grants access to the shared resource
first to task T (3) due to its urgency, and then to any other
max-priority task, provided that T (3) has released lock lP :

[]i=3 state′i = wt ∧ c′ai = 0
→ ok′

i := true
[]2i=1 (state′3 �= wt ∨ c′a3 �= 0) ∧ ¬oki

∧ pri = Max(q′1, q′2, q′3) ∧ owns′3 = 0
∧ state′i = wt ∧ c′ai ≤ Di − Ri

→ ok′
i := true

. . .
[]3i=1 oki ∧ (pri �= Max(q′1, q′2, q′3) ∨ owns′3 = lP )
∧ state′i = ex ∧ c′i < ri

→ ok′
i := false

The safety property that we verify is:

inv ′′safety′′ 0 ≤ C < 7 ∧ 0 ≤ P ≤ 7



MOCHA proves the invariant safety to hold for the com-
position of the three tasks and their scheduler, hence the
encoding is functionally correct. However, since the model
of Figure 6 does not permit task T (3) to release the lock
lP , after executing the critical section, and T (1) has no re-
source protection, the real-time system execution stops pre-
maturely, after a couple of steps. This is a result of the fact
that module T (1) is preempted while executing the criti-
cal section, immediately after updating nr; the task never
gets the chance to update C also, and so T (3) keeps adding
items to a buffer not actually updated by T (1). This sug-
gests that the following race-condition

race(T (1), T (3), Q)≡res = s∧owns3 = lP ∧T (1)
T (3)

is satisfied. If we model-check the system model against
the negation of the above predicate, MOCHA reports a
counter-example, which demonstrates the existence of a
race-condition between T (1) and T (3).

To remedy the errors, we now encode the priority-ceiling
conditions into the scheduler and tasks. Besides lock lP , we
also use lock lC , which will be requested by T (1). Hence,
we have an extra variable owns1 : {0, lC}. The ceiling of
lP is ceil lP = 1, and of lC is ceil lC = 3. The priority-
ceiling-based resource manager grants access to Q as fol-
lows:

[]2i=1 (state′3 �= wt ∨ c′a3 �= 0) ∧ ¬oki

∧ pri = Max(q′1, q′2, q′3) ∧ owns′1 = 0
∧ state′i = wt ∧ c′ai ≤ Di − Ri

→ ok′
i := true

[] (state′3 �= wt ∨ c′a3 �= 0) ∧ ¬ok1 ∧ owns′1 = lC ∧ . . .
→ ok′

1 := true
[]2i=1 (state′3 �= wt ∨ c′a3 �= 0) ∧ ¬oki

∧ pri = Max(q′1, q′2, q′3) ∧ owns′3 = lP ∧ . . .
→ ok′

i := true . . .

Traditionally, releasing locks should be made in the re-
verse order of their acquiring [20], yet we omit this pro-
cess here. Model-checking the new composition against
inv ′′race ′′¬race(T (1), T (3), Q) completes successfully.

7. Conclusions and Related Work

In this paper, we have proposed a unified model
for describing and mathematically analyzing resource-
constrained real-time embedded systems, within the timed
modules formal framework of Alur and Henzinger [4].
We took advantage of the compositional properties of the
framework and constructed the real-time system model as
a parallel composition of n real-time tasks and their fixed-
priority scheduler, all modeled as timed modules. In our
model, we have also encoded the tasks’ functionality. We
have started from a template version of an unscheduled task
and encoded the scheduling policy via refinement, which
is a correctness-preserving transformation. Thanks to the
construction paradigm, one can first verify functional prop-
erties, on the unscheduled version of the model, and then

check only extra-functional properties, like timing and/or
concurrency-related properties, on the composed real-time
model. To be able to verify the latter, we have formalized
the notions of race condition and redundant locking. Last
but not least, we have shown how to encode a safe lock-
ing concurrency protocol like the priority ceiling protocol.
Unfortunately, the scalability of our method has not been
addressed here, thus it remains to be exercised via more
complex examples.

module T (3)
external res : {ns, s}; C : (0..7); nr : {0, 1, 2};

ok3 : bool . . .
interface state3 : {sl, wt, ex, pt}; r3 : nat;

P : (0..7); owns3 : {0, lP } . . .
atom controls state3, r3, P, owns3 . . .
reads state3, r3, ok3, P, C, nr, owns3, res . . .
init state′3 := wt; r′3 := 5;P ′ := 5; owns′3 := lP ; . . .
update
. . .
[] state3 = wt ∧ ca3 ≤ 0 ∧ ok3

→ state′3 := ex
[] state3 = ex ∧ (c3 = r3 ∨ (res = s ∧ owns3 = 0)) ∧ ok3

→ . . . ; q′3 := 0; state′3 := sl
[] state3 = sl ∧ ca3 = 20 ∧ res = s ∧ owns3 = 0
→ state′3 := wt; q′3 := 1; owns′3 := lP

