
Code Evaluation Using Fuzzy Logic

ZIKRIJA AVDAGIC, DUSANKA BOSKOVIC, AIDA DELIC

Faculty of Electrical Engineering

 University Sarajevo

 Zmaja od Bosne bb, Sarajevo

BOSNIA AND HERZEGOVINA

[zikrija.avdagic, dusanka.boskovic]@etf.unsa.ba, aida.delic@mdh.se

Abstract: - This paper presents application of a fuzzy logic based system to automatically evaluate the

maintainability of code. Code evaluation is accomplished by rating its quality provided with bad smells in

code as inputs. Straightforward bad smells with existing software metrics tools are selected as inputs:

duplicated code, long methods, large classes having a high cyclomatic complexity, or a large number of

parameters and temporary fields. Removing these bad smells can result in significant code improvements

concerning readability and maintainability. However, the precise definition of attributes like small, long, large

or high is not clear, and their identification is rather subjective. Fuzzy logic values are suitable for capturing

partial correspondence to attributes and fuzzy rules model have been used to describe the relation between bad

smells and code quality. Model supporting the experimental evaluation of the fuzzy based code evaluation is

implemented in Java.

Key-Words: - Fuzzy Logic, Reasoning Systems, Refactoring, Bad Smells

1 Introduction
Software maintenance mainly deals with

understanding and changing pieces of code.

Understanding is often hampered by code which is

written without proper documentation and bad

programming style, expressed by so-called bad

smell patterns.

 In the 1960s refactoring was introduced, as a

technique for source code improvement without

changing its semantics. The focus was on the

replacement of goto statements and refining case

statements. Structured programming guidelines were

used as the basis. The objective was to replace bad

smells, and to make code more understandable and

maintainable.

 Refactoring became more popular in 1999, when

Martin Fowler published his book [1]. In [1], Fowler

describes bad smells as the pieces of code that make

code understanding and maintenance much more

complicated than necessary. Code evaluation is

needed to identify potential problems and also to

reveal bad smells within the code during software

development.

 In the process of evaluation it is hard to define

single quantitative value corresponding precisely to

attributes such as small, long, large or high. For

example, a quantitative value is defined as indicator

of a “large” method. However a problem occurs,

when we try to define attributes for predecessor or

successor values. The question is whether these

values should also be defined as “large”.

 Fuzzy logic is the answer to this question. Fuzzy

logic helps us to deal with uncertainty and

imprecision problems. In fuzzy logic values can

have partial correspondence to attributes, i.e. single

quantitative value belongs to several attributes with

certain degree of truth [2]. For example, if we take a

closer look at the long method definition, we can say

that a method, which has up to 40 lines of code, can

be defined as a small method and the one that has

more than 60 lines can be defined as large method,

and for values 40 to 60 lines of code we can define

membership function matching to attribute “large”

method.

 This paper describes code evaluation approach

based on the fuzzy reasoning system. The output of

described model is estimation of the quality of the

code written for a certain class according to certain

input parameters. All input values are represented in

a term of membership functions among a defined

universe of discourse. The model provides

developers with possibility to identify overall

quality of a given class.

 The Section 2 of this paper describes bad smells

and gives a short overview on some examples of bad

smells. In the Section 3 the use of fuzzy logic and its

application to the code evaluation process is

described. Section 4 provides the discussion of the

results and Section 5 present the conclusions and

future work.

Aida Delic was a student at Faculty of Electrical

1

1

Engineering during the work on this paper.

2 Bad Smells
Bad smells are considered as the “errors” in the code

that make the code syntax harder to understand.

Refactoring itself will not bring the full benefits, if

we don't know when it is appropriate to apply it. To

make it easier for developers to decide if software

needs refactoring, Fowler and Beck proposed a list

of bad smells. The list made by Fowler and his

associates includes 22 possible bad smells that can

be found in [1].

