
Towards Hierarchical Scheduling in VxWorks∗

Moris Behnam†, Thomas Nolte, Insik Shin, Mikael̊Asberg
MRTC/Mälardalen University

P.O. Box 883, SE-721 23 Västerås
Sweden

Reinder J. Bril
Technische Universiteit Eindhoven (TU/e)

Den Dolech 2, 5612 AZ Eindhoven
The Netherlands

Abstract

Over the years, we have worked on hierarchical schedul-
ing frameworks from a theoretical point of view. In this
paper we present our initial results of the implementation
of our hierarchical scheduling framework in a commercial
operating system VxWorks. The purpose of the implemen-
tation is twofold: (1) we would like to demonstrate feasibil-
ity of its implementation in a commercial operating system,
without having to modify the kernel source code, and (2) we
would like to present detailed figures of various key prop-
erties with respect to the overhead of the implementation.
During the implementation of the hierarchical scheduler,
we have also developed a number of simple task schedulers.
We present details of the implementation of Rate-Monotonic
(RM) and Earliest Deadline First (EDF) schedulers. Fi-
nally, we present the design of our hierarchical scheduling
framework, and we discuss our current status in the project.

1 Introduction

Correctness of today’s embedded software systems gen-
erally relies not only on functional correctness, but also on
extra-functional correctness, such as satisfying timing con-
straints. System development (including software develop-
ment) can be substantially facilitated if (1) the system can
be decomposed into a number of parts such that parts are
developed and validated in isolation and (2) the temporal
correctness of the system can be established by composing
the correctness of its individual parts. For large-scale em-
bedded real-time systems, in particular, advanced method-

∗The work in this paper is supported by the Swedish Foundationfor
Strategic Research (SSF), via the research programme PROGRESS.

†Contact author: moris.behnam@mdh.se

ologies and techniques are required for temporal and spa-
tial isolation all through design, development, and analysis,
simplifying the development and evolution of complex in-
dustrial embedded software systems.

Hierarchical scheduling has shown to be a useful mecha-
nism in supporting modularity of real-time software by pro-
viding temporal partitioning among applications. In hier-
archical scheduling, a system can be hierarchically divided
into a number of subsystems that are scheduled by a global
(system-level) scheduler. Each subsystem contains a set of
tasks that are scheduled by a local (subsystem-level) sched-
uler. The Hierarchical Scheduling Framework (HSF) allows
for a subsystem to be developed and analyzed in isolation,
with its own local scheduler, and then at a later stage, using
an arbitrary global scheduler, it allows for the integration of
multiple subsystems without violating the temporal proper-
ties of the individual subsystems analyzed in isolation. The
integration involves a system-level schedulability test,ver-
ifying that all timing requirements are met. Hence, hierar-
chical scheduling frameworks naturally supportconcurrent
developmentof subsystems. Our overall goal is to make
hierarchical scheduling a cost-efficient approach applicable
for a wide domain of applications, including automotive,
automation, aerospace and consumer electronics.

Over the years, there has been a growing attention to
HSFs for real-time systems. Since a two-level HSF [9] has
been introduced for open environments, many studies have
been proposed for its schedulability analysis of HSFs [14,
17]. Various processor models, such as bounded-delay [20]
and periodic [24], have been proposed for multi-level HSFs,
and schedulability analysis techniques have been developed
for the proposed processor models [1, 7, 11, 18, 23, 24, 25].
Recent studies have been introduced for supporting logical
resource sharing in HSFs [3, 8, 12].

Up until now, those studies have worked on various as-
pects of HSFs from a theoretical point of view. This paper

1

presents our work towards a full implementation of a hi-
erarchical scheduling framework, and due to space limita-
tions, interested readers are referred to [30] for more details.
We have chosen to implement it in a commercial operating
system already used by several of our industrial partners.
We selected the VxWorks operating system, since there is
plenty of industrial embedded software available, which can
run in the hierarchical scheduling framework.

The outline of this paper is as follows: Section 2 presents
related work on implementations of schedulers. Section 3
present our system model. Section 4 gives an overview of
VxWorks, including how it supports the implementation of
arbitrary schedulers. Section 5 presents our scheduler for
VxWorks, including the implementation of Rate Monotonic
(RM) and Earliest Deadline First (EDF) schedulers. Sec-
tion 6 presents the design, implementation and evaluation
of the hierarchical scheduler, and finally Section 7 summa-
rizes the paper.

2 Related work

Looking at related work, recently a few works have im-
plemented different schedulers in commercial real-time op-
erating systems, where it is not feasible to implement the
scheduler directly inside the kernel (as the kernel source
code is not available). Also, some work related to efficient
implementations of schedulers are outlined.

Buttazzo and Gai [4] present an implementation of the
EDF scheduler for the ERIKA Enterprise kernel [10]. The
paper discusses the effect of time representation on the effi-
ciency of the scheduler and the required storage. They use
the Implicit Circular Timer’s Overflow Handler (ICTOH)
algorithm which allows for an efficient representation of ab-
solute deadlines in a circular time model.

