
A hierarchical approach for reconfigurable and adaptive embedded systems∗

Moris Behnam, Thomas Nolte, Insik Shin
Mälardalen Real-Time Research Centre

Mälardalen University, Västerås, SWEDEN

Abstract

Adaptive and reconfigurable embedded systems have
been gaining an increasing interest in the past year from
both academics and industry. This paper presents our work
on hierarchical scheduling frameworks (HSF) intended as
a backbone architecture facilitating the implementation of
operating system support for adaptability and reconfigura-
bility.

1 Introduction

The work presented in this paper is motivated by the
needs of adaptability and reconfigurability in multiple em-
bedded systems domains. In this paper we target mainly the
automotive domain; however the approach is also suitable
to other application domains such as robotics. We present
our work based on the hierarchical scheduling framework
(HSF) [15, 16] as backbone architecture for applications
with high requirements on adaptation and reconfiguration.

Automotive software systems are traditionally rather
static in terms of their provided functionality, how they are
configured, and where they are physically located. How-
ever, recent trends indicate an increased interest towards
dynamic automotive systems [2]. Due to high requirements
on safety, predesigned modes are created to cover for all
possible usage and failure scenarios. At the same time,
cost, weight and complexity motivated trends investigate
the possibility of integrating more and more software on
fewer electronic control units (ECU) [17], which, in turn,
potentially increases the risk of single point of failure sce-
narios. Having fewer ECUs means that failure of one ECU
has the potential to bring several functions down, functions
that used to be distributed over multiple ECUs.

For safety critical systems, in the case of failure, certain
functionality must always be provided. Firstly, if a failure
occurs while driving the car it must be possible to bring the
car to a safe state. A scenario of a car being uncontrollable

∗The work in this paper is supported by the Swedish Foundationfor
Strategic Research (SSF), via the research programme PROGRESS.

due to a software failure would be unacceptable. Secondly,
if possible, it is desirable if the car under failure provides a
limited limp back home functionality, i.e., a set of functions
allowing the driver to bring the car to repair, even if parts of
the system have failed.

From an adaptability and configurability point of view,
if one part of the system fails due to, e.g., an accident/crash
with the car or due to some internal failure, functionality
can be migrated to other nodes, bringing the car to a safe
state. This can be provided by either static predesigned
modes or by a more dynamic adaptation and reconfigura-
tion functionality with the possibility of coping with more
complex scenarios.

Robotics is another targeted domain, and we distinguish
robotics used for automation from robotics used in the field.

Robotics used for automation is typically found along
assembly lines, and they have high requirements on up-
time. If an assembly line would be stopped, this can cause
large costs to the manufacturer. In other words, changing,
maintaining and adding functionality to the assembly line
should not require the whole system to be stalled. The sys-
tem should provide the possibility of online reconfiguration,
tuning and monitoring, in order to minimize downtime.

Field robotics often relies on sensors in order to react on
its (sometimes) dynamic environment. These sensors trig-
ger different functionality and actions to be taken depending
on the current situation.

Modes can be designed for specific purposes as a re-
action to the robot’s environment. For example, a trac-
ing robot searching for a specific target can be in different
modes depending on if it is lost or if it knows where it is
going. Also, the trigger of specific sensors might trigger a
more sensitive motion control, whereas normal behaviour
would be less sensitive.

These modes can be offline designed, in the case when
all possible modes can be predicted and managed before-
hand. Dealing with more complex scenarios, the design can
be more dynamic as a result of using online modes.

In summary, looking at the abovementioned application
domains, there is a great potential for protocols, mechanism
and architectures providing adaptability and reconfigurabil-
ity as a first class citizen.



In the following sections, the HSF is presented and how
it provides operating system support for adaptability includ-
ing policies and algorithms for resource reconfiguration. Fi-
nally, our ongoing work on admission control functions is
presented, and the paper is concluded.

2 The hierarchical scheduling framework

2.1 What is HSF?

The hierarchical scheduling framework (HSF) has been
introduced to support hierarchical resource sharing among
applications under different scheduling services. The hier-
archical scheduling framework can be generally represented
as a tree of nodes, where each node represents an applica-
tion with its own scheduler for scheduling internal work-
loads (e.g., threads), and resources are allocated from a par-
ent node to its children nodes.

