
Mälardalen University Licentiate Thesis
No.84

Resource Management
Framework for Distributed,

Heterogeneous Systems

Larisa Rizvanovic

April 2008

School of Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden

Copyright c© Larisa Rizvanovic, 2008
ISSN 1651-9256
ISBN 978-91-85485-78-9
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

i

Abstract

In distributed heterogeneous computing environments, such as in-home
entertainment networks and mobile computing systems, independently
developed applications share common resources, e.g., CPU or network
bandwidth. The resource demands coming from different applications
are usually highly fluctuating over time. For example, video process-
ing results in both stochastic fluctuations, caused by different coding
techniques for video frames, and structural fluctuations, due to scene
changes. Similarly, wireless networks applications are exposed to long-
term bandwidth variations caused by other application in the system that
are using the same wireless network simultaneously, and short-term os-
cillations due to radio frequency interference, like microwave ovens or
cordless phones. Still, applications in such open, dynamic and hetero-
geneous environments are expected to maintain required performance
levels.

In this thesis, we look into solutions for efficient transport of video
streams with acceptable playout quality in home networks, which re-
quires management of both networks and CPUs. We propose a frame-
work for efficient resource management for streaming in heterogeneous
system, called the Matrix. The Matrix is based on a global abstraction
of device states, which reduces system state information and decreases
overheads for its determination and dissemination. It provides access to
the entire system state in acceptable fresh way, enabling system wide
optimized decisions to be taken.

Moreover, we use the Matrix framework as the platform to develop
a method for an efficient Quality-of-Service (QoS) provision and adap-
tation in dynamic, heterogeneous systems. QoS adaptation is one of the
crucial operations to maximize overall system quality as perceived by
the user while still satisfying individual application demands. It inte-
grates local QoS mechanisms of the involved devices that deal mostly
with short-term resource fluctuations, with a global adaptation mecha-
nism that handles structural and long-term load variations on the system

ii

level.
We have illustrated the effectiveness of our QoS adaptation approach

in the context of video streaming. However, we do not see any limita-
tion to expand the usage of our approach to the health sector, or some
other community social/industrial applications. Resource management
and QoS adaptation are required whenever we are surrounded with het-
erogeneous, mobile, and dynamic environment.

iii

Swedish Summary - Svensk Sammanfattning

I distribuerade heterogena miljöer, som hemmanätverk och mobila da-
torsystem, oberoende utvecklade tillämpningsprogram måste dela gemen-
samma resurser, till exempel, CPU, eller nätverksbandbredd. De olika
tillämpningsprogrammen har ofta högt varierade krav på resurser. Ex-
empelvis, bearbetning av en video kan resultera i både temporära varia-
tioner, orsakade av olika kodnings tekniker för videoramar, samt struk-
turella variationer, på grund av scenändringar. På samma sätt, kan tråd-
lösanätverk utsättas för långtids- eller korttidsvariationer på grund av
olika störningar. Ändå, tillämpningsprogram i sådana dynamiska och
heterogena miljöer förväntas att behålla det garanterade prestanda.

I denna avhandling har vi studerat lösningar för effektiv transport
av videoströmmar med god upspelningskvalitet i en heterogen miljö,
vilket kräver hantering av både nätverk och processorresurser. Vi pre-
senterar ett ramverk för tillämpning av realtidsresurshanteringsmetoder
för direktuppspelning av video in en heterogen, mobil miljö. Ramverket
baseras på en global abstraktion av enheters tillstånd, vilket i sin tur re-
ducerar omfattningen på systems statusinformation, samt minskar kost-
nader för dess bearbetning. Ramverket möjliggör integration av olika
enheter från olika tillverkare med olika krav och kapaciteter.

Förutom hantering av resurser, kvalitetsmedveten anpassning är en
av de avgörande funktionerna för att maximera användarens kvalitet-
supplevelse, och samtidigt uppfylla de specifika krav som varje tillämp-
ningsprogram har. I denna avhandling har vi utvecklad en metod för
en effektiv kvalitets tillhandahållande och anpassning av tillgängliga
resurser i dynamiska heterogena system. I metoden hanteras temporära
och korttidsvariationer lokalt på enskilda enheter, medan strukturella
och långtidsvariationer är objekt av en global kvalitetsanpassning, där
alla enheter i systemet är involverade.

Vi har valt att utvärdera våra metoder i multimediasammanhang,
men vi ser inga hinder att tillämpa våra lösningar inom vården, eller an-
dra samhällens sociala/industriella användningsområde. Hantering av
resurser och kvalitetsmedveten anpassning behövs närhelst vi är om-

iv

givna med heterogena mobila miljöer.

To my beloved sons, Teo and Tim!

vi

Preface

Ignorance is bliss. Little did a 7 year old girl from Mostar (Bosnia-
Herzegovina) know that next 28 years of her life are going to be spent
in a school bench, on the sunny September day in 1978, her first day
in school. 28 years, how come?! Well, the reason for this quite long
education was not bad grades, as one could guess, but the turmoil of
war that hit the Balkans in the nineties. But, all things considered, it
was not so bad after all. Not so many people have attended high school
twice, or have studied both bridge and computer design, as I did.

Hence, I have really many people to thank for their support during
my many years of education. But I will focus on just my time as grad-
uate student here at Department of Computer Science and Electronics,
Mälardalen University.

The work presented in this thesis would not have been possible with-
out the help of my supervisors. I want to thank my main supervisor Ger-
hard Fohler, for accepting me as one of his students, and for his believe
that I can manage this journey. A big thank you goes to Damir Isovic,
my second supervisor, who has been a great support during this last year.
And of course, many thanks to the rest of "Salsart" group, Radu Dobrin,
Tomas Lennvall, and Robert Bäckgren for many interesting discussions,
your support, and good laughs.

Then, many hugs go to Monica Wasell, Harriet Ekwall, Else-Maj
Silén, Ewa Hansen, and Jonas Neander for so many wonderful coffee
break moments. Of course, I would like to mention the rest of my col-
leagues here at the department, especially Dag Nyström and Thomas
Nolte, who I met back in 1997 when we started our undergraduate ed-
ucation here. Thank you all for making this department fun to work
in.

Furthermore, I thank you to my friends, Seija Tasala and Mariana
Olsson, for their encouragement to continue with this work, even when
things did not work so well.

vii

Finally, and most important, I thank my great family. My all love
goes to my beloved boys, my sons, Teo and Tim, and my husband, Ned.
A big thank you to my wonderful mom, dad, and my big sister, for be-
ing always there for me and my boys. Thanks my parents-in-law, for
believing in me.

This work has been supported by Mälaradalen University’s grant for
a female graduate student.

Larisa Rizvanovic
Västerås, March 2008.

ix

List of Publications

1. Integrated Global and Local Quality-of-Service Adaptation in Dis-
tributed, Heterogeneous Systems, Larisa Rizvanovic, Damir Iso-
vic, Gerhard Fohler, International IFIP Conference on Embed-
ded and Ubiquitous Computing (EUC-07), LNCS Lecture Note,
Taipei, Taiwan, December, 2007.

2. The MATRIX - A Framework for Real-time Resource Management
for Video Streaming in Networks of Heterogenous Devices, Larisa
Rizvanovic and Gerhard Fohler, The International Conference on
Consumer Electronics 2007, Las Vegas, USA, January 2007.

3. Real-time Architecture for Networked Multimedia Streaming sys-
tems, Larisa Rizvanovic, Gerhard Fohler, MiNEMA Workshop,
2006, Leuven, Belgium, February, 2006.

4. The MATRIX: A QoS Framework for Streaming in Heterogeneous
Systems, Larisa Rizvanovic and Gerhard Fohler, International Work-
shop on Real-Time for Multimedia, in conjunction with ECRTS04,
Catania, Italy 2004.

5. Integrated Quality-of-Service Adaptation in Distributed, Hetero-
geneous Systems, Larisa Rizvanovic, Damir Isovic, Gerhard Fohler,
MRTC report ISSN 1404-3041 ISRN MDH-MRTC-224/2008-1-
SE, Mälardalen Real-Time Research Centre, Mälardalen Univer-
sity, 2008.

6. The Matrix - A framework for real-time resource management
for video streaming in networks of heterogenous devices, Lar-
isa Rizvanovic, Gerhard Fohler, MRTC report ISSN 1404-3041
ISRN MDH-MRTC-216/2007-1-SE, Mälardalen Real-Time Re-
search Centre, Mälardalen University, October, 2007.

x

7. Submitted, not included in this thesis: Double-Stimulus Subjec-
tive Quality-of-Service Assessment for Video Applications, Riasat
Abbas, Larisa Rizvanovic, and Damir Isovic, IEEE International
Conference on Multimedia & Expo, June 23-26, Hannover, Ger-
many.

Contents

1 Introduction 1
1.1 Motivation . 2

1.1.1 Research method 4
1.2 Related work . 5

1.2.1 Quality of Service 5
1.2.2 QoS Architectures 9
1.2.3 QoS Adaptation of fluctuating resources 12

1.3 Contributions . 14
1.3.1 Assumptions in the thesis 14
1.3.2 Contribution 1: Real-time Resource Manage-

ment Framework 15
1.3.3 Contribution 2: Integrated QoS Adaptation Ap-

proach . 16
1.4 Outline of the thesis . 17

2 The Matrix: Real-time Resource Management Framework
for Distributed, Heterogeneous Systems 19
2.1 Rationale . 20
2.2 QoS levels . 22
2.3 Architectural design aspects 25

2.3.1 Resource Manager 26
2.3.2 Status Matrix 26
2.3.3 Order Matrix 27
2.3.4 Order Manager 27

xi

xii Contents

2.3.5 Local Scheduler 28
2.3.6 Local Monitor 28
2.3.7 Operational scenario 28

2.4 Communication between devices 29
2.5 Motivating example . 31
2.6 Admission control . 34

2.6.1 Control messages during admission control . . . 34
2.6.2 Comparison with hop-by-hop approach 36

2.7 Resource reallocation delay 38
2.7.1 Comparison with hop-by-hop approach 41

2.8 Chapter summary . 42

3 Integrated QoS Adaptation Approach 45
3.1 Integrated QoS Adaptation and the Matrix 46
3.2 Application Adapter . 47
3.3 Local adaptation mechanism 49
3.4 Global adaptation mechanism 50
3.5 Pseudo-code for the Integrated QoS Approach 53
3.6 Example . 57
3.7 Chapter summary . 59

4 Evaluation 61
4.1 Simulation setup . 62

4.1.1 Bandwidth estimation 62
4.1.2 Video streams 64

4.2 Simulations results . 64
4.2.1 System state presentation 65
4.2.2 Spared resources due to the global system view . 66
4.2.3 Granularity issues 69
4.2.4 Global vs Local resource adaptation 71

4.3 Chapter summary . 72

5 Conclusions 75

Contents xiii

A Implementation Details 79
A.1 Implemented Modules 80

A.1.1 Resource Manager 80
A.1.2 Local Network Scheduler 80
A.1.3 Local Network Monitor 80
A.1.4 Local CPU Scheduler 81
A.1.5 Local CPU Monitor 81
A.1.6 Video Stream Adapter 81
A.1.7 The Matrix data structures 82

A.2 Publish/Subscribe Mechanisms 84
A.2.1 The Matrix and HLA 84
A.2.2 The Matrix and XmlBlaster 85

Bibliography 94

List of Figures

List of Figures

1.1 Home networks environment 2
1.2 Two types of load fluctuation; stochastic (scribble line)

and structural (straight line) 4

2.1 Reduced system state in the Matrix 23
2.2 Mapping of a stream demand to few abstract QoS levels 24
2.3 Information flow between Matrix’s components 25
2.4 Matrix and publish/subscribe communication model . . 30
2.5 Scenario network . 32
2.6 The Matrix: the control messages during an admission

control. 35
2.7 Hop-by-hop approach: the control messages during an

admission control . 37
2.8 Control messages during admission control; the Matrix

vs hop-by-hop approach. 38
2.9 A resource reallocation delay in the Matrix 39
2.10 A resource reallocation delay in a hop-by-hop approach . 41

3.1 Different types of resource variations handled on differ-
ent architectural levels 47

3.2 Application Adapter and the Matrix framework 48
3.3 Local QoS Adaptation Mechanism 50
3.4 Example global adaptation 58

xiv

List of Figures xv

4.1 Available wireless bandwidth fluctuations 63
4.2 Stream demand (on GOP basis) 64
4.3 Reduced system state presentation 65
4.4 Resource reallocation policies and control messages . . 66
4.5 Local system view . 67
4.6 Global system view (one video stream) 67
4.7 Global system view (two video streams) 68
4.8 Spared resources (wireless bandwidth) on one device

when applying the different resource reallocation poli-
cies . 68

4.9 Control messages for different number of QoS levels
(one video stream) . 70

4.10 Control messages for different number of QoS levels
(two video streams) . 71

4.11 Invocation of global adaptation 72

A.1 MPEG-2 video adaptation in Matrix 82
A.2 Matrix and XmlBlaster 86

Chapter 1

Introduction

Nowadays, most home entertainment devices, such as TV sets and VCRs,
are fully digital, demanding computing methods to match strict tempo-
ral demands of audio and visual perception. Consequently, the concept
of “one cable - one box” is being replaced with pictures and videos
available where and when demanded in-home. Similarly, video trans-
mission and communication over mobile phone is already starting to be-
come commonplace. Thus, our homes will be probably equipped with
in-home networks where wireless connected devices will be overrep-
resented in order to provide a responsive and supportive environment,
known as Ambient Intelligence (AmI). Ambient Intelligence is when an
existence of digital environment is sensitive, adaptive, and responsive to
the presence of people [38].

The work presented in this thesis has started as part of the FABRIC
EU IST project 1. The aim of the project was to develop an architecture
in which several interoperability standards and technologies in the home
networking context can be integrated. In addition, FABRIC aimed to
handle the complete network to satisfy End-to-End Quality of service
(QoS) requirements.

1FABRIC: Federate Applications Based on Real-time Interacting Components (EU
IST project IST-2001-37167)

1

2 Introduction

1.1 Motivation

This work deals with real-time architectures for networked multimedia
streaming systems. Key challenges to be addressed include specifica-
tion of stream and resource characteristics, high demands on processing
and timely delivery of multimedia streams, wireless communication be-
tween devices and transmission of streams, and architectures for the in-
tegration of numbers of devices from various manufactures with diverse
demands and capabilities. Projects in this area involve work on devel-
oping new algorithms which can match the varying multimedia streams
with the varying network and CPU resources, as well as implementa-
tion work, developing and implementing new architectures for system
capable of handling such networked streaming issues.

Figure 1.1: Home networks environment

In distributed heterogeneous environments, e.g., home networks (see

1.1 Motivation 3

Figure1.1), we have:

• Heterogeneous system; Presence of different local schedulers for
CPUs and networks on diverse devices.

• Limited resources; Monitoring and management orders have to be
transported over the same resources as streams, potentially incur-
ring high delays, and bandwidth cost at streams’ expense.

• Highly fluctuating resources; Processing of a media application
is highly dynamic due to the dynamic nature of the audio/video
media content. Thus, when processing a video stream, there are
two types of load fluctuation due to data dependency: stochas-
tic and structural [36] (see Figure 1.2). A stochastic load, can be
caused by different coding techniques for video frames. A struc-
tural load often occurs due to a scene change. Similarly, wireless
networks applications are exposed to long-term bandwidth vari-
ations caused by other applications in the system that are using
the same wireless network simultaneously, and short-term oscil-
lations due to radio frequency interference, like microwave ovens
or cordless phones.