Diederichs and Margull [6] present an EDF scheduler
plug-in for OSEK/VDX based real-time operating systems,
widely used by automotive industry. The EDF scheduling
algorithm is implemented by assigning priorities to tasks
according to their relative deadlines. Then, during the exe-
cution, a task is released only if its absolute deadline is less
than the one of the currently running task. Otherwise, the
task will be delayed until the time when the running task
finishes its execution.

Kim et al.[13] propose the SPIRIT uKernel that is based
on a two-level hierarchical scheduling framework simplify-
ing integration of real-time applications. The SPIRIT uK-
ernel provides a separation between real-time applications
by using partitions. Each partition executes an application,
and uses the Fixed Priority Scheduling (FPS) policy as a lo-
cal scheduler to schedule the application’s tasks. An offline
scheduler (timetable) is used to schedule the partitions (the
applications) on a global level. Each partition provides ker-
nel services for its application and the execution is in user
mode to provide stronger protection.

Parkinson [21] uses the same principle and describes
the VxWorks 653 operating system which was designed to
support ARINC653. The architecture of VxWorks 653 is
based on partitions, where a Module OS provides global re-
source and scheduling for partitions and a Partition OS im-
plemented using VxWorks microkernel provides scheduling
for application tasks.

The work presented in this paper differs from the last
two works in the sense that it implements a hierarchical
scheduling framework in a commercial operating system
without changing the OS kernel. Furthermore, the work
differs from the above approaches in the sense that it im-
plements a hierarchical scheduling framework intended for
open environments [9], where real-time applications may
be developed independently and unaware of each other and
still there should be no problems in the integration of these
applications into one environment. A key here is the use of
well definedinterfacesrepresenting the collective resource
requirements by an application, rich enough to allow for in-
tegration with an arbitrary set of other applications without
having to redo any kind of application internal analysis.

3 System model

In this paper, we only consider a simple periodic task
model τi(Ti, Ci, Di) whereTi is the task period,Ci is a
worst-case execution time requirement, andDi is a relative
deadline (0 < Ci ≤ Di ≤ Ti). The set of all tasks is
denoted byΓ (Γ = {τi| for all i = 1, .., n} where n is the
number of tasks).

We assume that all tasks are independent of each other,
i.e., there is no sharing of logical resources between tasks
and tasks do no suspend themselves.

The HSF schedules subsystemsSs ∈ S, whereS is the
set representing the whole system of subsystems. Each sub-
systemSs consists of a set of tasks and a local scheduler
(RM or EDF), and the global (system) scheduler (RM or
EDF). The collective real-time requirements ofSs is re-
ferred to as atiming-interface. The subsystem interface is
defined as(Ps, Qs), wherePs is a subsystem period, and
Qs is a budget that represents an execution time require-
ment that will be provided to the subsystemSs every period
Ps.

4 VxWorks

VxWorks is a commercial real-time operating system de-
veloped by Wind River with a focus on performance, scal-
ability and footprint. Many interesting features are pro-
vided with VxWorks, which make it widely used in indus-
try, such as; Wind micro-kernel, efficient task management
and multitasking, deterministic context switching, efficient
interrupt and exception handling, POSIX pipes, counting

2

semaphores, message queues, signals, and scheduling, pre-
emptive and round-robin scheduling etc. (see [29] for more
details).

The VxWorks micro-kernel supports the priority pre-
emptive scheduling policy with up to 256 different priority
levels and a large number of tasks, and it also supports the
round robin scheduling policy.

VxWorks offers two different modes for application-
tasks to execute; either kernel mode or user mode. In kernel
mode, application-tasks can access the hardware resources
directly. In user mode, on the other hand, tasks can not
directly access hardware resources, which provides greater
protection (e.g., in user mode, tasks can not crash the ker-
nel). Kernel mode is provided in all versions of VxWorks
while user mode was provided as a part of the Real Time
Process (RTP) model, and it has been introduced with Vx-
Works version 6.0 and beyond.

In this paper, we are considering kernel mode tasks since
such a design would be compatible with all versions of Vx-
Works and our application domains include systems with
a large legacy in terms of existing source codes. We are
also considering fixed priority preemptive scheduling pol-
icy for the kernel scheduler (not the round robin scheduler).
A task’s priority should be set when the task is created,
and the task’s priority can be changed during the execution.
Then, during runtime, the highest priority ready task will al-
ways execute. If a task with priority higher than that of the
running task becomes ready to execute, then the scheduler
stops the execution of the running task and instead executes
the one with higher priority. When the running task finishes
its execution, the task with the highest priority among the
ready tasks will execute.

When a task is created, an associated Task Control Block
(TCB) is created to save the task’s context (e.g., CPU envi-
ronment and system resources, during the context switch).
Then, during the life-cycle of a task the task can be in one
or a combination of the following states [28] (see Figure 1):

• Ready state, the task is waiting for CPU resources.

• Suspended state, the task is unavailable for execution
but not delayed or pending.

• Pending state, the task is blocked waiting for some
resource other than the CPU.