 Identifying what to refactor is rather subjective,

but to achieve quality in object-oriented

programming, is to have short and understandable

methods, with a clear responsibilities. Hence, input

values used for code evaluation by fuzzy reasoning

model described in this paper are following four bad

smells: duplicated code, long method, long

parameter list and temporary field. Additional input

used is a metric that precisely measures complexity

of code by counting the distinct paths through a

method - cyclomatic complexity.

 Duplicated code assumes the same code is

written in more than one place, so it is important to

find a better way to implement the code

functionality without repeating the written code. The

simplest problem of code duplication is the

occurrence of the same expression in two methods

that are part of the same class. The more

complicated is to detect code duplicated in its

meaning and accomplished result.

 Long method assumes a method so long that it is

difficult to understand, change or extend. As already

mentioned, object-oriented programs are best to

understand if only short methods are used.

 Long parameter list indicates that a method has

too many parameters, what makes it difficult to

understand, since almost everything is passed as a

parameter. Objects do not make it necessary to pass

every parameter to a method, only the values really

needed for the operation.

 Temporary field – a member variable in a class

used only occasionally and it is considered

redundant to allocate resources for this member.

Most often the temporary field is a variable put in

the class scope instead of in method scope, thus

violating the information hiding principle.

 Cyclomatic complexity is integer-based metric

appropriately representing method complexity. As

the objects of our evaluation are classes, it is

important to define class complexity in a term of

method complexity. Cyclomatic complexity is a

measure of the number of linearly independent paths

of a program module as defined in [3]. This measure

provides a single ordinal number that can be

compared to the complexity of other programs.

When the metric is exceeding empirically defined

threshold values [4] can be used for detecting the

large class bad smell.

 Bad smells can be considered as a measure of

software maintainability; since the code could

become less maintainable without knowing that the

code is written with pieces that are considered as

bad code smells. Presence of any bad code smell can

disturb normal code maintainability. It is important

to recognize the concept of bad smells as a particular

compromise between the vague programming

aesthetics and the precise source code metrics.

3 Application of Fuzzy Logic to Code

Evaluation
In this chapter our approach for evaluating the

maintainability of classes based on bad smells by

using fuzzy logic is described. We define a fuzzy

model that will rate the maintainability of a class

within a scale from very bad to excellent. The inputs

in the model are crisp values entered as numerical

values for duplicated code and temporary field bad

smells or obtained from software metric tools as

presented in Table 1.
Table 1. Metrics used

Metrics Description

LOC Lines of code

V(G) McCabe cyclomatic complexity used to

quantify method's complexity

NOP Number of parameters

 Fig. 1 shows the model that defines the fuzzy

inference process. In the first step, those inputs are

fuzzified, which means that they are represented in

terms of fuzzy logic. As in any problem defined

using fuzzy systems it is important to correctly

choose the inputs, the crisp values that are in the

first step converted into linguistic variables. It

means that each crisp input value is transformed into

grades of membership for linguistic terms of fuzzy

sets. The membership functions are used to associate

a grade to each linguistic term.

Fuzzy Rule Base

Fuzzification

Fuzzy Inference Engine

Defuzzification

Crisp input values

Crisp output values
Fig. 1. Fuzzy logic inference system

 The next step utilizes a fuzzy rule base and the

facts obtained from the fuzzification are combined

with the rule base and the fuzzy reasoning process is

conducted. The rules whose preconditions satisfy

input values are fired, and correlation, inference and

defuzzification methods are applied. At the output

we get a grade of membership that describes result

value. It is important to transform this new fuzzy set

into a crisp value, and the process of transformation

is called defuzzification. It is not unique operation as

different approaches are possible.

 As a result we are able to tell how maintainable

and “smelly” evaluated methods are and what can

make us aware of possible problems in advance.

The following part describes given inputs and

outputs, an example of a rule base and the used

fuzzification and defuzzification algorithms.