Still, applications in such open, dynamic and heterogeneous envi-
ronments are expected to maintain required performance levels. Effi-
cient transport of streams with acceptable playout quality requires man-
agement of both networks and CPUs. As resources are typically limited
in home environments, guarantee mechanisms for continuous stream
transport are demanded.

One of the key issues for resource management is an efficient rep-
resentation of the fluctuating system state and resource allocation de-
cisions, to provide a small interface to decouple device scheduling and
system resource allocation. In addition, Quality-of-Service adaptation is
an important operation to maximize overall system quality as perceived
by the user, while still satisfying individual application demands.

4 Introduction

time

load

Figure 1.2: Two types of load fluctuation; stochastic (scribble line) and
structural (straight line)

1.1.1 Research method

As we mentioned, our work has started as a part of FABRIC project,
where our industrial partners, like Philips and Thomson, had a tangible
influence on the project’s problem description. We have started with one
consumer electronics market’s well defined problem and made many
cycles from theories down to observation and back up again to theories.
Thus from the very beginning, we use combination of the deductive and
inductive methods.

Simplified, our approach can be divided in three parts:

1. Theoretical level; Here we will work on developing new algo-
rithms.

2. Experimental aspects; Many parameters and trade-offs for the al-
gorithms have to come from experiments and cannot be calculated

3. Implementation work; In order to evaluate the hypothesis and
hopefully give answers to the research questions

1.2 Related work 5

1.2 Related work

1.2.1 Quality of Service

Quality of Service (QoS) is a wide term, often used to describe overall
experience an application or a user will receive over a network. The
literature does not offer one common definition of QoS. In [5] QoS is
defined as:

“The set of those quantitative and qualitative characteristics of a
distributed multimedia system, which are necessary in order to achieve
the required functionality of an application.“

According the recommendation of the Telecommunication standard-
ization sector of International Telecommunication Union (ITU-T)[23],
Quality of Service is defined as:

“The collective effect of service performance which determines the
degree of satisfaction of a user of that service“.

Thus, for different levels of the multimedia system, different defini-
tions of QoS are given.

When designing multimedia streaming systems, Quality of Service
is one of key issues. QoS parameters in such systems have to be pre-
sented in all components, from an application to a communication level
in order to insure a certain level of QoS to a user. However, at different
system layers (e.g., application, operating systems, network) quality of
service is formulated by using different parameters. The translation be-
tween QoS parameters, sometimes also called QoS mapping, on various
levels of a QoS architecture is needed. QoS mapping is also required
in order to reserve the appropriate amount of resources on each layer
of QoS framework. In [17, 45, 14] different mapping mechanisms that
translate representation of QoS at different system layers (i.e., applica-
tion, network) are presented.

In the following subsections, we are going to give a short introduc-

6 Introduction

tion to work done on specifying QoS parameters at different layers, and
QoS frameworks.

User perceived QoS

The ultimate measure of QoS in multimedia application is user satisfac-
tion. Hence, user perceived QoS is becoming more important research
field for industry. Although, user perceived quality is beyond the scope
of our work, we have to be able to define and choose different video
qualities. In the literature, methods for quality assessment of video are
divided in two categories: subjective and objective. Subjective meth-
ods consists of the compilation and statistical analysis of sample ratings
generated by humans. On the other hand, objective video quality as-
sessment uses quality metrics that can predict perceived video quality
automatically.

Subjective video assessment The International Telecommunication
Union (ITU) has proposed Mean Opinion Score (MOS) as a measure
for a subjective quality assessment of video [24]. The MOS is obtained
from a number of human observers who rank the perceived quality of
the shown media content from “worst‘ to “best“. The MOS has been
regarded for many years as the most reliable form of quality measure-
ment.

Nevertheless we can find many researchers questioning the ITU rec-
ommended methods for subjective quality assessment of video. In [44],
authors argued that the ITU methods are not suitable for assessing the
quality of multimedia application, and show that the subjective nature
of the MOS makes it not very robust. They also strongly advise not to
use these methods to assess subjective quality required by multimedia
applications developed today, because they can be misleading in some
cases. According to the same paper, speech and video are multidimen-
sional phenomena. Thus, there are multiple factors that can influence
users’ perception of video and speech. Measurement of perceived me-
dia quality has to be done as function of physiological responses. In [7],

1.2 Related work 7

the authors state that instead of trying to generalize users’ QoS require-
ments, it is better to use different Human Computer Interaction (HCI)
methods in order to answer certain questions about such requirements.
Different HCI methods can be used to answer specific questions con-
cerning QoS requirements in different context. In [7] a stress has been
also put on the fact that there are situations when people can not report
a difference between two frame rates, but the difference has been reg-
istered physiologically. In [29] psycho visual experiments designed to
evaluate the perceived quality of low bit rate video are described. The
subjective evaluation was performed using the Single Stimulus Contin-
uous Quality Evaluation SSCQE [22]. SSCQE was designed to perform
time efficient subjective quality evaluations of digital services, in condi-
tions near to ones found in the home environment. In [22], an analysis of
viewer responses to different artifacts across the range of possible cod-
ing conditions and content is presented. In general, the authors found
that the optimal frame rate, given a constant bit rate, appears to be a
function of the type of motion in a sequence. Thus, sequence with jerky
motion benefited from the increased spatial quality at lower frame rates,
while the perceived quality of sequences with smoother motion where
in general unaffected by changes in frame rate.

Video streams have different bit rates. A relation between a stream
bit rate and the required bandwidth to carry the stream is obvious: the
higher bit rate, the higher bandwidth is needed. However, a relation-
ship between video quality and the corresponding bit rate is not clear.
[35] analyses a relationship between the user-perceived quality and the
average encoding bit rate for variable bit rate MPEG-2. The major con-
clusion of the paper is that the image quality can not be improved by
increasing encoding bit rate only. Increasing the bit rate above a certain
threshold can result in video degradation. For a given packet loss ratio,
a quality-optimal coding rate has to be found.

Objective video quality assessment Objective video quality assess-
ment research aims to design quality metrics that can predict perceived
video quality automatically. A mathematically estimation of the im-

8 Introduction

pairment introduced to video during compression is often used method
within this quality assessment.
Peak-Signal-to-Noise-Ratio (PSNR) or Signal-to-Noise-Ratio (SNR) is
one video quality metrics often used for audiovisual signals. PSNR anal-
ysis uses a standard mathematical model to measure an objective differ-
ence between two images. It is commonly used in the development
and analysis of compression algorithms, and for comparing visual qual-
ity between different compression systems. However, many researches
have shown that PSNR is uncorrelated with the human visual system
and cannot be trusted [35, 43], as it does not take a visual masking into
consideration. In other words, every damaged pixel contributes to a de-
creased PSNR, although this error can not be perceived. In [43], a gen-
eral quality metric for video, termed Moving Pictures Quality Metric
(MPQM) is proposed. MPQM provides a metric between 5 (excellent)
to 1(bad) to express the quality of image streams. The model is based
on the properties of human vision. It considers visual masking tech-
nique to effectively take into account error concealment techniques in
the QoS result and directly targets video rather than single image qual-
ity. MPQM method provides a formula to estimate how packet loss
impacts the quality of image streams.

Application QoS

Application QoS parameters capture an application’s QoS requirements.
Depending on a type of application, application QoS requirements can
vary, e.g. QoS requirements for an e-mail application are not same as for
a streaming application. These two types of application have quite dif-
ferent demands on bandwidth, as well as their sensitivity to delay, jitter,
and data loss are not the same. In [30] as application-level performance
metrics are identified: throughput, latency, availability, data loss, jitter,
and security. In [31] some additional application parameters like colour,
bit length, sampling rate are mentioned.

1.2 Related work 9

System and network QoS

From a user point of view, end-to-end application QoS parameters are
the most important ones. For the user, system QoS performance is hid-
den. However, system parameters depicts communication and operating
system requirements, needed by application. Thus, at system layer, QoS
parameters can be buffer size, process priority, scheduling policy, and
time quantum.

Examples of network QoS parameters are bandwidth, throughput,
loss, delay and jitter [33]. They can be expressed in terms of number of
packets, periodicity of packets, and burst size [13].

1.2.2 QoS Architectures

A fair amount of work has been done on satisfying quality of service
requirements on different architectural levels, e.g. network or operating
systems. However, providing QoS guarantees in distributed multimedia
systems has to be done on an application-to-application basis, and a QoS
awareness should be present at all parts of a stream management, i.e.,
from a media source to a playout devices [3]. In the literature several
architectures have been proposed to realize end-to-end QoS for multi-
media applications. In the following, we briefly describe some of these.

The OMEGA Architecture is designed and developed at the Uni-
versity of Pennsylvania [32]. It is an end-point architecture designed to
provide real-time guarantees in networked multimedia systems. The au-
thors have identified application QoS requirements and investigated how
to satisfy those with help of global and local management. In OMEGA,
application requirements, expressed as QoS parameters, are negotiated,
and if possible, guarantees are made at several logical levels, e.g. be-
tween application and network. The OMEGA has been designed on
assumptions that a network subsystem provides bounds on delay, errors,
and can meet bandwidth requirements, likewise an operating system can
provide run time QoS guarantees.

QualMan is a QoS-aware resource management platform that was
designed based on the knowledge and experience gained during design-

10 Introduction

ing the OMEGA architecture [11]. According to [11], research around
OMEGA architecture was more concentrated on QoS management than
on resource management. The authors of QualMan are convinced that
QoS management is only part of the end-to-end QoS solution and in or-
der to provide end-to-end QoS guarantees, a QoS-aware resource man-
agement is needed. In QualMan, a resource manager allows one ap-
plication to specify the desired quality in terms of CPU, memory, and
communication QoS parameters. The resource model in this architec-
ture has the resource broker that provides negotiation, admission, and
reservation capabilities over the shared resources, i.e. CPU, memory,
and network.

Another interesting work is End System QoS Framework, devel-
oped at Washington University [15]. It provides QoS guarantees within
the end-system for networked multimedia applications. This framework
consists of QoS specification, QoS mapping, QoS enforcement and pro-
tocol implementation. QoS specification, expressed in a few parameters,
depicts flow requirements at application level. Then QoS mapping part,
translate those parameters into resource requirements. Finally, QoS en-
forcement is involved by providing real-time processing guarantees for
media transfer.

At Lancaster University work has been done on the Quality of Ser-
vice Architecture (QoS-A), which is a layered architecture of services
and mechanisms for quality of service management and control of con-
tinuous media flows in multiservice networks [6]. Flow, service contract
and flow management are key notation used in QoS-A. A flow comprises
production, transmission and rendering of media streams. Service con-
tract is an agreement of QoS levels between users and providers. The
contracted QoS levels are monitored and maintained during the flow
management phase. QoS-A takes into consideration both a user-level
specified QoS and mechanisms for resource reservation at a network
level.

MASA (Mobility And Service Adaptation) is a comprehensive end-
to-end QoS architecture [25]. The aim of MASA is to support user
policy-controlled media transmission and processing in heterogeneous

1.2 Related work 11

environments. The MASA framework has following main features: an
overall management system for end-to-end QoS, mapping of user QoS
policies into appropriate QoS parameters for the underlying layers, and
a QoS API that makes developing of QoS-enabled applications easier.

In [10] one additional QoS framework, called QoSMF is presented.
In order to handle the heterogeneity in distributed multimedia applica-
tions, the authors have implemened QoSMF integrated with CORBA
A\V STREAM architecture.

A distributed QoS management architecture and middleware that
manages a multidimensional aspects of QoS is presented in [41]. This
framework provides end-to-end QoS management services that cover
QoS characterization and specification, end-to-end QoS negotiation, and
end-to-end establishment. Due to the fact the authors consider different
dimensions and measures of QoS and also give some concrete examples
of mapping function (or as they call it, a reward function), this work
appears to be of quite interest for our future work.

In [36] one QoS-based resource management framework for Ambi-
ent Intelligence has been presented. It combines resource reservation
and application adaptation in a multi-layer QoS architecture, that ad-
dresses terminal and network resources, and takes energy issues into
account. This framework has ambition to optimize system utility to
provide cost-effective systems that are robust, predictable, and stable,
enabling QoS tradeoffs.

A great work has been done on a software environment for ubiqui-
tous computing and Ambient Intelligence within the IST project OZONE.
Work description for the OZONE project was closely related to the Fab-
ric project. One of objectives of OZONE project is "to specify and im-
plement a generic architecture/framework that will support the effective
use and acceptance of ambient intelligence in the consumer domain"
[37]. One of tasks within the OZONE architecture was the QoS man-
agement for multimedia application. One of results of the OZONE is
platform architecture for the application of Consumer Ambient Intelli-
gence. This platform has adaptive media algorithms, and resource and
QoS management layer.

12 Introduction

SURPASS Home entertainment solution is a product of Siemens.
Their strategy aims at provision of seamless interoperability between all
intelligent devices in the home [4]. According to Siemens, SURPASS
Home entertainment provides users with an end-to-end tested and guar-
anteed solution. This architecture consists of application control, digital
rights management, video servers, video head-ends (i.e. units that con-
vert a television signal to an IP stream, and also encode the signal in real
time according to MPEG-2 or MPEG-4), home gateways, bandwidth re-
source control, and communication controllers. Unfortunately, Siemens
does not give a detailed description of SURPASS, hence the parts of
SURPASS architecture that handle resource management and streams
specifications, remain unknown for us.

However, most of these comprehensive end-to-end QoS architec-
tures, with the exception of [36, 37, 4], are mostly designed to work over
networks like ATM or the Internet with Integrated Services (IntServ)
and Differentiated Services (DiffServ) support, i.e. networks that can
provide guarantees on bandwidth and delay for data transfer. As we
mentioned before, our work is performed in the home environment do-
main, where we have heterogeneity (different devices, communication
media and middleware), and limited resources (especially wireless net-
works). Therefore, we do not make any assumptions regarding ability
of the underlying system (OS or network) to offer QoS guarantees.

While architectures like [25] give an overall management system
for end-to-end QoS, covering all aspects from a user QoS policies to
network handovers, in our work we focus on QoS management and re-
source adaptation in application domain.

1.2.3 QoS Adaptation of fluctuating resources

QoS adaptation involves monitoring and adjustment of resources and
data flows in order to ensure delivering of certain performance quality
level to the application. This can be done locally on a device, i.e., local
resource adaptation mechanisms on devices detect changes in resource
availability and react to them by adjusting local resource consumption
on host devices, or globally, on the system level, i.e., the QoS adaptation

1.2 Related work 13

is performed by a global QoS manager with a full knowledge of the sys-
tem resources. The first approach has the advantage that the application
can use domain specific knowledge to adapt its execution to the avail-
able resources. For example, in a video streaming application, this could
be achieved by decreasing the stream bit rate or skipping video frames.
On the other hand, a global resource management is aware of the de-
mand of other applications and it has an overview of the total resource
availability on the system level. In this way, it may reassign budgets, or
negotiate new contracts to maximize system overall performance. Com-
prehensive work on application-aware QoS adaptation has been done in
[27, 34]. Both these works make a separation between the adaptations
on the system and application levels. While in [27] the application ad-
justment is actively controlled by a middleware control framework, in
[34] this process is left to the application itself, based on upcalls from
the underlying system.