From a general point of view, it is desirable that a hi-
erarchical scheduling framework can support the following
properties; (1)independency: i.e., that the fulfilment of tem-
poral requirements (schedulability) of a subsystem can be
analyzed independently of other subsystems as there will
be no unpredictable interference among subsystems. (2)
abstraction: i.e., that a subsystem imposes minimal tempo-
ral requirements on its environments in order to guarantee
functional and extra-functional correctness. (3)universal-
ity: i.e., that any scheduler can be used within a subsystem,
allowing for the most appropriate scheduler to be used for a
specific function. (4)flexibility: i.e., it should enable adap-
tation and reconfiguration of its subsystems, implementing
operating system support for adaptability including policies
and algorithms for resource reconfiguration.

2.2 What are the benefits?

The HSF has been constructed withmodularityas a main
criterion. Component based design has been widely ac-
cepted as a methodology for designing and developing com-
plex systems through systematic abstraction and composi-
tion. The HSF provides means for decomposing a complex
system into well-defined parts, calledsubsystems, and for
interfacesspecifying the relevant properties of these sub-
systems precisely, such that subsystems can be indepen-
dently developed and assembled in different environments.
The HSF provides a means for composing subsystems into
a subsystem assembly, orcomposite, according to the prop-
erties specified by their interfaces, facilitating the reuse of
subsystems. A challenging problem in composing subsys-
tems is to support the principle ofcomposabilitysuch that
properties established at the subsystem level also hold at
the composite level. The HSF can be effectively useful in
supporting composability on timing properties in the de-
sign and analysis of real-time systems, since it allows the

system-level timing property to be established by combin-
ing the subsystem-level timing properties (specified by in-
dividual subsystem interfaces).

The HSF can be used to support multiple applications
while guaranteeing independent execution of those applica-
tions. This can be correctly achieved when the system pro-
videspartitioning, where the applications may be separated
functionally for fault containment and for compositional
verification, validation and certification. The HSF pro-
vides such a partitioning, preventing one partitioned func-
tion from causing a failure of another partitioned function
in the time domain.

The HSF is particularly useful in the domain of open en-
vironments, where applications may be developed and vali-
dated independently in different environments. For exam-
ple, the HSF allows an application to be developed with
its own scheduling algorithm internal to the application and
then later included in a system that has a different meta-
level scheduler for scheduling applications.

2.3 Enabling adaptability and reconfigurability

The HSF is very useful when it comes to the implemen-
tation of operating system support for adaptability and re-
configurability needed in dynamic open systems, where ap-
plications (one or more subsystems) may be allowed to join
and/or leave the system during runtime. In allowing such
functionality, a properadmission control(AC) must be pro-
vided. Also, the HSF allows for a convenient implementa-
tion of quality of service management policies, allowing for
a dynamic allocation of resources to subsystems.

2.4 Related work on HSFs

Over the years, there has been a growing attention to
HSFs for real-time systems. Since Deng and Liu [6] pro-
posed a two-level HSF for open systems, several stud-
ies have followed proposing its schedulability analysis [8,
9]. Various processor reource models, such as bounded-
delay [12] and periodic [10, 15], have been proposed for
multi-level HSFs, and schedulability analysis techniques
have been developed for the proposed processor mod-
els [1, 5, 7, 10, 14]. The work in this paper extends [15, 16].

3 Admission control

The admission control (AC) applies one or more algo-
rithms to determine if a new application (consisting of one
or multiple subsystems) can be allowed to join the system
and start execution (admission) without violating the re-
quirements of the already existing applications (or the re-
quirements of the whole system). The decision of the AC
depends on the state of the system resources and the re-
sources required by the new application asking for admis-
sion. If there are enough resources available in the system,



the application will be admitted; otherwise the application
will be rejected.

In general, since the AC uses online algorithms the
complexity and overhead of implementing these algorithms
should be very low for several reasons, such as maintaining
scalability of the AC and minimizing its interference on the
system. Hence, one objective in designing the AC concerns
keeping the input to these algorithms as simple as possi-
ble, e.g., the resource requirement for each individual task
could be abstracted to the subsystem level. Another objec-
tive concerns minimizing interference between the AC and
the system online, making it desirable to perform as much
work as possible offline.

3.1 Resources

The resourcesconsidered by the AC may include, but
are not limited to,CPU resources,memoryresources,net-
work resource andenergyresources. Initially, we have been
focusing on CPU and network resources, and are now also
looking at memory resources.

