
Real-Time Syst
DOI 10.1007/s11241-008-9050-9

Efficient implementation of tight response-times
for tasks with offsets

Jukka Mäki-Turja · Mikael Nolin

© Springer Science+Business Media, LLC 2008

Abstract Earlier approximate response time analysis (RTA) methods for tasks with
offsets (transactional task model) exhibit two major deficiencies: (i) They overesti-
mate the calculated response times resulting in an overly pessimistic result. (ii) They
suffer from time complexity problems resulting in an RTA method that may not be
applicable in practice. This paper shows how these two problems can be alleviated
and combined in one single fast-and-tight RTA method that combines the best of
worlds, high precision response times and a fast approximate RTA method.

Simulation studies, on randomly generated task sets, show that the response time
improvement is significant, typically about 15% tighter response times in 50% of
the cases, resulting in about 12% higher admission probability for low priority tasks
subjected to admission control. Simulation studies also show that speedups of more
than two orders of magnitude, for realistically sized tasks sets, compared to earlier
RTA analysis techniques, can be obtained.

Other improvements such as Palencia Gutiérrez, González Harbour (Proceedings
of the 20th IEEE real-time systems symposium (RTSS), pp. 328–339, 1999), Redell
(Technical Report TRITA-MMK 2003:4, Dept. of Machine Design, KTH, 2003) are
orthogonal and complementary which means that our method can easily be incorpo-
rated also in those methods. Hence, we conclude that the fast-and-tight RTA method
presented is the preferred analysis technique when tight response-time estimates are
needed, and that we do not need to sacrifice precision for analysis speed; both are
obtained with one single method.

Keywords Response-time analysis · Fixed priority scheduling · Tasks with offsets

J. Mäki-Turja (�) · M. Nolin
Mälardalen Real-Time Research Centre (MRTC), P.O. Box 883, 72123 Västerås, Sweden
e-mail: jukka.maki-turja@mdh.se

M. Nolin
e-mail: mikael.nolin@mdh.se

Real-Time Syst

1 Introduction

Response-Time Analysis (RTA) (Audsley et al. 1995; Sha et al. 2004) is a powerful
and well established schedulability analysis technique. RTA is a method to calculate
upper bounds on response-times for tasks in real-time systems. In essence RTA is
used to perform a schedulability test, i.e., checking whether or not tasks in the sys-
tem will satisfy their deadlines. RTA is applicable for, e.g., systems where tasks are
scheduled in priority order which is the predominant scheduling technique used in
real-time operating systems today. Furthermore, RTA is not only used as a schedula-
bility analysis tool, but it is also used in a wider context. For example, schedulability
analysis is performed in the inner loop of optimization or search techniques such as
task attribute assignment and task allocation. These methods require that RTA meth-
ods provide tight response times and that implementations are efficient in order to be
useful in engineering tools for resource constrained real-time systems.

To be able to calculate less pessimistic response times in systems where tasks
may have dependencies in their release times, Tindell introduced RTA for a task
model with offsets, the transactional task model (Tindell 1992). Palencia Gutiérrez
and González Harbour formalized and extended the work of Tindell in (Palencia
Gutiérrez and González Harbour 1998).

In this paper we will show that the approximate RTA for task with offset presented
in their work calculates unnecessarily pessimistic response-times. As a remedy, we
will present our tight analysis. The main source for this improvement comes from
more accurate modeling of inter-task interference. We also present an implementa-
tion technique that enables fast and efficient RTA calculations. The essence of this
approach is to statically store higher priority task interference, and during equation
solving (fix-point calculations) use a simple and fast table lookup. Furthermore, we
combine these two improvements in a single RTA method resulting in a method that
produces tight response times in a fast analysis time. Simulation results indicate that
typically 15% tighter response times can be obtained, and in an analysis time that is
two order of magnitudes faster, than with comparable methods. This gives an RTA
method where one does not have to sacrifice accuracy for speed or vice versa, both
are obtained with the presented fast-and-tight RTA method.

Paper outline We begin with presenting background and motivation together with
related work in Sect. 2. In Sect. 3 we revisit and restate the original offset RTA
method introduced by Tindell (1992), which was extended and formalized by Pa-
lencia Gutiérrez and González Harbour (1998), in more detail. We continue by dis-
cussing a misconception concerning high priority task interference in Sect. 4. Where
we also present a remedy: “imposed” interference. In Sect. 5 we modify the existing
offset RTA method to use “imposed” interference instead, and show some conse-
quences and proofs of correctness. In Sect. 6 we present how this tight RTA can be
efficiently implemented resulting in a fast-and-tight response-time analysis method.
Section 7 presents evaluations quantifying our two improvements, and finally, Sect. 8
concludes the paper.

Real-Time Syst

2 Background, motivation and related work

The transactional task model (Tindell 1992; Palencia Gutiérrez and González Har-
bour 1998), was introduced because in that model tasks have dependencies in their
release times, so called offsets. With these offsets the critical instant assumption,
where all tasks are to be released simultaneously, became too pessimistic. This task
model is most widely known to model precedence relations among tasks in a dis-
tributed system. However, offsets only specify temporal dependencies among task
release times in a transaction. The work in this paper originates from an industrial
collaboration where hybrid, static and dynamic, scheduling is used (Mäki-Turja et al.
2005). In that work there are no precedence relations among tasks in one transaction,
just temporal dependencies in task release times.

The exact RTA presented in (Tindell 1992; Palencia Gutiérrez and González Har-
bour 1998) is computationally intractable for anything else but small task sets. A more
detailed discussion of this can be found in Sect. 3.2. Therefore, they also provided
an approximate RTA that could be used in practice. It is this approximate RTA that
produces unnecessarily pessimistic response-times. The objective of this paper is to
improve upon this approximate RTA by more faithful modeling of inter-task interfer-
ence.

Other improvements made to the RTA for tasks with offsets such as (Palencia
Gutiérrez and González Harbour 1999; Redell 2003) are orthogonal and complemen-
tary (they perform better with large jitter) which means that our method can easily
be incorporated to their method or vice versa. Rahni et al. (2007) show that in the
special case of so called monotonic transactions the table lookup technique can be
made even faster and always produces exact response times. However, the applica-
bility of this approach is limited since most systems cannot be expected to consist of
only monotonic transactions.

As discussed in (Mäki-Turja et al. 2005), RTA of tasks with offsets is useful to
analyze hybrid scheduled systems with static and FPS (Fixed Priority Scheduling).
Palencia and Harbour has also presented RTA for hybrid scheduled system using EDF
(Earliest Deadline First) (Palencia Gutiérrez and González Harbour 2003b). Their
work has also been extended to the transactional task model (Palencia and González
Harbour 2003a). Other work on analysis of the transactional model include Pop et al.
(2003), which focus on systems with time-triggered and event-triggered domains.

Other methods to tackle schedulability of hybrid scheduled system and systems
with complex task-arrival patterns have been proposed, e.g. (Regher et al. 2003;
Fersman 2003).

Concretely, this paper extends the method originally proposed by Palencia Gutiér-
rez and González Harbour (1998) in two dimensions: (1) We propose a tighter method
to calculate response-times (the method never calculates higher response-times, and
for a large portion of tasks the calculated response-time is lower), (2) we decrease the
computation time for calculating the response-times.

Real-Time Syst

3 Existing offset RTA

This section revisits the existing response-time analysis for tasks with offsets (Tindell
1992; Palencia Gutiérrez and González Harbour 1998) and illustrates some intuition
behind the analysis and the formulae.

3.1 System model

The system model used is as follows: The system, Γ , consists of a set of k trans-
actions Γ1, . . . ,Γk . Each transaction Γi is activated by a periodic sequence of events
with period Ti (for non-periodic events Ti denotes the minimum inter-arrival time be-
tween two consecutive events). The activating events are mutually independent, i.e.,
phasing between them is arbitrary. A transaction, Γi , contains |Γi | tasks, and each
task may not be activated (released for execution) until a time, offset, elapses after
the arrival of the external event.

We use τij to denote a task. The first subscript denotes which transaction the
task belongs to, and the second subscript denotes the number of the task within
the transaction. A task, τij , is defined by a worst case execution time (Cij), an off-
set (Oij), a deadline (Dij), maximum jitter (Jij), maximum blocking from lower
priority tasks (Bij), and a priority (Pij). The system model is formally expressed as
follows:

Γ := {Γ1, . . . ,Γk},
Γi := 〈{τi1, . . . , τi|Γi |}, Ti〉,
τij := 〈Cij ,Oij ,Dij , Jij ,Bij ,Pij 〉.

There are no restrictions placed on offset, deadline or jitter, i.e., they can each be
either smaller or greater than the period.

The relation between event arrival, offset, jitter and task release is graphically
visualized in Fig. 1. After the event arrival, task τij is not released for execution
until its offset (Oij) has elapsed. The task release may be further delayed by jitter
(maximally until Oij + Jij) making its exact release uncertain. For a more extensive
explanation of task parameters see (Palencia Gutiérrez and González Harbour 1998).
Parameters for an example transaction (Γi) with two tasks (τi1, τi2) are depicted in
Fig. 2.

3.2 Response-time analysis

The goal of RTA is to facilitate a schedulability test for each task in the system by cal-
culating an upper bound on its worst case response-time. We use τua (task a, belong-
ing to transaction Γu) to denote the task under analysis, i.e., the task which response
time we are currently calculating.

In the classical RTA (without offsets) the critical instant for τua occurs when it
is released at the same time as all higher priority tasks (Joseph and Pandya 1986;
Liu and Layland 1973). In a task model with offsets this assumption yields pes-
simistic response-times since some tasks cannot be released simultaneously due to
offset relations. Therefore, Tindell (1992) relaxed the notion of critical instant to be:

Real-Time Syst

Fig. 1 Relation between an event arrival, offset, jitter and task release

Fig. 2 An example transaction Γi

At least one task in every transaction is to be released at the critical instant.
(Only tasks with priority higher or equal to τua are considered.)

Since it is not known which task coincides with (is released at) the critical instant,
every task in a transaction must be treated as a candidate to coincide with the critical
instant.

