
Safe Shared Stack Bounds in Systems with Offsets and Precedences

Markus Bohlin1,2, Kaj Hänninen1,3, Jukka Mäki-Turja1, Jan Carlson1 and Mikael Nolin1,4

1Mälardalen Real-Time Research Centre (MRTC), Västerås, Sweden
2Swedish Institute of Computer Science (SICS), Kista, Sweden

3Arcticus Systems, Järfälla, Sweden
4CC Systems, Uppsala, Sweden

markus.bohlin@sics.se

Abstract

The paper presents two novel methods to bound the
stack memory used in preemptive, shared stack, real-time
systems. The first method is based on branch-and-bound
search for possible preemption patterns, and the second one
approximates the first in polynomial time. The work ex-
tends previous methods by considering a more general task-
model, in which all tasks can share the same stack. In addi-
tion, the new methods account for precedence and offset re-
lations. Thus, the methods give tight bounds for a large set
of realistic systems. The methods have been implemented
and a comprehensive evaluation, comparing our new meth-
ods against each other and against existing methods, is pre-
sented. The evaluation shows that our exact method can
significantly reduce the amount of stack memory needed. In
our simulations, a decrease in the order of 40% was typical,
with a runtime in the order of seconds. Our polynomial ap-
proximation consequently yields about 20% higher bound
than the exact method.

1. Introduction

In order to limit the amount of RAM set aside for stack-
memory in embedded systems, many RTOSes provides
means to execute multiple tasks on a single, shared, stack
(e.g. Rubus [3], Fusion [27], Erika [10], SMX [17], etc.). In
order to make maximum use of this ability to share stack-
memory we need methods to properly dimension the mem-
ory allocated to the stack. This paper shows how to ex-
ploit commonly available knowledge of precedence and off-
sets between tasks to calculate a tight upper bound on the
amount of stack-memory used.

In shared stack systems, one stack-frame is added to the
system’s stack for each level of preemption. Thus, the max-
imum stack-usage occurs during some worst-case preemp-
tion pattern. In simple task models (commonly used in real-

time scheduling theory), where tasks are assumed to be in-
dependent, any preemption pattern is possible — thus we
have to pessimistically assume that all tasks may be active
and preempted at the point where they use the most stack.
The system’s maximum stack-usage thus becomes

∑
Si

(whereSi denotes the maximum stack-usage of taski). The
consequence is that in these models the benefits of using a
shared stack is limited.

In many systems we have information that let us deduce
that some preemption patterns are impossible. For exam-
ple, in a system where multiple tasks share the same prior-
ity, no preemptions among these tasks are possible (assum-
ing FIFO scheduling within a priority level and an early-
blocking resource allocation protocol such as the immedi-
ate inheritance protocol). In this case, the system’s maxi-
mum stack-usage becomes

∑

p maxp(Si) (wherep denotes
a priority level andmaxp maximizes over the tasks within
that priority level). If the number of priority levels is low
enough, this type of analysis can provide a much lower
bound on stack usage than the above sum over all tasks.
Daviset al. describes this type of stack analysis and gener-
alize it to allow non-preemption groups to be defined [8].

However, limiting the scheduler by lowering the num-
ber of priority levels or manually defining non-preemption
groups has drawbacks, since it limits the schedulability of
the system and places extra burden on the engineers to de-
fine non-preemption groups. Also, in many systems there
is even more information available that would allow us to
further reduce the possible preemptions in the system.

In this paper we present novel techniques to exploit in-
formation about precedence and offset relations between
tasks to further limit the number of possible preemption-
patterns. We perform a system wide preemption analysis
to find the worst case preemption pattern with respect to
stack usage. This allows us to calculate a tight bound on
the amount of stack memory needed in the system. The
intuition behind the techniques is that tasks that have prece-
dence relations will never preempt each other, and tasks

1

with offset relations may only preempt each other if the
response-time of the first task is longer than the offset to
the second task. Thus, a prerequisite to perform our anal-
ysis is that the response-time and jitter are known for all
tasks. We build our analysis on the transactional task-model
introduced by Tindell [26] and extended to handle prece-
dences by Gutierrez and Harbour [13]. Given the safe ap-
proximations of response-times and jitter resulting from the
schedulability analysis presented by, e.g., Mäki-Turja and
Nolin [19], we here present two methods to bound the sys-
tem stack usage. We present one algorithm that searches
the whole search space of possible preemptions which has
exponential complexity, and a safe approximation method
with polynomial complexity. We provide an evaluation
of the two methods, comparing them with each other and
with the method of summation over priority levels described
above.

The transactional task-model allows for modeling of
large, complex and realistic real-time systems. Hence, the
methods presented have a clear practical value. The meth-
ods can be used in a verification/validation phase of system
development in order to formally verify that stack overflow
will not occur during runtime. The approximation method
(due to its better run-time complexity) could also be used
in optimizing allocation, mapping, and configuration tools
that automate the process of allocating tasks to nodes in dis-
tributed systems.
Paper outline. The remainder of this paper is organized
as follows. Section 1.1 describes related work and sets the
context for the contributions of this paper. In Section 2, we
discuss stack sharing and its consequences, and in Section 3
we present the system model that we use. Section 4 presents
the exact formulation of determining the maximum stack
usage, and gives the theoretical framework for Section 5,
which describes algorithms for bounding the stack usage of
systems with offsets and precedences. Section 6 gives an
experimental evaluation of our analysis methods, and Sec-
tion 7 concludes the paper and suggests future work.