Classical control theories have been also examined for QoS adap-
tation. Thus, in [18] the authors use a feedback mechanism based to
control the bandwidth of real-time multimedia applications according
to network load. The presented algorithm is designed for RTP proto-
col, and it uses available information in so called receiver reports (e.g.
packet loss, and delay jitter) to estimate network state and make band-
width adjustment. A work presented in [28] shows how an application
can be controlled by a task control model. Method presented in [42]
uses control theory to continuously adapt system behaviour to varying
resources. However, a continuously adaptation maximizes the global
quality of the system but it also causes large complexity of the opti-
mization problem. Instead, we propose adaptive QoS provision based
on a finite number of quality levels.

The challenges of providing QoS for video streaming over wireless
network are discussed in [26]. Furthermore, an architecture is proposed
to deal with the unreliability of the wireless network, by adapting the
video streams’ transmission rate to the varying bandwidth. This work
has been of a high interest to us, and we have adopted the parts of this
architecture, such as the bandwidth prediction and traffic shaper, in our

14 Introduction

work (see Chapter 4 and Appendix A).

1.3 Contributions

As mentioned, to execute applications in open, dynamic, heterogenous
environments, like home networks, while still guaranteeing the required
qualities, is a challenging task. Many technical and research questions
have to be solved in order to give a complete end-to-end solution. Al-
though our ambitions, from the beginning, was to provide a design for
a comprehensive adaptive framework for streaming, and to provide an-
swers to all questions that we ran into, we have realized that we need to
limit ourself to a few research questions. Hence, in our work we have
focused on resource management and QoS adaptation problems, while
many other questions (like user perceived quality) are left outside of the
scope of this thesis. Consequently, in order to pursue with our work we
have had to make a few assumptions.

1.3.1 Assumptions in the thesis

Our work is based on the following assumptions:

• Connection establishment (i.e. how devices discover each other),
and other network related issues (like routing and roaming) are
solved by the underlying system.

• We work with adaptive applications (streams), i.e., applications
are capable to cope with changes in the underlying environment.

• Playout routes (paths) of all streams in the network are known.
In other words, network topology, which describes a source and
target device, likewise all other devices involved in one streams
playout route, are considered to be known.

• Available resources (e.g., CPU, bandwidth) can be treated in iso-
lation. We assume that there is no relationship between different

1.3 Contributions 15

type of resources, and a certain QoS level has just one dimension.
Hence, every quality level depicts resource supply/requiremets for
just on type of resource.

• Applications (streams) descriptions in terms of quality levels, and
their resource requirements are known.

• Synchronization between applications (streams) is left outside of
our work.

• We assumed a linear mapping between frame (or bit) rate and
quality of a stream, e.g., the higher frame rate the higher quality
(see Section 2.2). The complex relationship between user per-
ceived quality and resource demands is beyond the scope of the
project.

1.3.2 Contribution 1: Real-time Resource Management Frame-
work

From the beginning, resource management in home networks has been
the focus of our interest. Efficient transport of streams with acceptable
playout quality in heterogenous, dynamic environment (e.g. home net-
works) requires management of both networks and CPUs. We believe
that key issues to enable resource handling with real-time methods in
home networks are the interfacing between devices and resource man-
agement, providing a relevant view of the system state and diffusion
of decisions to the devices. Therefore, when we designed our adaptive
framework, the Matrix [39], we have attached great importance to find-
ing tradeoffs between accuracy of system state information and efforts to
transport and process it. Similarly, decoupling communication and syn-
chronization between devices and resource management have played an
important roll. The Matrix is based on a global abstraction of device
states, which reduces system state information and decreases overheads
for its determination and dissemination. It provides access to the entire
system state in acceptable fresh way, enabling system wide optimized
decisions to be taken. The Matrix is composed of several entities that

16 Introduction

constitute an effective mechanism for monitoring and scheduling avail-
able resources in the system.

1.3.3 Contribution 2: Integrated QoS Adaptation Approach

We have extend the Matrix framework to implement a method for an
efficient QoS provision and adaptation in dynamic, heterogeneous sys-
tems. As we already mentioned before, QoS adaptation can be per-
formed locally on a device or globally, on the system level. While most
of the existing approaches provide mechanisms for either local or global
adaptation, we believe that both methods should be used together in or-
der to respond properly to both local and global fluctuations. Hence,
we propose the integrated global and local QoS adaptation mechanism,
where the structural and long-term load variations on the system level
are object for global adaptation, while the stochastic load and short-
term resource variations are taken care locally on devices. The task of
the local adaptation mechanism is to adjust resource usage locally on a
device as long as the fluctuation is kept within a certain QoS range. If
the resource usage exceeds the range’s threshold, the global adaptation
mechanism takes over and performs resource reallocation on the system
level. In our approach, global adaptation (resource reallocation) is per-
formed by a global resource manager, while the local adaptation is taken
care of locally on the devices (by local monitors and schedulers).

QoS-aware applications are usually structured in such a way that
they can provide different discrete quality levels, which have associated
estimations of the required resources. We use the notion of abstract
quality levels for defining QoS ranges, such as high, medium and low
resource availability. This provides a general QoS framework that is not
application or device specific. As long as an application or a device can
express its resource demand and consumption in terms of an abstract
level, it can benefit from our proposed solutions.

1.4 Outline of the thesis 17

1.4 Outline of the thesis

The rest of the thesis is organized as follows:

Chapter 2 presents the Matrix framework for real-time resource man-
agement for video streaming in networks of heterogenous devices. The
Matrix’s ideas and its architecture are discussed here.

Chapter 3 describes the integrated Quality-of-Service adaptation ap-
proach for dynamic, heterogeneous systems. The integrated QoS ap-
proach is enabled by the Matrix framework, and we have applied it in
the context of video streaming applications.

Chapter 4 contains analysis, results, and discussion of both, the Ma-
trix framework and integrated QoS approach.

Chapter 5 concludes the thesis with a brief summary of the main
contributions, and with an outline of future work alignments.

Appendix A gives an overview of the current status of the Matrix
framework implementation, and also contains some ideas and discus-
sions on the future implementation work.

Chapter 2

The Matrix: Real-time
Resource Management
Framework for Distributed,
Heterogeneous Systems

In this chapter we propose an adaptive QoS framework for efficient re-
source management, called the Matrix. The Matrix is a concept to ab-
stract from having detailed technical data at the middleware interface.
Instead of having technical data referring to QoS parameters e.g., band-
width, latency and delay, we only have discrete portions that refer to
levels of quality. The underlying middleware must interpret these val-
ues and map them on technical relevant QoS parameters.

19

20 The Matrix: Real-time Resource Management Framework
for Distributed, Heterogeneous Systems

2.1 Rationale

In real-time systems, methods for scheduling and allocation have been
developed to provide resource management including guarantees. These
are capable of determining whether resources are sufficient for the timely
completion of tasks and, if so, provide reservation methods to ensure
that these resources are available for the guaranteed task when execut-
ing. Real-time resource management can thus manage all resources: it
keeps track of the state of resources, provides admission control and re-
source guarantees. The resource management methods from real-time
systems can provide key capabilities for the handling of streams and
devices in home network.

However, the area of home networks introduces a number of crucial
differences and issues compared to classical "process control" in real-
time systems. For example, home networks are heterogeneous, where
different local schedulers for CPUs and networks exist on diverse de-
vices. An approach with tight coupling between global management
and diverse local schedulers is not appropriate, since it will have unfea-
sible high overheads and require a fixed, known set of schedulers. Then,
in home networks we have to cope with limited resources where real-
time activities, including schedulers, execute on the same resource they
are handling. Optimum scheduling can easily take more CPU cycles
than the execution of the scheduled software takes. Finally, the resource
demands coming from different applications are usually highly fluctu-
ating over time (e.g., structural and stochastic load variations in video
processing).

Key issues for enabling resource handling with real-time methods
in home networks are efficient representation of the fluctuating system
state, resource allocation decisions, and dissemination of orders. The
overhead to transport the information needed for a 100% accurate view
of the system with very fine grain granularity capturing highly fluctu-
ating resources such as wireless networks will be prohibitively high on
the network; scheduling activities for all events will overload CPUs. In
addition, such information would be too fine-grained fluctuating, as re-

2.1 Rationale 21

source management has to operate at larger granularity. We believe that
the tradeoffs between accuracy of system state information and efforts
to transport and process it have to focus on efficiency providing the min-
imum relevant information for resource management only.

Hop-by-hop approach
Efficiency of distributed resource management is critically threatened
by overheads, as devices have to exchange information to determine a
global system view for resource management decisions. In addition,
scenarios such as high fluctuations on a network link demand more
scheduling activities, which in turn will create more network overhead,
resulting in increased fluctuations.

A hop-by-hop approach overcomes some of the problems of the
fully distributed approach, such as network overhead. In the hop-by-
hop approach decisions about how much of a resource is dedicated to a
given version of a stream (application) are taken locally by the devices in
sequence. However, it is impeded, by several shortcomings as well: the
decisions taken on each device suffer from the limited view of the state
of the device and the next one on the route. Suppose the resources on
both devices can provide ample availability at the moment, resulting in
the choice of a high quality/high bandwidth version of the stream to be
transmitted. If any of the devices on the route to the play-out can handle
only a lower quality version, the resources used here for the high quality
will be wasted. Propagating the state information back and forth along
the route results in the overhead described earlier and delays the actual
scheduling in each device further. Rather, a sender-based approach with
global knowledge is appropriate.

A further issue affected by the limited local state knowledge con-
cerns the decomposition of end-to-end delay of the stream into dead-
lines for each of the devices on the route, forming deadlines for task
scheduling and transmission delays.

Chosen approach
When designing our adaptive framework, the Matrix, we have attached

22 The Matrix: Real-time Resource Management Framework
for Distributed, Heterogeneous Systems

great importance to finding trade-offs between accuracy of system state
information and efforts to transport and process it. The accuracy of the
information represented is suitable for resource management, abstract-
ing over fluctuations or changes, which will overload scheduling: the
very fine grain resolution of values is mapped into a very small num-
ber or discrete values. Thus, the overhead to keep system wide state
information fresh is dramatically reduced.

Moreover, in the Matrix we also provide an interface to decouple
device scheduling and system resource allocation. Instead of the re-
source manager probing local schedulers for state information, the de-
vices provide information about relevant state information and estima-
tions about changes with appropriate, individual granularity themselves.
Likewise, diffusion of decisions for resource allocation on individual de-
vices, made by the resource manager, are carried out via the the Matrix
as well. Thus the global resource management is independent of de-
tailed knowledge about local schedulers, which can be replaced easily,
supporting a component based, decoupled approach. Further, without
the need for explicit costly communication and negotiation between de-
vices, decision about which version of streams to transport or the de-
composition of end-to-end delays can be performed by global resource
management, reducing overheads and resource waste due to limited lo-
cal device knowledge. Moreover, failures in devices or communication
will not block or delay resource management.

2.2 QoS levels

The basic idea of the Matrix is to provide a global abstraction of device
states as representation of the system state for resource management
and to decouple device scheduling and system wide resource allocation.
Further, in the Matrix we want to use the minimum relevant information
about devices states as needed for resource management, in order to
reduce the system state presentation, and to abstract over fluctuations,
which could overload scheduling of resources. Thus, we use the notion
of a few abstract QoS levels that represent a resource’s availability and

2.2 QoS levels 23

an application’s quality (see Figure 2.1).

Available
resources

QoS levels

time

H

M

L

time

H

M

L

Mapping function

Figure 2.1: Reduced system state in the Matrix

For example, the variations in the quality of network link connec-
tion between two devices can be represented by e.g., three abstract QoS
level values, (L)ow, (M)edium and (H)igh. H means that the data can
be transmitted through the link with full available capacity, while L in-
dicates severe bandwidth limitations. Likewise, quality of each applica-
tion using certain resources is mapped to a finite number of application
QoS levels.

In general, the availability of each resource is represented in our
approach as a vector of discrete range of n QoS performance levels
{q1, q2, ...qk, qk+1, ..., qn}. The value range of a QoS level qk is defined
by its threshold values [qmin

k , qmax
k].

In this work, we apply linear mapping between the resources and
the QoS levels, e.g., based on experimental measurements [26]. For
example, one simple mapping for the CPU bandwidth based on the CPU
utilization U could be e.g.,:

0 ≤ U ≤ 0.3 ⇒ H

0.3 < U ≤ 0.6 ⇒ M

0.6 < U ≤ 1.0 ⇒ L

24 The Matrix: Real-time Resource Management Framework
for Distributed, Heterogeneous Systems

Likewise, we can map a video stream of a movie, to the following
threshold values: 1 Mbps (L), 2 Mbps (M) and 3 Mbps (H). In that way,
the number of state changes and associated resource management ac-
tivities would be reduced drastically, while still providing a reasonably
accurate representation of the actual stream demand (see Figure 2.2).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

300 350 400 450 500

st
re

am
 d

em
an

d
(M

bp
s)

time (sec)

stream demnd in QoS leves
stream demand fluctuation

Figure 2.2: Mapping of a stream demand to few abstract QoS levels

However, having available resources mapped to just a few quality
levels can also bring some negative effects. Thus, it implies an in-
evitable reduction of freshness system state presentation. Furthermore,
in the case of video applications, too many quality changes can be pre-
served by a user as a significant quality degradation [8]. Again, it is
very important to find a trade-off, between accuracy of the system state
presentations, and efforts to transport and process.

A more advanced mapping could be, for instance, to use fuzzy logic
to provide a larger number of QoS levels with finer granularity. How-
ever, QoS mapping is an ongoing work and it is out of the scope of this
thesis. Still, it is very important to stress that both quality degradation,
likewise quality promotion, should be done gracefully.

2.3 Architectural design aspects 25

2.3 Architectural design aspects

Resource
Manager

Status Matrix Order Matrix

Order
Manager

Local
Monitor

Order
Manager

 Local
Scheduler

Order
Manager

 Local
Scheduler

 Local
Monitor

 Local
Monitor

 Local
Scheduler

device device device

Figure 2.3: Information flow between Matrix’s components

The Matrix framework is composed of several entities that consti-
tute an effective mechanism for scheduling and monitoring of available
resources in the system (see Figure 2.3).

In the following subsections, every part of the Matrix framework
will be further described.

26 The Matrix: Real-time Resource Management Framework
for Distributed, Heterogeneous Systems

2.3.1 Resource Manager

For each "domain"1 there is one Resource Manager. The Resource Man-
ager is used to globally schedule and reserve resources in the system
(domain), i.e., it makes decisions for resource usage for all devices. One
part of stream scheduling is providing end-to-end timing constraints,
i.e., providing sub deadlines (sub delays) for each device in the system
by real-time methods. In other words, each time a resource variation
occurs that affects an active video stream, the resource manager has to
make an adjustment of streams and resources. Likewise, each time a
new application is about to enter the system, the Resource Manager per-
forms admission control.