3.1 Input Values and Membership

Functions
To provide code evaluation as the input values next

bad smells are chosen to be inputs, and all are

represented as crisp values:

 Duplicated code is represented by five

membership functions, as a combination of left and

right shoulder, triangle and trapezoid shape of

function. The definitions of very small, small,

medium, large and very large pieces of duplicated

code are defined in terms of number of line of codes

as illustrated in Fig. 2.

Fig. 2. Duplicated code membership functions

 Long method is represented by a left shoulder

shape, which defines the smallest possible long

method area, a trapezoid, that defines medium

membership functions and a right shoulder that is a

graphical representation of a large membership

function as can be seen in Fig. 3.

Fig. 3. Long method membership functions

 Long parameter list bad smell is represented by

five membership functions: very short, short,

medium, long and very long which are represented

by left and right shoulder, triangle and trapezoid

shape of membership functions as shown in Fig. 4.

Fig. 4. Long parameter list membership functions

 Temporary field is a member variable in a class

used only occasionally. It is represented by four

membership functions, as a combination of left

shoulder, triangle, trapezoid and right shoulder

shape of function as graphical representation of a

scale on a defined universe of discourse as

illustrated in Fig. 5.

Fig. 5. Temporary filed membership functions

 Cyclomatic complexity is usually represented by

well defined ranges but in order to get better

outcome it is defined with overlapping membership

functions. This input is defined by four membership

functions: simple code, complex, very complex and

untestable code. Fig.6. shows the cyclomatic

complexity in terms of membership functions.

Fig. 6. Cyclomatic complexity membership functions

3.2 Class Quality Definition
The overall quality definition of the code of a class

is represented by five membership functions;

excellent, very good, good, bad and very bad. Left

and right shoulder and triangle are used for the

graphical representation as shown in Fig. 7. One

region or a combination of several regions, which

are represented here, are the outcome of the

inference process.

Fig. 7. Code quality in terms of membership functions

3.3 Fuzzy Rule Base Expansion
Fuzzy rules are used to define code quality

depending on given input values. Developed

application includes about one hundred rules so far,

accomplishing input variable values involvement in

the inference process and assuring that all output

membership functions can be reached as possible

result. All rules are written in fuzzy implication

form, using the AND operator between the input

values. Here is an example of a rule written in the

rule base:

IF duplicatedCode IS small AND

longMethod is small AND

cyclomaticComplexity IS simple

AND parameterList IS veryShort

AND temporaryField IS verySmall

THEN codeEvaluation IS excellent.

3.3 Fuzzy Rule Base Expansion
The fuzzy model, explained earlier, has been applied

to the class level, because the intention was to

develop a model that is able to evaluate methods in a

class and to get quality values to be used in further

research about evaluating complete programs.

 The fuzzy approach requires typically a large

number of rules and it is a tedious task to obtain a

full set of rules. The larger the number of rules

provided by the user, the better the prediction

accuracy of the fuzzy model. As the number of rules

required increases, the simplicity of using the model

decreases since the user has to define a lot of rules to

adequately model all quality attributes and their

dependencies.

 Since every single input is important for the

evaluation and makes it more reliable, the increase

of inputs leads to the rule base expansion. Code

evaluation is performed with five inputs which

would result in only one output, and for each input

three to five membership functions have been

defined resulting in more than thousand rules.

 Without any kind of automatic rule generator,

this process is time consuming and requires a lot of

effort to define the whole rule base. The number of

rules therefore was reduced significantly for initial

experiments and further on expanded.

3.4 Fuzzification, Inference and

Defuzzification
The first step in an inference process is fuzzification.

Since the membership function of each input value

has been defined, it was easy to fuzzify the given

values. Fuzzification means that each value gets a

description in terms of a membership function. Let

us suppose, for example, that the input value for a

variable duplicated code is 10. That means that this

value is 100% in a very small area and 30% in a

small area after the fuzzification, as we can see in

Fig. 8.

