Safe Shared Stack Boundsin Systems with Offsets and Precedences

Markus Bohlirt-2, Kaj Hannine?, Jukka Maki-Turja, Jan Carlsohand Mikael Nolirt#
!Malardalen Real-Time Research Centre (MRTC), Vasteras, Sweden
2Swedish Institute of Computer Science (SICS), Kista, Sweden
3Arcticus Systems, Jarfalla, Sweden
4CC Systems, Uppsala, Sweden

mar kus. bohl i n@i cs. se

Abstract time scheduling theory), where tasks are assumed to be in-
dependent, any preemption pattern is possible — thus we
The paper presents two novel methods to bound thehave to pessimistically assume that all tasks may be active
stack memory used in preemptive, shared stack, real-timeand preempted at the point where they use the most stack.
systems. The first method is based on branch-and-boundrhe system’s maximum stack-usage thus becomgs;
search for possible preemption patterns, and the second ondwhereS; denotes the maximum stack-usage of tgskhe
approximates the first in polynomial time. The work ex- consequence is that in these models the benefits of using a
tends previous methods by considering a more general taskshared stack is limited.
model, in which all tasks can share the same stack. In addi- In many systems we have information that let us deduce
tion, the new methods account for precedence and offset rethat some preemption patterns are impossible. For exam-
lations. Thus, the methods give tight bounds for a large setple, in a system where multiple tasks share the same prior-
of realistic systems. The methods have been implementeity, no preemptions among these tasks are possible (assum-
and a comprehensive evaluation, comparing our new meth-ing FIFO scheduling within a priority level and an early-
ods against each other and against existing methods, is pre-blocking resource allocation protocol such as the immedi-
sented. The evaluation shows that our exact method carate inheritance protocol). In this case, the system’s maxi-
significantly reduce the amount of stack memory needed. Inmum stack-usage becomgs, max,(.S;) (wherep denotes
our simulations, a decrease in the order of 40% was typical, a priority level andmax, maximizes over the tasks within
with a runtime in the order of seconds. Our polynomial ap- that priority level). If the number of priority levels is low
proximation consequently yields about 20% higher bound enough, this type of analysis can provide a much lower
than the exact method. bound on stack usage than the above sum over all tasks.
Daviset al. describes this type of stack analysis and gener-
alize it to allow non-preemption groups to be defined [8].
1. Introduction However, limiting the scheduler by lowering the num-
ber of priority levels or manually defining hon-preemption
In order to limit the amount of RAM set aside for stack- groups has drawbacks, since it limits the schedulability of
memory in embedded systems, many RTOSes provideghe system and places extra burden on the engineers to de-
means to execute multiple tasks on a single, shared, stackine non-preemption groups. Also, in many systems there
(e.g. Rubus [3], Fusion [27], Erika [10], SMX [17], etc.). In is even more information available that would allow us to
order to make maximum use of this ability to share stack- further reduce the possible preemptions in the system.
memory we need methods to properly dimension the mem- In this paper we present novel techniques to exploit in-
ory allocated to the stack. This paper shows how to ex- formation about precedence and offset relations between
ploit commonly available knowledge of precedence and off- tasks to further limit the number of possible preemption-
sets between tasks to calculate a tight upper bound on theatterns. We perform a system wide preemption analysis
amount of stack-memory used. to find the worst case preemption pattern with respect to
In shared stack systems, one stack-frame is added to thatack usage. This allows us to calculate a tight bound on
system’s stack for each level of preemption. Thus, the max-the amount of stack memory needed in the system. The
imum stack-usage occurs during some worst-case preempintuition behind the techniques is that tasks that havegsrec
tion pattern. In simple task models (commonly used in real- dence relations will never preempt each other, and tasks

with offset relations may only preempt each other if the Daviset al. address stack memory requirements and non-
response-time of the first task is longer than the offset to preemption groups to reduce shared stack usage. eGai
the second task. Thus, a prerequisite to perform our anal-al. [11] present the Stack Resource Policy with preemp-
ysis is that the response-time and jitter are known for all tion Thresholds (SRPT) which extends the work of Sak-
tasks. We build our analysis on the transactional task-inode sena and Wang [23] by accounting for stack usage when
introduced by Tindell [26] and extended to handle prece- establishing non-preemption groups. In [12] Ghattas and
dences by Gutierrez and Harbour [13]. Given the safe ap-Dean investigate stack space requirements under preemp-
proximations of response-times and jitter resulting frova t ~ tion threshold scheduling. Middhet al. [18] propose the
schedulability analysis presented by, e.g., Maki-Turjd an MTSS stack sharing technique that allows a stack to grow
Nolin [19], we here present two methods to bound the sys-into other tasks. In [22] Regelat al. present a method
tem stack usage. We present one algorithm that searchet guarantee stack safety of interrupt-driven software by
the whole search space of possible preemptions which hagomputing the worst-case memory requirements of individ-
exponential complexity, and a safe approximation method ual interrupt handlers and perform preemption analysis be-
with polynomial complexity. We provide an evaluation tween handlers. In [14] we presented an approximate stack
of the two methods, comparing them with each other and analysis method to derive a safe upper bound on the shared
with the method of summation over priority levels described stack usage of a static time-driven schedule in offsetdyase
above. hybrid scheduled (interrupt- and time-driven) fixed ptipri
The transactional task-model allows for modeling of preemptive systems. In this paper, we extend that work by
large, complex and realistic real-time systems. Hence, thesupporting stack sharing across several transactionsédor t
methods presented have a clear practical value. The methtask model with offsets. Here we also take precedence rela-
ods can be used in a verification/validation phase of systemtions into account to further reduce possible preemptions.
development in order to formally verify that stack overflow
will not occur during rgntime. The gpproximation method 2 gtgck sharing in preemptive systems
(due to its better run-time complexity) could also be used
in optimizing allocation, mapping, and configuration tools