1.1. Related work

A large number of publications have addressed preemp-
tion analysis for specific reasons, see, e.g. [2, 9, 15, 20, 21,
24]. Our work is related in the sense that we also investigate
possible preemptions. However, our objectives differ, since
we analyze system wide premption patterns to investigate
their effect on stack memory requirements for a task model
with offsets and precedences.

Throughout the years, a number of publications, have
addressed stack sharing. Baker presented the Stack Re-
source Policy (SRP) that permits stack sharing among pro-
cesses with shared resources [4]. Chatterjeeet al. study
stack boundedness for interrupt-driven programs [6]. In [8]

Davis et al. address stack memory requirements and non-
preemption groups to reduce shared stack usage. Gaiet
al. [11] present the Stack Resource Policy with preemp-
tion Thresholds (SRPT) which extends the work of Sak-
sena and Wang [23] by accounting for stack usage when
establishing non-preemption groups. In [12] Ghattas and
Dean investigate stack space requirements under preemp-
tion threshold scheduling. Middhaet al. [18] propose the
MTSS stack sharing technique that allows a stack to grow
into other tasks. In [22] Regehret al. present a method
to guarantee stack safety of interrupt-driven software by
computing the worst-case memory requirements of individ-
ual interrupt handlers and perform preemption analysis be-
tween handlers. In [14] we presented an approximate stack
analysis method to derive a safe upper bound on the shared
stack usage of a static time-driven schedule in offset-based,
hybrid scheduled (interrupt- and time-driven) fixed priority
preemptive systems. In this paper, we extend that work by
supporting stack sharing across several transactions for the
task model with offsets. Here we also take precedence rela-
tions into account to further reduce possible preemptions.

2. Stack sharing in preemptive systems

In this paper we consider systems where several tasks
use a single, statically allocated, run-time stack. For this to
be possible task only uses the stack between the start time
of an instance,υi, and the finishing time of that instance,
i.e., no data remains on the stack from one instance of a
task to the next. This is ensured by not allowing tasks to
suspend themselves voluntarily. In practice this means that
OS-primitives likesleep() andwait_for_event()
cannot be used. An invocation of a task can be viewed as a
function call from the operating system, and the invocation
terminates when the function call returns (thus any persis-
tent context must be stored outside of the stack).

It is also required that a task instance never experiences
blocking once it has started execution, i.e., we never need
to preempt the executing task because a needed resource is
locked by a lower priority task. This is achived by using an
early blockingresource access protocol such as the immedi-
ate inheritance protocol [5] or the stack resource policy [4].

The motivation for allowing tasks to share a common
stack is that this shared stack can be smaller than the sum
of the individual stacks without jeopardizing the correct-
ness of the application. Shared-stack analysis aims at (pre
run-time) deriving a safe, but tight, approximation of the
worst case (run-time) size of the shared stack. As long as
the amount of memory statically allocated for the shared
stack exceeds this bound, the absence of stack overflow er-
rors is guaranteed.

At any given point in time, the size of the shared stack
equals the sum of the current stack usage for each active

2

task instance. The maximum size of the shared stack thus
depends on two factors: (i) the stack memory usage of
each task instance, and (ii) the possible preemption patterns
among tasks.

Due to the difficulties in determining the exact stack us-
age at every point in time for a given task instance, shared-
stack analysis methods typically assume that whenever a
task is preempted, it is preempted at its maximum stack
depth. We make the same assumption. Bounds on maxi-
mum stack usage for a given task can be derived by abstract
interpretation using tools such as AbsInt [1] and Bound-
T [25].

Previous traditional approaches to account for the second
factor, i.e., the possible preemption patterns, is based on
the fact that at most one task from each priority level (or
preemption level, if these two concepts do not coincide) can
be active at the same time. Thus, a simple and safe approach
for bounding the maximum shared stack usage is to sum the
maximum individual stack usage of tasks at each priority
(or preemption) level. We call this approach SPL (Sum of
all Priority Levels), as desribed by Daviset al. [8], and it
uses the following function calculate a bound on the stack
usage:

∑

p∈all priority levels

max
(
{Si : τi has priorityp}

)
(1)

whereSi denotes the maximum stack usage of taskτi.
However, this approach can be very pessimistic, since it

assumes a worst-case situation where tasks with maximum
stack usage from each priority level preempt each other in
a nested fashion. In practice, this situation could be impos-
sible to achieve because of factors such as release times,
deadlines and precedence constraints that affect when tasks
can execute.

The analysis approach proposed in this paper reduces
the pessimism of the traditional method by investigating the
possible preemption patterns in more detail. We formally
define the start- and finishing time of a task instanceυi, as
follows:

st i The absolute time whenυi actually begins executing.

ft i The absolute time whenυi terminates its execution.

A task instanceυi is preempted by another task instanceυj

if (and only if) the following holds:

sti < stj < ftj < fti . (2)

Note that the use of an early-blocking resource protocol
ensuresftj < fti if sti < stj .

In this paper we are interested in chains of nested pre-
emptions. We define apreemption chainto be a sequence
PC = {υ1, υ2, . . . , υk} of task instances such that

st1 < st2 < · · · < stk < ftk < ftk−1 < · · · < ft1. (3)

Lemma 1 PC = {υ1, υ2, . . . , υk} is a preemption chain if
and only if for all instancesυi, υj in PC wherei < j, it
holds thatsti < stj < ftj < fti .

Proof of Lemma 1 The proof of Lemma 1 follows trivially
from Equations (2) and (3).