Tindell’s exact RTA tries every possible combination of candidates among all
transactions in the system. This, however, becomes computationally intractable for
anything but small task sets (the number of possible combinations of candidates is
mn for a system with n transactions and with m tasks per transaction). Therefore
Tindell provided an approximate RTA that still gives good results but uses one single
approximation function for each transaction. Palencia Gutiérrez and González Har-
bour (1998) formalized and generalized Tindell’s work. We will in this paper use the
more general formalism of Palencia Gutiérrez and González Harbour, although our
proposed method is equally applicable to Tindell’s original algorithm.

3.3 Interference function

Central to RTA is to capture the worst case interference a higher or equal priority
task (τij) causes the task under analysis (τua) during an interval of time t . Since a
task can interfere with τua multiple times during t , we have to consider interference
from possibly several instances. The interfering instances of τij can be classified into
two sets:

Set1 Activations that occur before or at the critical instant and that can be delayed
by jitter so that they coincide with the critical instant.

Set2 Activations that occur after the critical instant

When studying the interference from an entire transaction Γi , we will consider each
task, τic ∈ Γi , as a candidate for coinciding with the critical instant.

RTA for tasks with offsets is based on two fundamental theorems:

Real-Time Syst

1. The worst case interference a task τij causes τua is when Set1 activations are
delayed by an amount of jitter such that they all occur at the critical instant and
the activations in Set2 have zero jitter.

2. The task of Γi that coincides with the critical instant (denoted τic), will do so after
experiencing its worst case jitter delay.

In order to determine the amount of Set2 interference for a task, τij , we need to know
when the first activation of τij occurs after the critical instant. This phasing between
a task, τij , and the critical instant, which according to Theorem 1 occurs at Oic +Jic,
becomes:

Φijc = (Oij − (Oic + Jic))modTi. (1)

Figure 3 illustrates the four (two transactions and two critical instant candidates)
different Φijc-s that are possible for our example transaction in Fig. 2. Note that the
time of origin is set at the critical instant. The upward arrows denote task releases.
The height of the upward arrows denotes the amount of execution released.

Figure 3(a) shows, for the case when τi1 coincides with the critical instant, the
invocations in Set1 (arriving at time 0) and the first invocation in Set2. Figure 3(b)
shows the corresponding situation when τi2 is the candidate to coincide with the
critical instant.

Given the two sets of task instances (Set1 and Set2) and the corresponding phase
relative to the critical instant (Φijc), the interference caused by task τij can be divided
into two parts:

1. The part caused by instances in Set1 (which is independent of the time interval t),
ISet1
ijc , and

2. the part caused by instances in Set2 (which is a function of the time interval t),
ISet2
ijc (t).

(a) τic = τi1

(b) τic = τi2

Fig. 3 Φ-s for the two candidates in Γi

Real-Time Syst

These are defined as follows:

ISet1
ijc =

⌊
Jij + Φijc

Ti

⌋
Cij , I Set2

ijc (t) =
⌈

t − Φijc

Ti

⌉
Cij . (2)

The worst case interference transaction Γi poses on τua , during a time interval t ,
when candidate τic coincides with the critical instant, is:

Wic(τua, t) =
∑

∀j∈hpi(τua)

(I Set1
ijc + ISet2

ijc (t)). (3)

Where hpi(τua) denotes tasks belonging to transaction Γi , with priority higher or
equal to the priority of τua .

Note that the definition of Φijc in (1) is a redefinition of the original definition
(see (17) in (Palencia Gutiérrez and González Harbour 1998), see Appendix A). How-
ever, Wic(τua, t) using these two definitions are equivalent as proved by the following
theorem.

Theorem 1 Wic(τua, t) using definition of Φijc according to (1) is equivalent to
using (17) in (Palencia Gutiérrez and González Harbour 1998).

Proof reference The theorem is proved by algebraic equivalence in Appendix B. �

3.4 Approximation function

Since we beforehand cannot know which task in each transaction coincides with the
critical instant, the exact analysis tries every possible combination (Tindell 1992;
Palencia Gutiérrez and González Harbour 1998). However, since this is computation-
ally intractable for anything but small task sets, the approximate analysis defines one
single, upward approximated, function for the interference caused by transaction Γi

(Tindell 1992; Palencia Gutiérrez and González Harbour 1998):

W ∗
i (τua, t) = max

∀c∈hpi(τua)
Wic(τua, t). (4)

That is, W ∗
i (τua, t) simply takes the maximum of each interference function (for each

candidate τic).
As an example, consider again transaction Γi depicted in Fig. 2. Figure 4 shows

the interference functions (Wi1 and Wi2) for the two candidates, and it shows how W ∗
i

is derived from them by taking the maximum of the two functions at every t . Given
the interference (W ∗

i) each transaction causes, during a time interval of length t , the
response time of τua (Rua) can be calculated. Appendix A presents the complete set
of formulae for these response-time calculations.

4 The concept of interference

Classical response time analysis for Liu and Layland’s periodic task model (Liu and
Layland 1973) (where a task τi has a period Ti and worst-case execution-time Ci),

Real-Time Syst

Fig. 4 Wic(τua, t) and W∗
i
(τua, t) functions

presented first by Joseph and Pandya (1986), states that the worst case response time,
for a task under analysis (τi), occurs when it is released at the same time as all higher
priority tasks. Under this assumption the worst case response time, Ri is:

Ri = Ci +
∑

∀j∈hp(i)

interferencej (Ri) (5)

where Ci is the execution-time of task i, hp(i) is the set of higher priority tasks, and
interferencej (t) is the amount of interference task j causes during time-interval t .
The interference formula presented by Joseph and Pandya (1986) is:

interferencej (t) =
⌈

t

Tj

⌉
Cj

where the ceiling expressions calculates the number of instances of task j . Here the
full interference on each task instance (Cj) occurs immediately when the task is re-
leased. We denote this concept of interference as “released for execution” interfer-
ence.

This, however, is an overestimation of the interference that τi actually can expe-
rience. In fact, the interference experienced by τi during a time interval can never
exceed the size of, or grow faster than, the time interval. Formally, the derivative of
the interference cannot be greater than the derivative of the time interval:

dinterferencej (t)

dt
≤ dt

dt
⇒ dinterferencej (t)

dt
≤ 1 (6)

Real-Time Syst

Theorem 2 Consider a task τj , activated at time 0 and subsequently with period Tj ,
having execution-time Cj (0 < Cj ≤ Tj). For a positive time-interval t = kTj + t ′
(where k ∈ N and 0 ≤ t ′ < Tj), kCj + min(t ′,Cj) is an upper bound on the interfer-
ence τj can impose on any lower priority task during t .

Proof During kTj , τj imposes an amount of interference of kCj (task instances are
activated periodically), one instance for every period. During the remaining time in-
terval, t ′, τj can, according to (6), never impose more interference than the length
of the interval itself. Hence, kCj + t ′ is an upper bound on the interference τj , can
impose during t .

However, the last instance of τj (when activated t ′ = 0), cannot contribute with
more interference than its execution time Cj . Hence, kCj + Cj is also an upper
bound on the interference τj can impose during t .

Combining these upper bounds (by taking the minimum of them) we get kCj +
min(t ′,Cj) as an upper bound on the interference τj can impose during t . �

We denote the concept of interference which is bounded by interferencej (t) and
Theorem 2 with “imposed” interference. As an example, consider a task with Tj =
10 and Cj = 4. Figure 5 illustrates the difference between “released for execution”
and “imposed” interference for t ∈ 0 . . .20. The released for execution interference
increases in a stepped stair fashion, whereas the imposed interference increases in a
slanted stair fashion (with a derivative of 1 in the slants).

In Fig. 5 the shaded areas represent the overestimation made by the released for ex-
ecution concept. Note however, for classical response-time analysis this overestima-
tion has no effect on the calculated response-time, and Joseph and Pandya’s equation
does yield exact worst case response-times. The reason for this is that the response-
time analysis calculation (fix-point iteration) has no solutions in the shaded areas (as
discussed further in Sect. 5.3). Also for exact RTA of task with offsets (Tindell 1992)
this overestimation does not yield any pessimism in the calculated response-times.

Fig. 5 Released for execution vs. imposed interference

Real-Time Syst

5 Tight offset RTA

We begin this section with a simple and illustrative example of how the original analy-
sis overestimates the response-time. Consider a simple transaction Γi depicted in
Fig. 6 where jitter (Jij) and blocking (Bij) are zero. Also consider a lower priority
task, τua , which is the single task in transaction Γu, with Cua = 2. For this simplified
task model where Bij = Jij = 0, Dua ≤ Tu only one instance of the task under analy-
sis is active at any point in time. This means that the response time formulae, for the
single lower priority task, presented in Appendix A, can be reduced and simplified
to:

Rua = Cua +
∑
∀i
=u

W ∗
i (τua,Rua). (7)

The response-time calculation is performed by means of fix-point iteration (starting
with Rua = 0) as follows:

Iter# t Wi1 Wi2 W ∗
i Rua

0 0
1 0 0 0 0 2
2 2 2 4 4 6
3 6 6 4 6 8
4 8 6 4 6 8

Where column “Iter#” denotes the iteration number, “t” the time interval, “Wi1” and
“Wi2” denotes Wic(τua, t) for the two candidate tasks τi1 and τi2 respectively. “W ∗

i ”
denotes the value of W ∗

i (τua, t), and “Rua” the calculated response-time for the iter-
ation. In iteration 4 the fix-point iteration terminates (Rua has the same value as in
the previous iteration), and the calculated response time is Rua = 8. However, it can
easily be seen that a task with Cua = 2 can never be preempted by both τi1 and τi2

since both tasks are separated by at least 2 units of idle time. Hence, the actual worst
case response-time is overestimated.

5.1 Using imposed interference

One property of the ceiling expression of ISet2
ijc (t) in (2) is that it returns the amount

of interference “released for execution” at time t . This results in a stepped stair in-
terference function. If we modify ISet2

ijc (t) in (2) so that it returns the interference
“imposed” on τua we get a slanted stair function (as shown in Sect. 4). Our redefined

Fig. 6 A simple example
transaction

Real-Time Syst

Fig. 7 Interference imposed on τua by our example transaction

version of ISet2
ijc (t) then becomes:

ISet2
ijc (t) =

⌈
t∗

Ti

⌉
Cij − x,

t∗ = t − Φijc,

x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 t∗ ≤ 0,

0 t∗ modTi = 0,

0 t∗ modTi ≥ Cij ,

Cij − (t∗ modTi) otherwise

(8)

where Φijc is defined in (1) and x is used to generate the slants of the “imposed”
interference function.