that automate the process of allocating tasks to nodes-in dis
P g use a single, statically allocated, run-time stack. Fa thi

tributed systems. . .
Paper out);ine The remainder of this paper is oraanized be possible task only uses the stack between the start time
ap) pap 9 of an instancey;, and the finishing time of that instance,

as follows. Section 1.1 describes related work and sets the : .
T . . i.e., no data remains on the stack from one instance of a
context for the contributions of this paper. In Section 2, we

) . . . : Iélsk to the next. This is ensured by not allowing tasks to
discuss stack sharing and its consequences, and in Section : . .
Suspend themselves voluntarily. In practice this mearts tha

we present the system model that we use. Section4presentas_ rimitives likes| eep() andwait _for event ()
the exact formulation of determining the maximum stack P cept) - = .
cannot be used. An invocation of a task can be viewed as a

usage, and gves the_theorencal framework for Section 5’function call from the operating system, and the invocation
which describes algorithms for bounding the stack usage of . . .
terminates when the function call returns (thus any persis-

systems with offsets and precedences. Section 6 gives Rt context must be stored outside of the stack).

experimental evaluation of our analysis methods, and Sec- ; : : .
tion 7 concludes the paper and suggests future work. It is also req_uwed that a task mst_ance_ never experiences
blocking once it has started execution, i.e., we never need
to preempt the executing task because a needed resource is
1.1. Related work locked by a lower priority task. This is achived by using an
early blockingresource access protocol such as the immedi-
A large number of publications have addressed preemp-ate inheritance protocol [5] or the stack resource poli¢y [4
tion analysis for specific reasons, see, e.g. [2, 9, 15, 20,21 The motivation for allowing tasks to share a common
24]. Our work is related in the sense that we also investigatestack is that this shared stack can be smaller than the sum
possible preemptions. However, our objectives diffecsin of the individual stacks without jeopardizing the correct-
we analyze system wide premption patterns to investigateness of the application. Shared-stack analysis aims at (pre
their effect on stack memory requirements for a task modelrun-time) deriving a safe, but tight, approximation of the
with offsets and precedences. worst case (run-time) size of the shared stack. As long as
Throughout the years, a number of publications, have the amount of memory statically allocated for the shared
addressed stack sharing. Baker presented the Stack Restack exceeds this bound, the absence of stack overflow er-
source Policy (SRP) that permits stack sharing among pro-rors is guaranteed.
cesses with shared resources [4]. Chattegjeal. study At any given point in time, the size of the shared stack
stack boundedness for interrupt-driven programs [6]. In [8 equals the sum of the current stack usage for each active

In this paper we consider systems where several tasks

task instance. The maximum size of the shared stack thud.emmal PC = {vy,vs,...,v} is a preemption chain if
depends on two factors: (i) the stack memory usage ofand only if for all instances;, v; in PC wherei < j, it
each task instance, and (i) the possible preemption patter holds thatst; < st; < ft; < ft;.
among tasks.

Due to the difficulties in determining the exact stack us- Proof of Lemma 1 The proof of Lemma 1 follows trivially
age at every point in time for a given task instance, shared-from Equations (2) and (3).
stack analysis methods typically assume that whenever a
task is preempted, it is preempted at its maximum stack Let AlIPC be the set of all preemption chains in all run-
depth. We make the same assumption. Bounds on maxitime scenarios. Then, under the assumption that the worst
mum stack usage for a given task can be derived by abstractase stack usage of a task instance; can occur at any
interpretation using tools such as Absint [1] and Bound- time during its execution, a bound on the worst case stack
T [25]. usageSWC for a preemptive shared stack system can be

Previous traditional approaches to account for the secondexpressed as follows:
factor, i.e., the possible preemption patterns, is based on
the fact that at most one task from each priority level (or SWC = max Z S;. 4)
preemption level, if these two concepts do not coincide) can POCAIPC “Fc
be active at the same time. Thus, a simple and safe approach
for bounding the maximum shared stack usage is to sumthe ~ This formulation, however, cannot be directly used for
maximum individual stack usage of tasks at each priority @nalyzing and dimensioning the shared system stack since
(or preemption) level. We call this approach SPL (Sum of itis based on the dynamic (only available at run-time) prop-
all Priority Levels), as desribed by Dawvis al. [8], and it ertiesst; andft,. To be able to statically analyze the sys-
uses the following function calculate a bound on the stack teém, one has to relate the static task properties to these

usage: dynamic properties. This is done by establishing how the
system model, scheduling policy, and run-time mechanism