• Delayed state, the task is sleeping for some time.

Note that the kernel scheduler sorts all tasks that are
ready to execute in a queue called theready queue.

4.1 Scheduling of time-triggered periodic
tasks

A periodic task is a task that becomes ready for execu-
tion periodically once everyn-th time unit, i.e., a new in-
stant of the task is executed every constant period of time.

Ready

Delayed

Suspended

Pending

Ready

Delayed

Suspended

Pending

Figure 1. The application task state.

Most commercial operating systems, including VxWorks,
do not directly support the periodic task model [19]. To
implement a periodic task, when a task finishes its execu-
tion, it sleeps until the beginning of its next period. Such
periodic behaviour can be implemented in the task by the
usage of timers. Note that a task typically does not finish its
execution at the same time always, as execution times and
response times vary from one period to another. Hence, us-
ing timers may not be easy and accurate as the task needs to
evaluate the time for next period relative to the current time,
whenever it finishes its execution. This is because preemp-
tion may happen between the time measurement and calling
the sleep function.

In this project we need to support periodic activation of
serversin order to implement the hierarchical scheduling
framework. The reason for this is that we base our hierar-
chical scheduling framework around the periodic resource
model [24], and a suitable implementation of the periodic
resource model is achieved by the usage of a server based
approach similar to the periodic servers [16, 26] that replen-
ish their budget every constant period, i.e., the servers be-
have like periodic tasks.

4.2 Supporting arbitrary schedulers

There are two ways to support arbitrary schedulers in
VxWorks:

1. Using the VxWorks custom kernel scheduler [27].

2. Using the original kernel scheduler and manipulat-
ing the ready queue by changing the priority of tasks
and/or activating and suspending tasks.

In this paper, we are using the second approach since
implementing the custom kernel scheduler is a relatively
complex task compared with manipulating the ready queue.
However, it will be interesting to compare between the two
methods in terms of CPU overhead, and we leave this as a
future work.

In the implementation of the second solution, we have
used an Interrupt Service Routine (ISR) to manipulate the

3

tasks in the ready queue. The ISR is responsible for adding
tasks in the ready queue as well as changing their priorities
according to the hierarchical scheduling policy in use. In
the remainder of this paper, we refer to the ISR as the User
Scheduling Routine (USR). By using the USR, we can im-
plement any desired scheduling policy, including common
ones such as Rate Monotonic (RM) and Earliest Deadline
First (EDF).

5 The USR custom VxWorks scheduler

This section presents how to schedule periodic tasks us-
ing our scheduler, the User Scheduling Routine (USR).

5.1 Scheduling periodic tasks

When a periodic task finishes its execution, it changes
its state to suspended by explicitly calling the suspend func-
tion. Then, to implement a periodic task, a timer could be
used to trigger the USR once every new task activation time
to release the task (to put it in the ready queue).

The solution to use a timer triggering the USR once ev-
ery new period can be suitable for systems with a low num-
ber of periodic tasks. However, if we have a system with
n periodic tasks such a solution would require the use ofn
timers, which could be very costly or not even possible. In
this paper we have used a scalable way to solve the problem
of having to use too many timers. By multiplexing a single
timer, we have used a single timer to serven periodic tasks.

The USR stores the next activation time of all tasks (ab-
solute times) in a sorted (according to the closest time event)
queue called Time Event Queue (TEQ). Then, it sets a timer
to invoke the USR at the time equal to the shortest time
among the activation times stored in the TEQ. Also, the
USR checks if a task misses its deadline by inserting the
deadline in the TEQ. When the USR is invoked, it checks all
task states to see if any task has missed its deadline. Hence,
an element in the TEQ contains (1) the absolute time, (2)
the id of task that the time belongs to, and (3) the event type
(task next activation time or absolute deadline). Note that
the size of the TEQ will be2 ∗ n ∗ B bytes (whereB is the
size in bytes of one element in the TEQ) since we need to
save the task’s next period time and deadline time.

When the USR is triggered, it checks the cause of the
triggering. There are two causes for the USR to be trig-
gered: (1) a task is released, and (2) the USR will check
for deadline misses. For both cases, the USR will do the
following:

• Update the next activation and/or the absolute deadline
time associated with the task that caused triggering of
the USR in the TEQ and re-insert it in the TEQ accord-
ing to the updated times.

• Set the timer equal to the shortest time in the TEQ so
that the USR will be triggered at that time.

• For task release, the USR changes the state of the task
to Ready. Also, it changes priorities of tasks if required
depending on the scheduler (EDF or RM). For deadline
miss checking, the USR checks the state of the task to
see if it is Ready. If so, the task missed its deadline,
and the deadline miss function will be activated.

