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Abstract: - This paper presents application of a fuzzy logic based system to automatically evaluate the 

maintainability of code. Code evaluation is accomplished by rating its quality provided with bad smells in 

code as inputs. Straightforward bad smells with existing software metrics tools are selected as inputs: 

duplicated code, long methods, large classes having a high cyclomatic complexity, or a large number of 

parameters and temporary fields. Removing these bad smells can result in significant code improvements 

concerning readability and maintainability. However, the precise definition of attributes like small, long, large 

or high is not clear, and their identification is rather subjective. Fuzzy logic values are suitable for capturing 

partial correspondence to attributes and fuzzy rules model have been used to describe the relation between bad 

smells and code quality. Model supporting the experimental evaluation of the fuzzy based code evaluation is 

implemented in Java. 
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1   Introduction 
Software maintenance mainly deals with 

understanding and changing pieces of code. 

Understanding is often hampered by code which is 

written without proper documentation and bad 

programming style, expressed by so-called bad 

smell patterns. 

     In the 1960s refactoring was introduced, as a 

technique for source code improvement without 

changing its semantics. The focus was on the 

replacement of goto statements and refining case 

statements. Structured programming guidelines were 

used as the basis. The objective was to replace bad 

smells, and to make code more understandable and 

maintainable. 

     Refactoring became more popular in 1999, when 

Martin Fowler published his book [1]. In [1], Fowler 

describes bad smells as the pieces of code that make 

code understanding and maintenance much more 

complicated than necessary. Code evaluation is 

needed to identify potential problems and also to 

reveal bad smells within the code during software 

development.  

     In the process of evaluation it is hard to define 

single quantitative value corresponding precisely to 

attributes such as small, long, large or high. For 

example, a quantitative value is defined as indicator 

of a “large” method. However a problem occurs, 

when we try to define attributes for predecessor or 

successor values. The question is whether these 

values should also be defined as “large”. 

     Fuzzy logic is the answer to this question. Fuzzy 

logic helps us to deal with uncertainty and 

imprecision problems. In fuzzy logic values can 

have partial correspondence to attributes, i.e. single 

quantitative value belongs to several attributes with 

certain degree of truth [2]. For example, if we take a 

closer look at the long method definition, we can say 

that a method, which has up to 40 lines of code, can 

be defined as a small method and the one that has 

more than 60 lines can be defined as large method, 

and for values 40 to 60 lines of code we can define 

membership function matching to attribute “large” 

method. 

     This paper describes code evaluation approach 

based on the fuzzy reasoning system. The output of 

described model is estimation of the quality of the 

code written for a certain class according to certain 

input parameters. All input values are represented in 

a term of membership functions among a defined 

universe of discourse. The model provides 

developers with possibility to identify overall 

quality of a given class. 

    The Section 2 of this paper describes bad smells 

and gives a short overview on some examples of bad 

smells. In the Section 3 the use of fuzzy logic and its 

application to the code evaluation process is 

described. Section 4 provides the discussion of the 

results and Section 5 present the conclusions and 

future work. 
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2   Bad Smells  
Bad smells are considered as the “errors” in the code 

that make the code syntax harder to understand. 

Refactoring itself will not bring the full benefits, if 

we don't know when it is appropriate to apply it. To 

make it easier for developers to decide if software 

needs refactoring, Fowler and Beck proposed a list 

of bad smells. The list made by Fowler and his 

associates includes 22 possible bad smells that can 

be found in [1]. 

     Identifying what to refactor is rather subjective, 

but to achieve quality in object-oriented 

programming, is to have short and understandable 

methods, with a clear responsibilities. Hence, input 

values used for code evaluation by fuzzy reasoning 

model described in this paper are following four bad 

smells: duplicated code, long method, long 

parameter list and temporary field. Additional input 

used is a metric that precisely measures complexity 

of code by counting the distinct paths through a 

method - cyclomatic complexity.  

     Duplicated code assumes the same code is 

written in more than one place, so it is important to 

find a better way to implement the code 

functionality without repeating the written code. The 

simplest problem of code duplication is the 

occurrence of the same expression in two methods 

that are part of the same class.  The more 

complicated is to detect code duplicated in its 

meaning and accomplished result. 

     Long method assumes a method so long that it is 

difficult to understand, change or extend. As already 

mentioned, object-oriented programs are best to 

understand if only short methods are used. 

     Long parameter list indicates that a method has 

too many parameters, what makes it difficult to 

understand, since almost everything is passed as a 

parameter. Objects do not make it necessary to pass 

every parameter to a method, only the values really 

needed for the operation. 

     Temporary field – a member variable in a class 

used only occasionally and it is considered 

redundant to allocate resources for this member. 

Most often the temporary field is a variable put in 

the class scope instead of in method scope, thus 

violating the information hiding principle. 