Fig. 8. Fuzzification process

For this input it is possible to write: DC = {vs, s, m,

l, vl} = {1, 0.3, 0, 0, 0}. This procedure is applied to

all inputs. The next step includes passing through all

rules, and forming sets of values for each rule. By

using this step, we are able to determine which rule

or rules are able to fire and which of them satisfy the

input values.

 After deterring which rule(s) to fire, the next step

requires the application of a correlation method. In

this example two correlation methods are

implemented:

 Product method specifies that the membership

value of the consequent fuzzy region is the product

of the fuzzy region and the truth of the premise. The

effect is that the corresponding fuzzy region is

scaled, preserving its shape;

 Minimum method specifies that the membership

value of the corresponding fuzzy region is the

minimum of the fuzzy region and the truth of the

premise. The effect is that the corresponding fuzzy

region is truncated at the truth of the premise,

creating a plateau.

 As a result of the correlation process we get one

or more corresponding fuzzy regions, which again

depend on the number of rules which have been

activated at the beginning of the process.

 The next step is inferencing. It is important to

make sure to use a certain inference method with a

particular correlation method; otherwise, the results

wouldn't be reliable. In this example the following

inference methods are implemented:

 Fuzzy add method specifies that the fuzzy

solution set is updated by adding the minimum truth

value of the consequent fuzzy region, bounded by

1.0. This method is generally used with a product

correlation method;

 Minmax method specifies that the fuzzy solution

set is updated by using the maximum of the

minimum truth value of the corresponding fuzzy set.

This method is generally used with the minimum

correlation method.

 The combination of the minimum correlation

method with the minmax inference method is also

known as Mamdani fuzzy inference method.

Another combination of methods (product and fuzzy

add) is named Larsen product inference.

 The fuzzy inference process requires one step

more, and that step is the defuzzification process. As

a result of the Mamdani min implication or the

Larsen product, it is possible to get fuzzy result,

which is represented in terms of membership

functions. For the majority of users, the result,

written in these terms, doesn't make any sense, so it

was needed to provide a defuzzification process,

which includes a conversion of a fuzzy result into a

quantifiable value. The output of this process isn't

always the same value, since it depends on the

method applied. An optimal defuzzification method

does not exist; it should be selected based on the

problem that we are trying to solve. There are many

different methods, but in this model two of them are

implemented:

 Centroid is calculated as the weighted mean or

center of gravity of the output fuzzy region. It is the

most commonly used method;

 Maxheight specifies that a fuzzy set's crisp value

is calculated from the point that has the highest truth

value, also known as composite maximum.

4 Implementation
In this Section we present Java application

implementing fuzzy-logic based inferencing and

demonstrates two examples of code evaluation.

There are only few attempts of building current

fuzzy logic based systems in Java [5]. However,

such systems are either built on an ad-hoc basis

without utilizing object oriented features as

generality and code reusability, or they are restricted

to provide learning environment support.

 Fuzzy notions are modeled using several classes

namely FuzzyValue, FuzzyVariable, FazzySet,

FazzyRule and FuzzyRuleBase supporting

fuzzification, inferencing and defuzzification.

 Input values are taken from the metrics that

automatically calculates bad smells, and can be

applied to any individual class as well as to a

complete program.

 Metric values are exported to an XML file, where

the values are sorted by examined bad smells for

each method in class. It is important to point out that

inputs for duplicated code and temporary field are

not supported by the metric tools, and therefore the

values are entered by user.

 This approach gives us the opportunity to take

only the parameters, that are part of our model, and

to apply an inference process to them. In case that

we want to expand the input set, it is easier just to

connect that input(s) with corresponding data in

XML file, but in this case we need to be aware of

the rule base expansion.

 Quality evaluation of a class can be either by

using the same input values for all methods in a

class, or the provided XML file could contain

individual values for different methods. In any case,

if we need more reliable results, we can apply the

inference process, to each method individually.