Updating the next activation time and absolute deadline
of a task in the TEQ is done by adding the period of the
task that caused the USR invocation to the current absolute
time. The USR does not use the system time as a time ref-
erence. Instead it uses a time variable as a time reference.
The reason for using a time variable is that we can, in a
flexible manner, select the size of variables that save abso-
lute time in bits. The benefits of such an approach is that we
can control the size of the TEQ since it saves the absolute
times, and it also minimizes the overhead of implementing
64 bits operations on 32 bit microprocessor [4], as an exam-
ple. The reference time variablets used to indicate the time
of the next activation, is initialized (i.e.,ts = 0) at the first
execution of the USR. The value ofts is updated every time
that the USR executes and it will be equal to the time given
by the TEQ that triggered the USR.

When a taskτi is released for the first time, the abso-
lute next activation time is equal tots + Ti and its absolute
deadline is equal tots + Di.

To avoid time consuming operations, e.g., multiplica-
tions and divisions, that increase the system overhead in-
herent in the execution of the USR, all absolute times (task
periods and relative deadlines) are saved in system tick unit
(system tick is the interval between two consecutive sys-
tem timer interrupts). However, depending on the number
of bits used to store the absolute times, there is a maximum
value that can be saved safely. Hence, saving absolute times
in the TEQ may cause problems related to overrun of time,
i.e., the absolute times become too large such that the value
can not be stored using the available number of bits. To
avoid this problem, we apply a wrapping algorithm which
wraps the absolute times at some point in time, so the time
will restart again. Periods and deadlines should not exceed
the wrap-around value.

The input of the timer should be in a relative time, so
evaluating the time at which to trigger the USR again (next
time) is done byTEQ[1] − ts whereTEQ[1] is the first
element in the queue after updating the TEQ as well as sort-
ing it, i.e., the closest time in the TEQ. The USR checks to
see if there are more than one task that have the same cur-
rent activation time and absolute deadline. If so, the USR
serves all these tasks to minimize the unnecessary overhead
of executing the USR several times.

4

5.2 RM scheduling policy

Each task will have a fixed priority during run-time when
Rate Monotonic (RM) is used, and the priorities are as-
signed according to the RM scheduling policy. If only RM
is used in the system, no additional operations are required
to be added to the USR since the kernel scheduler sched-
ules all tasks directly according to their priorities, and the
higher priority tasks can preempt the execution of the lower
priority task. Hence, the implementation overhead for RM
will be limited to the overhead of adding a task in the ready
queue and managing the timer for the next period (saving
the absolute time of the new period and finding the shortest
next time in the TEQ) for periodic tasks.

The schedulability analysis for each task is as fol-
lows [15];

∀τi ∈ Γ, 0 < ∃t ≤ Ti dbf(i, t) ≤ t. (1)

And dbf(i, t) is evaluated as follows

dbf(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉

Ck, (2)

whereHP(i) is the set of tasks with priority higher than that
of τi.

Eq. (2) can be easily modified to include the effect of us-
ing the USR on the schedulability analysis. Note that the
USR will be triggered at the beginning of each task to re-
lease the task, so it behaves like a periodic task with pri-
ority equal to the maximum possible priority (the USR can
preempt all application tasks). Checking the deadlines for
tasks by using the USR will add more overhead, however,
also this overhead has a periodic nature as the task release
presented previously.

Eq. (3) includes the deadline and task release overhead
caused by the USR in the response time analysis,

dbf(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉

Ck +
∑

τj∈Γ

⌈ t

Tj

⌉

XR

+
∑

τj∈Γ

⌈ t + Tj − Dj

Tj

⌉

XD

(3)
whereXR is the worst-case execution time of the USR
when a task is released andXD is the worst-case execu-
tion time of the USR when it checks for deadline misses
(currently, in case of deadline misses, the USR will only
log this event into a log file).

5.3 EDF scheduling policy

For EDF, the priority of a task changes dynamically dur-
ing run-time. At any timet, the task with shorter deadline

will execute first, i.e., will have the highest priority. To im-
plement EDF in the USR, the USR should update the prior-
ities of all tasks that are in the Ready Queue when a task is
added to the Ready Queue, which can be costly in terms of
overhead. Hence, on one hand, using EDF on top of com-
mercial operating systems may not be efficient depending
on the number of tasks, due to this sorting. However, the
EDF scheduling policy provides, on other hand, better CPU
utilization compared with RM, and it also has a lower num-
ber of context switches which minimizes context switch re-
lated overhead [5].

In the approach presented in this paper, tasks are already
sorted in the TEQ according to their absolute times due to
the timer multiplexing explained earlier. Hence, as the TEQ
is already sorted according to the absolute deadlines, the
USR can easily decide the priorities of the tasks according
to EDF without causing too much extra overhead for evalu-
ating the proper priority for each task.

The schedulability test for a set of tasks that use EDF
is shown in Eq. (4) [2] which includes the case when task
deadlines are allowed to be less than or equal to task peri-
ods.

∀t > 0,
∑

τi∈Γ

⌊ t + Ti − Di

Ti

⌋

· Ci ≤ t (4)

The overhead of implementing EDF can also be added
to Eq. (4). Hence, Eq. (5) includes the overhead of releas-
ing tasks as well as the overhead of checking for deadline
misses.