The slanted stairs, for the example of Fig. 6, generated by (8) are shown in
Figs. 7(a) and 7(b), and Fig. 7(c) shows them superimposed. Using our new version of
ISet2
ijc (t) in (3) we get the maximized slanted stairs interference function, representing

the approximation function W ∗
i , shown in Fig. 7(d).

With the new definition of interference in (8) we can now use (7) to calculate a
new response-time Rua for our example as follows:

Iter# t Wi1 Wi2 W ∗
i Rua

0 0
1 0 0 0 0 2
2 2 2 2 2 4
3 4 2 4 4 6
4 6 4 4 4 6

Real-Time Syst

We note that our new definition of ISet2
ijc (t) makes the analysis able to “see” the

empty slot between tasks τi1 and τi2, something the original analysis overlooked.
Hence, the calculated response-time (Rua = 6) is lower than that of the original

analysis (Rua = 8), and in Sect. 7 we will quantify this improvement in a simulation
study. Section 5.3 also gives an intuitive explanation of why the calculated response
times are lower.

5.2 Correctness criteria

For our proposed modification to ISet2
ijc (t) in (8) to be correct, and not produce greater

response-times than the original analysis, three criteria have to be fulfilled:

• The new definition of ISet2
ijc (t) is not allowed to be greater than the old definition

(for any t). If this condition holds, the analysis performed with the new definition
is guaranteed not to yield larger response-times than the old definition does.

• The new definition of ISet2
ijc (t) must not underestimate the interference caused by

Set2-tasks. If the interference is underestimated, analysis performed with the new
definition could yield unsafe response-time estimates.

• The new definition of ISet2
ijc (t) must yield a monotonically increasing interference

function W ∗
i (τua, t). Monotonicity is required to guarantee that at least one solu-

tion to the response-time formula exists and that fix-point iteration finds the small-
est existing solution (Sjödin and Hansson 1998).

Note that the time of origin is set at the critical instant.

Theorem 3 For a given task under analysis, τua , and one candidate task, τic ∈ Γi ,
our new definition of ISet2

ijc (see (8)) is never greater than the old definition (see (2)).

Proof x, as defined in (8), is used to decrease the calculated value of ISet2
ijc . Since x,

by definition, is never negative, it can never contribute to making (8) greater
than (2). �

Theorem 4 For any time interval t ≥ 0 our new definition of ISet2
ijc (t) (8) never un-

derestimates the interference caused by Set2 task instances.

Proof Set2 task instances arrive periodically (per definition) with period Ti , with the
first instance arriving at Φijc.

We first treat the time before the first invocation in Set2, i.e. t < Φijc. During
this time interval t∗ < 0 and hence x = 0. Since, t < Φijc < Ti then t∗ > −Ti and the
ceiling expression in (8) evaluates to zero. Hence, the whole (8) is also zero. Since the
interference before the first invocation obviously is zero, (8) does not underestimate
the interference before the first invocation.

For times at or after the first invocation, i.e. t ≥ Φijc, we have t∗ ≥ 0. Now, assume
t∗ = kTi + t ′, where k ∈ N and 0 ≤ t ′ < Ti (the relation between t , t∗ and t ′ is
graphically visualized in Fig. 8). If the interference calculated by (8) is not below
the safe upper bound defined by Theorem 2:

safe upper bound = kCij + min(t ′,Cij)

Real-Time Syst

Fig. 8 Relation between t , t∗
and t ′

Fig. 9 Three proof cases for t ′

the interference is not underestimated.
We divide the proof into three cases depending on the value of t ′ for a time-interval

t (the three different cases are depicted graphically in Fig. 9):

• t ′ ≥ Cij : The ceiling expression in (8) evaluates to k + 1 and the interference is
thus (k+1)Cij −x. Further, when t ′ ≥ Cij then t∗ modTi ≥ Cij resulting in x = 0,
hence the interference is (k + 1)Cij , which is not below safe upper bound.

• 0 < t ′ < Cij : The ceiling expression in (8) evaluates to k + 1 and the interference
is thus (k + 1)Cij − x = kCij + Cij − x. Further, when 0 < t ′ < Cij then 0 <

t∗ modTi < Cij and x = Cij − t ′, hence the interference is kCij +Cij −(Cij − t ′) =
kCij + t ′, which is not below safe upper bound.

• t ′ = 0: The ceiling expression in (8) evaluates to k and the interference is thus
kCij −x. Further, when t ′ = 0 then t∗ modTi = 0 and x = 0, hence the interference
is kCij , which is not below safe upper bound (since t ′ = 0).

�

Theorem 5 The definition of ISet2
ijc (t) in (8) is (non-strictly) monotonically increas-

ing with the time interval t .

Proof We prove this by showing that the derivative of (8) is never negative. First, we
conclude that a negative derivative of x cannot contribute to make the derivative of
(8) negative (since x is subtracted in (8)). We also conclude that if x is disregarded
(i.e. assumed to be 0), then (8) does not have a negative derivative in any point.

We divide the proof into three cases, depending on the value of t∗ modTi for
times t :

• t∗ modTi ≥ Cij : In this case x is continuously 0, hence the derivative of x is 0, and
(8) cannot have a negative derivative.

• 0 < t∗ modTi < Cij : In this case the derivative of x is −1, hence the derivative
of (8) cannot have a negative derivative.

• t∗ modTi = 0: For this case we conclude that (8) is continuous, since at time t + ε

(for an arbitrary small and positive ε) the ceiling expression has increased with Cij

and x has increased with Cij − ε, hence (8) has increased with exactly ε. Thus, the
derivative of (8) at such times t is 1.

�

Real-Time Syst

5.3 Discussion

At first glance, it is not obvious that lowering the interference function Wic(τua, t)

should automatically give lower response-times. In fact, the stepped-stair interference
function has been used for many years to represent the interference in RTA (Audsley
et al. 1995; Audsley et al. 1993), without introducing any pessimism.

The underlying reason why stepped stairs (in analysis without offsets) does not
introduce pessimism can be found in (Sjödin and Hansson 1998). In short, the fix-
point iteration will terminate when the sum of all interference functions (demand)
meets the line from origin with slope 1 (supply). Hence, replacing stepped stairs with
slanted stairs (with slope 1) will not contribute to earlier fix-point convergence.

However, in approximate response-time analysis with offsets, the interference
functions, Wic-s, are not used directly in the fix-point iterations. Instead they are
first subjected to a maximization function (see (4)). This situation can be compared
to floating point addition: if you round up the floating point numbers at each calcu-
lation step, instead of just in the end, you will lose precision. This corresponds to
passing released for execution interference, instead of more precise imposed interfer-
ence, to the maximization function. Another view of this is that by using slanted-stair
functions as input to the maximization function, one essentially “delays” the time it
takes for one low-interference scenario to overtake a high-interference scenario, as
we show below.

Figure 10(a) shows our simple example transaction from Fig. 6 with two arrows
denoting the two possible scenarios for the critical instant (one “dashed” scenario

Fig. 10 Stepped stairs vs.
slanted stairs

Real-Time Syst

and one “dotted” scenario). Figures 10(b) and 10(c) shows the stepped stairs and
slanted stairs interference functions, respectively, for both scenarios. For times t < t1,
the dotted scenario is the one with highest interference. Time t1 corresponds to the
release of the second task in the dashed scenario. For the stepped stairs case, this
means immediately adding another 4 units of interference to the dashed scenario,
hence immediately making it the scenario with the highest interference. However, for
the slanted stairs case, the time t1 means that the dashed line starts to increase, but
not until time t2 it catches up with the dotted scenario. Hence, the interval between t1
and t2 represents the time by which the slanted stairs “delay” the dashed scenario to
catch up with the dotted scenario. If fix-point convergence can be achieved during
this time interval, then approximate RTA with imposed interference will calculate a
lower response time than does RTA with released for execution interference.

6 Fast and tight analysis

When calculating response times, the function W ∗
i (τua, t) (see 4) will be evaluated

repeatedly. For each task and transaction pair (τua and Γi) many different time-values,
t , will be used during the fix-point calculations. However, since W ∗

i (τua, t) has a
repetitive pattern (as we will show in Theorem 7), a lot of computational effort could
be saved by representing the interference function statically, and during response-
time calculation use a simple lookup function to obtain its value. This section shows
how the function W ∗

i (τua, t) could be changed to use such pre-computed information
and how to calculate and store that information.

6.1 Periodicity of interference

The fundamental pre-requisite to statically represent the interference for a transac-
tion is that a repetitive pattern can be found (such that it suffices to store that pattern
and use it to calculate the amount of interference for any time interval t). In pre-
vious fast analysis for the original RTA with offsets (Mäki-Turja and Nolin 2004),
the full interference of each task occurs within the first period. Hence, one could
straight-forwardly represent the interference during the first period and reuse it for
later periods.

However, in the tight analysis, the imposed interference of a task released towards
the end of the period may not be fully included within the period. Even though the
task is released within the period, the slanted interference function causes some of the
interference to occur in the subsequent period. Figure 11 shows an example critical
instant candidate where the interference from task z spills into next period.

As seen in Fig. 11, the interference for the first period differs from that of later
periods. Obviously, there can be no spill into the first period, since tasks arriving
before the critical instant (i.e. when t < 0) are accounted for in ISet1

ijc . For subsequent
periods, however, the effect of a task spilling over period boundaries will be identical.
This means that for t > Ti the interference is repetitive (with period = Ti) and allows
for a static representation. The consequence of this is that we have to represent the
interference for the first and subsequent periods separately.

Real-Time Syst

Fig. 11 Interference spilling over periods

6.2 Preliminaries

To prepare for subsequent calculations, we define three operations (order, merge, and
split) that will be performed for each critical instant candidate before we proceed
with calculation of a transactions’ interference pattern. These transformations will
not change the load or the timing behavior of the interference; they only help us to
restructure the information within a transaction.