Let AllPC be the set of all preemption chains in all run-
time scenarios. Then, under the assumption that the worst
case stack usageSi of a task instanceυi can occur at any
time during its execution, a bound on the worst case stack
usageSWC for a preemptive shared stack system can be
expressed as follows:

SWC = max
PC∈AllPC

∑

υi∈PC

Si. (4)

This formulation, however, cannot be directly used for
analyzing and dimensioning the shared system stack since
it is based on the dynamic (only available at run-time) prop-
ertiesst i and ft i. To be able to statically analyze the sys-
tem, one has to relate the static task properties to these
dynamic properties. This is done by establishing how the
system model, scheduling policy, and run-time mechanism
constrain the values of the actual start and finishing times.

In previous work we have described how this can be done
for the special case that only tasks in the same transaction
share stack [14]. This paper extends the analysis in the
sense that we allow stack sharing among arbitrary interrupt-
and/or time-driven transactions consisting of fixed priority
tasks with offsets. We also improve the way precedence re-
lations are accounted for in the preemption analysis.

3. System model

The system model used in this paper is an offset-based
model [13, 19, 26], defined as follows: the system,Γ, con-
sists of a set ofk transactionsΓ1, . . . ,Γk. Each transaction
Γs is activated by an event, andTs denotes the minimum
inter-arrival time between two consecutive events. The ac-
tivating events can be mutually independent, i.e. the trans-
actions may execute with arbitrary phasing.

A transactionΓs contains|Γs| tasks. A task may not be
released for execution until a certain time (theoffset) has
elapsed after the arrival of the activating event.

We useτsi to denote a task. The first subscript denotes
which transaction the task belongs to, and the second sub-
script denotes the index of the task within the transaction.
A task,τsi, is defined by a worst-case execution time (Csi),
an offset (Osi), a deadline (Dsi), a maximum jitter (Jsi),
a maximum blocking from lower priority tasks (Bsi), and
a priority (Psi). Ssi is used to denote the maximum stack
usage ofτsi.

3

When referring to the stack usage of a specific instance
υj of a taskτsi we sometimes useSj instead ofSsi to sim-
plify the presentation.

The system model is formally expressed as:

Γ :={〈Γ1, T1〉, . . . , 〈Γk, Tk〉}

Γs :={τs1, . . . , τs|Γs|}

τsi :=〈Csi, Osi,Dsi, Jsi, Bsi, Psi, Ssi〉

There are no restrictions placed on deadline or jitter, i.e.,
they can each be either smaller or greater than the period.
We assume that offsets are nonnegative and smaller than
the period.

We assume that the system is schedulable and that the
worst-case response time for each task, (Rsi), has been cal-
culated [19].

In addition, we define a binary non-preemption relation
NOPREbetween tasks such that ifNOPRE(τsi, τtj) thenτsi

cannot be preempted byτtj . The relation is reflexive, be-
cause two instances of the same task can never interrupt
each other. For the analysis in this paper, precedences be-
tween tasks in the system are taken into account by en-
coding these as non-preemption relations, since two tasks
with a precedence relation between them will never inter-
rupt each other. Any other mutual exclusion information
can, if available, be encoded in the same way.

We assume the system is scheduled with fixed prior-
ity scheduling with fifo-scheduling of tasks with the same
priority. We assume that an early-blocking resource ac-
cess protocol, such as the immediate inheritance protocol,
is used.

4. Preemption analysis for offset-based systems

In the rest of the paper we assume that all tasks share
a common stack. The upper bound problem for multiple
transactions can then be informally stated as finding the
maximum stack usage of all possible preemption chains, no
matter in which transaction they occur.

Stack analysis for multiple transactions is naturally more
complex than analysis of one single transaction, since tasks
in different transactions may interfere in nontrivial waysde-
pending on relative priorities and the phasing between trans-
actions. To get a safe upper bound on the stack size we
therefore need to examine all possible phasing patterns be-
tween transactions.

A straightforward approach for analyzing multiple trans-
action stack behavior is to analyse the transactions in isola-
tion, using the sum for all transactions as an upper bound
on the total stack consumption. Each transaction can be
analyzed using the method developed in [14] or any other
method. The result obtained is a safe upper bound if the
analysis for each transaction is safe.

Unfortunately, the latter approach ignores that the global
stack upper bound may be significantly lower, since all pos-
sible transaction-local preemption patterns may not occur
at the same time. One example of this is when two stack-
intensive tasks with equal priority both influence the stack
bound in their respective transaction. The bound obtained
can be pessimistic since no two tasks with equal priority can
both be active at the same time.

In this section, we propose a new, more elaborate algo-
rithm which takes this into account. The method is based on
a precise analysis of the relaxed global precedence chains
that are possible. The algorithm has a non-polynomial time
complexity but is nonetheless usable for analyzing realisti-
cally sized task sets. However, since sufficiently large task
sets will never be analyzable using non-polynomial algo-
rithms, we also propose a less accurate but still competi-
tive approximate method with a polynomial time complex-
ity. The method is a generalization of the one presented in
[14] to handle several transactions.

4.1. Pairwise preemptions

Since task preemption is one of the factors influencing
the size of the shared stack, a first step is to formulate a safe
approximation of possible pairwise preemptions. For this,
we first define the release timert i of a task instanceυi as
the absolute time whenυi is ready to start executing.

Let αk denote the activation time of the transaction re-
leasing an instanceυk of a taskτsi. Then, we have the
following relations on the start time and release time ofυk:

αk +Osi ≤ stk . (5)

rtk ≤ αk +Osi + Jsi. (6)

These concepts are illustrated in Figure 1.

��

time -

αk rtk stk
. . .

ftk

Offset
Release jitter

� Blocking caused by shared resources
Delay caused by higher priority tasks
Executing

Figure 1. Important activities and time points for a task
instanceυk.