     Cyclomatic complexity is integer-based metric 

appropriately representing method complexity. As 

the objects of our evaluation are classes, it is 

important to define class complexity in a term of 

method complexity. Cyclomatic complexity is a 

measure of the number of linearly independent paths 

of a program module as defined in [3]. This measure 

provides a single ordinal number that can be 

compared to the complexity of other programs. 

When the metric is exceeding empirically defined 

threshold values [4] can be used for detecting the 

large class bad smell. 

     Bad smells can be considered as a measure of 

software maintainability; since the code could 

become less maintainable without knowing that the 

code is written with pieces that are considered as 

bad code smells. Presence of any bad code smell can 

disturb normal code maintainability. It is important 

to recognize the concept of bad smells as a particular 

compromise between the vague programming 

aesthetics and the precise source code metrics. 

 

 

3   Application of Fuzzy Logic to Code 

Evaluation  
In this chapter our approach for evaluating the 

maintainability of classes based on bad smells by 

using fuzzy logic is described. We define a fuzzy 

model that will rate the maintainability of a class 

within a scale from very bad to excellent. The inputs 

in the model are crisp values entered as numerical 

values for duplicated code and temporary field bad 

smells or obtained from software metric tools as 

presented in Table 1.  
Table 1. Metrics used 

Metrics Description 

LOC Lines of code 

V(G) McCabe cyclomatic complexity used to 

quantify method's complexity 

NOP Number of parameters  

 

    Fig. 1 shows the model that defines the fuzzy 

inference process. In the first step, those inputs are 

fuzzified, which means that they are represented in 

terms of fuzzy logic. As in any problem defined 

using fuzzy systems it is important to correctly 

choose the inputs, the crisp values that are in the 

first step converted into linguistic variables. It 

means that each crisp input value is transformed into 

grades of membership for linguistic terms of fuzzy 

sets. The membership functions are used to associate 

a grade to each linguistic term.  

Fuzzy Rule Base

Fuzzification

Fuzzy Inference Engine

Defuzzification

Crisp input values

Crisp output values  
Fig. 1. Fuzzy logic inference system 



     The next step utilizes a fuzzy rule base and the 

facts obtained from the fuzzification are combined 

with the rule base and the fuzzy reasoning process is 

conducted.  The rules whose preconditions satisfy 

input values are fired, and correlation, inference and 

defuzzification methods are applied. At the output 

we get a grade of membership that describes result 

value. It is important to transform this new fuzzy set 

into a crisp value, and the process of transformation 

is called defuzzification. It is not unique operation as 

different approaches are possible. 

     As a result we are able to tell how maintainable 

and “smelly” evaluated methods are and what can 

make us aware of possible problems in advance.      

The following part describes given inputs and 

outputs, an example of a rule base and the used 

fuzzification and defuzzification algorithms.  

 

3.1 Input Values and Membership 

Functions  
To provide code evaluation as the input values next 

bad smells are chosen to be inputs, and all are 

represented as crisp values: 

    Duplicated code is represented by five 

membership functions, as a combination of left and 

right shoulder, triangle and trapezoid shape of 

function. The definitions of very small, small, 

medium, large and very large pieces of duplicated 

code are defined in terms of number of line of codes 

as illustrated in Fig. 2. 

 
Fig. 2. Duplicated code membership functions 

 

     Long method is represented by a left shoulder 

shape, which defines the smallest possible long 

method area, a trapezoid, that defines medium 

membership functions and a right shoulder that is a 

graphical representation of a large membership 

function as can be seen in Fig. 3. 

 
Fig. 3. Long method membership functions 

    Long parameter list bad smell is represented by 

five membership functions: very short, short, 

medium, long and very long which are represented 

by left and right shoulder, triangle and trapezoid 

shape of membership functions as shown in Fig. 4. 

 
Fig. 4. Long parameter list membership functions 

 

     Temporary field is a member variable in a class 

used only occasionally. It is represented by four 

membership functions, as a combination of left 

shoulder, triangle, trapezoid and right shoulder 

shape of function as graphical representation of a 

scale on a defined universe of discourse as 

illustrated in Fig. 5. 

 
Fig. 5. Temporary filed membership functions 

 

     Cyclomatic complexity is usually represented by 

well defined ranges but in order to get better 

outcome it is defined with overlapping membership 

functions. This input is defined by four membership 

functions: simple code, complex, very complex and 

untestable code.  Fig.6. shows the cyclomatic 

complexity in terms of membership functions. 

 
Fig. 6. Cyclomatic complexity membership functions 

 

3.2 Class Quality Definition 
The overall quality definition of the code of a class 

is represented by five membership functions; 

excellent, very good, good, bad and very bad. Left 

and right shoulder and triangle are used for the 

graphical representation as shown in Fig. 7. One 



region or a combination of several regions, which 

are represented here, are the outcome of the 

inference process. 