Operation: Order Tasks are enumerated according to their first activation after the
critical instant, i.e., according to increasing Φijc values.

Operation: Merge For each pair of tasks, j ′ and j , where j ′ is released before j

and does not have a chance to finish its execution before the release of j , i.e. (Φijc +
Cij)modTi ≥ Φij ′c , are merged into one task with execution time Cij + Cij ′ and
offset of Φijc. This operation is performed until all possible pair of tasks has been
merged (and since the load of a transaction is less than 100% the process is guaranteed
to converge).

Operation: Split When splitting a task, we define spill of a task j , belonging to
transaction Γi for the critical instant candidate task c (c ∈ Γi), denoted Sijc, as the
amount of execution time that “spills over” into the next period. Since task j is re-
leased at time Φijc, the amount of spill is:

Sijc =
{

0 if Φijc + Cij ≤ Ti,

Φijc + Cij − Ti otherwise.

To make the spill explicit, we split each task j with a positive spill into 2 new
tasks, denoted j ′ and j ′′. j ′ represents the amount of interference of task j that occurs
within and at the end of the current period. j ′′ is called a spill task and represents the

Real-Time Syst

Fig. 12 Relation between
W∗

i
(τua, t), J ind

i
(τua), and

T ind
i

(τua, t)

amount of interference that occurs at the beginning of the subsequent period. The
definitions are:

Cij ′ = Cij − Sijc, Cij ′′ = Sijc,

Φij ′c = Φijc, Φij ′′c = 0.

6.3 Jitter and time induced interference

The key to make a static representation of W ∗
i (τua, t) is to recognize that it contains

two parts:

• A jitter induced part, denoted J ind
i (τua). This part corresponds to task instances

belonging to Set1. Note that this interference is not dependent on t .
• A time induced part, denoted T ind

i (τua, t). This corresponds to task instances of
Set2. With exception for the first period, the time induced part has a cyclic pattern
that repeats itself every Ti (as we prove below).

We redefine (4) using our new notation as:

W ∗
i (τua, t) = J ind

i (τua) + T ind
i (τua, t). (9)

This partitioning of W ∗
i (τua, t) is visualized in Fig. 12. J ind

i (τua) is the maximum
starting value of each of the Wic(τua, t) functions (i.e. max of Wic(τua,0), see (3))
which is calculated by:

J ind
i (τua) = max

∀c∈hpi(τua)

∑
∀j∈hpi(τua)

I Set1
ijc . (10)

The time induced part, T ind
i (τua, t), represents the maximum interference, dur-

ing t , from tasks activated after the critical instant. Algebraically T ind
i (τua, t) is de-

fined as:

T ind
i (τua, t) = max

∀c∈hpi(τua)
W+

ic (τua, t) (11)

where

W+
ic (τua, t) =

∑
∀j∈hpi(τua)

(I Set1
ijc + ISet2

ijc (t)) − J ind
i (τua). (12)

Real-Time Syst

The correctness of our method requires that our new definition of W ∗
i (τua, t) in (9)

is functionally equivalent to the definition in (4).

Theorem 6 W ∗
i (τua, t) as defined in (4) and W ∗

i (τua, t) as defined in (9) are equiv-
alent.

Proof reference The theorem is proved by algebraic equivalence in Appendix B. �

Further, in order to be able to make a static representation of W ∗
i (τua, t), we need

to ensure that we store enough information to correctly reproduce W ∗
i (τua, t) for

arbitrary large values of t . Since T ind
i (τua, t) is the only part of W ∗

i (τua, t) that is
dependent on t , the following theorem gives that a periodicity of Ti exists in the
interference:

Theorem 7 Assume spill tasks are accounted for, and t = k ∗ Ti + t ′ (where k ∈ N

and 0 ≤ t ′ < Ti), then

T ind
i (τua, t) = k ∗ T ind

i (τua, Ti) + T ind
i (τua, t

′)

Proof reference The theorem is proved by algebraic equivalence in Appendix B. �

6.4 Representing time induced interference

In this section we show how the interference pattern of T ind
i (τua, t) can be calculated

and represented statically. Since the first period should not account for any spill task,
but subsequent periods should, we divide the presentation into two cases, one where
spill task are not accounted for and one case where they are.

6.4.1 Spill task not accounted for

For each critical instant candidate, τic, tasks are ordered, merged, and split accord-
ing to Sect. 6.2. Spill tasks are removed. We define a set of points pic, where each
point pic[k] has an x (representing time) and a y (representing interference) coordi-
nate, describing how the time induced interference grows over time when τic acts as
the critical instant candidate. The points in pic correspond to the convex corners of
W+

ic (τua, t) of (12). The following equations define the array pic:

pic[1].x = 0,

pic[1].y =
∑

∀j∈hpi(τua)

I Set1
ijc − J ind

i (τua),

pic[k].x = Φikc + Cik, k ∈ 2 . . . |Γi |,
pic[k].y = pic[k − 1].y + Cik, k ∈ 2 . . . |Γi |.

(13)

pic[1].y gives the initial relation (i.e. vertical distance at time 0) between different
critical instant candidates, and is given by the difference in jitter-induced interference.
Furthermore, the time-induced interference should be zero at time zero (illustrated in

Real-Time Syst

Fig. 13 Visual representation
of pic sets

Fig. 14 The subsumes relation

Fig. 12) which is achieved by subtracting the maximum of all jitter-induced interfer-
ence (stored in J ind

i (τua)) when initializing pic[1].y in (13).
The W+

i1 and W+
i2 , for our example transaction of Fig. 2, are depicted in Fig. 13

and the corresponding pi1 and pi2 sets are illustrated by black and white circles
respectively. For this example transaction we get the following two pic-s:

pi1 = [〈0,−1〉, 〈4,1〉, 〈6,2〉] black circles,

pi2 = [〈0, 0〉, 〈8,2〉, 〈10,3〉] white circles.

Now, the information generated by all W+
ic (τua, t)-functions is stored in the pic-

sets. To obtain the convex corners of T ind
i (τua, t), we need to extract the points that

represent the maximum of all W+
ic (τua, t)-s. To this end, we calculate the set of points,

pi , as the union of all pic-s:

pi =
⋃

τic∈Γi

pic

In order to determine the points in pi corresponding to the convex corners of
T ind

i (τua, t), we define a subsumes relation: A point pi[a] subsumes a point pi[b]
(denoted pi[a] � pi[b]) if the presence of pi[a] implies that pi[b] is not a convex
corner. Figure 14 illustrates this relation graphically with a shaded region, and the
formal definition is:

pi[a] � pi[b] iff

pi[a].y ≥ pi[b].y ∧ (pi[a].x − pi[a].y ≤ pi[b].x − pi[b].y).

Given the subsumes relation, the convex corners are found by removing all sub-
sumed points:

From pi remove pi[b] if ∃a
= b : pi[a] � pi[b].
For our example transaction of Fig. 2 we have:

pi = [〈0,0〉, 〈4,1〉, 〈6,2〉, 〈10,3〉].

Real-Time Syst

6.4.2 Spill task accounted for

Computing the set of points when accounting for spill tasks, denoted p′
i , is analogous

to computing pi , with the following differences:

• Spill tasks from the split operation are not removed. Note that including a spill task
might require additional merge and order operations.

• In (13) pic[1].y defines the initial relation (difference in ISet1
ijc) between differ-

ent critical instant candidates. Since p′
i represents the time induced interference,

T ind
i (τua, t), for t ≥ Ti , p′

ic[1].y should reflect this relation at the end of the first
period. The interference for a critical instant c at the end of the first period is rep-
resented by pic[|Γi |].y, consequently we get the following modification to (13):1

p′
ic[1].y = pic[|Γi |].y − max

x∈Γi

pix[|Γi |].y.

6.5 Increasing performance by removing slants

Assume that a set of points pi (with or without spill tasks) has been calculated, rep-
resenting the convex corners of the time induced interference function T ind

i (τua, t)

during one period Ti . The points for our example transaction is illustrated by black
and white circles in Fig. 15. Note that in the absence of spill tasks, the sets pi and p′

i

are identical.
It can be proven that the fix-point iterative solution to (28′) in Appendix B, which

is the equation where the interference function is used, cannot have any solution
during the slants.

Theorem 8 Equation (28′), in Appendix B, cannot have a solution at a time t where
any approximate interference function has a derivative greater than or equal to one.

Proof reference The theorem is proven in Appendix B. �

No solutions to the response-time equation can exist during the slant of any inter-
ference function. Hence, we can remove the slants and replace them with a stepped
stair function, as illustrated by the grey areas of Fig. 15, without introducing any

Fig. 15 Removing the slants

1Analogous to (13), we normalize the points to start at 0, hence we subtract the maximum of all
pix [|Γi |].y.

Real-Time Syst

pessimism in the resulting response times. Progress in the fix-point iteration is pro-
portionally increased with any overestimation of the interference. Hence, by adding
overestimation in the grey areas of Fig. 15 we will speed up the fix-point convergence
without modifying the calculated response-times.

Removing the slants is equivalent to transforming the convex corners to concave
corners (illustrated by crosses in Fig. 152). The rules for finding the concave corners,
vi , from a set of convex corners, pi , is as follows:

vi[k].y = pi[1].y,

vi[k].x =
{

pi[k + 1].x − diff if k < |pi |,
pi[k].x if k = |pi |,

where k ∈ 1 . . . |pi |, diff = pi[k + 1].y − pi[k].y.

The interpretation of vi is as follows: For t ≤ Ti , vi[k].y represents the maximum
amount of time induced interference Γi will impose on a lower priority task during
interval lengths up to vi[k].x (k ∈ 1 . . . |vi |). For our example transaction of Fig. 2, vi

becomes (indicated by crosses in Fig. 15):

vi = [〈3,0〉, 〈5,1〉, 〈9,2〉, 〈10,3〉].

Note, especially that the final point (denoted vi[|vi |]) contains the sum of all interfer-
ence during the period Ti .