∀t > 0,
∑

τi∈Γ

⌊ t + Ti − Di

Ti

⌋

· Ci +
∑

τj∈Γ

⌈ t

Tj

⌉

XR

+
∑

τj∈Γ

⌈ t + Tj − Dj

Tj

⌉

XD ≤ t

(5)

5.4 Implementation and overheads of the
USR

To implement the USR, we have used the following Vx-
Works service functions;

• Q PUT - insert a node into a multi-way queue (ready
queue).

• Q REMOVE - remove a node from a multi-way queue
(ready queue).

• taskCreat - create a task.

• taskPrioritySet - set a tasks priority.

We present our initial results inherent in the implemen-
tation of the USR, implementing both the Rate Monotonic

5

EDF/RM

1

1,02

1,04

1,06

1,08

1,1

1,12

1,14

1,16

10 20 30 40 50 60 70 80 90 100

Number of Tasks

Average

Figure 2. EDF normalized against RM, for av-
erage USR execution time.

(RM) scheduler as well as the Earliest Deadline First (EDF)
scheduler. The implementations were performed on a ABB
robot controller with a Pentium 200 MHz processor run-
ning the VxWorks operating system version5.2. To trigger
the USR for periodic tasks, we have used watchdog timers
where the next expiration time is given in number of ticks.
The watchdog uses the system clock interrupt routine to
count the time to the next expiration. The platform pro-
vides system clock with resolution equal to4500ticks/s.
The measurement of the execution time of the USR is done
by reading a timestamp value at the start as well as at
the end of the USR’s execution. Note that the timestamp
is connected to a special hardware timer with resolution
12000000ticks/s.

Table 1 shows the execution time of the USR when it
performs RM and EDF scheduling, as well as deadline miss
checking, as a function of the number of tasks in the system.
The worst case execution time for USR will happen when
USR deletes and then inserts all tasks from and to TEQ and
to capture this, we have selected a same period for all tasks.
The table shows the minimum, maximum and average out
of 50 measured values. Comparing between the results of
the three cases (EDF, RM, deadline miss), we can see that
there is no big difference in the execution time of the USR.
The reason for this result is that the execution of the USR
for EDF, RM and deadline miss checking all includes the
overhead of deletion and re-inserting the tasks in the TEQ,
which is the dominating part of the overhead. As expected,
EDF causes the largest overhead because it changes the pri-
ority of all tasks in the ready queue during run-time. Fig-
ures 2-3 show that EDF imposes between6 − 14% extra
overhead compared with RM.

EDF/RM

1

1,02

1,04

1,06

1,08

1,1

1,12

1,14

1,16

10 20 30 40 50 60 70 80 90 100

Number of Tasks

Max

Figure 3. EDF normalized against RM, for
maximum USR execution time.

6 Hierarchical scheduling

A Hierarchical Scheduling Framework (HSF) supports
CPU sharing among subsystems under different scheduling
policies. Here, we consider a two-level scheduling frame-
work consisting of a global scheduler and a number of local
schedulers. Under global scheduling, the operating system
(global) scheduler allocates the CPU to subsystems. Under
local scheduling, a local scheduler inside each subsystem
allocates a share of the CPU (given to the subsystem by the
global scheduler) to its own internal tasks (threads).

We consider that each subsystem is capable of exporting
its own interface that specifies its collective real-time CPU
requirements. We assume that such a subsystem interface is
in the form of the periodic resource model(Ps, Qs) [24].
Here, Ps represents aperiod, and Qs represents abud-
get, or an execution time requirement within the period
(Qs < Ps). By using the periodic resource model in hi-
erarchical scheduling frameworks, it is guaranteed [24] that
all timing constraints of internal tasks within a subsystem
can be satisfied, if the global scheduler provides the subsys-
tem with CPU resources according to the timing require-
ments imposed by its subsystem interface. We refer inter-
ested readers to [24] for how to derive an interface(Ps, Qs)
of a subsystem, when the subsystem contains a set of inter-
nal independent periodic tasks and the local scheduler fol-
lows the RM or EDF scheduling policy. Note that for the
derivation of the subsystem interface(Ps, Qs), we use the
demand bound functions that take into account the overhead
imposed by the execution of USR (see Eq. (3) and (5)).

6.1 Hierarchical scheduling implementa-
tion

Global scheduler: A subsystem is implemented as a peri-
odic server, and periodic servers can be scheduled in a simi-
lar way as scheduling normal periodic tasks. We can use the

6

Number XR (RM) XR (EDF) XD (Deadline miss check)
of tasks Max Average Min Max Average Min Max Average Min

10 71 65 63 74 70 68 70 60 57
20 119 110 106 131 118 115 111 100 95
30 172 158 155 187 172 169 151 141 137
40 214 202 197 241 228 220 192 180 175
50 266 256 249 296 280 275 236 225 219
60 318 305 299 359 338 331 282 268 262
70 367 352 341 415 396 390 324 309 304
80 422 404 397 476 453 444 371 354 349
90 473 459 453 539 523 515 415 398 393
100 527 516 511 600 589 583 459 442 436

Table 1. USR execution time in µs, the maximum, average and minimum execution time of 45 mea-
sured values for each case.