In order to deal with resource reservation, the Resource Manager
has to have knowledge about currently available resources in the sys-
tem. This information is obtained from the Status Matrix. Based on that
information, the Resource Manager will make decisions for resource re-
allocation in the system, and store the orders for devices in the Order
Matrix. These orders can be seen as an interface between the resource
manager’s global view of resources and set of entities (order manager,
local scheduler and local monitor), which we call "local enforcement
mechanism".

2.3.2 Status Matrix

The Status Matrix contains information about available resources in the
system, which is provided by the Order Managers, located on the de-
vices. For each type of shared resources there is one Status Matrix,
where every device has an entry, called a StatusMatrixCell. As men-
tioned above, available resources will be expressed with a few different
QoS levels. This implies that we do not need to bother about updating
the Matrix with each oscillation around a value. Instead, Order Mangers
will update the Status Matrix when a change to a different quality level
occurs for a significant amount of time.

1A subnetwork within which common characteristics are exhibited, common rules
observed, and over which a distribution transparency is preserved

2.3 Architectural design aspects 27

Furthermore, each resource is represented by its

1. current value (out of the limited number range)

2. current granularity, i.e., the time interval until which the current
value is likely to not change, and

3. likelihood that 2) holds.

A single link on, e.g., wired switched Ethernet, will have a high
granularity interval and high likelihood, whereas a wireless link in a
mobile environment might result in small values for each. While accu-
rate and correct predictions will not be possible, these values support
better estimates for the decisions of the resource manager than very pes-
simistic values only. Should the granularity interval be less than is useful
for resource management, the associated value for the device state can
be assumed 0.

2.3.3 Order Matrix

The Order Matrix contains directions for resource reservations on the
devices, made by the Resource Manager. Similarly to the Status Matrix,
there is one Order Matrix for each type of resources, and each device is
presented by one element in the Order Matrix, i.e., an OrderMatrixCell.
Hence, devices pick their orders form the Order Matrix (or from their
Cell in the Order Matrix) in form of:

1. delay (sub-delay)

2. value (out of the limited number range, QoS performance levels)

2.3.4 Order Manager

An Order Manager is responsible for allocating resources at a device.
It maps global resource reservation constraints (orders), made by the
Resource Manager, to the concrete scheduling specification for Local

28 The Matrix: Real-time Resource Management Framework
for Distributed, Heterogeneous Systems

Schedulers. Another task of the Order Manager is to provide the Sta-
tus Matrix with information about locally available resources, in form
of well defined QoS levels. There is an Order Manager for all type
resources. The information about available resources is determined re-
peatedly, but not periodically by the order manager. The accuracy of the
information depends on a chosen temporal granularity. Hence, an Order
Manager is responsible for:

1. collecting information about the available resources at the devices

2. transforming various kind of traffic specification into a few QoS
levels and providing the Status Matrix with them

3. allocating resources at devices and providing parameters to Local
Schedulers.

2.3.5 Local Scheduler

A Local Scheduler is responsible for scheduling of local resources, e.g.,
a network packets scheduler that adjusts the packet sending rate accord-
ing to available bandwidth. It is placed on a device and together with
the Order Manager, it enforces local resource reservation. As mentioned
before, the Order Manager provides parameters to the Local Scheduler.

2.3.6 Local Monitor

The information about available resources is provided to the Order Man-
ager through Local Monitors. Thus, Local Monitors are responsible for
continuous monitoring of a resource availability on a device, e.g., the
available CPU or the network bandwidth. The accuracy of the informa-
tion depends on a chosen temporal granularity of monitoring intervals.

2.3.7 Operational scenario

Local Monitors on devices, monitor available resources continuously
and send this information to Order Managers. The Order Manager per-

2.4 Communication between devices 29

forms resource calculation locally to estimate the maximal available re-
sources it can offer. Then, it maps these values to the appropriate QoS
levels, and store them into the Status Matrix. Based on the information
stored in the Status Matrix, the Resource Manager will make decisions
for resource reallocation in the system, and store the orders for devices
in the Order Matrix. Then, an Order Manager receives orders from the
Order Matrix and makes sure to adjust local resource usage according
to them. This is done through the Local Schedulers.

2.4 Communication between devices

In traditional computer world, most of interaction is performed in client-
server model, where a client process requests and waits for some ser-
vices (data) from a server process. Client and server are tightly coupled,
i.e., , messages can not be exchanged unless both client and server are up
and running, and fully aware of each others existence. However, we be-
lieve that for video and audio streaming application in home networks,
likewise for dynamic mobile environment, a better solution for commu-
nication is a publish/subscribe model [12, 16]. In such model, a device,
which acts as the publisher, makes some information available to the rest
of the devices (i.e., a device publishes information), and has also the re-
sponsibility to update that information. Any other device interested in
that information has to subscribe to it. The subscriber device receive
only messages that it has subscribed to, without any knowledge of who
the publisher is. Thus, one of characteristics of publish/subscribe sys-
tem is its anonymity. Then, it is also asynchronous, since a sender (pub-
lisher) does not have to wait for acknowledgment from a receiver, but
reliability of communication is taken care by the underlying infrastruc-
ture. Lastly, publish/subscribe is quite similar to multicast communica-
tion, where a sender (publisher) may send one message (information) to
many receivers (subscribers), with just one publish operation.

In the Matrix approach we want to reduce the number of control
messages between the Resource Manager and the devices (Order Man-
agers), and by using publish/subscribe communication model, messages

30 The Matrix: Real-time Resource Management Framework
for Distributed, Heterogeneous Systems

Resource
Manager

Status
Matrix

Order
Matrix

Order
Manager

Order
Manager

P P

P

S S

S

Figure 2.4: Matrix and publish/subscribe communication model

are only sent when attributes of the matrix elements (Status and Order
Matrix) are actually changed. Moreover, decoupling of publisher and
subscriber devices enables scalability and mobility in a network, which
fits well within the Matrix.

Figure 2.4 describes how publish/subscribe communication model
is adopted in the Matrix framework. As we mentioned before, resource
availability information stored in the Status Matrix, is published by the
Order Managers. Each Order Manager adds an entry in the Status Ma-
trix and becomes owner of this object, which also means that it is re-
sponsible for updating it. The Resource Manager is interested in infor-
mation published in the Status Matrix, thus it subscribes to the Status
Matrix. Likewise, information in the Order Matrix is updated by the
Resource Manager, i.e. the Resource Manager publishes elements of
the Order Matrix. The subscribed Order Managers are reflected ac-

2.5 Motivating example 31

cordingly. So far, we have looked into two implementation of pub-
lish/subsrcibe mechanisms, HLA and xmlBluster [1, 2], and their appli-
cability within the Matrix framework. We have found them both suitable
for the Matrix framework (see Appendix A).

However, it is not necessary to use any of existing publish/subscribe
mechanism with the Matrix framework. The parts of the Matrix, which
otherwise directly benefit from from the publish/subscribe model, could
be implemented by means of common programming methods. For ex-
ample the communication parts of the Matrix framework could be im-
plemented by pure sockets. But, the amount of the required implemen-
tation work would increase, in order to achieve anonymity and asyn-
chronicity, which are offered by any publish/subscribe mechanism.

Finally, want to stress, a publish/subscribe mechanism is only con-
sidered for the management part of the Matrix framework. Possibilities
of using it for the transport of streams have not been examined so far.

2.5 Motivating example

In order to give a more detailed description of how the different part of
the Matrix framework work together, let us consider the following mo-
tivating example:

A person uses a PDA (Personal Digital Assistant) to watch a video
stored on a local video server, which is delivered to the PDA through a
wireless network. As the person moves around with the PDA, the amount
of the available bandwidth varies, which can result in video interruption
due to packet lost. Fortunately, the video server is able to provide the
stream with different qualities, and the user can continuously watch the
stream on his/her PDA, although with the varied quality.

For the sake of simplicity, in this scenario we consider just one type
of resource, available network bandwidth. We assume the scenario net-
work like one presented in Figure 2.5, where connection between the
PDA and the video server is archived via one wireless router. Hence,

32 The Matrix: Real-time Resource Management Framework
for Distributed, Heterogeneous Systems

in our example scenario we have two connection links, A and B. Fur-
thermore, in this scenario we omit the steps that describe the system and
stream setup (for example, connection to the network, which lets the
home network and the PDA discover each other), since those issues are
not in the scope of our work, and we assume that they are taken care by
the underlying system.

video server

RM

L (H)L (H)S1

SERPDASTR

(2)

OMR

LM LS

OMR

LMLS

OM Network

HL (H)S1

SERPDASTR

SM Network

(2)

PDA router
wireless link (A) wireless link (B)

(2)

(2)

(3)

(4)

(5)

(6)

(6)

(7) (7)

(8) (8)

Figure 2.5: Scenario network

The steps of the scenario are following:

1. Each order manager, on devices, adds one or more entries, Sta-
tusMatrixCells, in the Status Matrix and becomes owner of these
objects. If a certain device is also a source of streams, a new
"row" in the Status Matrix, i.e., a set of StatusMatrixCells, will be
created for each stream. (This step is omitted in Figure 2.5.)

2. The Local (Bandwidth) Monitors on the PDA and video server ob-

2.5 Motivating example 33

serve the current bandwidth value of the wireless network. Then,
those values are being reported to the corresponding Order Man-
agers.

3. The Order Manager compare the observed bandwidth value with
the threshold values imposed by current quality level. So let us
assume that the Order Manger on the PDA will discover that the
currently observed quality level by the local monitor on the PDA
(on connection link A) is different from the previously published
one. In this case, the Order Manager will publish this new QoS in
the Status Matrix.
On the contrary, if the observed quality level would be the same
as the previous one, there will be no need to publish it again.

4. The Resource Manager has subscribed to the elements in the Sta-
tus Matrix and will only receive information when attributes of the
elements are updated. (That is enabled by publish/subscribe com-
munication mechanism that we have adopted in our framework,
see 2.4). Thus, the Resource Manager is notified after publishing
the new quality value for connection link A in the Status Matrix.

5. The Resource Manager, who has an overview of the whole re-
source situation (i.e., for all involved devices), maps available
resources to the resource requirements. If there are enough re-
sources to support the requested connection, the resource man-
ager puts directions for resource reservation in the Order Matrix,
by updating attributes of the Order Matrix elements.

6. Order managers subscribe to the elements in the OrderMatrix, i.e.,
OrderMatrixCells. Thus, when attributes in the OrderMatrixCells
are updated, they become visible for Order Managers on all de-
vices (again due to publish/subscribe mechanism).

7. The Order Managers on respective devices will try to make local
resource reservation, i.e., to translate the abstract levels to appli-
cation specific concrete values to be used by the Local Schedulers.

34 The Matrix: Real-time Resource Management Framework
for Distributed, Heterogeneous Systems

8. The Local Scheduler gets scheduling specification (bandwidth,
delay) for each stream-part from the order manager, and adjusts
the transmitted packets rate according to these new values.

2.6 Admission control

Each time a new application (video stream) is about to enter the sys-
tem, the Resource Manager has to determine if sufficient resources are
available to satisfy the desired QoS of the new connection, i.e. it has
to perform an admission control. Admission control is initiated first by
an user and goes via Order Manager on the device. Thus, the Order
Manager updates the Resource Manager (via the Status Matrix) with
application’s info (e.g., resource requirements), and the Resource Man-
ager makes decision. If one application can be accepted without violat-
ing the QoS of existing applications, the Resource Manager will simply
publish new orders for resource reservation/reallocation into the Order
Matrix. However, in the case of insufficient resources, different steps
could be taken depending on current resource reallocation policy. Thus,
if applications are not assigned any priorities, we simply reject the new
application. On the other hand, when priorities have been used, we have
to check if there are any existing application with lower priority than
the new one, and if so decrease their quality levels (QoS), in order to
free some resources for the new application. If available resources are
insufficient, despite maximum allowed QoS degradations of the lower
priorities applications, the new application is rejected. In section 3.4,
we will describe the reallocations policies that we have implemented in
our work.

2.6.1 Control messages during admission control

We can measure the cost of admission control, in terms of control mes-
sages that have to be exchanged within the system.

When a user wants to start one new application, it goes via the Or-
der Manager on the device. Thus, the Order Manager sends (publishes)

2.6 Admission control 35

an update message to the Resource Manager (via Status Matrix). De-
pending if the Resource Manger rejects or accepts this new application,
it will send message(s) either to the calling Order Manager, or to all
Order Managers on involved devices. Figure 2.6 describes how control
messages are sent during an admission control phase. (The arrows with
dash line style denote the messages that are only sent when admission
control accepts the new application).

Order
Manager …

Resource
Manager

1 n-1 n

n

Order
Manager

Order
Manager

Figure 2.6: The Matrix: the control messages during an admission con-
trol.

Let n denote the number of devices in the system, and M the num-
ber of control messages that has to be sent for an admission control.
Then, we have:

M = 2,

when a new application is rejected. In this case, besides the first

36 The Matrix: Real-time Resource Management Framework
for Distributed, Heterogeneous Systems

message which is sent by the Order Manager to the Resource Man-
ager, just one additional reject message is sent back from the Resource
Manager to that Order Manager. The rest of the devices (Order Man-
agers) are not involved in this process, since their resource status is not
changed.

However, when available resources are sufficient, i.e., when an ap-
plication is accepted, M is equal to:

M = n + 1,

because, the Resource Manager has to send messages to all involved
Order Managers on the devices.

Hence, a rejection of a new application within admission control
costs just two control messages. On the other hand, the amount of con-
trol messages in case of an application’s acceptance is proportional to
the number of devices in the system, i.e., it increase/decrease with the
increased/decreased number of devices.

2.6.2 Comparison with hop-by-hop approach

During an admission control in a hop-by-hop approach, control (re-
source allocation) messages have to be sent from a source to the sink
device, and back (see Figure 2.7). Consequently, in one hop-by-hop
approach the amount of control messages during an admission control
phase, is:

M = 2(n − 1)

However, this equation for M is valid when the new application is
accepted, or rejected by the last device on the path (the sink device).

When a first (source) node discovers that the new application can
not be accommodated, then M = 0. Thus, in cases of an application’s
rejection, the number of control messages, M, can take any value in the

2.6 Admission control 37

source
device …

1 n-12 n

n

sink
device

Figure 2.7: Hop-by-hop approach: the control messages during an ad-
mission control

interval [0, 2, 4, ..., 2(n−1)], depending on which node discovers a lack
of available resources.

Finally, we express the number of control messages during an ad-
mission control in a hop-by-hop approach, as follows:

M ≤ 2(n − 1)

Figure 2.8 shows the relations between the number of devices in
the system, and the cost for admission control in terms of control mes-
sages, for both the Matrix and hop-by-hop approach. We can see that
a rejection of an application during admission control always costs two
control messages in the Matrix, while in the hop-by-hop approach this
vary from zero to 2(n-1). On the other hand, in both approaches, there is
a proportional dependency between the amount of control messages and
the number of devices (nodes), in cases when an application is accepted.
Clearly, the more devices the more control messages are needed to es-
tablish a new application in the system. However, admission control in
the Matrix generally requires less control messages when the number
of devices (nodes) in the system is greater than three, which is quite

38 The Matrix: Real-time Resource Management Framework
for Distributed, Heterogeneous Systems

0

5

10

15

20

25

30

35

2 4 6 8 10 12 14

nu
m

be
r

of
 c

on
tr

ol
 m

es
sa

ge
s

number of nodes

Matrix (application accepted)
hop-by-hop approach

Matrix (application rejected)

Figure 2.8: Control messages during admission control; the Matrix vs
hop-by-hop approach.

common situations in home networks environments.