 
Fig. 7. Code quality in terms of membership functions 

 

3.3 Fuzzy Rule Base Expansion  
Fuzzy rules are used to define code quality 

depending on given input values. Developed 

application includes about one hundred rules so far, 

accomplishing input variable values involvement in 

the inference process and assuring that all output 

membership functions can be reached as possible 

result. All rules are written in fuzzy implication 

form, using the AND operator between the input 

values. Here is an example of a rule written in the 

rule base: 

IF duplicatedCode IS small AND  

longMethod is small AND 

cyclomaticComplexity IS simple 

AND parameterList IS veryShort 

AND temporaryField IS verySmall 

THEN codeEvaluation IS excellent. 

 

3.3 Fuzzy Rule Base Expansion  
The fuzzy model, explained earlier, has been applied 

to the class level, because the intention was to 

develop a model that is able to evaluate methods in a 

class and to get quality values to be used in further 

research about evaluating complete programs.  

    The fuzzy approach requires typically a large 

number of rules and it is a tedious task to obtain a 

full set of rules. The larger the number of rules 

provided by the user, the better the prediction 

accuracy of the fuzzy model. As the number of rules 

required increases, the simplicity of using the model 

decreases since the user has to define a lot of rules to 

adequately model all quality attributes and their 

dependencies.  

    Since every single input is important for the 

evaluation and makes it more reliable, the increase 

of inputs leads to the rule base expansion. Code 

evaluation is performed with five inputs which 

would result in only one output, and for each input 

three to five membership functions have been 

defined resulting in more than thousand rules.  

     Without any kind of automatic rule generator, 

this process is time consuming and requires a lot of 

effort to define the whole rule base. The number of 

rules therefore was reduced significantly for initial 

experiments and further on expanded. 

 

3.4 Fuzzification, Inference and 

Defuzzification 
The first step in an inference process is fuzzification. 

Since the membership function of each input value 

has been defined, it was easy to fuzzify the given 

values. Fuzzification means that each value gets a 

description in terms of a membership function. Let 

us suppose, for example, that the input value for a 

variable duplicated code is 10. That means that this 

value is 100% in a very small area and 30% in a 

small area after the fuzzification, as we can see in 

Fig. 8. 

 
Fig. 8. Fuzzification process 

      

For this input it is possible to write: DC = {vs, s, m, 

l, vl} = {1, 0.3, 0, 0, 0}. This procedure is applied to 

all inputs. The next step includes passing through all 

rules, and forming sets of values for each rule. By 

using this step, we are able to determine which rule 

or rules are able to fire and which of them satisfy the 

input values. 

     After deterring which rule(s) to fire, the next step 

requires the application of a correlation method. In 

this example two correlation methods are 

implemented: 

     Product method specifies that the membership 

value of the consequent fuzzy region is the product 

of the fuzzy region and the truth of the premise. The 

effect is that the corresponding fuzzy region is 

scaled, preserving its shape; 

     Minimum method specifies that the membership 

value of the corresponding fuzzy region is the 

minimum of the fuzzy region and the truth of the 

premise. The effect is that the corresponding fuzzy 

region is truncated at the truth of the premise, 

creating a plateau. 

     As a result of the correlation process we get one 

or more corresponding fuzzy regions, which again 

depend on the number of rules which have been 

activated at the beginning of the process. 

     The next step is inferencing. It is important to 

make sure to use a certain inference method with a 



particular correlation method; otherwise, the results 

wouldn't be reliable. In this example the following 

inference methods are implemented: 

     Fuzzy add method specifies that the fuzzy 

solution set is updated by adding the minimum truth 

value of the consequent fuzzy region, bounded by 

1.0. This method is generally used with a product 

correlation method; 

    Minmax method specifies that the fuzzy solution 

set is updated by using the maximum of the 

minimum truth value of the corresponding fuzzy set. 

This method is generally used with the minimum 

correlation method. 

    The combination of the minimum correlation 

method with the minmax inference method is also 

known as Mamdani fuzzy inference method.  

Another combination of methods (product and fuzzy 

add) is named Larsen product inference. 

     The fuzzy inference process requires one step 

more, and that step is the defuzzification process. As 

a result of the Mamdani min implication or the 

Larsen product, it is possible to get fuzzy result, 

which is represented in terms of membership 

functions. For the majority of users, the result, 

written in these terms, doesn't make any sense, so it 

was needed to provide a defuzzification process, 

which includes a conversion of a fuzzy result into a 

quantifiable value. The output of this process isn't 

always the same value, since it depends on the 

method applied. An optimal defuzzification method 

does not exist; it should be selected based on the 

problem that we are trying to solve. There are many 

different methods, but in this model two of them are 

implemented:   

     Centroid is calculated as the weighted mean or 

center of gravity of the output fuzzy region. It is the 

most commonly used method;  

     Maxheight specifies that a fuzzy set's crisp value 

is calculated from the point that has the highest truth 

value, also known as composite maximum. 