Z max ({S; : 7; has priorityp}) (1) constrain the values of the actual start and finishing times.
peall priority levels In previous work we have described how this can be done

for the special case that only tasks in the same transaction

) ST _share stack [14]. This paper extends the analysis in the
However, this approa(_:h can be very peSS|m|_st|c, since ' sense that we allow stack sharing among arbitrary interrupt

assumes a worst-case situation where tasks with maximum, 6 time-driven transactions consisting of fixed ptjori

stack ufﬁgegrom le ach pr.|0r|tyhlleve_l prgempt elzcg qther Ntasks with offsets. We also improve the way precedence re-
a_neste ashion. in practice, this situation could be IMPOS | ations are accounted for in the preemption analysis.
sible to achieve because of factors such as release times,

deadlines and precedence constraints that affect whes task
can execute. 3. System model
The analysis approach proposed in this paper reduces
the pessimism of the traditional method by investigatireg th The system model used in this paper is an offset-based
possible preemption patterns in more detail. We formally model [13, 19, 26], defined as follows: the systdimgon-

wheresS; denotes the maximum stack usage of tgsk

define the start- and finishing time of a task instangeas sists of a set of transactiond’, . .., I';. Each transaction
follows: T, is activated by an event, ari} denotes the minimum
st; The absolute time when; actually begins executing. inter-arrival time between two consecutive events. The ac-

tivating events can be mutually independent, i.e. the trans
actions may execute with arbitrary phasing.

A transactiorT', containg|T'y| tasks. A task may not be
released for execution until a certain time (ii#se) has

st < sty < ft; < fti.) elapsed after the arrival of the activat?ng event. _
We user,; to denote a task. The first subscript denotes

Note that the use of an early-blocking resource protocol which transaction the task belongs to, and the second sub-
ensuregt; < ft; if st; < st;. script denotes the index of the task within the transaction.

In this paper we are interested in chains of nested pre-A task,7;, is defined by a worst-case execution timg,|,
emptions. We define preemption chairio be a sequence an offset O,;), a deadline D;), a maximum jitter {;),
PC = {v1,vs,...,vu;} of task instances such that a maximum blocking from lower priority taskd3(;), and

a priority (Ps;). Ss; is used to denote the maximum stack
sty < sto < --- < sty < fty, < ftp_y <o < fty. (3) usage ofr;.

ft; The absolute time when; terminates its execution.

A task instancey; is preempted by another task instance
if (and only if) the following holds:

When referring to the stack usage of a specific instance Unfortunately, the latter approach ignores that the global

v; of a taskr,; we sometimes usé; instead ofS;; to sim- stack upper bound may be significantly lower, since all pos-
plify the presentation. sible transaction-local preemption patterns may not occur
The system model is formally expressed as: at the same time. One example of this is when two stack-
intensive tasks with equal priority both influence the stack
De={{T,T1),..., Tk, Tie) } bound in their respective transaction. The bound obtained
Ly ={Ts1,. .., 7o, } can be pessimistic since no two tasks with equal priority can

Tsi :=(Cyss, Osi, Dyi, Jsi, Bsi, Pai, Ssi) both be active at the same time.

In this section, we propose a new, more elaborate algo-
There are no restrictions placed on deadline or jitter, i.e. rithm which takes this into account. The method is based on
they can each be either smaller or greater than the perioda precise analysis of the relaxed global precedence chains
We assume that offsets are nonnegative and smaller tharthat are possible. The algorithm has a non-polynomial time
the period. complexity but is nonetheless usable for analyzing realist
We assume that the system is schedulable and that theally sized task sets. However, since sufficiently largk tas
worst-case response time for each tagk;), has been cal- sets will never be analyzable using non-polynomial algo-

culated [19]. rithms, we also propose a less accurate but still competi-
In addition, we define a binary non-preemption relation tive approximate method with a polynomial time complex-
NOPREbetween tasks such thatNDPRE7,;, 7¢;) thent; ity. The method is a generalization of the one presented in

cannot be preempted hy;. The relation is reflexive, be- [14] to handle several transactions.
cause two instances of the same task can never interrupt

each other. For the analysis in this paper, precedences be4.1. Pajrwise preemptions

tween tasks in the system are taken into account by en-
coding these as non-preemption relations, since two tasks
with a precedence relation between them will never inter-
rupt each other. Any other mutual exclusion information
can, if available, be encoded in the same way.

We assume the system is scheduled with fixed prior-
ity scheduling with fifo-scheduling of tasks with the same
priority. We assume that an early-blocking resource ac-
cess protocol, such as the immediate inheritance protocol
is used.

Since task preemption is one of the factors influencing
the size of the shared stack, a first step is to formulate a safe
approximation of possible pairwise preemptions. For this,
we first define the release time; of a task instance; as
the absolute time whew; is ready to start executing.

Let oy, denote the activation time of the transaction re-
leasing an instance;, of a taskr,;. Then, we have the
following relations on the start time and release timegf

ag + O < sty. (5)
4. Preemption analysisfor offset-based systems
rtk S ap + Osi + Jsi~ (6)
In the rest of the paper we assume that all tasks share] o
a common stack. The upper bound problem for multiple These concepts are illustrated in Figure 1.
transactions can then be informally stated as finding the

maximum stack usage of all possible preemption chains, no Ok ”fk stk St
matter in which transaction they occur. [BEH 1 . | I -
Stack analysis for multiple transactions is naturally more time ——

complex than analysis of one single transaction, sincestask
in different transactions may interfere in nontrivial wales
pending on relative priorities and the phasing betweerstran
actions. To get a safe upper bound on the stack size we
therefore need to examine all possible phasing patterns be-
tween transactions.