2.7 Resource reallocation delay

Delay is a term often mentioned in communication literature, as the time
required for a message to travel from the transmission point to destina-
tion. Concretely, in our work we are talking about resource reallocation
delay, which is a time lag between the moment an device announces
(publishes) a change in resource availability, and the moment when all
devices get new resource reallocation orders.

In the Matrix framework a change in resource availability on a de-
vice is published by an Order Manager to the Status Matrix. Then,

2.7 Resource reallocation delay 39

…

Resource
Manager

device 1

t1

device n

tn

device k

tk

Figure 2.9: A resource reallocation delay in the Matrix

the Resource Manager makes resource allocation decisions which are
spread (broadcasted) to the initiating device, plus all other involved de-
vices. As devices are connected over different types of networks (we
work in distributed heterogeneous environment), a message transmis-
sion time, between two devices in the system, may vary quite a lot. In
other words, the time it takes to send one control message from the Or-
der Manager on a device, to the Resource Manager, is not the same for
all devices in the system.

For this purpose, let T denote a set of all possible worst case mes-
sage transmission times between two devices in the system (or between
Order Managers and Resource Manager):

T = {t1, ..., tn},

where n denotes the number of devices in the system. Obviously, in
a home network environment many connection links may be similar,
thus many elements in T may have the same value.

Let tk denote a worst case message transmission time on the link be-

40 The Matrix: Real-time Resource Management Framework
for Distributed, Heterogeneous Systems

tween the device k, who has initiated a resource reallocation, and the
Resource Manager. Thus, tk is one element in T , tk ∈ T .
For instance, tk on a wired switched Ethernet link, will have a low ne-
glected value (≈ 0), whereas tk on a wireless link in a mobile environ-
ment might result in higher values.
We also introduce tmax as the maximum message transmission time in
T :

tmax = max {t1, ..., tn}

Hence, we say that the resource reallocation delay, in the Matrix, is :

D = tk + C + tmax ,

where C is a worst case execution time of the Resource Manager
task. One special case is when tk = tmax. Then, the upper limit of D
can be calculated as:

D = 2 tmax+ C

On contrary, in the case that all links are wired, we approximate to
the low limit of D, i.e.,

D = C + 2tk ≈ C .

At the end, we can say that a resource reallocation delay in the Ma-
trix is:

D = tk + C + tmax ≤ 2tmax + C

Consequently, a resource reallocation delay in the Matrix is inde-
pendent of the number of devices (nodes) present it the system, i.e., a
larger number of devices in the system does not imply a large delay. We

2.7 Resource reallocation delay 41

want to stress that this delay calculation is also valid for the admission
control in the Matrix, as the resource reallocation mechanism is same.

2.7.1 Comparison with hop-by-hop approach

As we mentioned above, a resource reallocation delay in the Matrix is
independent of the number of devices in the system. On the other hand,
in the case of hop-by-hop approach a resource reallocation delay (e.g.,
admission control) increases with the number of devices.

source
device …

1 n-12 n

n

sink
device

t1 tn-1

Figure 2.10: A resource reallocation delay in a hop-by-hop approach

Let, n be the number of devices one control message has to pass
on its way from the source to the sink device (see Figure 2.10). Also,
if Ctot denotes the total time (WCET) spent by all devices in order to
estimate available resources, i.e.,

Ctot =
n∑

k=1

Ck.

Then, a resource reallocation delay can be calculated as:

D = 2
n−1∑

k=1

tk + Ctot

42 The Matrix: Real-time Resource Management Framework
for Distributed, Heterogeneous Systems

In the worst case scenario, i.e., when all tk are equal to tmax, the
upper bound of D is:

D = 2(n − 1)tmax + Ctot

Finally, we say that in the hop-by-hop approach a reallocation delay
is:

D = 2
n−1∑

k=1

tk + Ctot ≤ 2(n − 1)tmax + Ctot

Accordingly, in the hop-by-hop approach, a resource reallocation
delay depends on the number of devices, i.e., it increases with the num-
ber of devices in the system, and vice versa. It is obvious that the number
of devices has an impact on the amount of control messages that have
to be sent between devices, but also Ctot, depends on how many de-
vices have been involved in the resource reallocation process. The more
devices in the system, the more time is totally spent on resource reallo-
cation.

2.8 Chapter summary

In this chapter, we have presented the Matrix, an adaptive framework for
applying real-time resource management methods for decoupled video
streaming of heterogenous devices. The Matrix is based on a global ab-
straction of device states, which reduces system state information and
decreases overheads for its determination and dissemination. Instead
of having technical data referring to QoS parameters, e.g., bandwidth,
latency or delay, we only have discrete portions that refer to levels of

2.8 Chapter summary 43

quality. Also, the Matrix is an efficient system state representation and
an interface to decouple device scheduling and system resource alloca-
tion, thus enabling resource reallocation without explicit consideration
of intricate details of device schedulers.

Concurrently, we want to stress that the Matrix provides a logical
abstraction of the view of the system state, not an actual centralized
implementation requirement. Rather, the Matrix is represented in a dis-
tributed way.

Theoretically, it is possible that a single device does not participate
in the Matrix approach. However, the higher abstraction level provided
by the Matrix and decreased overhead would be lost. Obviously, the
resulting complexity would effect the quality of the decisions and the
overheads as well as impact the rest of the system. Devices either join
the Matrix fully, i.e., provide input to the Status Matrix and follow the
Order Matrix, or not at all.

Moreover, we have compared the Matrix to th hop-by-hop approach,
with respect to admission control and resource reallocation delay.

Chapter 3

Integrated QoS Adaptation
Approach

In this chapter we present a method for efficient Quality-of-Service
adaptation in dynamic, heterogenous environments. Implementation of
the proposed integrated QoS mechanism is enabled by the Matrix frame-
work, which makes possible adjustment of load fluctuations on different
architectural levels. We propose a local adaptation mechanism on sys-
tem devices to deal with short-term resource fluctuations, and combine
it with the global resource management of Matrix that handles long-term
load variations.

Moreover, we introduce an application adapter, the closed-loop con-
trol model for resource monitoring and adaptation, the different resource
reallocation policies used within global adaptation, as well as the de-
ployment of our approach in the context of video streaming and video
stream adaptation.

45

46 Quality-of-Service Adaptation

3.1 Integrated QoS Adaptation and the Matrix

In this section we present our integrated global and local adaptation
mechanism that uses the Matrix framework. In our approach, global
adaptation (resource reallocation) is performed by the Resource Man-
ager, while the local adaptation is taken care of locally on the devices.

Let us look again on the first part of the motivating example pre-
sented in 2.5:

A person uses a PDA to watch a video stored on a local video server,
which is delivered to the PDA through a wireless network. As the per-
son moves around with the PDA, at some point it becomes almost out
of range for the server, which results in video interruption due to packet
losses.

A local adaptation on the PDA does not really help in this case, since
the video disruption is caused by the buffer underflow in PDAs decoder
(in the case of buffer overflow, this could be treated locally on the PDA
by i.g., speeding up the video decoding task). However, if there is a
mechanism at the system level that can detect the lower bandwidth of the
wireless link, i.e., the Matrix framework described in previous chapter,
it could instruct the video server to stream a lower quality video stream
that requires less network bandwidth.

Expressed in more general terms, resource consumption is adjusted
locally on devices as long as the fluctuation stays within the range of re-
quested QoS. For example, the Local Monitor detects a change in avail-
able CPU for a certain application, but this change is not large enough
to enforce a different quality level to the application. Instead, the Local
Scheduler could perform some local countermeasures, e.g., prioritize
the application on the cost of some other application running on the
same device. However, if the resource availability passes the defined
thresholds (abstract QoS levels), the entire system gets involved via the
global adaptation mechanism. The whole idea is illustrated in Figure
3.1.

3.2 Application Adapter 47

L

M

H

x x x

x x x

x

x x

Global adaptation
changes in resource
availability overstep
the range of
requested QoS

Available
Resources

Time

Local adaptation
changes in
resource
availability
within the range
of requested
QoS

Figure 3.1: Different types of resource variations handled on different
architectural levels

3.2 Application Adapter

The Matrix is an application independent framework, and application
adaptation is not the main focus of our work. However, in order to ad-
vance the usage of the Matrix along with various types of applications,
we have extended the original Matrix framework with an additional
component, the Application Adapter (AA). The Application Adapter
performs the mapping of QoS levels to the application specific parame-
ters, and vice versa. For example, the AA ,for a video streaming appli-
cation, could map abstract quality levels, such as H, M and L, into real
possible frame-per-second (fps) values for the stream. Thus, for a 30
fps MPEG-2 stream high quality could mean the fps-interval between
24 and 30 fps, medium quality is 16 to 23 fps and low quality could be
defined as 10 to 15 fps.

Since this process is application specific, our ambition was to pro-
vide an interface for this component, and then is up to the application

48 Quality-of-Service Adaptation

Resource
Manager

Status
Matrix

Order
Matrix

Order
Manager

Local
Scheduler

Local
Monitor

device

Application
Adapter

Order
Manager

Local
Scheduler

Local
Monitor

device

Figure 3.2: Application Adapter and the Matrix framework

designer to implement it. If there is a way in an application to map its
resource fluctuations into some abstract levels, then it can be used with
our design. At the same time, upon resource reallocation, the Appli-
cation Adapter will receive orders about new abstract levels from the
Order Manager which must be translated into some concrete actions on
the application level.

Accordingly, the Application Adapter interfaces with both Order
Managers and Local Schedulers. After performing the adjustment of
one application, the Application Adapter sends the data to the Local
Scheduler. Figure 3.2 depicts a placement of an Application Adapter in
the Matrix framework.

3.3 Local adaptation mechanism 49

3.3 Local adaptation mechanism

Local adaptation involves detecting the changes in resource availability
and reacting to those via some local mechanism. The ideas from control
theory can be used to achieve this. We use the closed loop model, i.e.,
a control model that involves feedback to ensure that a set of conditions
is met. It involves the Local Monitor, the Local Scheduler, and the Or-
der Manager (see Figure3.3). Expressed by terminology of the control
theory, we use the following terms for input and output variables in our
control model:

• control variable, vctrl, is the value observed by the Local Monitor
(e.g. network packet loss, CPU utilization).

• reference variable, vref , is concrete performance specification for
Local Schedulers made by the Order Manager.

• error ε is the difference between the control variable and the ref-
erence variable.

• control input variable, vin, is the value calculated by the adapta-
tion algorithm in order to adapt scheduling of the local resources.

The Local Monitor continuously monitors available resources in the
system (e.g., CPU or bandwidth). Thus, in our control model, it acts
as an observer of the controlled system. It sends the observed control
value to the Order Manager. The Order Manager calculates the differ-
ence between the desired value, as defined by the currently used QoS
level, and the observed control value, i.e., it calculates the error value
of the control loop. As long as the resource availability stays within the
boundaries for the given QoS level, i.e., the error falls in the range of the
current QoS level, the output of the adaptation algorithm, control input,
is passed to the Local Scheduler, i.e., the adapter part of control loop.

In the case the error value indicates a change in QoS levels, the
values in the Status Matrix are updated and the Resource Manager is in-
formed about the change. From this point, the global adaptation mech-
anism takes over, which we describe next.

50 Quality-of-Service Adaptation

Local
Monitor

control
variable vctrl

Quality Level
(from RM)

[qmin, qmax]

no

error
-

sample

yes

Order Manager

control input
variable vin

Local
Scheduler

Quality Level
(to RM)

reference
variable vref

Run-Time Mechanism (System)

Application
adapter

data

Application Mapping
[qmin, qmax]

Mapping to
QoS level

Figure 3.3: Local QoS Adaptation Mechanism

3.4 Global adaptation mechanism

Whenever a local mechanism detects that a local resource availability
has exceeded the current QoS level, a global adaptation mechanism will
be initiated. The objective of the global adaptation is to adjust the re-
source usage among all involved applications. If the resource availabil-
ity has increased, it will be distributed among the applications (in terms
of increased quality levels). Similarly, if the resource availability has
decreased, the quality levels of the consumer applications will be de-
creased.

We support user defined priorities between applications to be used

3.4 Global adaptation mechanism 51

when redistributing resources, i.e., the higher the priority of an appli-
cation, the faster the quality increase it gets. However, it is up to the
user to use priorities or not. Based on this, we distinguish between four
reallocation policies in our approach, naive, fair, fair-prioritized, and
greedy.

Naive reallocation The very first resource reallocation method that
we have implemented in the Matrix framework was a naive method. It
is very simply in its nature. In this method, applications are not assigned
priorities, and we adjust applications and available resources quality lev-
els according to the minimum quality level among them. Although, this
method maybe does not use the available resources in the best possi-
ble way, and degrade slightly overall quality of applications, its main
advantage is simplicity.

Fair reallocation If the priorities are not used, then the resources are
adjusted (increased or decreased) in a strictly fair fashion: for each con-
sumer applications the quality is adjusted step-by-step, one QoS level at
the time, and then, if there are still resources to increase/decrease, we
repeat the procedure for all applications once again, until the resource
is consumed/replanished. For example, consider four different applica-
tions a1,a2, a3 and a4 that are using the same resource r. The current
quality level for each applications is set to L. Assume that a4 gets ter-
minated and the resource availability of r gets increased by the portion
used by a4. The freed resource is given back to the remaining three ap-
plication such that we first increase the the QoS level of a1,a2 and a3 to
M, and then, if there are still resources left, all QoS levels are increased
to H .

Fair-prioritized reallocation Note that in the fair approach, there is
no guarantee that a certain application will change its QoS level. In
the example above, there could be a case where the freed resource is
entirely consumed after increasing the level of a1 and a2 to level M, so
that a3 will remain running on level L, despite the fact that a3 might

52 Quality-of-Service Adaptation

be the most important one in the system. However, if we use priorities,
we could instruct the Resource Manager to start by increasing the QoS
levels of high priority applications first, i.e., a3 in the example above.
In other words, the resources are reallocated in a fair fashion, i.e., each
application’s quality level is changed by one step before changing any
other application’s level one more step, but also we use priorities to
determine which applications should be served first.

Greedy reallocation Moreover, priorities enable for an another real-
location policy, i.e., greedy redistribution. This means to increase (de-
crease) QoS level of an application with the highest (lowest) priority
until it reaches its maximum (minimum) QoS level, before we start with
the next application (in the priority order). For the example above, we
would continue increasing the QoS level of a3 until it reaches H, before
doing any QoS increase of a1 and a2. Furthermore, the priorities can
be used when selecting which applications to drop first if that becomes
necessary.

If an application is processed by several different devices, then, be-
fore changing its quality level, we need to check if the new level can be
supported by all involved devices on the application’s playout route. For
example, in a video streaming application where a video stream is sent
from a video server to a hand held device via a laptop, the bandwidth
increase between the server and the laptop does not necessarily mean
that we should start streaming a higher bit rate stream, since the link be-
tween the laptop and the hand held device might not be able to support
it. Likewise, we have to consider if this increased quality can be sup-
ported by all other types of resources that the application is consuming
e.g., there is no point to send more data over the communication link
than it cannot be timely processed at the receiver device (by the local
CPU).