We useψsji to denote the offset phasing between two
tasksτsj andτsi in the same transactionΓs, and define it

4

as the minimum distance from an instance ofτsj to the next
instance ofτsi, or formally:

ψsji = (Osi −Osj) modTs. (7)

Generalizing the preemption criteria by Dobrin and
Fohler [9], which is further extended in [14], we form the
binary relationτsi ≺ τtj with the interpretation thatτsi may
be preempted byτtj . We let the relation hold whenever (a)
τsi has lower priority thanτtj , (b) τsi does not have a non-
preemption relation toτtj , and either (c1)τsi and τtj are
in different transactions (and can possibly intersect due to
unknown phasing), (c2)τtj can be delayed by jitter, possi-
bly starting after the next invocation ofτsi, or (c3)τsi can
possibly finish after the start of the next invocation ofτtj .
Formally, the relation can be defined as follows:

τsi ≺ τtj ≡

(a)
︷ ︸︸ ︷

Psi < Ptj ∧

(b)
︷ ︸︸ ︷

¬NOPRE(τsi, τtj) (8)

∧
(
s 6= t
︸ ︷︷ ︸

(c1)

∨ Jsj > ψsji
︸ ︷︷ ︸

(c2)

∨ Rsi −Osi > Ts − ψsji
︸ ︷︷ ︸

(c3)

)

Lemma 2 The≺ relation is a safe approximation of the
possible preemptions between tasks. That is, ifτsi can un-
der any run-time circumstance be preempted byτtj , then
τsi ≺ τtj holds.

Proof of Lemma 2 If an instanceυk of τsi is preempted
by an instanceυl of τtj , then we must havePsi < Ptj ,
¬NOPRE(τsi, τtj) and stk < stl < ftk . From the assump-
tion about the resource protocol, we know thatτsi can not
start betweenrt l andstl , and thus we must havestk < rt l .

If s 6= t, thenτsi ≺ τtj holds. Thus, for the remaining
proof we assumes = t, and consider two cases:
Case 1: If Osi < Osj , thenψsji = Ts +Osi −Osj .
If αk ≤ αl, we have

stl < ftk ⇒ αl +Osj < αk +Rsi ⇒
Osj −Osi < Rsi −Osi ⇒ Ts − ψsji < Rsi −Osi.

If αk > αl, thenαl + Ts ≤ αk, and we have
stk < rt l ⇒ αk +Osi < αl +Osj + Jsj ⇒
αl + Ts +Osi < αl +Osj + Jsj ⇒
Ts +Osi −Osj < Jsj ⇒ ψsji < Jsj .

Case 2: If Osi ≥ Osj , thenψsji = Osi −Osj .
If αk ≥ αl, we have

stk < rt l ⇒ αk +Osi < αl +Osj + Jsj ⇒
αl +Osi < αl +Osj + Jsj ⇒
Osi −Osj < Jsj ⇒ ψsji < Jsj .

If αk < αl, thenαk + Ts ≤ αl, and we have
stl < ftk ⇒ αl +Osj < αk +Rsi ⇒
αk + Ts +Osj < αk +Rsi ⇒
Ts +Osj −Osi < Rsi −Osi ⇒
Ts − ψsji < Rsi −Osi.

In all four subcases, we either haveTs −ψsji < Rsi −Osi

or ψsji < Jsj , which means thatτsi ≺ τtj holds. �

4.2. Possible preemption chains

A sequenceQ of tasks is apossible preemption chain
(PPC) if it holds thatτsi ≺ τtj for all τsi, τtj in Q where
τsi occurs beforeτtj in the sequence. The stack usageSUQ

of a PPCQ is the sum of the stack usage of the individual
tasks in the chain, i.e.,SUQ =

∑

τsi∈Q Ssi.

Lemma 3 If PC = {υ1, υ2, . . . , υk} is a preemption
chain, andQ = {τs1i1 , τs2i2 , . . . , τskik

} is a correspond-
ing sequence of tasks such thatυq ∈ PC is an instance of
τsqiq

, thenQ is a PPC.

Proof of Lemma 3 For all task instancesυp, υq in a pre-
emption chainPC , if p < q then it holds thatstp < stq <
ftp . Sinceυp andυq are instances ofτspip

andτsqiq
respec-

tively, Lemma 2 implies thatτspip
≺ τsqiq

, and thusQ is a
PPC. �

A PPCQ for which no other PPC have a higher stack
usage in the same system is called amaximal stack usage
PPC, or more informally, amaximalPPC. The stack upper
bound problem can now be stated as finding a maximum
stack usage PPC. We refer to this as the MAXPPC problem.
We now prove that the stack usage of a maximal PPCQ in
a systemΓ is a safe upper bound on the stack usage ofΓ.

Theorem 1 The stack usage of a maximal PPCQ is a safe
upper bound on the actual worst case stack usage for a sys-
temΓ.

Proof of Theorem 1 Let Ψ be the sequence of tasks in-
stances participating in the preemption situation which
cause the worst case stack usage, that is,SWC =
∑

τsi∈Ψ Ssi. According to Lemma 3, we have thatΨ is
a PPC withSUΨ = SWC . SinceQ is a maximal PPC,
SUΨ ≤ SUQ , which concludes the proof. �

5. Algorithms

In [14], we proposed a polynomial method for stack
analysis of a single transaction of the type described in
Section 3. The polynomial time behavior of this method
comes from the fact that a single transaction represented
by tasks with offsets and response times can be efficiently
analyzed using specialized graph algorithms [16]. These al-
gorithms cannot be directly applied to analysis of a global
stack shared by several transactions. When analyzing a sin-
gle transaction in isolation, the task offsets and response
times can be used to bound the time interval within which
the tasks will execute. However, when several transactions
are considered, we no longer have a common activation
time, and therefore the graph algorithms used in [14] are no
longer applicable. We therefore propose to analyze smaller

5

systems using an exact algorithm, guaranteed to find a max-
imal PPC. For larger systems, we propose to use a polyno-
mial approximation, described in Section 5.4.