In the special case that some task τij has Φijc = 0 (e.g. in the case of spill tasks),
vi[1].x will not be zero. However, since T ind

i (0) = 0 (follows from (11)), the first
element of vi needs to have x-value that is zero. In such cases we add the point 〈0,0〉
to vi (stating that there will be 0 time induced interference for any time interval of
length up to 0).

6.6 T ind
i (τua, t) using lookup

Since we need to represent the interference for the two first periods separately we
will calculate the two point sets pi (first period) and p′

i (second period) according
to Sect. 6.4. Next we will remove the slants for both these point sets as described in
Sect. 6.5 and store the new points in vi and v′

i respectively.
Using the point sets vi and v′

i we can calculate the interference from Γi for an
arbitrary time t . For the first period the interference in vi is used, and when t > Ti

we will start using the interference in v′
i . Using these point sets T ind

i (τua, t) can be

2While the last point in the set does not strictly represent a concave corner, it is necessary for us to keep
track of the amount of interference at the end of the period, hence that point is included among the concave
corners and is thus marked with a cross in the figure.

Real-Time Syst

reduced to a fast lookup function:

T ind
i (τua, t) =

{
v[n].y if k < 1,

vi[|vi |].y + (k − 1) ∗ v′
i[|v′

i |].y + v′
i[n′].y if k ≥ 1,

k = t divTi,

t∗ = t remTi,

n = min{m : t∗ ≤ vi[m].x},
n′ = min{m : t∗ ≤ v′

i[m].x}

(14)

where k represents the number of whole periods (Ti) in t , and t∗ is the part of t that
extends into the final period. It could be noted that vi[|vi |].y contains the sum of all
interference during the first period, and v′

i[|v′
i |].y contains the sum of all interference

during the length of one period for subsequent periods.

6.7 Space and time complexity

The number of points to calculate (pi) is quadratic with respect to the number of tasks
in the transaction Γi (2|Γi | points for each of the |Γi | candidate tasks). Thus, storing
vi and v′

i results in a quadratic space complexity since, in the worst theoretical case,
no points from the pic sets will be removed when calculating pi .

The method presented in this paper divides the calculation of W ∗
i into a pre-

calculation and a fix-point iteration phase. A naive implementation of the removal
procedure in (14) requires comparison of each pair of points; resulting in cubic time-
complexity (O(|Γi |3)) for pre-calculating vi and v′

i .
3 During the fix-point iteration

phase, a binary search through a quadratic sized array is performed (either vi or
v′
i in (14)), resulting in O(log |Γi |2) time complexity for calculating W ∗

i according
to (9). The original complexity for calculating W ∗

i according to (4) is O(|Γi |2).
In a complete comparison of complexity, the calculation of W ∗

i (τua, t) must be
placed in its proper context (see the response time formulae in Appendix A). Assume
X denotes number of fix-point iterations needed, then the overall complexity for the
original approach (see 4) is (O(X|Γi |2)), whereas our method (see (9) and (14))
yields (O(|Γi |3 +X log |Γi |2)). Typically the size of a transaction (|Γi |) is small (less
than 100) and the number of fix-point iterations (X) is large (tens or hundreds of
thousands), hence our method results in a significant reduction in time complexity.

7 Evaluation

We have, by simulation studies, evaluated both improvements presented in this paper.
The main purpose of the simulation is to quantify our improvements and to investigate
what parameters affects the improvements in different ways. We use a random task
generator which does not necessarily correspond to real systems. Furthermore, the

3In Sect. 7 we use an O(|Γi |2 log |Γi |) implementation based on sorting the points and making a single
pass through the sorted set.

Real-Time Syst

transactional task model can be used for different system models such as distributed
systems (Palencia Gutiérrez and González Harbour 1998) or combined statically and
dynamically scheduled systems (Mäki-Turja et al. 2005), we have therefore kept the
simulation setup general as possible.

7.1 Evaluating response-time precision

In order to evaluate and quantify our proposed improvement of Sect. 5, we have
implemented the approximate response-time equations of Appendix A, using both
the original definition of ISet2

ijc (t) from Sect. 3 and our tighter version of ISet2
ijc (t)

from Sect. 5. Furthermore, we have also, as a comparison, implemented the exact
analysis.

Using these implementations and a task-generator we have performed simulations
of all three approaches by calculating the response time for a single low priority task,
e.g., corresponding to an admission control situation.

7.1.1 Description of task generator

In our simulator we generate task sets that are used as input to the different imple-
mentations. The task-set generator takes the following parameters as input:

• Total system load (in % of total CPU utilization),
• The number of transactions to generate,
• The number of tasks per transaction to generate, and
• Jitter fraction (in % of the transaction periods).

Using these parameters a task set with the following properties is generated:

• The total system load is proportionally distributed over all transactions.
• Transaction periods (Ti) are randomly distributed in the range 1.000 to 1.000.000

time units (uniform distribution).
• Each offset (Oij) is randomly distributed within the transaction period (uniform

distribution).
• The execution times (Cij) are chosen as a fraction of the time between two consec-

utive offsets in the transaction. The fraction is the same throughout one transaction,
and is selected so that the transaction load (as defined by the first property) is ob-
tained.

• The jitter is set to the jitter fraction of the period (Jij = f ∗ Ti).4

• Blocking (Bij) is set to zero.
• The priorities are assigned in rate monotonic order (Liu and Layland 1973).

4In the distributed system model jitter should be calculated as the response time of a preceding task.
However, our purpose of the simulation is to be as general as possible (remember that the task model
can be used to model, e.g., static schedules) and to see how the amount of jitter affects the improvements
presented in this paper.

Real-Time Syst

7.1.2 Description of simulation setup

The heart of the improvement made to the approximate response time analysis is
a new definition of ISet2

ijc (t). We have implemented the response-time equations of
Appendix A which will show the effects of our improvements in a realistic scenario.

The setup of the simulation is as follows: a task set is generated according to input
parameters (system load, number of tasks within a transaction, number of transactions
and jitter). To simulate an admission control situation, we calculate the response time
for a single low priority task instance subjected to admission control.

We have calculated and compared response times for our tighter analysis (Tight),
Palencia Gutiérrez and González Harbour’s original analysis (Orig) and the exact
analysis (Exact). The results in Sect. 7.1.3 have been obtained by taking the mean
value from 1000 generated task-sets for each point in each graph. The graphs in the
left and in the right columns also show the 95% confidence interval for these mean
values.

We have measured three metrics from the simulations:

• “Admission probability (%)”—This metric measures the fraction of cases, out of
the 1000 generated task sets, the admission control task passes the admission test,
i.e., its response time is lower than its deadline).

• “Response-time improvement (%)”—This metric measures the average and maxi-
mum improvement (over Original) in response time for the task subjected to admis-
sion control. Improvement in response time for the tight analysis, R

Tight
ua , is defined

as 1−R
Tight
ua /R

Orig
ua (and analogous for the Exact analysis). Note that for this metric

the original acts as baseline and thus only maximum and average improvement of
(Tight) and (Exact) (over (Orig)) are plotted. Also note that the maximum value is
one value (the maximum) out of 1000, which makes the behavior in these graphs
statistically uncertain (they show what is possible without quantifying probability
of occurrence).

• “Fraction of tasks with improvement (%)”—This metric measures the fraction of
admission control tasks that results in a lower response time, compared to the orig-
inal analysis (Orig). As for previous metric, the original approximate analysis is
used as a baseline; hence no curve is plotted for that method. Note that this metric
says nothing about the size of the improvements.

The first metric is to show what effect an improvement in response time could have
in a realistic scenario. The purpose of the last two metrics is to quantify the difference
in response time between the three analysis methods.

7.1.3 Simulation results

In the simulations we have varied our four task-generator parameters in different
ways. Figure 16 shows a subset of the simulation results. The exact analysis can
only be run on small task sets; hence it is not present for larger tasks sets. For every
parameter that is varied we show all three metrics described in the previous section,
corresponding to column one, two and three respectively in Fig. 16. (In Fig. 16, note
that “Tasks = x” denotes “x tasks/transaction”.)

Real-Time Syst

F
ig

.1
6

R
es

ul
ts

w
he

n
ev

al
ua

tin
g

th
e

tig
ht

ne
ss

Real-Time Syst

F
ig

.1
6

(c
on

ti
nu

ed
)

Real-Time Syst

Figures 16(a–i) corresponds to a base configuration where the number of tasks per
transaction is 6, the number of transactions is 3, system load is 80% and the load
of task under admission control is 2%.5 From this base configuration we vary the
number of tasks/transaction (a–c), number of transactions (d–f), jitter (g–i), while
keeping the other parameters constant.

Figures 16(a–c) shows the results when the number of tasks is varied between 1
and 13. For more than 5 tasks we can see in (a), that the admission probability for
(Tight) is around 12% higher than for (Orig). In (b) we see that the average response
time improvement of (Tight) is for 10 tasks over 15%, and that there are task sets
(although rare) where improvement of more than 50% can be obtained. In (c) we see
that when the number of tasks/transaction grows, so does the probability of a response
time improvement.

For Figs. 16(d–f), where the number of transactions is varied, a quite differ-
ent picture emerges. The difference between (Orig) and (Tight) gets smaller as the
number of transactions grows. This is not surprising, since in the case where the
tasks/transaction ratio approaches 1, there are very few offset relations among tasks
and the analysis approaches the analysis for tasks without offsets.

Figures 16(g–i) show what happens when jitter is varied. Not only does the ad-
mission probability decrease drastically, but also the relative improvement of (Tight)
over (Orig). This is mainly due to the fact that jitter contributes to ISet1

ijc , whereas

our improvement only affects ISet2
ijc (t). As ISet1

ijc accounts for an increasingly larger
fraction of the total response-time, the relative improvement of (Tight) decreases.
However, the absolute response-time improvement (not shown) and the number
of improvements (figure (i)) is not noticeably affected by the jitter. As the jitter
grows larger than the period (or larger than several periods) the effects of our im-
provements diminish further. For system with such large jitters (such as multime-
dia applications), other methods (Palencia Gutiérrez and González Harbour 1999;
Redell 2003) to reduce the estimated response-time can be combined with our pre-
sented method.