At the end, we increase the quality level of the application and if we
still have spare resource capacity, we continue with the next application,
based on the chosen adaptation policy.

3.5 Pseudo-code for the Integrated QoS Approach 53

If the available resources in the system are decreased, then the QoS
for some applications needs to be degraded. We always start with the
lowest priority application and decrease its QoS to the next (lower) QoS
level. Then we reallocate the freed resources gained by this quality
degradation. Again, in our current implementation, in this step we just
consider one resource type (the one that we start the adaptation with),
without considering how it will influence other available resources. Then,
if the resources are still insufficient, we decrease the QoS level of the
next application, based on the chosen adaptation policy, and so on. Our
policy is to lower the QoS of all active applications before dropping
some of them.

In our current implementation we only check if we have enough
available resources to mach this new quality of the application, and do
not consider further reallocation of resources. However, a more com-
plex algorithm could take into consideration that the changed (increased
or decreased) resource utilization of one resource type may result in the
changed resource status for other resource types (e.g. in video stream-
ing application, more available bandwidth on the communication link,
could mean less video encoding on the server side, thus less usage of
CPU resources). In that way, we could free immediately some other re-
sources, without waiting for local monitors to discover this foreseeable
change in the resources availability. This resource usage dependency is
completely application specific. Hence, an Application Adapter could
provide this information, obtained offline, e.g. by some test runs, at the
start up to an Order Manager. Then, the Order Manger could publish
this information to the Resource Manager (via the Status Matrix).

3.5 Pseudo-code for the Integrated QoS Approach

In this section, the pseudo-code for our current implementation of the
integrated local and global QoS adaptation mechanism is presented. We
introduce some additional terms, as a complement to the terms presented

54 Quality-of-Service Adaptation

earlier:

• A = {a1, a2, .., an}, the set of applications in the system.

• R = {r1, r2, ..., rm}, the set of resources in the system.

• D = {d1, d2, ..., dp}, the set of devices in the system.

• A(ri) ∈ A, the subset of applications that currently use resource
ri.

• R(aj) ∈ R, the subset of resources currently used by application
aj .

• R(dl) ∈ R, the subset of resources currently consumed on device
dl.

• D(aj) ∈ D, the subset of devices currently used for processing of
application aj .

• S(ri), current resource supply (availability) of resource ri.

• D(ri), current resource demand of all applications using ri.

• qk(ri) and qk(aj), the k-th QoS level of resource ri, respective
application aj , as described in section 2.2.

/* For the sake of readability, we omit the pseudo-code for the start
up activities where the devices have reported the local resource avail-
ability, and the RM has published initial QoS levels in the Status Matrix
*/

∀ di ∈ D /* For each device */
∀ ri ∈ R(di) /* For each resource on a device */

/* Invoke local adaptation based on the currently
assigned quality level */

3.5 Pseudo-code for the Integrated QoS Approach 55

map qk(ri) ⇒[qmin
k (ri),qmax

k (ri)]
vref = qmax

k (ri)
εmax = qmax

k (ri) − qmin
k (ri)

Do
get vctrl from LM
ε = vref - vctrl

calculate vin(ε) and send it to LS
While (0 ≤ ε ≤ εmax)

/* Prepare for global adaptation when the error exceeds
the limit of the currently assigned quality level */

map ε ⇒ ql(ri), l �= k
publish ql(ri) in SM

⇒ break! invoke global adaptation

/* RM performs global adaptation based on new info in SM */

/* Check if it is the naive policy*/
If (POLICY == naive) Then

∀ ri ∈ R(di) /* For each resource on a device */
∀ di ∈ D /* For each device */

find the minimum QoS level min
∀ di ∈ D /* For each device */

set qk(ri) = min
Else/*POLICY is fair, fair-prioritized, or greedy*/

/* Case 1: total resource supply is greater than
the total demand ⇒ increase QoS levels */
If (S(ri) > D(ri)) Then

Do
/* Based on the chosen reallocation policy,
get an application to increase its QoS level */
If (aj = getApplication(POLICY, INCREASE)) Then

/* Check if all aj’s processing devices (other than di,

56 Quality-of-Service Adaptation

which initated global adaptation) support
the next (increased) QoS level of aj*/

If (∀dj ∈ D(aj), dj �= di, dj supports qk+1(aj)) Then

/* Check if the new QoS level of aj can be served
by all other resources that aj consumes*/
If (∀rn ∈ R(aj), rn �= ri, rn supports qk+1(aj)) Then

increase quality of aj to qk+1(aj)
/* increase/decrease demand/supply for ri by the
amount used to jump to the next quality level */
Δ = qmax

k+1 (ri) − qmax
k (ri)

D(ri)+ = Δ; S(ri)− = Δ

While (S(ri) > D(ri) AND aj �= NULL)

/* Case 2: total resource supply is less than
the total demand ⇒ decrease QoS levels */
Else

/* Similar as above, but the QoS levels are decreased
Also, we do not need to check the other devices
and resources, since the decreased quality will not
put extra demands on them, as in the case 1 */
Do

If (aj = getApplication(POLICY, DECREASE)) Then
decrease quality of aj to qk−1(aj)
/* decrease/increase demand/supply for ri by the
amount used to jump to the lower quality level */
Δ = qmax

k (ri) − qmax
k−1 (ri)

D(ri)− = Δ; S(ri)+ = Δ

While (S(ri) < D(ri) AND aj �= NULL)

3.6 Example 57

3.6 Example

In this section, we illustrate our approach in the context of video stream-
ing. We continue to elaborate with the example scenario from 2.5 and 3.
Thus, in our scenario, the quality of the streamed video was dependent
on the distance between the PDA and the server. At some point in time,
the PDA is so far away from the server so it only makes sense to stream
a low quality video stream, i.e., stream S1 with the abstract quality level
L and priority p1. Assume also that there is another video stream in the
system, S2, streamed from the server to a laptop with a quality level H
and higher priority p2. The CPU availability (bandwidth) on all devices
is initially assumed to be high. The reallocation policy used is fair-
prioritized. The whole situation is depicted in Figure 3.4. The values
within the parentheses are the new QoS levels (obtained after adapta-
tion).

Now, assume that the person with the PDA starts moving closer to
the server. The local adaptation mechanism on either the server or the
PDA will detect that more and more packets can be sent between them
(let’s assume the PDA will detect this first). As the PDA is coming closer
to the server, at some point, the quality of the link connection will ex-
ceed the assigned threshold for the local adaptation, and the global adap-
tation mechanism will take over, with the following steps involved (see
Figure 3.4 in parallel; the numbers below correspond to the numbers in
the figure; some of the steps are merged):

1. The Local Monitor on the PDA detects that the link quality be-
tween the server and the PDA has increased.

2. This is reported to the Order Manager, who will map the new
values to the quality level H (we can assume a sudden large con-
nection improvement e.g., by entering the room where the server
is placed).

3. Order Manager publishes the new quality level H in the Status
Matrix.

58 Quality-of-Service Adaptation

Video server
PDA

RM

(1)

OMR

LM LS

OMR

LMLS

OMR

LMLS

Laptop Stream S2 Stream S1

SM LAP SER PDA

CPU H (L) H H

BW H L (H)

S1 L L

HS2 H

(2)

(3)
(4)

(6)
(5)

(8)

(7)

AA

OM LAP SER PDA

CPU H (L) H H

BW H (L) L (H)

S1 L (H) L (H)

H (L)S2 H (L)

Figure 3.4: Example global adaptation

4. Assume also that there has been some change in the CPU avail-
ability on the laptop, i.e., it gets decreased from H to L due to
some new, CPU intensive application that has started to run on
the laptop. Initially, the local adaptation mechanism on the laptop
will react to the changes in the CPU load by e.g., by performing
selective frame skipping in the video decoder that is processing
the stream S2. However, at some point the CPU QoS threshold
will be exceeded and the new QoS value will be calculated and
published in the Status Matrix for the CPU.

5. The Resource Manager is notified about the new quality level val-
ues.

6. At this point, it is up to the Resource Manager to take a decision

3.7 Chapter summary 59

about the resource reallocation. Considering the available band-
width and the streams priorities, one solution could be to set the
quality of S1 to M (since it has lower priority), and leave the qual-
ity of S2 unchanged. However, streaming the high quality video
stream to the laptop may not be a good solution, since the CPU
on the laptop is overloaded and video frames will be skipped any-
way. Hence, the Resource Manager, who has the total resource
usage view of the system, decides to set L for stream S2. This
decision will not only reflect the resource status on the laptop cor-
rectly, but it will also allow S1 to be set to H (which can be done
because the quality of the connection between the server and the
PDA has been changed to H).

7. The Order Managers on respective devices are informed about the
new values (arrows to the OMRs of the PDA and the laptop are
omitted in the figure to ease the readability).

8. The Order Managers enforce the new settings via their local sched-
ulers and application adapters. For example, in the case of the
server, the stream application adapter will make sure to decrease
the quality of stream S2. This can be done in several ways, e.g., by
reading a lower quality version of S2 that has been stored on the
server in advance, or by using an online modification of original
S2 by using the quality-aware preventive frame skipping methods
that we have developed in our previous work [20].

3.7 Chapter summary

Applications executing in heterogenous, dynamic environments vary
their resource demands over time while experiencing the uncertainty of
execution environments. Yet, they must be capable to react to changes
in the operating conditions and maintain required performance levels.

60 Quality-of-Service Adaptation

In this chapter we have developed a method for an efficient Quality-
of-Service provision and adaptation in dynamic, heterogenous systems,
based on our Matrix framework for resource management. It integrates
local QoS mechanisms of the involved devices that deal mostly with
short-term resource fluctuations, with a global adaptation mechanism
that handles structural and long-term load variations on the system level.

The idea is to perform local adaptation as long as possible, using
a control model for resource monitoring and adjustment, and if a re-
source availability passes the range of the currently assigned QoS level,
the global adaptation mechanism takes over. We adopt a closed loop
control model for local adaptation. So, available resources are contin-
uously monitored by Local Monitors, and the changes are reported the
Order Manager on the local device, which then determines if the re-
source fluctuation can be handled locally, by the Local Scheduler, or
not.

The effectiveness of our proposed integrated QoS approach is illus-
trated in the context of video streaming.

Chapter 4

Evaluation

A comprehensive analysis, derivation of values and trade-off, require a
complete implementation, which is still ongoing work. However, we
have performed simulations in order to test the efficiency of the Ma-
trix and the Integrated QoS Adaptation approach. For this purpose, we
have implemented a simulator, described in this chapter, together with
obtained simulation results.

61

62 Evaluation

4.1 Simulation setup

The simulator is a multi-threaded application, implemented in C. Re-
source Manager, as well as Order Managers are designed as separate
threads. The Status and Order Matrix are data structures, while the Lo-
cal Schedulers and Monitors are not implemented in this version of the
simulator. In the simulator, each Order Manger represents one node in
the system (e.g., every node has just one Order Manager). The amount
of nodes in the system is variable and defined by an input parameter.
Hence, by changing the value of the input parameter, we can change a
number of Order Manager threads in the simulation. In this way, we
have the possibility to simulate some aspects of our approach with dif-
ferent number of nodes involved. Moreover, we have implemented an
inter process communication (IPC), that simulates some part of the pub-
lish/subscribe communication model. We have used mailslots in Win-
dows, which is a mechanism for one-way interprocess communication.
All simulations run have been performed on one PC computer with the
processor speed of 1.7GHz.

4.1.1 Bandwidth estimation

In the simulator, information about available resources (in this case
about available bandwidth in wireless network) is obtained from input
data files. These files are results of another comprehensive simulation
on bandwidth estimation performed in our lab. The applied bandwidth
prediction method has used a packet-pair probing technique1, combined
with an exponential averaging method2. The equation for bandwidth
prediction is following:

1The basic idea of a packet probing technique is to send two back-to-back prob
packets to a neighbor node to measure their dispersion.

2Exponential averaging is technique to analyze and average a time series of data,
while making taking into account both the previous and current values

4.1 Simulation setup 63

Pk = αBWT k + (1 − α)Pk−1.

Where Pk and Pk−1 stands for prediction, the current and previous
one. α is a constant that indicates in which extent the history is im-
portant, and BWT k is the current bandwidth measurement. For more
details, please see [26, 40].

Basically, every file is a list of bandwidth estimations between two
nodes connected through a 802.11g router (linksys wrt54g). Different
input files correspond to different scenarios, ranging from a "free chan-
nel" to high cross traffic interferences. In this way we have been able to
simulate fluctuation of available wireless network for different parts of
network. For example, one of the files that we have used describes the
available bandwidth according the Figure 4.1. The sampling interval is
120 milliseconds.

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400 450 500

av
ai

la
bl

e
ba

nd
w

id
th

 (
M

bp
s)

sample #

Figure 4.1: Available wireless bandwidth fluctuations

Accordingly, the functionality of Local Monitors (i.e. monitoring of
available resources) is been simulated by using these input (log) files.

64 Evaluation

4.1.2 Video streams

We have used a MPEG-2 stream that has been extracted from a original
DVD movie. More specifically, we have used information about one
MPEG-2 stream’s frames size, i.e., its resource demand, obtained during
the performed analysis in [21]. Figure 4.2 shows variations in GOP size
for one of the video streams that we have used in the simulations. A
GOP (Group Of Pictures) in a MPEG-2 video consists of all the pictures
(frames) that follow a GOP header before another GOP header. The
GOP length is flexible, but quite common values are 12 and 15. In our
case, one GOP consists of 12 pictures.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400 450 500

G
O

P
si

ze
 (

M
b)

sample #

Figure 4.2: Stream demand (on GOP basis)

4.2 Simulations results

As we have mentioned before, we have evaluated our method in the con-
text of video streaming. Here we present results from a 15 minutes video
streaming simulation using our approach. For the sake of presentations

4.2 Simulations results 65

clarity, some of the figures show just one small part of the simulation
results.

4.2.1 System state presentation

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

0 5 10 15 20 25 30

nu
m

be
r

of
 c

on
tr

ol
 m

es
sa

ge
s

number of nodes

Matrix with mapping
Matrix without mapping

Figure 4.3: Reduced system state presentation

Figure 4.3 shows how the number of the control messages increase
with the increased number of devices in the system, with and without
mapping of available resources to quality levels. It is clear that we have
achieved a significant reduction in the number of control messages by
using the Matrix mapping approach.

Figure 4.4 depicts the result of simulation of the using the Matrix
approach with different resource reallocation policies, i.e., naive, fair-
prioritized, and greedy (explained in 3.4. The simulations are performed
with two streams, and 3 quality levels. As we can see from the figure,
a choice of resource reallocation policy does not influence too much the
number of control messages.

66 Evaluation

2000

4000

6000

8000

10000

12000

14000

16000

18000

2 4 6 8 10 12 14 16

nu
m

be
r

of
 c

on
tr

ol
 m

es
sa

ge
s

number of nodes

fair-prioritized
naive
greedy

Figure 4.4: Resource reallocation policies and control messages

4.2.2 Spared resources due to the global system view

We have analyzed the difference between QoS levels determined on a
device, and by the Resource Manager.