same procedure described in Section 5 with some modifica-
tions in order to schedule servers. Each server should in-
clude the following information to be scheduled: (1) server
period, (2) server budget, (3) remaining budget, (4) pointer
to the tasks that belong to this server, and (5) the type of the
local scheduler (RM or EDF) (6) local TEQ. Moreover, to
schedule servers we need:

• Server Ready Queue to store all servers that have non
zero remaining budget. When a server is released at
the beginning of its period, its budget will be charged
to the maximum budgetQ, and the server will be added
to the Server Ready Queue. When a server executes its
internal tasks for some timex, then the remaining bud-
get of the server will be deceased withx, i.e., reduced
by the time that the server execute. If the remaining
budget becomes zero, then the server will hand over
the control to the global scheduler to select and remove
the highest priority server from Server Ready Queue.

• Server TEQ to release the server at its next absolute
periodic time since we are using periodic servers and
also track their remaining budgets.

Figures 4 illustrates the implementation of HSF in Vx-
Works. The Server Ready Queue is managed by the routine
that is responsible for scheduling the servers. Tracking the
remaining budget of a server is solved as follows; whenever
a server starts running, it sets an absolute time at which the
server budget expire and it equals to the current time plus
its remaining budget. This time is added to the server event
Queue to be used by the timer to trigger an event when the
server budget expires. When a server is preempted by an-
other server, it updates the remaining budget by subtracting
the time that has passed since the last release. When the
server executes its internal tasks until the time when the
server budget expiry event triggers, it will set its remain-

Server TCB������������	�����	�
	�	��
�	�	�	����
����	��	�����	����
	�	�� �	�	���	�����������������	�����	
	�	��
�	�	����
���
����
������� ������ ������!Server ready queue

������! ������� ������ Server event queue

task1
task2
task3
task4
task5
task6

VxWorks task TCB ����" ����# ����$Vxworks ready queue����%����&����'����' ����& ����%����' ����& ����% Task TCB���������(��������������)	User defined data structures
VxWorks kernel data structures
Task defined data structures

�	����
	�	�� �	�	���	�����������������	�����	
	�	��
�	�	����
���
����
Figure 4. The implementation of HSF in Vx-
Works.

ing budget to zero, and the scheduling routine removes the
server from the Server Ready Queue.

Local scheduler: When a server is given the CPU re-
sources, the ready tasks that belong to the server will be
able to execute. We have investigated two approaches to
deal with the tasks in the Ready Queue when a server is
given CPU resources:

• All tasks that belong to the server that was previously
running will be removed from the Ready Queue, and
all ready tasks that belong to the new running server
will be added to the Ready Queue, i.e., swapping of
the servers’ task sets. To remove tasks from the Ready
Queue, the state of the tasks is changed to suspend
state. However, this will cause a problem since the
state of the tasks that finish their execution is also
changed to suspend and when the server run again it

7

t*t+
t, t- t. t/

S1

S2

S3

Figure 5. Simple servers execution example.

will add non-ready tasks to the Ready Queue. To solve
this problem, an additional flag is used in the task’s
TCB to denote whether the task was removed from
Ready Queue and enter to suspend state due to budget
expiration of its server or due to finishing its execution.

• The priority of all tasks that belong to the preempted
server will be set to a lower (the lowest) priority, and
the priority of all tasks that belong to the new running
server will be raised as if they were executing exclu-
sively on the CPU, scheduled according to the local
scheduling policy in use by the subsystem.

The advantage of the second approach is that it can give
the unused CPU resources to tasks that belong to other
servers. However, the disadvantage of this approach is that
the kernel scheduler always sorts the tasks in the Ready
Queue and the number of tasks inside Ready Queue using
the second approach will be higher which may impose more
overhead for sorting tasks. In this paper, we consider the
first approach since we support only periodic tasks. When
a server is running, all interrupts that are caused by the lo-
cal TEQ, e.g., releasing tasks and checking deadline misses,
can be served without problem. However, if a task is re-
leased or its deadline occurs during the execution of another
server, the server that includes the task, may miss this event.
To solve this problem, when the server starts running af-
ter server preemption or when it finishes its budget, it will
check for all past events (including task release and dead-
line miss check events) in the local TEQ that have absolute
time less than the current time, and serve them.

Note that the time wrapping algorithm described in sec-
tion 5.1 should take into account all local TEQ’s for all
servers and the server event queue, because all these event
queues share the same absolute time.

Figure 5 illustrates the implementation of hierarchical
scheduling framework which includes an example with
three serversS1, S2, S3 with global and local RM sched-
ulers, the priority ofS1 is the highest and the priority ofS3

is the lowest. Suppose a new period ofS3 starts at timet0
with a budget equal toQ3. Then, the USR will change the
state ofS3 to Ready, and since it is the only server that is
ready to execute, the USR will;

• add the time at which the budget will expire, which
equals tot0 + Q3, into the server event queue and also
add the next period event in the server event queue.