Finally, Figs. 16(j–l) correspond to a configuration where the number of transac-
tions is 1, system load 80%, and load of the task under admission control is 2%. This
type of scenario would occur in a system using a hybrid scheduling method, support-
ing both static cyclic scheduled tasks (corresponding to the single high priority trans-
action) and priority scheduled tasks running in the background of the static schedule
(Mäki-Turja et al. 2005). This situation shows where our method excels. All tasks
have offset relations among them, resulting in well over 30% better admission prob-
ability (4–9 tasks) over (Orig) and an average improvement of over 50% when the
number of tasks/transaction is more than 8. Another interesting thing is that (Exact)
and (Tight) always yield exact response-times. This comes from the fact that when
considering a transaction in isolation (no interference among several transactions) the
slanted stair interference function captures the worst case interference exactly.

5The execution time (C) is randomly generated and the deadline for the task under admission control is set
to C/utilization.

Real-Time Syst

7.2 Evaluating implementation efficiency

In order to evaluate and quantify the efficiency (with respect to execution time of
RTA) of the method presented in Sect. 6, we have implemented a set of approxi-
mate response-time techniques, using the complete set of response-time equations of
Appendix A. We compare five RTA methods:

• fast-tight, presented in this paper, is the method that is optimized the furthest with
respect to both analysis speed and tightness. The goal of this simulation study is to
quantify its efficiency with respect to execution time of the analysis.

• fast-slanted, presented in this, paper but without removing the slants (see Sect. 6.5).
The reason for including it in the analysis is to investigate the impact of reverting
back to a stepped stair interference function during response time calculations.

• tight, presented in Sect. 5. It is only optimized towards tightness. These three first
methods all produce the same tight response times.

• orig, presented by Palencia Gutiérrez and González Harbour (1998) and outlined
in Sect. 3, which is not optimized either for tightness nor for analysis speed. It is
included in the evaluation a baseline to compare to an existing technique and to
see if the relative performance degradation of tight, compared to orig, remains in
fast-tight when compared to fast-orig.

• fast-orig, a speed-up method of orig presented in (Mäki-Turja and Nolin 2004). It
is the fastest known RTA for tasks with offsets. It yields the same response times
as orig. It is included to see if the performance gain of fast-tight is comparable to
those of fast-orig.

7.2.1 Description of simulation setup

In our simulations we generate task sets, by the task generator presented in Sect. 7.1.1,
that are used as input to the different RTA implementations. The generated task sets
have the following different characteristics compared to Sect. 7.1.1:

• Total system load is 90%.
• The number of transactions is 10.
• Jitter (Jij) for each task is 20% of its transaction period.

The execution time for performing the RTA in Sect. 7.2.2 have been obtained by
taking the mean value from 50 generated task-sets for each point in each graph. We
have measured the execution time on a Pentium 4 laptop. The execution times are
plotted with 95% confidence interval for the mean values. Note that, for fast-orig,
fast-slanted, and fast-tight the execution times also include the time to perform the
pre-calculations presented in Sects. 6.4 and 6.5.

7.2.2 Simulation results

Figure 17(a) shows how the execution time of the five (although the 3 fast methods
are indistinguishable) RTA analysis varies with varying tasks/transaction. When the
number of tasks/transaction is 20, tight takes about 86 seconds whereas fast-tight
takes around 0.63 seconds, which is a speed up of well over two orders of magnitude.

Real-Time Syst

F
ig

.1
7

R
es

ul
ts

w
he

n
ev

al
ua

tin
g

an
al

ys
is

sp
ee

d

Real-Time Syst

Note also that, tight has a slight penalty to pay, compared to orig, due to more accurate
interference modeling.

Zooming in on the three fast analysis methods in Fig. 17(b), we see that fast-
tight and fast-orig are quite comparable in execution times. There are two, mutually
opposing, factors that affect their relative timing: The fast-tight method shortens its
execution time since it sometimes calculates lower response-times than the fast-orig
method (and hence terminate in fewer fix-point iterations). On the other hand the fast-
tight method has to spend more time performing pre-calculations and also perform
lookup in two different arrays during each fix-point iteration. In Fig. 17(b) we see
that fast-tight has consistently slightly longer execution time.

In Fig. 17(b) we also see that fast-slanted pays a price of slower fix-point con-
vergence due to the slanted interference function as did tight over orig. We conclude
from Fig. 17(a) and 17(b) that the main contribution of speeding up the response times
comes from static representation and lookup, but that reverting back to a stepped stair
function gives an additional speedup of just above 20%.

In Fig. 17(c) we compare the pre-calculations of the three fast methods. Here
we can see that the pre-calculations of fast-tight and fast-slanted are approximately
twice that of fast-orig. This is expected since they calculate two sets of arrays as op-
posed to a single set in fast-orig. Comparing with Fig. 17(b) one can see that the pre-
calculations constitute less than 1% of the total analysis time. One can also discern
the complexity of the pre-calculations, and the slope is less steep than what would
be expected of a naive implementation with worst-case complexity of O(|Γi |3),
this is partly due to our (sorting based) O(|Γi |2 log |Γi |) implementation of the pre-
calculations, and partly because the worst (theoretical) case, with |Γi |2 elements in
the pre-calculated arrays, never occurs.

We have also simulated an admission control situation. In an admission control
situation, a single (low priority) task instance is added to an (otherwise schedulable)
set of already admitted tasks, and its response-time is calculated and compared with
its deadline (to decide if the task can be admitted to the system or not). In the ad-
mission control the pre-calculation of the already admitted tasks is not included in
the execution time. In these simulations, for 20 tasks/transaction, the tight method
takes about 92 milliseconds whereas the fast-tight takes 0.19 milliseconds, which is a
speedup with a factor of almost 500. When performing admission control, the speed
up in our method is isolated due to two factors: (1) pre-calculations are already done,
and (2) no interference from other tasks in the same transaction needs to be accounted
for. As can be seen in Appendix A, the exact interference-function is used to account
for interference from tasks in the same transaction. Since fast-tight only improves
the approximate interference-function, we isolate our improvement by not needing to
account for interference from tasks in the same transaction.

These evaluations show that combining our presented fast and tight methods for
response time analysis, one gets the better of two worlds; a response time analysis
method that is both fast and tight, significantly outperforming previous methods.

Real-Time Syst

8 Conclusions

We have in this paper presented two improvements to existing methods to calcu-
late approximate response times for tasks with offsets. One provides tighter response
times alleviating the problem of too pessimistic results. The second improvement
introduces a lookup technique that reduces the calculations done at each fix-point
iteration step which considerably shortens the time to calculate the response times.
We have also combined these two improvements in one single fast-and-tight RTA
method.

For the tight RTA method we prove that it never calculates greater response-times
than the method in (Palencia Gutiérrez and González Harbour 1998). Furthermore,
we prove that our method never underestimates the interference caused by higher
priority tasks. Hence, it calculates a safe and tight approximation of the actual worst-
case response-time.

We exploit a misconception in previous methods concerning the interference a
task poses on a lower priority one. The concept “imposed” interference is introduced,
and is shown to more accurately capture this interference compared to the previously
accepted concept of “released for execution” interference. This situation is analogous
to floating point addition where “released for execution” interference corresponds to
calculations with integer values (rounded up) whereas “imposed” interference cor-
responds to calculations with the more accurate floating point values (resulting in a
lower total sum) with a round up only at the final calculation step.

Simulations show that the improvement is significant (especially when number
of tasks per transaction ratio is high), typically about 15% tighter response times in
50% of the cases, resulting in 12% higher admission probability for low priority task
instance subjected to admission control. In certain circumstances the improvement
is much greater, and with just one transaction (corresponds to a static schedule) our
proposed method calculates exact response times.

The main effort in performing RTA for tasks with offsets is to calculate how higher
priority tasks interfere with a task under analysis. The key to calculate fast response
times is to find a repetitive pattern and store that pattern statically, and during re-
sponse time calculations (fix-point iteration), use a simple table lookup. In a simu-
lation study we see that our combined fast-and-tight analysis gives speedups of over
two orders of magnitude for response-time analysis of entire task-sets and a speedup
of almost 500 times for single tasks, e.g., corresponding to an admission control sit-
uation.

Furthermore, our improvements are orthogonal and complementary to other pro-
posed extensions to the original offset analysis such as (Palencia Gutiérrez and
González Harbour 1999; Redell 2003) which means they can easily be incorporated
into eachother. Also, RTA for hybrid scheduled EDF and FPS systems (Palencia and
González Harbour 2003a) uses heavy calculations of task interference (using similar
interference functions as in this paper) and should benefit from the methods described
in this paper to speed up the analysis.

Faster RTA has several positive practical implications: (1) Engineering tools (such
as those for task allocation and priority assignment) can feasibly rely on RTA and
use the task model with offsets, and (2) on-line scheduling algorithms, e.g., those

Real-Time Syst

performing admission control, can use accurate on-line schedulability tests based on
RTA. Tighter RTA has the practical implications to allow more efficient hardware
utilization. Either more functions can be fitted into the same amount of hardware, or
less powerful (cheaper) hardware can be used for the existing functions. Hence, our
fast-and-tight analysis is a very attractive choice to include in engineering tools and/or
admission control software for resource constrained embedded real-time systems.

Appendix A: Complete set of RTA formulae

In this appendix we provide the complete set of formulae to calculate the worst case
response time, Rua , for a task under analysis, τua , as presented in Palencia Gutiérrez
and González Harbour (1998).

The interference transaction Γi poses on a lower priority task, τua , if τic coincides
with the critical instant, is defined by (see (3) in this paper):

Wic(τua, t) =
∑

∀j∈hpi(τua)

(⌊
Jij + Φijc

Ti

⌋
+

⌈
t − Φijc

Ti

⌉)
Cij

((26) in Palencia Gutiérrez and González Harbour 1998) where the phase between
task τij and the candidate critical instant task τic is defined as:

Φijc = Ti − (Oic + Jic − Oij)modTi

((17) in Palencia Gutiérrez and González Harbour 1998).
The approximation function for transaction Γi which considers all candidate τic-s

simultaneously, is defined by (see (4) in this paper):

W ∗
i (τua,w) = max

∀c∈hpi(τua)
Wic(τua,w)

((27) in Palencia Gutiérrez and González Harbour 1998).
The length of a busy period, for τua , assuming τuc is the candidate critical instant,

is defined as (Note that the approximation function is not used for Γu):

Luac = Bua + (p − p0,uac + 1)Cua + Wuc(τua,Luac) +
∑
∀i
=u

W ∗
i (τua,Luac)

((30) in Palencia Gutiérrez and González Harbour 1998) where p0,uac denotes the
first, and pL,uac the last, task instance, of τua , activated within the busy period. They
are defined as:

p0,uac = −
⌊

Jua + Φuac

Tu

⌋
+ 1

((29) in Palencia Gutiérrez and González Harbour 1998) and

pL,uac =
⌈

Luac − Φuac

Tu

⌉

((31) in Palencia Gutiérrez and González Harbour 1998).