First, we have simulated the usage of 10 devices in the system and
shown how an MPEG-2 video stream is adapted based on current re-
source availability (network bandwidth). The sampling interval is 480ms.
The following quality levels for available bandwidth (given in Mbps)
have been used:

q1(BW) = [1.5, 2.5] (L)
q2(BW) = [2.5, 4] (M)
q3(BW) = [4, 11] (H)

Figure 4.5 shows QoS levels, which are decided on the device, based
on its local view. Figures 4.6 and 4.7 present the QoS levels chosen con-

4.2 Simulations results 67

0

1

2

3

4

5

50 100 150 200 250 300 350

ba
nd

w
id

th
 Q

oS
 le

ve
s

(M
bp

s)

sample #

QoS level published by the device

Figure 4.5: Local system view

0

1

2

3

4

5

50 100 150 200 250 300 350

ba
nd

w
id

th
 Q

oS
 le

ve
s

(M
bp

s)

sample #

QoS level based on global system view

Figure 4.6: Global system view (one video stream)

currently by the Resource Manager for the device, after the performed
global resource reallocation, with one respective two video streams in

68 Evaluation

0

1

2

3

4

5

0 50 100 150 200 250 300 350

ba
nd

w
id

th
 Q

oS
 le

ve
s

(M
bp

s)

sample #

QoS level based on global system view

Figure 4.7: Global system view (two video streams)

400

600

800

1000

1200

1400

1600

1800

2000

2 4 6 8 10 12 14 16

ba
nd

w
id

th
 (

M
bp

s)

number of devices

fair-prioritized
naive
greedy

Figure 4.8: Spared resources (wireless bandwidth) on one device when
applying the different resource reallocation policies

4.2 Simulations results 69

the system. The comparison between Figures 4.5 and 4.6, and also 4.5
and 4.7, give us an idea about the amount of possibly wasted resources
on the device, due to the device’s limited local system view.

In Figure 4.8, we present a total amount of the spared network band-
width, on one device during the 15 minutes long simulation with two
video streams in the system. We performed this simulation for different
number of devices and we have applied three resource reallocation poli-
cies: naive, fair-prioritized, and greedy. The results point out that for
the fair-prioritized and greedy policies a significant gain, in the spared
resources, is obtained even with just a few devices in the system. While,
for the naive method this gain is bigger when more devices are involved.

All presented simulation results (Figures 4.6, 4.7, 4.8), illustrate the
efficiency of the Matrix approach where adjustment of resources is not
only based on the limited local system view of one device (like in hop-
by-hop approach), but also on the current available resources of all in-
volved devices. In that way, our approach enables a system wide opti-
mization.

4.2.3 Granularity issues

As discussed earlier, granularity issues are essential to provide an ac-
ceptably fresh view of the resources’ states, both spatial and temporal.
In the case of spatial granularity, on one side, if we use many quality
levels, the freshness of the system state presentation will be good, but
the overheads for state and order updates will overload the system. On
the other side, having a too small number of quality levels (e.g., two)
would imply significantly degradation of the freshness of the system
view, but reduced overheads. Figures 4.9 and 4.10 show clearly, as ex-
pected, that number of the quality levels has an impact on the amount of
control messages in the system. The larger number of quality levels, the
increased amount of control messages in the system. The results from
the performed simulation, both with one and two video streams, show
the greatest deviation in the total number of control messages is between

70 Evaluation

5000

10000

15000

20000

25000

2 4 6 8 10 12 14 16

nu
m

be
r

of
 c

on
tr

ol
 m

es
se

ge
s

number of devices

2QoS
3QoS
4QoS
5QoS
6QoS

Figure 4.9: Control messages for different number of QoS levels (one
video stream)

the lines representing two and three quality levels. While, this deviation
is smaller among the lines representing the results for having three, four,
five, or six quality levels. During the simulation we used the following
thresholds for different QoS levels:

• two QoS levels
{[1.5, 4.0), [4.0, 11.0)}

• three QoS levels
{[1.5, 2.5), [2.5, 4.0), [4.0, 11.0)}

• four QoS levels
{[1.5, 2.0), [2.0, 3.0), [3.0, 4.0), [4.0, 11.0)}

• five QoS levels

4.2 Simulations results 71

{[1.5, 2.0), [2.0, 2.5), [2.5, 3.0), [3.0, 4.0), [4.0, 11.0)}

• six QoS levels
{[1.5, 2.0), [2.0, 2.5), [2.5, 3.0), [3.0, 3.5), [3.5, 4.0), [4.0, 11.0)}

5000

10000

15000

20000

25000

30000

35000

2 4 6 8 10 12 14 16

nu
m

be
r

of
 c

on
tr

ol
 m

es
se

ge
s

number of devices

2QoS
3QoS
4QoS
5QoS
6QoS

Figure 4.10: Control messages for different number of QoS levels (two
video streams)

The obtained results are representative for our simulation setup. We
are aware that the choice of settings for these thresholds for QoS levels,
obviously has an impact on the results of the simulation, specially in the
case when we have just a few quality levels (e.g., two QoS).

4.2.4 Global vs Local resource adaptation

As mentioned before, in the Integrated QoS Adaptation approach, we
want to handle resource fluctuation as long as possible locally on the

72 Evaluation

1

2

3

4

5

6

0 20 40 60 80 100 120

av
ai

la
bl

e
ba

nd
w

id
th

 (
M

bp
s)

time (sec)

resource fluctuation
global adaptation

Figure 4.11: Invocation of global adaptation

devices. But, whenever a local resource availability exceeds the thresh-
olds of the current QoS level, a global adaptation is involved.

Figure 4.11 shows at which frequency the local and global adap-
tation are involved during the simulations with one video stream. Al-
though, it only depicts a small fraction of a 15 minutes long simulation,
we can see in the same figure, the local adaptation mechanism is de-
ployed most of the time, while the global mechanism is triggered only
when necessary, i.e., the QoS has changed so much that the system real-
location must take place. During the 15 minutes simulation, 77 percent
of the resource variations have been handled by the local adaptation,
versus those 23 percent managed by the global adaptation.

4.3 Chapter summary

We have developed a simulator in order to evaluate the Matrix and
the Integrated QoS Adaptation approach. The results from simulations
show some clear advantages of the Matrix approach, such as reduced

4.3 Chapter summary 73

system state presentations, reduced overheads, and system wide opti-
mization.

Furthermore, we have looked at the cost, in terms of amount of
control messages, that we have to pay for having different number of
Quality-of-Service levels (QoS).

Moreover, we have evaluated how the different resource realloca-
tion policies, that we have implemented in our Integrated QoS Adapta-
tion approach, influence the amount of control messages in the Matrix
framework. Also, we have shown at which frequency global vs local
adaptation occurs in the Integrated QoS Adaptation approach. Clearly,
resource adaptation takes place to the greatest extent on a device level
(local adaptation).

The comparison between the Matrix and hop-by-hop approach has
been analytically done in Chapter 2. In this chapter, we have not elabo-
rated on that, since the current status of the simulator does not offer any
possibility on further comparison between these two approaches.

In summary, the performed simulations have clearly stressed the no-
table characteristics of our approach, e.g., reduced overhead, system
state presentation, or system wide presentation. Though, we realize that
the simulator is an inadequate tool for performing any timing analysis,
e.g., determination of resource reallocation delay. This type of evalua-
tion requires a complete implementation of the Matrix framework.

Finally, we are aware that our simulation results depend on type of
resource variations that we have in the system. That is to say, there is a
strong connection between resource fluctuation and the number of state
changes, as well as the corresponding resource management actions.
However, the magnitude of the performed simulation, give us enough
information to draw those above mentioned conclusions.

Chapter 5

Conclusions

The number of different applications that execute in open, dynamic and
heterogeneous environments is constantly increasing. These applica-
tions usually vary in their resource demands over time, and, at the same
time, they have to deal with the fluctuation of execution environments.
An example of an open, heterogeneous, dynamic system is home net-
works. Home networks are characterized by highly fluctuating, and
usually restricted system resources (e.g., wireless network). In addition,
there exist a variety of devices connected together, which differ in many
aspects, among other things in their performance capability. Despite
all that, users are not willing to compromise on quality for multimedia
(video) applications.

The work presented in this thesis has been initiated as part of a FAB-
RIC project. One of the project’s objectives was to provide high quality
video streaming over heterogeneous networks, which requires efficient
management of available resources.

We started by identifying crucial issues in order to achieve an ef-
ficient resource management: representation of the fluctuating system
state, resource allocation decisions, and dissemination of orders. Then,
we stressed the importance of finding tradeoffs between accuracy of sys-
tem state information, and efforts to transport and process. Further, we
proposed the Matrix, which is an adaptive framework for applying real-

75

76 Conclusions

time resource management methods for decoupled video streaming of
heterogenous devices. In order to reduce the overhead for the system
state presentation, we map the resource availability to just few QoS lev-
els. In that way, we also filter out too high fluctuations that could over-
load the resource scheduling. The Matrix provides an interface to decou-
ple device scheduling and system resource allocation. By having data
handling at appropriate levels, i.e., resource management at global high
level, while device specific information is processed locally at devices,
in the Matrix we achieved a loose coupling between the system resource
management and devices. Accordingly, the Matrix is based on a global
abstraction of device states, which reduces system state information and
decreases overheads for its determination and dissemination. We have
also discussed architectural design aspects of the Matrix framework, and
all its substantial parts.

Moreover, we studied the admission control and resource realloca-
tion delay in the Matrix framework. We showed that both admission
control and resource reallocation delay are entirely independent of the
number of devices (nodes) present it the system, i.e., a larger number
of devices in the system does not mean a large delay. This is a clear
advantage of the Matrix compared to other approaches, in particular a
hop-by-hop approach.

Theoretically, it is not necessary that all devices in the system have
to use the Matrix. However, a mix of direct explicit communication and
Matrix abstraction is conceivable for resource management, although
benefits of the data abstraction would obviously be reduced. Thus, our
advice is to have devices either fully attached to the Matrix, or not at all.

Apart from the resource management, the Quality-of-Service (QoS)
adaptation is also a vital operation when maximizing the overall system
quality. We have proposed a method for an efficient QoS provision and
adaptation in dynamic, heterogeneous systems, which we call integrated
QoS adaptation approach. It is based on the Matrix framework, which
architecture enables handling of different types of load fluctuation (e.g.,
structural, stochastic) at different system levels. Consequently, we pro-
pose an integrated global and local QoS adaptation mechanism, where

77

the structural and long-term load variations are object for global adap-
tation, while the temporal load and short-term resource variations are
taken care locally on devices. Basically, in our approach, we handle lo-
cally (at a device level) resource variations as long as these are within the
range of a certain QoS level. Whenever a local mechanism detects that a
local resource availability has exceeded the current QoS level, a global
adaptation mechanism is involved. The task of the global adaptation is
adjustment of the resource usage among all involved applications. In
our approach, we let the user to decide if applications have priorities or
not. However, we support user defined priorities between applications
to be used when redistributing resources. Based on this, we present four
reallocation policies in our approach, naive, fair, fair-prioritized, and
greedy.

We validate our approaches by means of simulations experiments,
in the context of video streaming. In addition, we have compared the
Matrix to a hop-by-hop approach. Our simulation results clearly em-
phasized some advantages of the Matrix, such as reduced system state
presentations, reduced overheads, and system wide optimization.

Furthermore, we looked into the relationship between QoS levels
granularity and the freshness of the system state presentation. In par-
ticular, we look at how the increased number of QoS levels influences
the amount of control messages in the system. Also, we have evalu-
ated the different resource reallocation policies, and looked at what fre-
quency global vs local adaptation occurs in the Integrated QoS Adap-
tation approach. Simulations results underline that resource adaptation
takes place mostly on a device level (local adaptation).

In this thesis, we chose home networks and video streaming as the
application domain for our proposed approaches. However, we do not se
any limitation to expand the usage of our approach to the health sector,
or some other community social/industrial applications. Resource man-
agement and QoS adaptation are a must whenever we are surrounded
with heterogenous, mobile, and dynamic environments.

Therefore, one task of our future work will be exploiting the pro-
posed framework in other application domains than in home networks.

78 Conclusions

Moreover, we will look into possibilities of further developing the lo-
cal control model by formally describing the system’s behavior with a
set of differential equations. Also, we are working on a more general
model for mapping between resource demands and abstract QoS levels.
Finally, we are working on a full implementation of the Matrix frame-
work.

Appendix A

Implementation Details

The Matrix framework is quite complex and we are still working on
its full implementation. However, the hierarchical architecture and the
loose coupling between system modules makes it possible to work on
different parts independently of each other. In this chapter we will give
an overview of the implemented parts, and also we are going to present
and discuss two different publish/subscribe mechanisms and their appli-
cation with the Matrix framework.

79

80 Implementation Details

A.1 Implemented Modules

Current implementation includes Resource Manager, Local Monitors
and Local Schedulers for CPU and network bandwidth, and an Applica-
tion Adapter (Video Stream Adapter).

A.1.1 Resource Manager

Resource Manager is a crucial part of the Matrix framework. Still, its
implementation is quite straightforward. Basically, it consist of those
four resource reallocation policies (i.e., naive, fair, fair-prioritized, and
greedy) that we support, and a communication specific client code, in
order to adopt a certain publish/subscribe mechanism.

A.1.2 Local Network Scheduler

For network scheduling we use the traffic shaping approach, which pro-
vides different QoS by dynamically adapting the transmission rate of
nodes, to match the currently available bandwidth of a wireless net-
work. The Traffic Shaper adjusts the outbound traffic accordingly to
input parameters (i.e., the amount of available bandwidth assign to the
Local Scheduler). In this architecture priority is given to a real-time
traffic over non real-time traffic. Please see [26] for full implementation
details of the Traffic Shaper.

A.1.3 Local Network Monitor

For monitoring and estimation of available bandwidth (over 802.11b
wireless Ethernet), we use a method that provides us with the aver-
age bandwidth that will be available during a certain time interval. The
architecture consists of a bandwidth predictor that first uses a simple
probe-packet technique to predict the available bandwidth. Then, ex-
ponential averaging is used to predict the future available bandwidth
based on the current measurement and the history of previous predic-
tions. Also, we refer to [26] for details.

A.1 Implemented Modules 81

A.1.4 Local CPU Scheduler

The allocation of CPU to the applications depends on the scheduling
mechanism that is used. We have developed a predictable and flexible
real-time scheduling method that we refer to as slot shifting [19]. The
basic idea is to guarantee a certain quality of service to applications be-
fore run-time, and then adjust it at run-time according to the current
status of the system. The full details about the scheduler and its appli-
cation in the context of media processing can be found in [21].

Furthermore, we are even looking into other scheduling methods.
One suitable technique that fits our needs elastic scheduling approach
[9]. It handles overload through a variation of periods and in that way
manage to decrease the processor utilization up to a desired level.

A.1.5 Local CPU Monitor

Since we use a real-time scheduling mechanism, the CPU monitoring
is very simple to achieve. The spare capacity mechanism of slot shift-
ing provides easy access of the amount and the distribution of available
resources at run-time [19].

A.1.6 Video Stream Adapter

We have implemented an Application Adapter for MPEG-2 video stream
adaptation, based on quality-aware, selective frame skipping. Order
Manager sends allowed abstract quality level to the video adapter, which
then adjusts the stream according to available resources by skipping the
least important video frames, see Figure A.1. For the frame priority as-
signment algorithm we have proposed a number of criteria to be applied
when setting priorities to the frames. Please see [20] for details on skip-
ping criteria and full analysis.