5.1. An exact algorithm for the MAXPPC problem

We solve the problem of finding a maximal PPC by
forming a (directed)preemption graphof nodes represent-
ing tasks, and edges representing possible preemptions, as
defined in (8). An example taskset (assumingJ = B = 0
and¬NOPRE(τsi, τtj) for all tasks) and the corresponding
preemption graph is shown in Figure 2.

Task O P R S
τ11 0 1 3854 4
τ12 1697 2 3837 1
τ13 4635 4 4781 2
τ21 0 3 393 2
τ22 617 1 3854 1
τ23 2588 3 3699 3

τ11 τ12 τ13

τ21 τ22 τ23

Figure 2. An example of a preemption graph, where solid
edges represent possible preemptions within a transaction,
and dashed edges represent possible preemptions between
different transactions. The tasks in a maximal possible pre-
emption chain are marked.

The method is based on a branch-and-bound search for
PPCs in this graph, recursively building PPCsQi. An out-
line of the algorithm is given in Algorithm 1. Initially,
Q0 = M = ∅. If in any recursive step the total stack usage
SUQ i is greater than the stack usageSUM of the current
maximal PPCM , thenQi becomes the new maximum. We
define acover setC(Q) of a PPCQ as a set of tasks for
which all tasks inC(Q) can possibly preempt all tasks in
Q. A cover set ismaximalif it cannot be extended by any
other task. The algorithm maintainsC(Qi) and then recur-
sively examines an extensionQi+1 = Qi ∪ {τtj} of Qi for
each taskτtj in C(Qi). We also apply a bounding function
UB to terminate search in branches which clearly cannot
contain a maximum PPC. This bounding function is further
discussed in Section 5.2.

Algorithm 1: Computing a maximal PPC in a generic
preemption graph.

MAX PPC(Q)
(1) if SUQ > SUM then M ← Q
(2) C(Q) = {τtj | ∀τsi ∈ Q.τsi ≺ τtj}
(3) if SUQ + UB(C(Q)) ≤ SUM then return
(4) foreach τtj ∈ C(Q)
(5) MAX PPC(Q ∪ {τtj})

In Section 5.3, we show that thealgorithmdescribed is
exactin the sense that it always computes the maximal PPC,
and therefore solves the MAXPPC problem. We also show
that the method issafe, because the stack usage of the maxi-
mal PPC is an upper bound on the stack usage of the system.

Note that our method ofstack boundingis not exact,
since the≺ relation is in itself a (safe) approximation. Also,
there are other factors unaccounted for. For example, there
may be further restrictions on the possible nesting patterns
due to mutual exclusion, and the tasks may not use their
maximum stack when interrupted.

5.2. Bounding the maximal PPC

Choosing the right function for the bounding step in Al-
gorithm 1 is essential to guarantee correctness and to ac-
quire a method usable in practice. Asafe upper bound func-
tion on the maximal PPC stack usage for a set of tasksC is
a function UB for which UB(C) ≥ SUK , whereK ⊆ C
is a maximal PPC. We use the most stack-intensive path in
the preemption graph spanned byC(Q) as the UB func-
tion, which we refer to as the PUB method. A heaviest path
(w.r.t. stack space) in a directed acyclic graph can be found
in O(n+m) time, wheren is the number of vertices andm
is the number of edges [7].

Theorem 2 PUB is a safe upper bound function on the
maximal PPC stack usage.

Proof of Theorem 2 From the definition of a PPC in Sec-
tion 4.2, we have that a maximal PPCK ⊆ C is a path with
stack usageSUK . PUB results in the maximum stack usage
of any pathA ⊆ C. Therefore,PUB(C) ≥ SUK , which
concludes the proof. �

We refer to the combination of the branch-and-bound
method in Algorithm 1 with the most stack-intensive path
relaxation (PUB) as bounding function, as the PPCBB al-
gorithm.

5.3. Correctness

In order to claim correctness of Algorithm 1 we need
to show that it computes a maximal PPC. Theorem 1 then
gives us that the stack usage of the PPC computed by Algo-
rithm 1 is an upper bound on the stack usage of the system.
We first need to prove a lemma regarding the stack usage of
a PPC when extended with tasks from a cover set.

Lemma 4 If Q is a PPC,C(Q) is a cover set ofQ, and
K ⊆ C(Q) is another PPC, thenQ ∪ K is a PPC with
stack usageSUQ∪K = SUQ + SUK .

6

Proof of Lemma 4 All tasks inQ can be preempted by all
tasks inC(Q), and sinceQ and K are both PPCs and
K ⊆ C(Q),Q∪K is a PPC. Furthermore,Q∩C(Q) = ∅
because no task can preempt itself, and thusQ∩K = ∅, and
SUQ∪K =

∑

τsi∈Q∪K Ssi =
∑

τsi∈Q Ssi+
∑

τtj∈K Stj =
SUQ + SUK . �

We can now prove that Algorithm 1 is correct.

Theorem 3 If UB is a safe stack usage upper bound func-
tion, then Algorithm 1 terminates with a maximal PPC.