Real-Time Syst

In order to get the worst case response time for τua , we need to check the response
time for every instance, p ∈ p0,uac . . . pL,uac, in the busy period. Completion time of
the p’th instance is given by:

wuac(p) = Bua + (p −p0,uac +1)Cua +Wuc(τua,wuac(p)+
∑
∀i
=u

W ∗
i (τua,wuac(p))

((28) in Palencia Gutiérrez and González Harbour 1998).
The corresponding response time (for instance p) is then:

Ruac(p) = wuac(p) − Φuac − (p − 1)Tu + Oua

((32) in Palencia Gutiérrez and González Harbour 1998).
To obtain the worst case response time, Rua , for τua , we need to consider every

candidate critical instant, τuc (including τua itself), and for each such candidate every
possible instance, p, of τua :

Rua = max
∀c∈hpu(τua)∪a

[
max

p=p0,uac,...,pL,uac

(Ruac(p))
]

((33) in Palencia Gutiérrez and González Harbour 1998).

Appendix B: Proofs of theorems

In this appendix we provide proofs of Theorems 1, 6, 7 and 8. We will perform all
proofs by algebraic manipulation and use braces to highlight the expression that is
manipulated in each step. We also annotate braces with the equations, properties,
lemmas, or assumptions referred to when performing some manipulations.

When performing the manipulations we will, e.g., rely on the following proper-
ties:

(max) The maxv operator allows terms that are constant with respect to the maxi-
mization variable (v) to be moved outside the maximization operation:

max
v

(Xv + Y) = max
v

(Xv) + Y.

(sum) Summation over a set of terms can be divided into two separate summations:
∑

v

(Xv + Yv) =
∑

v

Xv +
∑

v

Yv

(ceil) When taking the ceiling (� �) of a set of terms, terms that are known to be
integers can be moved outside of the ceiling/floor expression:

X ∈ Z ⇒ �X + Y � = X + �Y �
(floor) When taking the floor (� �) of a set of terms, terms that are known to be

integers can be moved outside of the ceiling expression:

X ∈ Z ⇒ �Y + X� = X + �Y �

Real-Time Syst

(mod) Adding a positive term subjected to a modulus Y operation, X modY , with is
negative counterpart, (−X)modY , will result in Y :

X modY + (−X)modY = Y

Theorem 2 Wic(τua, t) using definition of Φijc according to (1) is algebraically
equivalent to using (17) in (Palencia Gutiérrez and González Harbour 1998).

Proof Let x = Oij and y = Jic + Oic . With the definitions of x and y the two dif-
ferent definitions of Φijc (denoted Φ17

ijc and Φ3
ijc respectively) can be reformulated

as:

Φ3
ijc = (x − y)modTi

(reformulation of (1)),

Φ17
ijc = Ti − (y − x)modTi,

(reformulation of (17) in Palencia Gutiérrez and González Harbour 1998). We
divide the proof into two cases, (x − y)modTi
= 0 and (x − y)modTi = 0:
(x − y)modTi
= 0: Assume:

(x − y)modTi = k and (y − x)modTi = k′︸ ︷︷ ︸
(mod)

⇒ k + k′ = Ti

⇒ Ti − k′ = k︸ ︷︷ ︸
def. of Φ17

ijc

⇒ Ti − (y − x)modTi = k.

Thus the two definitions of Φijc are equivalent. (x − y)modTi = 0: Note that
Φijc with the two different definitions are

Φ3
ijc = 0 by definition,

Φ17
ijc = Ti since (x − y)modTi = 0︸ ︷︷ ︸

(mod)

⇒ Ti − 0 = (y − x)modTi.

So using the two values of Φijc in Wic(τua, t) (see (26) in Palencia Gutiérrez and
González Harbour 1998) it suffices to investigate:

⌊
Jij + Ti

Ti

⌋
︸ ︷︷ ︸

+
⌈

t − Ti

Ti

⌉
︸ ︷︷ ︸

?=
⌊

Jij + 0

Ti

⌋
+

⌈
t − 0

Ti

⌉
,

⌊
Jij

Ti

+ Ti

Ti

⌋
︸ ︷︷ ︸

(floor)

+
⌈

t

Ti

− Ti

Ti

⌉
︸ ︷︷ ︸

(ceil)

?=
⌊

Jij

Ti

⌋
+

⌈
t

Ti

⌉
,

Real-Time Syst

⌊
Jij

Ti

⌋
+ 1 +

⌈
t

Ti

⌉
− 1

︸ ︷︷ ︸
?=

⌊
Jij

Ti

⌋
+

⌈
t

Ti

⌉
,

⌊
Jij

Ti

⌋
+

⌈
t

Ti

⌉
=

⌊
Jij

Ti

⌋
+

⌈
t

Ti

⌉
. �

Theorem 6 W ∗
i (τua, t) as defined in (4) and W ∗

i (τua, t) as defined in (9) are equiv-
alent.

Proof

W ∗
i (τua, t)︸ ︷︷ ︸

(9)

=

J ind
i (τua) + T ind

i (τua, t)︸ ︷︷ ︸
(11)

=

J ind
i (τua) + max

∀c∈hpi(τua)
W+

ic (τua, t)︸ ︷︷ ︸
(12)

=

J ind
i (τua) + max

∀c∈hpi(τua)

(∑
∀j∈hpi(τua)

(I Set1
ijc + ISet2

ijc (t)) − J ind
i (τua)

)

︸ ︷︷ ︸
(max)

=

J ind
i (τua)︸ ︷︷ ︸+ max

∀c∈hpi(τua)

(∑
∀j∈hpi(τua)

(I Set1
ijc + ISet2

ijc (t))

)
− J ind

i (τua)︸ ︷︷ ︸ =

max
∀c∈hpi(τua)

∑
∀j∈hpi(τua)

(I Set1
ijc + ISet2

ijc (t))

︸ ︷︷ ︸
(3)

=

max
∀c∈hpi(τua)

Wic(τua, t)

︸ ︷︷ ︸
(4)

= W ∗
i (τua, t).

�

Before proving Theorem 7 we need to establish some lemmas.

Lemma 1 Regardless of candidate critical instant c: ISet2
ijc (Ti) = Cij .

Proof

ISet2
ijc (Ti)︸ ︷︷ ︸

(2)

(1) =
⌈

Ti − Φijc

Ti

⌉
︸ ︷︷ ︸

0 ≤ Φijc < Ti (see (1))

Cij

Real-Time Syst

(2) = 1Cij︸︷︷︸
(3) = Cij . �

Lemma 2 Assume t = k ∗ Ti + t ′ (where k ∈ N and 0 ≤ t ′ < Ti), then ISet2
ijc (t) =

k ∗ ISet2
ijc (Ti) + ISet2

ijc (t ′).

Proof

ISet2
ijc (t)︸ ︷︷ ︸

(2)

?= k ∗ ISet2
ijc (Ti)︸ ︷︷ ︸
Lemma 1

+ ISet2
ijc (t ′)︸ ︷︷ ︸

(2)

(1)

⌈
t − Φijc

Ti

⌉
︸ ︷︷ ︸

Assumption

Cij
?= kCij +

⌈
t ′ − Φijc

Ti

⌉
Cij

(2)

⌈
k ∗ Ti + t ′ − Φijc

Ti

⌉
︸ ︷︷ ︸

Cij
?= kCij +

⌈
t ′−Φijc

Ti

⌉
Cij

(3)

⌈
k ∗ Ti

Ti

+ t ′ − Φijc

Ti

⌉
︸ ︷︷ ︸

(ceil) ∧k ∈ N

Cij
?= kCij +

⌈
t ′ − Φijc

Ti

⌉
Cij

(4)

(
k +

⌈
t ′ − Φijc

Ti

⌉)
Cij

︸ ︷︷ ︸
?= kCij +

⌈
t ′ − Φijc

Ti

⌉
Cij

(5) kCij +
⌈

t ′ − Φijc

Ti

⌉
Cij = kCij +

⌈
t ′ − Φijc

Ti

⌉
Cij . �

Lemma 3 T ind
i (τua, Ti) = ∑

∀j∈hpi(τua) Cij .

Proof

T ind
i (τua, Ti)︸ ︷︷ ︸

(11)

(1) = max
∀c∈hpi(τua)

W+
ic (τua, Ti)︸ ︷︷ ︸

(12)

(2) = max
∀c∈hpi(τua)

(∑
∀j∈hpi(τua)

(I Set1
ijc + ISet2

ijc (Ti))

︸ ︷︷ ︸
(sum)

−J ind
i (τua)

)

Real-Time Syst

(3) = max
∀c∈hpi(τua)

(∑
∀j∈hpi(τua)

I Set1
ijc +

∑
∀j∈hpi(τua)

I Set2
ijc (Ti)︸ ︷︷ ︸
Lemma 1

−J ind
i (τua)

)

(4) = max
∀c∈hpi(τua)

(∑
∀j∈hpi(τua)

I Set1
ijc +

∑
∀j∈hpi(τua)

Cij − J ind
i (τua)

)

︸ ︷︷ ︸
(max)

(5) =
∑

∀j∈hpi(τua)

Cij + max
∀c∈hpi(τua)

(∑
∀j∈hpi(τua)

I Set1
ijc − J ind

i (τua)

)

︸ ︷︷ ︸
(max)

(6) =
∑

∀j∈hpi(τua)

Cij + max
∀c∈hpi(τua)

∑
∀j∈hpi(τua)

I Set1
ijc

︸ ︷︷ ︸
(10)

−J ind
i (τua)

(7) =
∑

∀j∈hpi(τua)

Cij + J ind
i (τua) − J ind

i (τua)︸ ︷︷ ︸
(8) =

∑
∀j∈hpi(τua)

Cij . �

Theorem 7 Assume spill tasks are accounted for, and t = k ∗ Ti + t ′ (where k ∈ N

and 0 ≤ t ′ < Ti) then

T ind
i (τua, t) = k ∗ T ind

i (τua, TI) + T ind
i (τua, t

′).