CPU resources When using the HSF, traditional schedu-
lability algorithms can be used in order to check the CPU
resources, e.g., by using the global schedulability test in
the HSF [15, 16]. This algorithm depends on the type of
system level scheduler used, e.g., EDF, FPS, etc. The AC
checks the schedulability condition of the system including
the new subsystem. If the system is still schedulable, the
new subsystem will pass this test; otherwise the new appli-
cation will be rejected. In using this test, it is guaranteed
that all hard real time requirements will be met. The input
to the algorithm is the subsystem interface (subsystem bud-
get and period) of each running subsystem together with the
interface of the new subsystem. Note that these parameters
are evaluated and determined during the development of the
subsystem (offline).

Memory resources When allowing for a new application
to enter the system, the AC should guarantee that there is
sufficient memory space to be used by all subsystems. Oth-
erwise, unexpected problems may happen during run time.
In a similar way as for CPU resources, the maximum mem-
ory space required by each subsystem is evaluated during
its development. In the AC test, a simple algorithm can be
used to check if there is enough memory space available
in the system, by checking if the summation of the maxi-
mum memory space for all subsystems is less than or equal
to the memory space provided by the platform. Such an
algorithm is very simple; however, the accuracy of the re-
sult is not high as all applications will not likely need their
specified maximum memory space at the same time. Higher
efficiency can be achieved by the usage of algorithms such
as the approximated algorithm presented in [4].

Energy resources Most of the modern processors sup-
port changing the frequency and voltage of the CPU dur-

ing runtime, in controlling the CPU’s power consumption.
The HSF can use this feature to select the lowest fre-
quency/voltage that guarantees the hard real time require-
ments of the system. Decreasing the frequency of a pro-
cessor will increase the worst-case execution time (WCET)
of its tasks. In doing this, more CPU resources should be
allocated to subsystems in order to ensure that all hard real
time tasks will meet their deadlines. Looking at the HSF,
if predefined levels of frequencies are used, we can find a
subsystem interface for each frequency level for all subsys-
tems. Then, during runtime, the AC will make sure that
the processor is working with the lowest frequency keeping
the schedulability of the current set of subsystems. When
it is required to add a new subsystem, the AC will check
the schedulability condition with the current processor fre-
quency; if the system is deemed not schedulable, then the
AC will try with higher frequencies. When a subsystem is
removed from the system, the AC will try to reduce the fre-
quency of the CPU in order to reduce its power consump-
tion.

Network resources This type of resource is important in
distributed systems where there typically exist communica-
tions between nodes in the network. The network resource
is different from the other resources previously describedin
the sense that the network resource is shared by all nodes,
while the other resources are local to each node. When the
AC is faced with a request for adding a subsystem, it should
check if the communications requirements will be met, i.e.,
check if all important messages will be delivered in proper
time [13]. Selecting an algorithm that checks this resource
is more complex as there are many different requirements,
communication protocols, network types, etc. Covering all
these aspects might not be necessary but as an illustration
consider a simple algorithm which relies on the commu-
nication bandwidth. During the development of each sub-
system, their maximum communication bandwidth require-
ments should be evaluated such that the AC can use it in
order to check if the summation of required bandwidth for
all subsystems is less than 100%.

3.2 Admission control in distributed systems

Implementing the AC in distributed systems is more
complex than doing so for a single CPU. The main reason
for this is that the information needed by the AC algorithms
must be consistent. For example, when using the network
resources, awareness of all network users must be main-
tained by the AC, and these users are typically located on
many nodes throughout the distributed system. Commonly,
information on the current state is kept at one place, manag-
ing the information needed by the AC. Also, when an appli-
cation consists of more than one subsystem, and these sub-
systems are located at different nodes, all these subsystems
should pass the AC tests before admitting the application.



In designing the AC we have identified 3 different ap-
proaches based on where the AC test will be implemented.

• A specialMaster Node (MA) will implement the AC
tests of all resources in the system. Only the MA
will have information about resources in the system.
Hence, consistency is not a problem, it is easy to de-
termine the order between AC requests, and the AC
does not have to contact multiple nodes in getting the
current system state as only a single AC request to the
MA is needed. On the downside the MA is a single
system level point of failure.