A straightforward approach for analyzing multiple trans-
action stack behavior is to analyse the transactions ia4sol Figure 1. Important activities and time points for a task
tion, using the sum for all transactions as an upper boundinstanceuvy,.
on the total stack consumption. Each transaction can be
analyzed using the method developed in [14] or any other
method. The result obtained is a safe upper bound if the We usey,;; to denote the offset phasing between two
analysis for each transaction is safe. tasksty; and,; in the same transactian,, and define it

Offset

Release jitter

Blocking caused by shared resources
Delay caused by higher priority tasks
Executing

BONDO

as the minimum distance from an instance-gfto the next
instance ofr,;, or formally:

sji = (O — (7)

Generalizing the preemption criteria by Dobrin and
Fohler [9], which is further extended in [14], we form the
binary relationr,; < 7;; with the interpretation that,; may

be preempted by;;. We let the relation hold whenever (a)
Tsi has lower priority tharr;, (b) 75; does not have a non-
preemption relation toy;, and either (cly,; andr; are

in different transactions (and can possibly intersect due t
unknown phasing), (c2);; can be delayed by jitter, possi-
bly starting after the next invocation ef;, or (c3)r,; can
possibly finish after the start of the next invocationrgf.
Formally, the relation can be defined as follows:

O,;) modTs.

(a) (b)
—— ——
Tsi = Ttj = P, < Ptj /\"NOPRE(TSi,th) (8)
AN (s#tV Jgj > tsji V Ry — Oy > T — g5
M~ Y=

(c1) (c2) (c3)

Lemma 2 The < relation is a safe approximation of the
possible preemptions between tasks. That is,;i€an un-
der any run-time circumstance be preemptedrpy then
Tsi = Ttj holds.

Proof of Lemma 2 If an instancev, of 7; is preempted
by an instancev; of 7,;, then we must hav®,;, < P,
—NOPRHT,;, T¢;) and sty < st; < ft,. From the assump-
tion about the resource protocol, we know thgt can not
start betweent; and st;, and thus we must hawe, < rt;.

If s # t, thents; < 74, holds. Thus, for the remaining
proof we assume = ¢, and consider two cases:
Casel: If O, < Osjv thenl/Jsji =Ts+ O4 — Osj-
If o, < 7, we have

sty < fty = Oél—l—OSj < ag+ Rg =

Osj — 04 < Rgy — Oy = Ty — s < Rygi —
If a > «y, thenoy + T < g, and we have

st <r1t; = ap+ 04 < g +Osj +Jsj =

a;+Ts + Og; <Oél+Osj+Jsj =

Ts + Osi - Osj < Jsj = wsji < Jsj-
Case 2 If Og > OS]‘, thempsji =0y —
If o, > g, we have

sty <1t = a + OGL <o+ Osj + Jsj =

a;+ Oy < al+Osj+Jsj =

Osi — 045 < Jgj = Vsji < Jsj.

If o, < oy, thenay, + T, < oy, and we have

sty < fty = a1+ 05 <o+ Ry =

op +Ts+ 0,5 <o + Ry =

Ts + Osj - Osi < Rsi - Osi =

Ts - wsji < Rsi - Osi-

In all four subcases, we either ha¥g — 1,;; < Rs;
or vs5; < Js;, which means that,; < 7; holds.

Og;.

O.;.

- Osi
([l

4.2. Possible preemption chains

A sequencey of tasks is apossible preemption chain
(PPC) if it holds thatry; < 7; for all 74, 7; in @ where
Tsi 0ccurs before; in the sequence. The stack usdtjé,
of a PPCQ is the sum of the stack usage of the individual
tasks in the chain, i.e§Ug = > S

T €Q P8

Lemma3 If PC {v1,v9,...,v} IS @ preemption
chain, and@ = {7s,4,, Tspin, - - - s Tspip } IS @ COrrespond-
ing sequence of tasks such thgte PC'is an instance of

Ts,iqr thenQ is a PPC.

Proof of Lemma 3 For all task instances,, v, in a pre-
emption chainPC, if p < ¢ then it holds thatst, < st, <
ftp. Sincev, andv, are instances of; ; andr,_;, respec-
tively, Lemma 2 implies that, ;, < 7,,:,, and thusQ is a
PPC. O

A PPCQ for which no other PPC have a higher stack
usage in the same system is callethaximal stack usage
PPC, or more informally, anaximalPPC. The stack upper
bound problem can now be stated as finding a maximum
stack usage PPC. We refer to this as the MAXPPC problem.
We now prove that the stack usage of a maximal Pi@

a syster” is a safe upper bound on the stack usagg.of

Theorem 1 The stack usage of a maximal PRDis a safe
upper bound on the actual worst case stack usage for a sys-
temI.

Proof of Theorem 1 Let ¥ be the sequence of tasks in-
stances participating in the preemption situation which
cause the worst case stack usage, that $8)C
Zmeq, Ss;. According to Lemma 3, we have thétis
a PPC withSUy = SWC. Since@ is a maximal PPC,
SUg < SUq, which concludes the proof. O

5. Algorithms

In [14], we proposed a polynomial method for stack
analysis of a single transaction of the type described in
Section 3. The polynomial time behavior of this method
comes from the fact that a single transaction represented
by tasks with offsets and response times can be efficiently
analyzed using specialized graph algorithms [16]. These al
gorithms cannot be directly applied to analysis of a global
stack shared by several transactions. When analyzing a sin-
gle transaction in isolation, the task offsets and response
times can be used to bound the time interval within which
the tasks will execute. However, when several transactions
are considered, we no longer have a common activation
time, and therefore the graph algorithms used in [14] are no
longer applicable. We therefore propose to analyze smaller

systems using an exact algorithm, guaranteed to find a max- In Section 5.3, we show that ttegorithm described is
imal PPC. For larger systems, we propose to use a polyno-exactin the sense that it always computes the maximal PPC,
mial approximation, described in Section 5.4. and therefore solves the MAXPPC problem. We also show
that the method isafe because the stack usage of the maxi-
5.1. An exact algorithm for the MAXPPC problem mal PPC is an upper bound on the stack usage of the system.
Note that our method o$tack boundings not exact,