• check all previous events that have occurred while the
server was not active by checking if there are task re-
leases or deadline checks in the time interval of[t∗, t0],
wheret∗ is the latest time at which the budget ofS3 has
been expired.

• start the local scheduler.

At time t1 the serverS2 becomes Ready and it has higher
priority thanS3. SoS2 will preemptS3 and in addition to
the previously explained action, the USR will remove all
tasks that belong toS3 from the ready queue and save the
remaining budget which equals toQ3 − (t1 − t0). Also
the USR will remove the budget expiration event from the
server event queue. Note that whenS3 executes next time it
will use the remaining budget to calculate the budget expi-
ration event.

Number of servers Max Average Min
10 91 89 85
20 149 146 139
30 212 205 189
40 274 267 243
50 344 333 318
60 412 400 388
70 483 466 417
80 548 543 509
90 630 604 525
100 689 667 570

Table 2. Maximum, average and minimum ex-
ecution time of the USR with 100 measured
values as a function of the number of servers.

The USR execution time depends on the number of the
servers, and the worst case happens when all servers are
released at the same time. In addition, the execution time
of the USR also depends on the number of ready tasks in
both the currently running server to be preempted as well
as the server to preempt. The USR removes all ready tasks
that belong to the preempted server from ready queue and
adds all ready tasks that belong to the preempting server
with highest priority into the ready queue. Here, the worst
case scenario is that all tasks of both servers are ready at that
time. Table 2 shows the execution time of the USR (when
a server is released) as a function of the number of servers

8

using RM as a global scheduler at the worst case, where all
the servers are released at the same time, just like the case
shown in the previous section. Here, we consider that each
server has a single task in order to purely investigate the
effect of the number of servers on the execution time of the
USR.

6.2 Example

In this section, we will show the overall effect of im-
plementing the HSF using a simple example, however, the
results from the following example are specific for this ex-
ample because, as we showed in the previous section, the
overhead is a function of many parameters affect the num-
ber of preemptions such as number of servers, number of
tasks, servers periods and budgets. In this example we use
RM as both local and global scheduler, and the servers and
associated tasks parameters are shown in Table 3. Note that
Ti = Di for all tasks.

The measured overhead utilization is about2.85% and
the measured release jitter for taskτ3 in serverS3 (which is
the lowest priority task in the lowest priority server) is about
49ms. The measured worst case response time is208.5ms
and the finishing time jitter is60ms. These results indicate
that the overhead and performance of the implementation
are acceptable for further development in future project.

7 Summary

This paper has presented our work on the implementa-
tion of our hierarchical scheduling framework in a commer-
cial operating system, VxWorks. We have chosen to im-
plement it in VxWorks so that it can easily be tested in an
industrial setting, as we have a number of industrial part-
ners with applications running on VxWorks and we intend
to use them as case studies for an industrial deployment of
the hierarchical scheduling framework.

This paper demonstrates the feasibility of implement-
ing the hierarchical scheduling framework through its im-
plementation over VxWorks. In particular, it presents sev-
eral measurements of overheads that its implementation im-
poses. It shows that a hierarchical scheduling framework
can effectively achieve the clean separation of subsystems
in terms of timing interference (i.e., without requiring any
temporal parameters of other subsystems) with reasonable
implementation overheads.

In the next stage of this implementation project, we in-
tend to implement synchronization protocols in hierarchical
scheduling frameworks, e.g., [3]. In addition, our future
work includes supporting sporadic tasks in response to spe-
cific events such as external interrupts. Instead of allow-
ing them to directly add their tasks into the ready queue,
we consider triggering the USR to take care of such addi-
tions. We also plan to support aperiodic tasks while bound-

ing their interference to periodic tasks by the use of some
server-based mechanisms. Moreover, we intend to extend
the implementation to make it suitable for more advanced
architectures including multicore processors.

Acknowledgements

The authors wish to express their gratitude to the anony-
mous reviewers for their helpful comments, as well as to
Clara Maria Otero Pérez for detailed information regard-
ing the implementation of hierarchical scheduling as a ded-
icated layer on top of pSoSystem, which is marketed by
Wind River (see [22] for more details) and suggestions for
improving our work.

References

[1] L. Almeida and P. Pedreiras. Scheduling within temporal
partitions: response-time analysis and server design. In
Proc. of the Fourth ACM International Conference on Em-
bedded Software, September 2004.

[2] S. Baruah, R. Howell, and L. Rosier. Algorithms and com-
plexity concerning the preemptive scheduling of periodic,
real-time tasks on one processor.Journal of Real-Time Sys-
tems, 2:301–324, 1990.

[3] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP:
A synchronization protocol for hierarchical resource shar-
ing in real-time open systems. InProc. of the 7th ACM
and IEEE International Conference on Embedded Software
(EMSOFT’07), 2007.

[4] G. Buttazzo and P. Gai. Efficient implementation of an
EDF scheduler for small embedded systems. InProc. of
the2

nd International Workshop Operating System Platforms
for Embedded Real-Time Applications (OSPERT’06) in con-
junction with the18th Euromicro International Conference
on Real-Time Systems (ECRTS’06).