• All Nodes (AN) will implement the AC tests of all re-
sources in the system. Each node should have the con-
sistent information of all resources that are used by the
system. Hence, in this fully distributed approach the
AC test can be performed without having to commu-
nicate with other nodes. Also, the approach is toler-
ant to failures. On the downside, consistency must be
maintained between all nodes, and ordering is more
complex compared with MA. Also, more memory is
needed in maintaining all resource state replicas.

• There will beOne Node (ON)implementing the AC
test of each resource in the system. Each node will
maintain information about the resources that is re-
sponsible for. Hence, there will be no issues with
respect to data consistencies between replicas of the
same information, but a single AC request might have
to communicate with a number of nodes in order to
get a valid system state. Also, ordering among AC re-
quests must be solved, and each resource owner will
be a single resource level point of failure.

As a first step, we consider the MA approach that we
believe possess strong properties in terms of flexibility, pro-
moting the evaluation of multiple algorithms. Also, this ap-
proach fits very well with the HSF.

4 Summary

To summarise we are currently active in 3 areas related to
the motivation of this paper. Firstly, we have done work in
the area of synchronization algorithms for HSFs [3]. When
multiple subsystems are sharing the same CPU it is likely
that they also share logical resources that must be protected
by the usage of a proper synchronization protocol. Sec-
ondly, we are implementing the HSF on a commercial op-
erating system on an application given by one of our indus-
trial partners. This implementation will have an important
role in evaluating the efficiency of the HSF itself, as well
as the AC approaches presented in this paper. Thirdly, we
are designing the admission control and quality of service
manager. These will also be implemented in the HSF im-
plementation. In summary we believe that the result of these

three areas will provide important knowledge towards adap-
tive and reconfigurable systems; results that have both high
industrial relevance as well as academic relevance.

Acknowledgements

The authors wish to express their gratitude to the anony-
mous reviewers for their helpful comments.

References

[1] L. Almeida and P. Pedreiras. Scheduling within temporal
partitions: response-time analysis and server design. InEM-
SOFT ’04, 2004.

[2] R. Anthony, A. Leonhardi, C. Ekelin, D. Chen, M. Törngren,
G. de Boer, I. Jahnich, S. Burton, O. Redell, A. Weber, and
V. Vollmer. A future dynamically reconfigurable automotive
software system. InElektronik im Kraftfahrzeug, June 2007.

[3] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: A
synchronization protocol for hierarchical resource sharing in
real-time open systems. InEMSOFT’07, 2007.

[4] M. Bohlin, K. Hänninen, J. Mäki-Turja, J. Carlson, and
M. Nolin. Safe shared stack bounds in systems with offsets
and precedences. Technical Report, Mälardalen University,
January 2008.

[5] R. I. Davis and A. Burns. Hierarchical fixed priority pre-
emptive scheduling. InRTSS, 2005.

[6] Z. Deng and J. W.-S. Liu. Scheduling real-time applications
in an open environment. InRTSS ’97, 1997.

[7] X. A. Feng and A. K. Mok. A model of hierarchical real-
time virtual resources. InRTSS, 2002.

[8] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open envi-
ronment for real-time applications. InRTSS, 1999.

[9] G. Lipari and S. Baruah. Efficient scheduling of real-time
multi-task applications in dynamic systems. InRTAS ’00,
2000.

[10] G. Lipari and E. Bini. Resource partitioning among real-
time applications. InECRTS, 2003.

[11] G. Lipari, J. Carpenter, and S. Baruah. A framework for
achieving inter-application isolation in multiprogrammed
hard-real-time environments. InRTSS ’00, 2000.

[12] A. Mok, X. Feng, and D. Chen. Resource partition for real-
time systems. InRTAS ’01, 2001.

[13] T. Nolte. Share-Driven Scheduling of Embedded Networks.
PhD thesis, Department of Computer and Science and Elec-
tronics, Mälardalen University, Sweden, May 2006.

[14] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H.
Klein. Analysis of hierar hical fixed-priority scheduling.In
ECRTS ’02, 2002.

[15] I. Shin and I. Lee. Periodic resource model for composi-
tional real-time guarantees. InRTSS ’03, 2003.

[16] I. Shin and I. Lee. Compositional real-time scheduling
framework. InRTSS ’04, 2004.

[17] G. Spiegelberg. The impact of new gateways and busses -
are these the answers for furhter innovations?, Podiums Dis-
cussion at the Embedded Systems Week, Salzburg, Austria,
October 2007.