We solve the problem of finding a maximal PPC by since the< relation is in itself a (safe) approximation. Also,
forming a (directedpreemption graplof nodes represent- there are other factors unaccounted for. For example, there
ing tasks, and edges representing possible preemptions, a®ay be further restrictions on the possible nesting pattern
defined in (8). An example taskset (assumihgs B = 0 due to mutual exclusion, and the tasks may not use their
and -NOPRET;, 1) for all tasks) and the corresponding Maximum stack when interrupted.
preemption graph is shown in Figure 2.

5.2. Bounding the maximal PPC

Task_O P R S Choosing the right function for the bounding step in Al-
m 0 13854 /@ gorithm 1 is essential to guarantee correctness and to ac-
T2 1697 2 3837 quire a method usable in practice safe upper bound func-

713 4635 4 4781 \ /\ tion on the maximal PPC stack usage for a set of tdsks

21 0 3 393 a function UB for which URC') > SUg, whereK C C

T2 617 1 3854 is a maximal PPC. We use the most stack-intensive path in
T23 2588 3 3699 the preemption graph spanned 6%Q) as the UB func-
tion, which we refer to as the PUB method. A heaviest path

Figure 2. An example of a preemption graph, where solid | (Wrt stack space) in a directed acyclic graph can be found
edges represent possible preemptions within a transa,cﬂon n O(n +m) time, wheren is the number of vertices and
and dashed edges represent possible preemptions betweeﬁ the number of edges [7].
different transactions. The tasks in a maximal possible pre))
emption chain are marked. Theorem 2 PUB is a safe upper bound function on the
maximal PPC stack usage.

The method is based on a branch-and-bound search for
PPCs in this graph, recursive|y bu||d|ng PPQS An out- Proof of Theorem 2 From the definition of a PPC in Sec-
line of the algorithm is given in Algorithm 1. Initially, tion 4.2, we have that a maximal PHC C C'is a path with
Q° = M = 0. If in any recursive step the total stack usage stack usageé Uy . PUB results in the maximum stack usage
SUy: is greater than the stack usa§é&,, of the current ~ Of any pathA C C. Therefore,PUB(C) > SUk, which
maximal PPC)M, then! becomes the new maximum. We concludes the proof. O
define acover setC(Q) of a PPCQ as a set of tasks for
which all tasks inC(Q) can possibly preempt all tasks in We refer to the combination of the branch-and-bound
Q. A cover set isnaximalif it cannot be extended by any method in Algorithm 1 with the most stack-intensive path
other task. The algorithm maintait Q?) and then recur- ~ relaxation (PUB) as bounding function, as the PPCBB al-
sively examines an extensuﬁJﬂJrl QU {m;} of Q' for gorithm.
each tasky; in C(Q?). We also apply a bounding function
UB to terminate search in branches which clearly cannot5 3. Correctness
contain a maximum PPC. This bounding function is further
discussed in Section 5.2.

In order to claim correctness of Algorithm 1 we need
Algorithm 1: Computing a maximal PPC in a generic to show that it computes a maximal PPC. Theorem 1 then

preemption graph. gives us that the stack usage of the PPC computed by Algo-
MAXPPCQ) rithm 1 is an upper bound on the stack usage of the system.
(1) if SUg > SUp then M — Q We first need to prove a lemma regarding the stack usage of
(2) C(Q) = {mj | VTsi € Q.T5i < 715} a PPC when extended with tasks from a cover set.
(3) if SUg + UB(C(Q)) < SUp thenreturn))
(4) foreach 7; € C(Q) Lemma4 If .Q isa PPC,C(Q) is a cover set ofy, ar_ld
(5) MAXPPCQ U {7;;}) K C C(Q) is another PPC, the) U K is a PPC with

stack usag&Uqurx = SUg + SUk.

Proof of Lemma 4 All tasks inQ can be preempted by all in O(kn?) time, wherek is the number of transactions, and
tasks inC(Q), and since@ and K are both PPCs and n is the maximal number of tasks in a single transaction.

K C C(Q),QUK isaPPC. Furthermore N C(Q) = 0 STLA is overly pessimistic in situations where equally
because no task can preempt itself, and lask’ = (, and prioritized stack-intensive tasks in different transaisi in-
SUquk =1, cqui Ssi = 2oreq Ssit2r,ex Sti = fluence the isolated transaction stack upper bound. Since
SUqg + SUk. (] the tasks have equal priority, they cannot preempt each
other, and the global upper bound obtained is pessimistic.
We can now prove that Algorithm 1 is correct. To remedy this, we also use a second polynomial method to

obtain a different upper bound. The method, called PUB,
finds a maximum stack usage path in the global preemption
graph of all tasks in the system, and is the same one de-
scribed in Section 5.2 and used as an upper bound function
in PPCBB.