Proof

T ind
i (τua, t)︸ ︷︷ ︸

(11)

(1) = max
∀c∈hpi(τua)

W+
ic (τua, t)︸ ︷︷ ︸

(12)

(2) = max
∀c∈hpi(τua)

∑
∀j∈hpi(τua)

(I Set1
ijc + ISet2

ijc (t)︸ ︷︷ ︸
Lemma 2

) − J ind
i (τua)

(3) = max
∀c∈hpi(τua)

∑
∀j∈hpi(τua)

(I Set1
ijc + k ∗ ISet2

ijc (Ti)︸ ︷︷ ︸
Lemma 1

+ISet2
ijc (t ′)) − J ind

i (τua)

(4) = max
∀c∈hpi(τua)

∑
∀j∈hpi(τua)

(I Set1
ijc + kCij + ISet2

ijc (t ′)) − J ind
i (τua)

︸ ︷︷ ︸
(sum)

Real-Time Syst

(5) = max
∀c∈hpi(τua)

(∑
∀j∈hpi(τua)

kCij +
∑

∀j∈hpi(τua)

(I Set1
ijc + ISet2

ijc (t ′)) − J ind
i (τua)

)

︸ ︷︷ ︸
(max)

(6) =
∑

∀j∈hpi(τua)

kCij

︸ ︷︷ ︸
+ max

∀c∈hpi(τua)

∑
∀j∈hpi(τua)

(Set1
ijc +ISet2

ijc (t ′)) − J ind
i (τua)

(7) = k ∗
∑

∀j∈hpi(τua)

Cij

︸ ︷︷ ︸
Lemma 3

+ max
∀c∈hpi(τua)

∑
∀j∈hpi(τua)

(I Set1
ijc + ISet2

ijc (t ′)) − J ind
i (τua)

(8) = k ∗ T ind
i (τua, Ti) + max

∀c∈hpi(τua)

∑
∀j∈hpi(τua)

(I Set1
ijc + ISet2

ijc (t ′)) − J ind
i (τua)

︸ ︷︷ ︸
(12)

(9) = k ∗ T ind
i (τua, Ti) + max

∀c∈hpi(τua)
W+

ic (τua, t
′)

︸ ︷︷ ︸
(11)

(10) = k ∗ T ind
i (τua, Ti) + T ind

i (τua, t
′). �

In proving Theorem 8 we will use the definition of wuac(p) ((28) in Palencia
Gutiérrez and González Harbour 1998, see Appendix A), the worst case response
time of τua with τuc as the one coinciding with the critical instant, simplified and
rewritten as a function of time, f (t):

f (t) = K1 + Wuc(τua, t) +
∑
∀i
=u

W ∗
i (τua, t) (28′)

where K1 is some constant value. We note that a solution to (28′) exists, and fix-
point convergence is reached, when f (t) = t , for some t . Since both exact (Wuc) and
approximate (W ∗

i) interference functions are monotonically increasing, we conclude
that f (t) is also monotonically increasing.

Lemma 4 The smallest solution to (28′), denoted s, cannot exist where f (t) has a
derivative greater than or equal to 1 (i.e. where f ′(t) ≥ 1).

Proof From (Sjödin and Hansson 1998) we know that:

1. For any monotonically increasing response-time equation, for any p < s, f (p) >

p holds.
2. We can start fix-point iteration from any point p < s and still find the smallest

fix-point s.
3. At a point p < s where f ′(p) ≥ 1, consider Fig. 18, the line y = f (p) cannot be

converging with line y = p (which has a derivative of 1).

Real-Time Syst

Fig. 18 Fix-Point Iteration
when f ′(t) ≥ 1

Assume that s is a point where f ′(t) ≥ 1 then (by the continuousness of f (t))
there exists a point p = s − ε (for some small ε) where f ′(p) ≥ 1. Then by 1
f (p) > p, and by 3 the lines will not be converging. However, by 2 it should be
possible to start fix-point iteration at p and converge into s.

A contradiction has been reached and the assumption does not hold. Hence the
lemma holds. �

Theorem 8 Equation (28′) in Appendix B, cannot have a solution at a time t where
any approximate interference function has a derivative greater than or equal to one.

Proof None of the terms in f (t) has a negative derivative. Hence, if for time t any of
the approximate interference functions W ∗

i (τua, t) has a derivative of one,6 then the
function f (t) has a derivative greater than or equal to one. Then, by Lemma 4, the
theorem holds. �

References

Audsley NC, Burns A, Tindell K, Richardson MF, Wellings AJ (1993) Applying new scheduling theory to
static priority pre-emptive scheduling. Softw Eng J 8(5):284–292

Audsley NC, Burns A, Davis RI, Tindell K, Wellings AJ (1995) Fixed priority pre-emptive scheduling: an
historical perspective. Real-Time Syst 8(2–3):173–198

Fersman E (2003) A generic approach to schedulability analysis of real-time systems. PhD thesis, Uppsala
University

Joseph M, Pandya P (1986) Finding response times in a real-time system. Comput J 29(5):390–395
Liu C, Layland J (1973) Scheduling algorithms for multiprogramming in a hard-real-time environment.

J ACM 20(1):46–61
Mäki-Turja J, Nolin M (2004) Faster response time analysis of tasks with offsets. In: Proceedings of the

10th IEEE real-time technology and applications symposium (RTAS), May 2004
Mäki-Turja J, Hänninen K, Nolin M (2005) Efficient development of real-time systems using hybrid

scheduling. In: International conference on embedded systems and applications (ESA), June 2005
Palencia Gutiérrez JC, González Harbour M (1998) Schedulability analysis for tasks with static and dy-

namic offsets. In: Proceedings of the 19th IEEE real-time systems symposium (RTSS), December
1998

6The derivative of an approximation function W∗
i
(τua, t) is either one (for a slant) or zero (for a stair).

Real-Time Syst

Palencia Gutiérrez JC, González Harbour M (1999) Exploiting precedence relations in the schedulability
analysis of distributed real-time systems. In: Proceedings of the 20th IEEE real-time systems sympo-
sium (RTSS), December 1999, pp 328–339

Palencia JC, González Harbour M (2003a) Offset-based response time analysis of distributed systems
scheduled under EDF. In: Proceedings of the 15th Euromicro conference on teal-time systems, June
2003

Palencia Gutiérrez JC, González Harbour M (2003b) Response time analysis for tasks scheduled under
EDF within fixed priorities. In: Proceedings of the 24th IEEE real-time systems symposium (RTSS),
December 2003

Pop T, Eles P, Peng Z (2003) Schedulability analysis for distributed heterogeneous time/event triggered
real-time systems In: Proceedings of the 15th Euromicro conference on real-time systems, July 2003

Rahni A, Traore K, Grolleau E, Richard M (2007) Comparison of two worst-case response time analysis
methods for real-time transactions. In: Junior researchers workshop on real-time computing, March
2007

Redell O (2003) Accounting for precedence constraints in the analysis of tree-shaped transactions in dis-
tributed real-time systems. Technical Report TRITA-MMK 2003:4, Dept. of Machine Design, KTH

Regher J, Reid A, Webb K, Parker M, Lepreau J (2003) Evolving real-time systems using hierarchical
scheduling and concurrency analysis. In: Proceedings of the 24th IEEE real-time systems symposium
(RTSS), December 2003. IEEE Computer Society, Los Alamitos

Sha L, Abdelzaher T, Årzén K-E, Cervin A, Baker TP, Burns A, Buttazzo G, Caccamo M, Lehoczky JP,
Mok AK (2004) Real time scheduling theory: a historical perspective. Real-Time Syst 28(2/3):101–
155

Sjödin M, Hansson H (1998) Improved response-time calculations. In: Proceedings of the 19th IEEE real-
time systems symposium (RTSS), December 1998. http://www.docs.uu.se/~mic/papers.html

Tindell K (1992) Using offset information to analyse static priority pre-emptively scheduled task sets.
Technical Report YCS-182, Dept. of Computer Science, University of York, England

Jukka Mäki-Turja is senior lecturer and researcher at Mälardalen Real-Time
Research Centre. His research interest lies in design and analysis of predictable
real-time systems. Jukka received his PhD in computer science from Mälardalen
University in 2005 with response time analysis for tasks with offsets as focus.

Mikael Nolin is a professor in real-time system at Mälardalen Real-Time Research
Centre. Since 2002 he has been active at MRTC, focusing his research towards
techniques and tools for development of predictable distributed embedded control
systems. He also holds an industrial position at the company CC Systems, where
he provides expertise in development of software different vehicle applications
and systems. Mikael received his PhD and MSc in computer science from Uppsala
University in 2000 and 1995 respectively.

	Efficient implementation of tight response-times for tasks with offsets
	Abstract
	Introduction
	Paper outline

	Background, motivation and related work
	Existing offset RTA
	System model
	Response-time analysis
	Interference function
	Approximation function

	The concept of interference
	Tight offset RTA
	Using imposed interference
	Correctness criteria
	Discussion

	Fast and tight analysis
	Periodicity of interference
	Preliminaries
	Operation: Order
	Operation: Merge
	Operation: Split

	Jitter and time induced interference
	Representing time induced interference
	Spill task not accounted for
	Spill task accounted for

	Increasing performance by removing slants
	Tindi(tauua, t) using lookup
	Space and time complexity

	Evaluation
	Evaluating response-time precision
	Description of task generator
	Description of simulation setup
	Simulation results

	Evaluating implementation efficiency
	Description of simulation setup
	Simulation results

	Conclusions
	Appendix A: Complete set of RTA formulae
	Appendix B: Proofs of theorems
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