82 Implementation Details

Set of frames
(e.g., a GOP)

Video adaptation
algorithm

I B P B
 Example modified GOP

skip skip

Quality
Level

Local
Scheduler

I B B P B B

Frame priority
 assignment algorithm

Order
Manager Stream

adapter

Figure A.1: MPEG-2 video adaptation in Matrix

A.1.7 The Matrix data structures

AppInfo - This record contains information about a application.

• appID - Each application ID is allotted by the order managers on
the device that is s source device for the application. If the device
can produce one application (stream) with different qualities, each
version of application will get a unique ID.

• appQoS - The application’s resource requirements, expressed in
the QoS levels.

• appPriority - A user defined priority for the application.

MatrixCell - This class is base class for StatusMatrixCell and Order-
MatrixCell classes. The following attributes are provided:

• OrderManagerID - The unique identifier of an order manager

A.1 Implemented Modules 83

• application - An AppInfo record, for a application that is relevant
for this Order Manager.

• typeOfDevice - Describes is a source, sink, or just device on play-
out route.

StatusMatrixCell - This class represents an entry in the Status Ma-
trix. This class is subclass of the MatrixCell class and inherits all its
attributes. Each resource is represented by the following attributes:

• Current value - Current resource availability. This value is out of
the limited number range (QoS performance level).

• Current granularity - It is the time interval until which the current
value is likely to not change.

• Likelihood - This attributes gives the probability that the given
value under attribute "current granularity" will hold.

OrderMatrixCell - This class represents an entry in the Order Matrix.
This class is derived from a MatrixCell class. Each this entry is one
order from the resource manager for resource allocation. The attributes
of this class are:

• Delay - It is a sub delay for one device in the stream path

• Value - This value is out of the limited number range (QoS per-
formance level).

Status and Order Matrix - Collections of StatusMatrixCell/OrderMatrixCell,
which could be implemented in different ways, for example as an array
or list data structure.

84 Implementation Details

A.2 Publish/Subscribe Mechanisms

In section 2.4 we have discussed some of advantages of publish/subscribe
communication mechanism in the context of dynamic mobile environ-
ment (e.g., home networks). We have also mentioned that at present we
are using these publish/subscribes models only for signaling, i.e., man-
agement part of the Matrix framework, not for a transport of streams.

In this section, we will give a brief description of two publish/subscribe
mechanisms that we have look into so far. The first one is High Level Ar-
chitecture (HLA), a commercial middleware standard, and second one
is an open source MOM (Message Oriented Middleware), called Xml-
Blaster.

A.2.1 The Matrix and HLA

During the FABRIC project we have implemented a mock-up of Matrix
approach, by using HLA (High Level Architecture), which is an inter-
operability standard, based on an anonymous publish/subscribe mech-
anism [1]. Its publish-subscribe model connects anonymous informa-
tion producers (publishers) with information consumers (subscribers).
In the terminology of HLA, individual simulations are known as feder-
ates. The collection of federates brought together to simulate a complex
environment is known as a federation.

In the Matrix’s mockup [39], Resource Manager and Order Mangers
are implemented as federates. The Status Matrix contains information
produced by various nodes in the system. Therefore the Status Matrix
can not be a federate. Rather, we present the Status Matrix as a collec-
tion of objects. Thus, the elements of Status Matrix are published by the
Order Managers placed on nodes. Each Order Manager adds an entry
in the Status Matrix and becomes owner of this object. The Resource
Manager, is interested in information published in the Status Matrix, i.e.
it subscribes to the Status Matrix.

The Order Matrix is represented as a collection of objects too. The
elements of the Order Matrix will be published by the Resource Man-
ager.

A.2 Publish/Subscribe Mechanisms 85

As discussed in 2.4, HLA’s publish/subsrcibe communication model,
as decoupling of devices, fits well with the Matrix. One additional good
point of HLA for the Matrix concept is the dynamic addition and re-
moval of members of a federation. This HLA’s characteristic is well
suitable for a redundancy of devices in the Matrix. Federates (order
managers or a resource manager on a device) can fail without a major
impact on the overall functionality. The lost federate (device) can be
replaced during run time with some shadow federate (device).

A.2.2 The Matrix and XmlBlaster

As mentioned before, XmlBlaster is MoM (Message oriented Middle-
ware), which also supports a publish/subscribe communication model.
Publisher and subscriber are XmlBlaster clients that exchange messages
via a XmlBlaster server. XmlBlaster server is a 100% Java MoM server,
while clients can be written in many different languages. Moreover,
publisher and subscribers communicate with the server independently,
without having knowledge about each others. In that way, they make
use of one of the main advantages of the publish/subscribe model, i.e.,
device decoupling.

XmlBlaster and its publish/subscribe communication model fits also
well with the Matrix framework. Consequently, the Resource Managers
and Order Managers are designed as XmlBlaster clients. Communica-
tion between Order Managers and the Resource Manager goes through
XmlBlaster server. The Status and Order Matrix are collection of data
produced by different nodes (Order Managers), and in this version of the
Matrix implementation, they are implemented as arrays (data structure).
The Local Monitors and Local Schedulers as threads. Hence, exchange
of information between the Resource Manager and the Order Managers
is handled by publish/subcribe mechanism, while communication be-
tween the Order Managers, Local Monitors, and Local Schedulers can
be done with some form of Inter Process Communication (IPC), e.g.,
sockets, mailslots, pipes (see Figure A.2).

All good points mentioned for HLA are also valid in the case of

86 Implementation Details

XmlBlaster
Server

Resource
Manager

Order
Manager

Order
Manager

Local
Monitor

Local
Monitor

Local
Scheduler

Local
Scheduler

subscribe to
Status Matrix

publish
Order Matrix

su
bs

cri
be

to

Orde
r Matr

ix
(ce

ll)
pu

bli
sh

Stat
us

Matr
ix

(ce
ll)

su
bs

cr
ibe

 to

Or
de

rM
at

rix
(c

ell
)

pu
bli

sh

St
at

us
M

at
rix

(c
ell

)

Figure A.2: Matrix and XmlBlaster

XmlBlaster. Moreover, XmlBlaster have some advantages compared to
HLA. First, it is quite simple to use, and it gives support for many differ-
ent programming languages and different protocols. Then, in addition,
XmlBlaster is a open source middleware, while HLA is originally de-
signed to be used by US Department of Defense.

Bibliography

[1] IEEE standard for Modeling and Simulation, High Level Architec-
ture (HLA) - federate interface specification, no.:1516.1-2000.

[2] xmlBlaster - Message Oriented Middleware (MOM).

[3] C. Aurrecoechea A. Campbell and L. Hauw. A survey of QoS
architectures. In Multemedia Systems, volume 6, pages 138–151,
1998.

[4] Siemens AG. SURPASS Home Entertainment White Pa-
per. April 2005. http://networks.siemens.
com/voip/carrier-en/products-solutions/
surpass-home-entertainment/
surpass-home-entertainment.html.

[5] Gregor v. Bochmann Jan Gecsei Andreas Vogel, Brigitte Kerhervé.
Distributed multimedia applications and quality of service: a sur-
vey. In Proceedings of the 1994 conference of the Centre for
Advanced Studies on Collaborative research, Toronto, Ontario,
Canada, page 71, October 1994.

[6] Geoff Coulson Andrew Campbell and David Hutchison. A quality
of service architecture. In ACM SIGCOMM Computer Communi-
cation Review, volume 24, pages 6–27, 1994.

[7] Gillian M. Wilson Anna Bouch and M. Angela Sasse. A 3-
dimensional Approach to Assessing End-User quality of Service.

89

90 Bibliography

In Proceedings of the London Communications Symposium, pages
47–50, Sept 2001.

[8] Reinder J. Brill. Real-time scheduling for media processing using
conditionally guaranteed budgets. Ph.D Thesis, Technical Univer-
sity Eindhoven, 2004.

[9] G.C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elastic
scheduling for flexible workload management. In IEEE Transac-
tions on Computers, volume 51, pages 191–302, March 2002.

[10] Lu Xichen Chen Xiaomei and Wang Huaimin. The design of
QoS management framework based on CORBA A/V STREAM
architecture. In High Performance Computing in the Asia-Pacific
Region, 2000. Proceedings. The Fourth International Confer-
ence/Exhibition on, May 2000.

[11] H. Chu, Klara Nahrstedt, and Srinivas Narayan. QoS-aware re-
source management for distributed multimedia applications, Jan-
uary 1998.

[12] Gianpaolo Cugola and H.-Arno Jacobsen. Using publish/subscribe
middleware for mobile systems. In SIGMOBILE Mob. Comput.
Commun. Rev., volume 6, pages 25–33, New York, NY, USA,
2002. ACM.

[13] R. Wahbe R. Govindan D. P. Anderson, S. Tzou and M. An-
drews. Support for Continuous Media in the Dash System. In
In ICDCS10, pages 54–61, May 1990.

[14] Murata M. Fukuda K., Wakamiya N. and Miyahara H. QoS Map-
ping between User’s Preference and Bandwidth Control for Video
Transport. In Proc. 5 th International Workshop on Quality of Ser-
vice (IWQOS’97), Columbia University, New York, US, 1997.

[15] G. Gopalakrishna and G. Parulkar. Efficient Quality of Service
in Multimedia Computer Operating Systems. Technical report,

Bibliography 91

Department of computer science, Washington University, August
1994.

[16] Yongqiang Huang and Hector Garcia-Molina. Publish/subscribe
in a mobile environment. In Wireless Networks, volume 10, pages
643–652. Springer Netherlands, 2004.

[17] Jean-Francois Huard and Aurel A. Lazar. On QOS Mapping in
Multimedia Networks. In Proceedings of the 21st International
Computer Software and Applications Conference, page 312, 1997.

[18] B. Deffner I. Busse and H. Schulzrinne. Dynamic qos control of
multimedia applications based on rtp. In Computer Communica-
tions, 19(1):49-58, Jan. 1996.

[19] D. Isovic and G. Fohler. Efficient scheduling of sporadic, aperi-
odic, and periodic tasks with complex constraints. In 21st IEEE
RTSS, USA, November 2000.

[20] D. Isovic and G. Fohler. Quality aware MPEG-2 stream adaptation
in resource constrained systems. In ECRTS, Catania, Italy, July
2004.

[21] Damir Isovic. Flexible Scheduling for Media Processing in Re-
source Constrained Real-Time Systems. PhD thesis, 2004.

[22] ITU-Rec. BT.500-8, Methodology for the subjective assessment
of the quality of television pictures, Geneva, Switzerland, 1998.

[23] ITU-T. Recommendation E.800, International Telecommunication
Union, Geneva, Switzerland, 1994.

[24] ITU-T. Recommendation P.910,International Telecommunication
Union, Geneva, Switzerland, 1996.

[25] Andreas Kassler, Andreas Schorr, Christoph Niedermeier, Reiner
Schmid, and Andreas Schrader. MASA - A scalable QoS Frame-
work. In Proceedings of Internet and Multimedia Systems and
Applications (IMSA), Honolulu, USA, August 2003.

92 Bibliography

[26] Tomas Lennvall and Gerhard Fohler. Providing adaptive qos in
wireless networks by traffic shaping. In Resource management
for media processing in networked embedded systems (RM4NES),
Eindhoven, Netherlands, March 2005.

[27] B. Li and K. Nahrstedt. A control-based middleware framework
for quality-of-service adaptations. In Selected Areas in Communi-
cations, IEEE Journal, volume 17, pages 1632–1650.

[28] B. Li and K. Nahrstedt. Impact of control theory on qos adaptation
in distributed middleware systems. In American Control Confer-
ence, 2001. Proceedings of the 2001, 2001.

[29] Wilfried Osberger Mark Masry, Sheila S. Hemami and Ann Marie
Rohaly. Subjective Quality Evaluation of Low Bit Rate Video. In
SPIE Conf. on Human Vision and Electronic Imaging, vol. 4299,
San Jose, CA, volume vol .4299, 2001.

[30] D. Miras, B. Teitelbaum, A. Sadagic, J. Leigh, M.El Zarki, and
H. Liu. A Survey on Network QoS needs of Advanced Internet
Applications. Working Document of Internet 2. Dec 2002.

[31] Daniel Mosse and Ha Ly. User to Network QoS Parameter Trans-
formation in Networked Multimedia Systems. In ON-LINE PRO-
CEEDINGS, IEEE Real-Time Systems Symposium, Workshop on
Resource Allocation Problems in Multimedia Systems, Washing-
ton, December 1996.

[32] Klara Nahrstedt and Jonathan M. Smith. Design, Implementation
an Experiences of the OMEGA End-Point Architecture. Technical
report, Distributed Systems Laboratory, University of Pennsylva-
nia, Philadelphia.

[33] Nortel Networks. Introduction to Quality of Service (QoS).
Technical report. http://www.nortel.com/products/
02/bstk/switches/bps/collateral/56058.25_
022403.pdf.

Bibliography 93

[34] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan,
James Eric Tilton, Jason Flinn, and Kevin R. Walker. Agile
application-aware adaptation for mobility. In 16th ACM Sympo-
sium on Operating Systems Principles, France, 1997.

[35] Pascal Frossard Olivier Verscheure and Maher Hamdi. User-
oriented QoS Analysis in MPEG-2 Video Delivery. 1999.

[36] Clara Otero Perez, Liesbeth Steffens, Peter van der Stok, Sjir
van Loo, Alejandro Alonso, José F. Ruíz, Reinder J. Bril, and
Marisol García Valls. QoS-based resource management for am-
bient intelligence. In Ambient intelligence: impact on embedded
system design. Kluwer Academic Publishers Norwell, MA, USA,
2003.

[37] IST project OZONE. http://www.extra.research.
philips.com/euprojects/ozone/.

[38] Philips Research. http://www.research.philips.com/
technologies/syst_softw/ami/vision.html.

[39] L. Rizvanovic and G. Fohler. The MATRIX: A qos framework for
streaming in heterogeneous systems. In International Workshop on
Real-Time for Multimedia,in conjunction with ECRTS04, Catania,
Italy, 2004.

[40] Carmen Ederra Sáez. Testbed for wireless avail-
able bandwidth estimation system, bachelor thesis.
http://www.idt.mdh.se/utbildning/exjobb/files/TR0463.pdf.

[41] M. Shankar, M. De Miguel, and J.W.S. Liu. An end-to-end QoS
management architecture. In Real-Time Technology and Applica-
tions Symposium 1999, 1999.

[42] J.A Stankovic, T. Abdelzaher, M. Marleya, G. Tao G, and S. Son.
Feedback control scheduling in distributed real-time systems. In
RTSS, December 2001.

94 Bibliography

[43] C. J. van den Branden Lambrecht and O. Verscheure. Perceptual
Quality Measure using a Spatio-Temporal Model of the Human
Visual System. In Proceedings of the SPIE, San Jose, CA, volume
vol .4299, pages 450–461, Feb 1996.

[44] Anna Watson and M.Angela Sasse. Measuring Perceived Quality
of Speech and Video in Multimedia Conferencing. 1998.

[45] T. Yamazaki and J. Matsuda. On QoS Mapping in Adaptive QoS
Management for Distributed Multimedia Applications. In Proc.
ITC-CSCC’99, vol.2, pages 1342–1345, 1999.