To illustrate the difference between PPCBB, STLA and
PUB, consider the task set illustrated in Figure 2. The
maximal PPC in this task set ig1, 712,723} With a to-
tal stack usage of 8. This is the result that PPCBB would

since the algorithm extendg with one task front’(Q) and return. I_n C(_)ntrast, STLA Would_compute an upper bound
QN C(Q) = 0, the algorithm will terminate. If,; is not in by considering the two transactiony = {7,11’ Ti2, Ti3}
C(Q), thenQ U {r,;} is not a PPC. All together, the algo- @1dI'z = {721,722, 5} in isolation, computing the PPCs
rithm explores all PPCs, including a maximal PPC which {711, 712} with stack usage 5 fo, and {7z, 73} for I'y

will be stored in}M and consequently returned when the With @ stack usage of 4. The sum, 9, would be returned as
algorithm terminates. the result. Finally, PUB would return the stack usage 10

Now assume thatiB is a safe upper bound function ©Of the most stack intensive patirii, 712, 723, 713} in the
on the maximal PPC stack usage in a set of tasks. From9ra@Ph, which is not a PPC but is nonetheless, as shown in

Lemma 4 we havUoux = SUg + SUx for all PPCs the proofs of Theorem 1 and 2, a safe approximation on the

K C C(Q), and subsequently this also holdgfis a max- ~ Stack usage of the system.

imal PPC inC(Q), in which caseQ U K is also a max- Sincery; < 7; — Py < P, a stack usage path

imal PPC inQ U C(Q) (from the definition of cover set). Can never include two tas!(s on the2same priority level. If
SinceUB is safe,SU, + UB(C(Q)) > SUquk. Thus, if W€ would relax the< relation into<*= P; < P, the
SUo + UB(C(Q)) < SU, where M is the most stack- Stack usage of the most stack intensive path would be equal
intensive PPC found so far, there is no PPCQ@rU C(Q) to the maX|mum.stack for each priority level in the system.
which has a higher stack usage thaf, and we can return Therefore, PUB is always at least as good as the traditional

from this branch without losing any maximal solution&l approach (SPL). We propose to use the minimum of PUB
and STLA (referred to as STLA_PUB) as a polynomial time

alternative to PPCBB. Since both PUB and STLA are safe,
STLA PUB is also safe.

Theorem 3 If UB is a safe stack usage upper bound func-
tion, then Algorithm 1 terminates with a maximal PPC.

Proof of Theorem 3 The proof is given in two parts.

We first assume thatB(C) = oo for all inputs C,
so that Algorithm 1 never returns on line (3). Given a
PPC @ and any taskr; from a maximal cover sef'(Q),
we can form a new s&p)’ = Q U {r;} which is also a
PPC (from Lemma 4). Thereforg) is always a PPC, and

5.4. Polynomial approximations

Algorithm 1 is non-polynomial. In Section 6, we show _
that despite this, the algorithm can be used to analyze real6. Evaluation
istically sized task-sets. However, an exponential amalys

method will still be too time-consuming for practical use We evaluate the efficiency of our proposed methods by
when the number of tasks under analysis is too large. Wegenerating random task sets and calculating the stack up-
therefore propose a polynomial time approximation for an- per bounds. All tasks in each generated task set share one
alyzing stack size where the number of tasks is too high to common stack. We use three methods (SPL, STLA_PUB,
be analyzed using the branch-and-bound method. The appPCBB) to calculate an upper bound on the shared system

proximation is a combination of two methods. The firstone, stack. Thus, the upper bounds are illustrated by the follow-
STLA, is based on analysis of individual transactions iR iso ing graphs:

lation, and essentially uses the sum for all transactioasias

upper bound on the total stack consumption. The method is
described in [14], but has been modified for the current task
model, to account for precedence constraints and to allow
response times larger than the period. STLA is a safe uppelSTLA_PUB: This represents the minimum of the poly-
bound if the analysis for each transaction is safe, and runs nomial methods STLA (analysis of individual trans-

SPL: The traditional approach to determine an upper
bound (sum of maximum stack usage of each prior-
ity/preemption level).

action) and PUB (longest path in global preemption e We assign deadlin®,; = T, for each task. All tasks
graph). See Section 5.4 for details. are required to meet their deadlines (otherwise the task

PPCBB: Non polynomial branch-and-bound based method set is considered unschedulable). In case the generated
with longest path relaxation. See Section 5.1 and 5.2 task set is unschedulable, the task set is discarded and
for details. a new task set is generated.

6.1. Simulation setup 6.2. Results

We run the stack analysis application on an Intel Pen- Each point in the graphs represents the mean stack us-
tium 4, 2.18 GHz with 512 MB of RAM. We generate ran- age of 100 randomly generated schedulable task sets. For
dom task sets as input to the stack analysis application. Theeach point, a confidence interval (confidence level of 95%)
task generator takes the following input parameters (diefau is shown to indicate the reliability of the figures. For each
values represent the base configuration of each analysis): diagram, we vary one parameter, keeping all other parame-

ters according to the base configuration. In addition to cal-

Par ameter Default culating upper bounds, we also measured the mean execu-
Number of transactions 5 tion time for each method. The mean execution times for
Number of tasks 60 SPL lies in the range of micro seconds, for STLA_PUB the
Total system load 40% mean execution time lies in the in the range of milliseconds
Task priority (min—-max) 1-32 and for PPCBB in the range from milliseconds up to five
Task stack usage (min-max) 128-2048 bytes seconds.
Probability of precedence 10%
Using these parameters, task sets with the following char- 40000 R S N |
acteristics are generated: @ 350000 The *
(]
e The period timel; of each transaction is set to 10000. ‘g 30000 |
e Each task offset®,;) is randomly and uniformly dis- fé 25000 - ’
tributed between 0 an, /2. o "
£ 20000t R T
e Task priorities and the stack usages are assigned ran- e
domly between minimum and maximum value with a 15000'” &
uniform distribution. 10000 s s s ‘
10 20 30 40 50 60
e The total system load, and the number of tasks in the System load (%)
system, is distributed among the transactions in such SPL e STLA PUB = A
way that all transactions have the same amount of load -
and the same number of tasks. Figure 3: Varying system load