Proof of Theorem 3 The proof is given in two parts.
We first assume thatUB(C) = ∞ for all inputs C,

so that Algorithm 1 never returns on line (3). Given a
PPCQ and any taskτtj from a maximal cover setC(Q),
we can form a new setQ′ = Q ∪ {τtj} which is also a
PPC (from Lemma 4). Therefore,Q is always a PPC, and
since the algorithm extendsQ with one task fromC(Q) and
Q∩C(Q) = ∅, the algorithm will terminate. Ifτsi is not in
C(Q), thenQ ∪ {τsi} is not a PPC. All together, the algo-
rithm explores all PPCs, including a maximal PPC which
will be stored inM and consequently returned when the
algorithm terminates.

Now assume thatUB is a safe upper bound function
on the maximal PPC stack usage in a set of tasks. From
Lemma 4 we haveSUQ∪K = SUQ + SUK for all PPCs
K ⊆ C(Q), and subsequently this also holds ifK is a max-
imal PPC inC(Q), in which caseQ ∪ K is also a max-
imal PPC inQ ∪ C(Q) (from the definition of cover set).
SinceUB is safe,SUQ + UB(C(Q)) ≥ SUQ∪K . Thus, if
SUQ + UB(C(Q)) ≤ SUM whereM is the most stack-
intensive PPC found so far, there is no PPC inQ ∪ C(Q)
which has a higher stack usage thanM , and we can return
from this branch without losing any maximal solutions.�

5.4. Polynomial approximations

Algorithm 1 is non-polynomial. In Section 6, we show
that despite this, the algorithm can be used to analyze real-
istically sized task-sets. However, an exponential analysis
method will still be too time-consuming for practical use
when the number of tasks under analysis is too large. We
therefore propose a polynomial time approximation for an-
alyzing stack size where the number of tasks is too high to
be analyzed using the branch-and-bound method. The ap-
proximation is a combination of two methods. The first one,
STLA, is based on analysis of individual transactions in iso-
lation, and essentially uses the sum for all transactions asan
upper bound on the total stack consumption. The method is
described in [14], but has been modified for the current task
model, to account for precedence constraints and to allow
response times larger than the period. STLA is a safe upper
bound if the analysis for each transaction is safe, and runs

in O(kn3) time, wherek is the number of transactions, and
n is the maximal number of tasks in a single transaction.

STLA is overly pessimistic in situations where equally
prioritized stack-intensive tasks in different transactions in-
fluence the isolated transaction stack upper bound. Since
the tasks have equal priority, they cannot preempt each
other, and the global upper bound obtained is pessimistic.
To remedy this, we also use a second polynomial method to
obtain a different upper bound. The method, called PUB,
finds a maximum stack usage path in the global preemption
graph of all tasks in the system, and is the same one de-
scribed in Section 5.2 and used as an upper bound function
in PPCBB.

To illustrate the difference between PPCBB, STLA and
PUB, consider the task set illustrated in Figure 2. The
maximal PPC in this task set is{τ11, τ12, τ23} with a to-
tal stack usage of 8. This is the result that PPCBB would
return. In contrast, STLA would compute an upper bound
by considering the two transactionsΓ1 = {τ11, τ12, τ13}
andΓ2 = {τ21, τ22, τ23} in isolation, computing the PPCs
{τ11, τ12} with stack usage 5 forΓ1 and{τ22, τ23} for Γ2

with a stack usage of 4. The sum, 9, would be returned as
the result. Finally, PUB would return the stack usage 10
of the most stack intensive path{τ11, τ12, τ23, τ13} in the
graph, which is not a PPC but is nonetheless, as shown in
the proofs of Theorem 1 and 2, a safe approximation on the
stack usage of the system.

Sinceτsi ≺ τtj → Psi < Ptj , a stack usage pathP
can never include two tasks on the same priority level. If
we would relax the≺ relation into≺2≡ Psi < Ptj , the
stack usage of the most stack intensive path would be equal
to the maximum stack for each priority level in the system.
Therefore, PUB is always at least as good as the traditional
approach (SPL). We propose to use the minimum of PUB
and STLA (referred to as STLA_PUB) as a polynomial time
alternative to PPCBB. Since both PUB and STLA are safe,
STLA_PUB is also safe.

6. Evaluation

We evaluate the efficiency of our proposed methods by
generating random task sets and calculating the stack up-
per bounds. All tasks in each generated task set share one
common stack. We use three methods (SPL, STLA_PUB,
PPCBB) to calculate an upper bound on the shared system
stack. Thus, the upper bounds are illustrated by the follow-
ing graphs:

SPL: The traditional approach to determine an upper
bound (sum of maximum stack usage of each prior-
ity/preemption level).

STLA_PUB: This represents the minimum of the poly-
nomial methods STLA (analysis of individual trans-

7

action) and PUB (longest path in global preemption
graph). See Section 5.4 for details.

PPCBB: Non polynomial branch-and-bound based method
with longest path relaxation. See Section 5.1 and 5.2
for details.

6.1. Simulation setup

We run the stack analysis application on an Intel Pen-
tium 4, 2.18 GHz with 512 MB of RAM. We generate ran-
dom task sets as input to the stack analysis application. The
task generator takes the following input parameters (default
values represent the base configuration of each analysis):

Parameter Default
Number of transactions 5
Number of tasks 60
Total system load 40%
Task priority (min–max) 1–32
Task stack usage (min–max) 128–2048 bytes
Probability of precedence 10%

Using these parameters, task sets with the following char-
acteristics are generated:

• The period timeTs of each transaction is set to 10000.