 

 

4   Implementation 
In this Section we present Java application 

implementing fuzzy-logic based inferencing and 

demonstrates two examples of code evaluation. 

There are only few attempts of building current 

fuzzy logic based systems in Java [5]. However, 

such systems are either built on an ad-hoc basis 

without utilizing object oriented features as 

generality and code reusability, or they are restricted 

to provide learning environment support.  

     Fuzzy notions are modeled using several classes 

namely FuzzyValue, FuzzyVariable, FazzySet, 

FazzyRule and FuzzyRuleBase supporting 

fuzzification, inferencing and defuzzification. 

     Input values are taken from the metrics that 

automatically calculates bad smells, and can be 

applied to any individual class as well as to a 

complete program. 

     Metric values are exported to an XML file, where 

the values are sorted by examined bad smells for 

each method in class. It is important to point out that 

inputs for duplicated code and temporary field are 

not supported by the metric tools, and therefore the 

values are entered by user. 

     This approach gives us the opportunity to take 

only the parameters, that are part of our model, and 

to apply an inference process to them. In case that 

we want to expand the input set, it is easier just to 

connect that input(s) with corresponding data in 

XML file, but in this case we need to be aware of 

the rule base expansion. 

     Quality evaluation of a class can be either by 

using the same input values for all methods in a 

class, or the provided XML file could contain 

individual values for different methods. In any case, 

if we need more reliable results, we can apply the 

inference process, to each method individually.  

     If we evaluate only one set of values the result is 

displayed in a dialog window and includes values 

used for the evaluation (named badSmells) and the 

elapsed time of evaluation. If we evaluate the whole 

class, then the results will be written in a text file. 

The evaluation value and the elapsed time are given 

for each evaluated method. 

    To demonstrate an example of code evaluation let 

us suppose that the evaluation of one method is 

based on the following inputs: 

duplicated code = 15 

long method = 10 

cyclomatic complexity = 6 

parameter list = 2 

temporary field = 22 

     The user also needs to select the strategies 

underlying the inference process as described in the 

last section. Let us suppose that the product method 

is selected for fuzzification; the fuzzy add method 

for inferencing and the centroid method for 

defuzzification. 

     With the given values only two rules will fire, 

Rule 21 and Rule 22. In that case we have a 

situation as shown as in Fig.9. The minimum value 

in terms of the membership function for given 

values is 0.5 which is used to scale the output fuzzy 

result for each rule, since a product method is 

chosen to be the one for correlation. First rule 

activates excellent area as fuzzy result and other 

very good area. 



 
Fig. 9. Code evaluation – Example 1 

 

     As a result of the whole process, namely 

fuzzification, inferencing and defuzzification the 

resulting output value is 15. 625, which means that 

the given method is about 35% in excellent area and 

about 30% in very good area. Calculation has been 

done in 10.876 ms. 

     In the second example next methods are applied: 

the minimum method for fuzzification, minmax for 

inferencing and maxheight for defuzzification. The 

same rules fire, since the input values have not been 

changed. 

 

 
 Fig. 10 Code evaluation – Example 2 

 

     As it can be seen in Fig. 10, the output result is 

truncated at the minimum value, at the minimum 

truth of the premise, creating a plateau. We can also 

see that if we used centroid as defuzzification 

method, we would get the same result as in the 

example before; the only difference is in time 

needed for the calculation. When using maxheight 

method, it will use one randomly chosen value, 

since there is no specific maximum. 

     It is not recommended to use the maxheight 

defuzzification method in this combination of 

methods, since the algorithm is not able to find the 

maximum and it takes one randomly chosen value 

from the given set of values. 

 

 

5   Conclusion 
Fuzzy logic is suitable for this area of research 

because it provides a great range of possible values 

for each input in terms of membership functions. It 

is applicable to complex problems such as code 

evaluation, since it is able to deal with the subjective 

human analysis involved with software engineering 

decision making. 

     The future work goes in two different directions. 

The first direction is the expansion of an existing 

model, which would include an automatic evaluation 

at program level. That means that the existing 

outputs from the evaluation of each method could be 

the input to the next level, whereby it would be 

possible to automatically evaluate how "smelly" a 

whole program is. The approach can be used as a 

preliminary step of the pattern based reengineering 

process presented in [6] to identify smelly classes, 

which are then searched for concrete smell or anti 

pattern instances and subsequently improved by 

refactoring. 

     On the other hand, automatic rule base generation 

has to be addressed. As mentioned above, writing all 

required rules manually to cover all combinations of 

smells in a given piece of code does not scale in 

practice. 
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