Worst case execution time§;, are initially assigned n Fi 3 h | load f 10%
to each task in such way that tasks are separated intime__'"" F'guré s we vary the total system load from oto
within a transaction. The execution times are then ad- 60%. As expected, the stack upper bound using the tra-

justed by a fraction, so that the the total system load (asdiFionaI. mleth dOd (S,PL,) ig const:;nt fand Lrj]naffected lil)y vari-
defined by the input parameter) is obtained, preservingatlons in load. This is due to the fact that SPL only con-

time separation of tasks within a transaction siders priorities when calculating the upper bound. Both
' STLA_PUB and PPCBB produces upper bounds that are

e Each task is assigned a precedence relation with aslowly increasing with increasing load. This is natural,
probability specified by the precedence probability at- since increasing the load, keeping all other parameters ac-
tribute. For example, if the probability of precedence cording to the base configuration, typically results in éarg
for 7,; is 10%, then for each succeeding task (i.e., task response times, which in turn increases the number of pos-
with larger or equal offset than,;) in T, there is a sible preemptions in the system.

10% probability thatr,; is given precedence over the In Figure 4 we vary the maximum priority of tasks from
task. When all precedences are assigned, transitivel to 64. This gives a possible priority distribution of 1rto
precedences are established, e.g,;ithas precedence wherenis indicated by the x-axis. We observe that for small
overr,; andr,; has precedence ovey, thent,; has values omthe difference between the methods is small. For
precedence ovety. larger values om the difference is significant.

50000

.}
—~ 45000+
o
S 40000t 7
§ 35000
g 30000
& 25000t »
%] g {5} e}
< 20000 e B
o L L
& 15000F g
< .
¥ 10000 .«"
5000
o
O 1 1 1 1 1 1
0 10 20 30 40 50 60 70
Max. priority of tasks
SPL ---s--- STLA_PUB s PPCBB -~
Figure 4: Varying maximum priority
50000 —_——
) 45000 P
© 40000
& e
% 35000¢
é 30000 I
% 25000t b R
S o L
£ 20000¢ e o e
& 15000f =
10000¥ .+%"
g
5000 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
Number of tasks in system
SPL ---s--- STLA_PUB o PPCBB ---e---

Figure 5: Varying the number of tasks in the system

In Figure 5 we vary the number of tasks in the system
from 10 to 100. With a low number of tasks in the system,
there is a larger possibility that tasks have unique presit

40000

[e L L
@ 35000 + . o
g 30000+ o .
S 25000r 8 ¥
ﬁ B e)
& 20000 & v
" .
g 15000 | /
£ 10000f ¥

5000 ;
.
O 1 1 1 1 1 1 1 1 1
0O 2 4 6 8 10 12 14 16 18 20
Number of transactions
SPL ---=-—- STLA PUB = PPCBB -~

Figure 6: Varying the number of transactions

ever, in order to safely reduce the overall run-time stank, o
must be able to analyze possible preemption patterns stati-
cally. And from those preemtion patters deduce the possible
stack-usage. Static information such as the system model,
scheduling policy, and run-time mechanism can be used to
constrain the values of the dynamic task-properties that af
fect shared stack usage.

A task model with such static information is the task
model with offsets (the transactional task model) where pri
orities, offsets and precedences limit the possible preemp
tion patterns. We have, for that task model, developed a sys-
tem wide preemption analysis that safely approximates the
actual preemptions and forms a basis for safe upper bound
of the total shared stack usage.

We presented two novel methods for determining a safe
upper bound on the stack usage. Both methods analyze a
graph consisting of tasks and possible preemptions between
these. The first method is an exact search for maximal pos-
sible preemption chains. The second method is a combina-

hence considered to be part of a preemption chain by SPL 4jon of two algorithms, both being polynomial approxima-
SPLA_PUB and PPCBB goes one step further and exam-jons of the first. We formally showed that both methods

ines preemption patterns, with a tighter upper bound as ayre safe in the sense that they will never underestimate the

result.
In Figure 6 we vary the number of transactions from 1

to 20. We see that both SPLA_PUB and PPCBB increase
when increasing the number of transactions in the system
With more transactions, the arbitrary phasing between themduring run time

increases the possibility of nested preemptions, resitin

increased shared stack usage. SPL is constant and una

fected by variation in the number of transactions. Again,
this is expected, since SPL only considers priorities.

7. Conclusions and future work

Allowing tasks to share a common run-time stack can re-
duce the amount of RAM needed for an application. How-

amount of stack space needed.

The methods have a clear practical value in a verifica-
tion/validation phase of system development. They can be

‘used to formally verify that stack overflow will not occur

In a simulation study, we evaluated our
Eechniques and compared it to the traditional method to es-
imate stack usage. We found that our exact method sig-
nificantly reduced the amount of stack memory needed. In
our simulations, a decrease in the order of 40% was typical,
with a runtime in the order of seconds. Our polynomial ap-
proximation consequently yields about 20% higher bound
than the exact method.