[5] G. C. Buttazzo. Rate Monotonic vs. EDF: Judgement day.
Real-Time Systems, 29(1):5–26, January 2005.

[6] C. Diederichs, U. Margull, F. Slomka, G. Wirrer. An
application-based EDF scheduler for osek/vdx. InDATE
’08: Proc. of the conference on Design, automation and test
in Europe, 2008.

[7] R. I. Davis and A. Burns. Hierarchical fixed priority pre-
emptive scheduling. InProc. of the26th IEEE International
Real-Time Systems Symposium (RTSS’05), December 2005.

[8] R. I. Davis and A. Burns. Resource sharing in hierar-
chical fixed priority pre-emptive systems. InProc. of
the27

th IEEE International Real-Time Systems Symposium
(RTSS’06), December 2005.

[9] Z. Deng and J. W.-S. Liu. Scheduling real-time applications
in an open environment. InProc. of IEEE Real-Time Systems
Symposium, pages 308–319, December 1997.

[10] Evidence Srl. ERIKA Enterprise RTOS. URL:
http://www.evidence.eu.com.

[11] X. Feng and A. Mok. A model of hierarchical real-time
virtual resources. InProc. of IEEE Real-Time Systems Sym-
posium, pages 26–35, December 2002.

9

S1(P1 = 5, Q1 = 1) S2(P2 = 6 ,Q2 = 1) S3(P3 = 70 , Q3 = 20)
τi Ti Ci τi Ti Ci τi Ti Ci

τ1 20 1 τ1 25 1 τ1 140 7
τ2 25 1 τ2 35 1 τ2 150 7
τ3 30 1 τ3 45 1 τ3 300 30
τ4 35 1 τ4 50 1
τ5 40 7 τ5 55 7
- - - τ6 60 7

Table 3. System parameters in µs.

[12] N. Fisher, M. Bertogna, and S. Baruah. The design of
an EDF-scheduled resource-sharing open environment. In
Proc. of the28

th IEEE International Real-Time Systems
Symposium (RTSS’07), pages 83–92, December 2007.

[13] D. Kim, Y. Lee, and M. Younis. Spirit-ukernel for strongly
partitioned real-time systems. InProc. of 7th International
Conference on Real-Time Computing Systems and Applica-
tions (RTCSA 2000), 2000.

[14] T.-W. Kuo and C. Li. A fixed-priority-driven open environ-
ment for real-time applications. InProc. of IEEE Real-Time
Systems Symposium, pages 256–267, December 1999.

[15] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: exact characterization and average
case behavior. InProc. of IEEE Real-Time Systems Sym-
posium, pages 166–171, 1989.

[16] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperi-
odic responsiveness in hard real-time environments. InProc.
of 8

th IEEE International Real-Time Systems Symposium
(RTSS’87), pages 261–270.

[17] G. Lipari and S. Baruah. Efficient scheduling of real-time
multi-task applications in dynamic systems. InProc. of
IEEE Real-Time Technology and Applications Symposium,
pages 166–175, May 2000.

[18] G. Lipari and E. Bini. Resource partitioning among real-
time applications. InProc. of Euromicro Conference on
Real-Time Systems, July 2003.

[19] J. Liu. Real-time systems.Prentice Hall, 2000.
[20] A. Mok, X. Feng, and D. Chen. Resource partition for real-

time systems. InProc. of IEEE Real-Time Technology and
Applications Symposium, pages 75–84, May 2001.

[21] L. K. P. Parkinson. Safety critical software development
for integrated modular avionics. InWind River white paper.
URL http://www.windriver.com/whitepapers/, 2007.

[22] C.M. Otero Perez and I. Nitescu. Quality of Service Re-
source Management for Consumer Terminals: Demonstrat-
ing the Concepts. InProc. Work in Progress Session of the
14th Euromicro Conference on Real-Time Systems,, June
2002.

[23] S. Saewong, R. Rajkumar, J. Lehoczky, and M. Klein. Anal-
ysis of hierarchical fixed-priority scheduling. InProc. of
Euromicro Conference on Real-Time Systems, June 2002.

[24] I. Shin and I. Lee. Periodic resource model for composi-
tional real-time guarantees. InProc. of IEEE Real-Time Sys-
tems Symposium, pages 2–13, December 2003.

[25] I. Shin and I. Lee. Compositional real-time scheduling
framework. InProc. of IEEE Real-Time Systems Sympo-
sium, December 2004.

[26] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task
scheduling for hard real-time systems.Real-Time Systems,
1(1):27–60, June 1989.

[27] Wind River. VxWorks KERNEL PROGRAMMERS
GUIDE 6.2.

[28] Wind River. VxWorks PROGRAMMERS GUIDE 5.5.
[29] Wind River. Wind River VxWorks 5.x.

http://www.windriver.com/.
[30] M. Åsberg. On Hierarchical Scheduling in VxWorks. Mas-

ter thesis, Department of Computer Science and Electronics,
Mälardalen University, Sweden, 2008.

10