• Each task offset (Osi) is randomly and uniformly dis-
tributed between 0 andTs/2.

• Task priorities and the stack usages are assigned ran-
domly between minimum and maximum value with a
uniform distribution.

• The total system load, and the number of tasks in the
system, is distributed among the transactions in such
way that all transactions have the same amount of load
and the same number of tasks.

• Worst case execution times,Csi, are initially assigned
to each task in such way that tasks are separated in time
within a transaction. The execution times are then ad-
justed by a fraction, so that the the total system load (as
defined by the input parameter) is obtained, preserving
time separation of tasks within a transaction.

• Each task is assigned a precedence relation with a
probability specified by the precedence probability at-
tribute. For example, if the probability of precedence
for τsi is 10%, then for each succeeding task (i.e., task
with larger or equal offset thanτsi) in Γs, there is a
10% probability thatτsi is given precedence over the
task. When all precedences are assigned, transitive
precedences are established, e.g, ifτsi has precedence
overτsj andτsj has precedence overτsk, thenτsi has
precedence overτsk.

• We assign deadlineDsi = Ts for each task. All tasks
are required to meet their deadlines (otherwise the task
set is considered unschedulable). In case the generated
task set is unschedulable, the task set is discarded and
a new task set is generated.

6.2. Results

Each point in the graphs represents the mean stack us-
age of 100 randomly generated schedulable task sets. For
each point, a confidence interval (confidence level of 95%)
is shown to indicate the reliability of the figures. For each
diagram, we vary one parameter, keeping all other parame-
ters according to the base configuration. In addition to cal-
culating upper bounds, we also measured the mean execu-
tion time for each method. The mean execution times for
SPL lies in the range of micro seconds, for STLA_PUB the
mean execution time lies in the in the range of milliseconds
and for PPCBB in the range from milliseconds up to five
seconds.

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 10 20 30 40 50 60

S
ha

re
d

st
ac

k
us

ag
e

(B
)

System load (%)

SPL STLA_PUB PPCBB

Figure 3: Varying system load

In Figure 3 we vary the total system load from 10% to
60%. As expected, the stack upper bound using the tra-
ditional method (SPL) is constant and unaffected by vari-
ations in load. This is due to the fact that SPL only con-
siders priorities when calculating the upper bound. Both
STLA_PUB and PPCBB produces upper bounds that are
slowly increasing with increasing load. This is natural,
since increasing the load, keeping all other parameters ac-
cording to the base configuration, typically results in larger
response times, which in turn increases the number of pos-
sible preemptions in the system.

In Figure 4 we vary the maximum priority of tasks from
1 to 64. This gives a possible priority distribution of 1 ton,
wheren is indicated by the x-axis. We observe that for small
values onn the difference between the methods is small. For
larger values onn the difference is significant.

8

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 10 20 30 40 50 60 70

S
ha

re
d

st
ac

k
us

ag
e

(B
)

Max. priority of tasks

SPL STLA_PUB PPCBB

Figure 4: Varying maximum priority

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 10 20 30 40 50 60 70 80 90 100

S
ha

re
d

st
ac

k
us

ag
e

(B
)

Number of tasks in system

SPL STLA_PUB PPCBB

Figure 5: Varying the number of tasks in the system

In Figure 5 we vary the number of tasks in the system
from 10 to 100. With a low number of tasks in the system,
there is a larger possibility that tasks have unique priorities
hence considered to be part of a preemption chain by SPL.
SPLA_PUB and PPCBB goes one step further and exam-
ines preemption patterns, with a tighter upper bound as a
result.

In Figure 6 we vary the number of transactions from 1
to 20. We see that both SPLA_PUB and PPCBB increase
when increasing the number of transactions in the system.
With more transactions, the arbitrary phasing between them
increases the possibility of nested preemptions, resulting in
increased shared stack usage. SPL is constant and unaf-
fected by variation in the number of transactions. Again,
this is expected, since SPL only considers priorities.

7. Conclusions and future work

Allowing tasks to share a common run-time stack can re-
duce the amount of RAM needed for an application. How-

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 2 4 6 8 10 12 14 16 18 20

S
ha

re
d

st
ac

k
us

ag
e

(B
)

Number of transactions

SPL STLA_PUB PPCBB

Figure 6: Varying the number of transactions

ever, in order to safely reduce the overall run-time stack, one
must be able to analyze possible preemption patterns stati-
cally. And from those preemtion patters deduce the possible
stack-usage. Static information such as the system model,
scheduling policy, and run-time mechanism can be used to
constrain the values of the dynamic task-properties that af-
fect shared stack usage.

A task model with such static information is the task
model with offsets (the transactional task model) where pri-
orities, offsets and precedences limit the possible preemp-
tion patterns. We have, for that task model, developed a sys-
tem wide preemption analysis that safely approximates the
actual preemptions and forms a basis for safe upper bound
of the total shared stack usage.

We presented two novel methods for determining a safe
upper bound on the stack usage. Both methods analyze a
graph consisting of tasks and possible preemptions between
these. The first method is an exact search for maximal pos-
sible preemption chains. The second method is a combina-
tion of two algorithms, both being polynomial approxima-
tions of the first. We formally showed that both methods
are safe in the sense that they will never underestimate the
amount of stack space needed.

The methods have a clear practical value in a verifica-
tion/validation phase of system development. They can be
used to formally verify that stack overflow will not occur
during run time. In a simulation study, we evaluated our
techniques and compared it to the traditional method to es-
timate stack usage. We found that our exact method sig-
nificantly reduced the amount of stack memory needed. In
our simulations, a decrease in the order of 40% was typical,
with a runtime in the order of seconds. Our polynomial ap-
proximation consequently yields about 20% higher bound
than the exact method.