In future work our methods can be used to further re-
duce the stack bound by more detailed modeling of the sys-

tem behavior. For example, the assumption that each task{15] C. G. Lee, K. Lee, J. Hahn, Y. M. Seo, S. L. Min, R. Ha,
uses its maximum stack when preempted may lead to overly
pessimistic result if the stack usage is highly variablerayur
execution. With knowledge about the variation of stack us-
age, one might split a task into several segments, each with

its own stack usage. These segments can then be modeleElG]

as separate tasks with precedence constraints, and thus we

should obtain a tighter bound on the stack usage. Further-[17)

more, a similar technique could also be used to split up a [18]
task that uses shared resources where the part that uses the
resource can be modeled as a task with a mutual exclusion
relation to other tasks that uses the same resource.

References

(1]
(2]

(3]
(4]

(5]

(6]

(7]

(8]

&

(10]

(11]

(12]

(13]

(14]

AbsInt. Web page, http://www.absint.com/stackanalyzer/.
J. H. Anderson, S. Ramamurthy, and K. Jeffay. Real-time
computing with lock-free shared objec8CM Transactions

on Computing System$5(2):134-165, May 1997.

Arcticus Systems. http://www.arcticus-systems.se.

T. P. Baker. A stack based resource allocation policy for real-
time processes. IRroceedings of the 11th IEEE Real-Time
Systems Symposiu990.

A. Burns and A. WellingsReal-Time Systems and Program-
ming Languageschapter 13.10.1 Immediate Ceiling Prior-
ity Inheritance. Addison-Wesley, second edition, 1996.

K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T. Henzinger,
and J. Palsberg. Stack size analysis for interrupt-driven pro-
grams. InProceedings of the 10th Annual International
Static Analysis Symposiydune 2003.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to algorithms MIT Press, Cambridge, MA,
USA, second edition, 2001.

R. Davis, N. Merriam, and N. Tracey. How embedded appli-
cations using an RTOS can stay within on-chip memory lim-
its. In Proc. of the WiP and Industrial Experience Session,
Euromicro Conference on Real-Time Systeinse 2000.

R. Dobrin and G. Fohler. Reducing the number of preemp-
tions in fixed priority scheduling. 16th Euromicro Confer-
ence on Real-time Systen@atania, Sicily, Italy, July 2004.
Evidence Srl. Web page, http://www.evidence.eu.com.

P. Gai, G. Lipari, and M. D. Natale. Minimizing memory uti-
lization of real-time task sets in single and multi-processor
systems-on-a-chip. IRroceedings of the 22nd Real-Time
Systems Symposiytrondon, UK, Dec 2001.

R. Ghattas and A. Dean. Preemption threshold schedul-
ing:stack optimality, enhancements and analysis.Pilo-
ceedings of the 13th IEEE REal-Time and Embedded Tech-
nology and Applications SymposiuApril 2007.

J. C. P. Gutierrez and M. G. Harbour. Schedulability analysis
for tasks with static and dynamic offsets. Pmoceedings of
the 19th Real-Time Systems SymposiDet 1998.

K. Hanninen, J. Mé&ki-Turja, M. Bohlin, J. Carlson, and
M. Nolin. Determining maximum stack usage in preemp-
tive shared stack systems. Bnoceedings of the 27th IEEE
Real-Time Systems Symposilac 2006.

10

(19]

(20]

(21]

(22]

(23]

(24]

[25]
(26]

[27]

S. Hong, C. Y. Park, M. Lee, and C. S. Kim. Bounding
cache-related preemption delay for real-time systdEEE
Transactions on Software Engineerjry (9):805-826, Sept
2001.

T. A. McKee and F. McMorrisTopics in intersection graph
theory. Monographs on Discrete Mathematics and Applica-
tions #2. SIAM, 1999.

Micro Digital. Web page, http://www.smxinfo.com/mt.htm.
B. Middha, M. Simpson, and R. Barua. MTSS: Multi task
stack sharing for embedded systems.Phoc. of the ACM
Intl. Conference on Compilers, Architecture, and Synthesis
for Embedded Systesan Francisco, CA, Sept 2005.

J. Maki-Turja and M. Nolin. Fast and Tight Response-Times
for Tasks with Offsets. IfProc. of the 17 Euromicro Con-
ference on Real-Time Systerdsly 2005.

H. Ramaprasad and F. Mueller. Bounding preemption de-
lay within data cache reference patterns for real-time tasks.
In Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposjukpril 2006.

J. Regehr. Scheduling tasks with mixed preemption relations
for robustness to timing faults. IRroceedings of the 23rd
IEEE Real-Time Systems Symposilrac 2002.

J. Regehr, A. Reid, and K. Webb. Eliminating stack overflow
by abstract interpretatiodACM Transactions on Embedded
Computing System4(4):751-778, Nov 2005.

M. Saksena and Y. Wang. Scalable real-time system de-
sign using preemption thresholds.Rroceedings of the 21st
Real-Time System Symposjuiov 2000.

J. Staschulat, S. Schliecker, and R. Ernst. Scheduling anal-
ysis of real-time systems with precise modeling of cache re-
lated preemption delay. IRroceedings of the 17th Euromi-
cro Conference on Real-Time Systetdy 2005.

Tidorum. Web page, http://www.tidorum.fi/bound-t/.

K. Tindell. Using Offset Information to Analyse Static Pri-
ority Pre-emptively Scheduled Task Sets. Technical Report
YCS-182, Dept. of Computer Science, University of York,
England, 1992.

Unicoi Systems. Web page,
http://www.unicoi.com/fusion_rtos/fusion_rtos.htm.