 If we evaluate only one set of values the result is

displayed in a dialog window and includes values

used for the evaluation (named badSmells) and the

elapsed time of evaluation. If we evaluate the whole

class, then the results will be written in a text file.

The evaluation value and the elapsed time are given

for each evaluated method.

 To demonstrate an example of code evaluation let

us suppose that the evaluation of one method is

based on the following inputs:

duplicated code = 15

long method = 10

cyclomatic complexity = 6

parameter list = 2

temporary field = 22

 The user also needs to select the strategies

underlying the inference process as described in the

last section. Let us suppose that the product method

is selected for fuzzification; the fuzzy add method

for inferencing and the centroid method for

defuzzification.

 With the given values only two rules will fire,

Rule 21 and Rule 22. In that case we have a

situation as shown as in Fig.9. The minimum value

in terms of the membership function for given

values is 0.5 which is used to scale the output fuzzy

result for each rule, since a product method is

chosen to be the one for correlation. First rule

activates excellent area as fuzzy result and other

very good area.

Fig. 9. Code evaluation – Example 1

 As a result of the whole process, namely

fuzzification, inferencing and defuzzification the

resulting output value is 15. 625, which means that

the given method is about 35% in excellent area and

about 30% in very good area. Calculation has been

done in 10.876 ms.

 In the second example next methods are applied:

the minimum method for fuzzification, minmax for

inferencing and maxheight for defuzzification. The

same rules fire, since the input values have not been

changed.

 Fig. 10 Code evaluation – Example 2

 As it can be seen in Fig. 10, the output result is

truncated at the minimum value, at the minimum

truth of the premise, creating a plateau. We can also

see that if we used centroid as defuzzification

method, we would get the same result as in the

example before; the only difference is in time

needed for the calculation. When using maxheight

method, it will use one randomly chosen value,

since there is no specific maximum.

 It is not recommended to use the maxheight

defuzzification method in this combination of

methods, since the algorithm is not able to find the

maximum and it takes one randomly chosen value

from the given set of values.

5 Conclusion
Fuzzy logic is suitable for this area of research

because it provides a great range of possible values

for each input in terms of membership functions. It

is applicable to complex problems such as code

evaluation, since it is able to deal with the subjective

human analysis involved with software engineering

decision making.

 The future work goes in two different directions.

The first direction is the expansion of an existing

model, which would include an automatic evaluation

at program level. That means that the existing

outputs from the evaluation of each method could be

the input to the next level, whereby it would be

possible to automatically evaluate how "smelly" a

whole program is. The approach can be used as a

preliminary step of the pattern based reengineering

process presented in [6] to identify smelly classes,

which are then searched for concrete smell or anti

pattern instances and subsequently improved by

refactoring.

 On the other hand, automatic rule base generation

has to be addressed. As mentioned above, writing all

required rules manually to cover all combinations of

smells in a given piece of code does not scale in

practice.

References:

[1] M. Fowler, Refactoring, Improving the Design

of Existing Code, Addison-Wesley Publishing

house, 2000

[2] Z. Avdagic, Artificial Intelligence & Fuzzy-

Neuro-Genetic, Grafoart, 2003

[3] T.J. McCabe, A Complexity Measure, IEEE

Transactions on Software Engineering, Vol. SE-

2, No. 4, 1976, pp. 308-320

[4] M. Mäntylä, C. Lassenius, Subjective evaluation

of software evolvability using code smells: An

empirical study, Journal of Empirical Software

Engineering, Vol. 11, No. 3, 2006, pp 395-431

[5] J.P. Bigus, J. Bigus, Constructing Intelligent

Agents Using Java, John Wiley & Sons, Inc.,

2001

[6]M. Meyer, Pattern-based Reengineering of

Software Systems, Proceedings of the 13th

Working Conference on Reverse Engineering -

WCRE, 2006, pp 305-306