[] state3 = sl ∧ ca3 = 20 ∧ res = ns
→ state′3 := wt; q′3 := 1

[] state3 = ex ∧ c3 < r3 ∧ res = s ∧ ok3 ∧ ((nr = 0 ∧ 1 ≤ C ≤ 6)
∨(nr = 1 ∧ 1 ≤ C ≤ 5) ∨ (nr = 2 ∧ 0 ≤ C ≤ 5))
→ P ′ := C + 1

[] state3 = ex ∧ c3 < r3 ∧ res = s ∧ ok3 ∧ ((nr = 0 ∧ 0 ≤ C ≤ 5)
∨(nr = 1 ∧ 0 ≤ C ≤ 4))
→ P ′ := C + 2

delay
. . .

module T (1)
external res : {ns, s}; P : (0..7); ok1 : bool; owns3 : {0, lP } . . .
interface state1 : {sl, wt, ex, pt}; r1 : nat;

C : (0..7); nr : {0, 1, 2}; . . .
private pc1 : (0..1)
atom controls state1, r1, C, nr, pc1 . . .
reads state1, r1, C, nr, P, res, ok1, pc1 . . .
init state′1 := wt; r′1 := 3;C ′ := 5;nr′ := 0; pc′1 := 0; . . .
update
. . .
[] state1 = wt ∧ ca1 ≤ 2 ∧ ok1

→ state′1 := ex
[] state1 = ex ∧ 0 ≤ c1 ≤ 3 ∧ ok1 ∧ res = s ∧ pc1 = 0 ∧ (nr = 0 ∨ nr = 1)
→ nr′ := 2; pc′1 := 1

[] state1 = ex ∧ 0 ≤ c1 ≤ 3 ∧ ok1 ∧ res = s ∧ pc1 = 0 ∧ (nr = 1 ∨ nr = 2)
→ nr′ := 1; pc′1 := 1

[] state1 = ex ∧ 0 ≤ c1 ≤ 3 ∧ ok1 ∧ res = s ∧ pc1 = 0 ∧ nr = 1
→ nr′ := 0; pc′1 := 1

[] state1 = ex ∧ 0 ≤ c1 ≤ 3 ∧ ok1 ∧ res = s ∧ pc1 = 1
→ C ′ := P − nr′; pc′1 := 0

delay
. . .

Figure 6. Tasks T(1), T(3).

Related Work. The closest work to ours, in terms of for-
malizing race conditions, is that of Regehr and Reid [19].
They introduce a new logic that supports reasoning about
schedulability and detection of concurrency errors. How-
ever, the automated checking for such errors is not carried
out by model-checking, but by employing a tool that derives
all possible consequences of the logic’s axioms.

Fersman and Yi extend the timed-automata-based frame-
work (introduced in [11]) for describing and model-
checking real-time models, with precedence and resource
constraints [12]. The authors focus on schedulability



analysis of such models, rather than on verifying their
concurrency-errors freeness. Moreover, functional behav-
ior is not included in the proposed model.

A comprehensive and elegant approach for detecting
race conditions in Java programs, based on type-based anal-
ysis techniques, is developed by Abadi et al. [1]. Although
their approach proves that a well-typed system is race free,
it does not cover timing aspects.

The extended static checker for Java (ESC/Java) is a tool
for static detection of software defects [13, 15]. It uses an
underlying automatic theorem prover to reason about pro-
gram behavior and to verify the absence of certain kinds of
errors, yet without considering real-time verification.

A variety of other approaches have been developed for
race condition and deadlock prevention. Model-checking
based techniques have been advocated by Chamillard et al.
[8], Madsen [18], etc.

A similar approach to building correct-by-construction
scheduled real-time system models is proposed by Altisen,
Gößler, and Sifakis [2], where fixed point computation al-
gorithms are combined with the incremental application of
priority rules on timed-automata models. However, their
construction method does not allow the separation of the
scheduler as an actual component. Moreover, as in most
of the other works, the model abstracts from the system’s
functional behavior.

Seceleanu uses refinement for the construction of real-
time scheduled systems [7], in the framework of action
systems. Although the method leads to a correct-by-
construction model, task functionality is not included, and
verification of concurrency-related properties is not ad-
dressed.

In comparison to the above mentioned works, our ap-
proach has two main contributions: it shows how to inte-
grate functional and timing behavior in the same real-time
model, and allows for formal verification of properties re-
lated to such behavior, but also for concurrency-related con-
ditions. As a plus, the underlying formalism of timed mod-
ules prevents deadlocks by construction and bears the major
advantage of being truly compositional.

A weakness of the timed modules formal framework is
the lack of implementation of the simulation relation used in
proving refinements of such modules, and also of symbolic
algorithms for model-checking against invariants and ATL
formulas. We plan to address these deficits in our future
research.
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