In future work our methods can be used to further re-
duce the stack bound by more detailed modeling of the sys-

9

tem behavior. For example, the assumption that each task
uses its maximum stack when preempted may lead to overly
pessimistic result if the stack usage is highly variable during
execution. With knowledge about the variation of stack us-
age, one might split a task into several segments, each with
its own stack usage. These segments can then be modeled
as separate tasks with precedence constraints, and thus we
should obtain a tighter bound on the stack usage. Further-
more, a similar technique could also be used to split up a
task that uses shared resources where the part that uses the
resource can be modeled as a task with a mutual exclusion
relation to other tasks that uses the same resource.

References

[1] AbsInt. Web page, http://www.absint.com/stackanalyzer/.
[2] J. H. Anderson, S. Ramamurthy, and K. Jeffay. Real-time

computing with lock-free shared objects.ACM Transactions
on Computing Systems, 15(2):134–165, May 1997.

[3] Arcticus Systems. http://www.arcticus-systems.se.
[4] T. P. Baker. A stack based resource allocation policy for real-

time processes. InProceedings of the 11th IEEE Real-Time
Systems Symposium, 1990.

[5] A. Burns and A. Wellings.Real-Time Systems and Program-
ming Languages, chapter 13.10.1 Immediate Ceiling Prior-
ity Inheritance. Addison-Wesley, second edition, 1996.

[6] K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T. Henzinger,
and J. Palsberg. Stack size analysis for interrupt-driven pro-
grams. InProceedings of the 10th Annual International
Static Analysis Symposium, June 2003.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to algorithms. MIT Press, Cambridge, MA,
USA, second edition, 2001.

[8] R. Davis, N. Merriam, and N. Tracey. How embedded appli-
cations using an RTOS can stay within on-chip memory lim-
its. In Proc. of the WiP and Industrial Experience Session,
Euromicro Conference on Real-Time Systems, June 2000.

[9] R. Dobrin and G. Fohler. Reducing the number of preemp-
tions in fixed priority scheduling. In16th Euromicro Confer-
ence on Real-time Systems, Catania, Sicily, Italy, July 2004.

[10] Evidence Srl. Web page, http://www.evidence.eu.com.
[11] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory uti-

lization of real-time task sets in single and multi-processor
systems-on-a-chip. InProceedings of the 22nd Real-Time
Systems Symposium, London, UK, Dec 2001.

[12] R. Ghattas and A. Dean. Preemption threshold schedul-
ing:stack optimality, enhancements and analysis. InPro-
ceedings of the 13th IEEE REal-Time and Embedded Tech-
nology and Applications Symposium, April 2007.

[13] J. C. P. Gutierrez and M. G. Harbour. Schedulability analysis
for tasks with static and dynamic offsets. InProceedings of
the 19th Real-Time Systems Symposium, Dec 1998.

[14] K. Hänninen, J. Mäki-Turja, M. Bohlin, J. Carlson, and
M. Nolin. Determining maximum stack usage in preemp-
tive shared stack systems. InProceedings of the 27th IEEE
Real-Time Systems Symposium, Dec 2006.

[15] C. G. Lee, K. Lee, J. Hahn, Y. M. Seo, S. L. Min, R. Ha,
S. Hong, C. Y. Park, M. Lee, and C. S. Kim. Bounding
cache-related preemption delay for real-time systems.IEEE
Transactions on Software Engineering, 27(9):805–826, Sept
2001.

[16] T. A. McKee and F. McMorris.Topics in intersection graph
theory. Monographs on Discrete Mathematics and Applica-
tions #2. SIAM, 1999.

[17] Micro Digital. Web page, http://www.smxinfo.com/mt.htm.
[18] B. Middha, M. Simpson, and R. Barua. MTSS: Multi task

stack sharing for embedded systems. InProc. of the ACM
Intl. Conference on Compilers, Architecture, and Synthesis
for Embedded Systems, San Francisco, CA, Sept 2005.

[19] J. Mäki-Turja and M. Nolin. Fast and Tight Response-Times
for Tasks with Offsets. InProc. of the 17th Euromicro Con-
ference on Real-Time Systems, July 2005.

[20] H. Ramaprasad and F. Mueller. Bounding preemption de-
lay within data cache reference patterns for real-time tasks.
In Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, April 2006.

[21] J. Regehr. Scheduling tasks with mixed preemption relations
for robustness to timing faults. InProceedings of the 23rd
IEEE Real-Time Systems Symposium, Dec 2002.

[22] J. Regehr, A. Reid, and K. Webb. Eliminating stack overflow
by abstract interpretation.ACM Transactions on Embedded
Computing Systems, 4(4):751–778, Nov 2005.

[23] M. Saksena and Y. Wang. Scalable real-time system de-
sign using preemption thresholds. InProceedings of the 21st
Real-Time System Symposium, Nov 2000.

[24] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling anal-
ysis of real-time systems with precise modeling of cache re-
lated preemption delay. InProceedings of the 17th Euromi-
cro Conference on Real-Time Systems, July 2005.

[25] Tidorum. Web page, http://www.tidorum.fi/bound-t/.
[26] K. Tindell. Using Offset Information to Analyse Static Pri-

ority Pre-emptively Scheduled Task Sets. Technical Report
YCS-182, Dept. of Computer Science, University of York,
England, 1992.

[27] Unicoi Systems. Web page,
http://www.unicoi.com/fusion_rtos/fusion_rtos.htm.

10

