
Mälardalen University Doctoral Thesis
No.61

Efficient Memory Utilization
in Resource Constrained

Real-Time Systems

Kaj Hänninen

June 2008

School of Innovation, Design and Engineering
Mälardalen University

Västerås, Sweden

Copyright c© Kaj Hänninen, 2008
ISSN 1651-4238
ISBN 978-91-85485-85-7
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

Abstract

This thesis presents design and run-time techniques for efficient memory
utilization in embedded real-time systems. The proposed techniques give de-
velopers means to reduce the memory consumption in the systems. Altogether,
this gives possibilities to increases the added value of industrial systems, in
the sense that more features can be fitted on existing hardware.

The thesis begins by presenting the results of a series of interviews
concerning common requirements in development of embedded real-time
systems. Based on these results, the thesis presents a novel component
model for development of resource constrained real-time systems. The model
supports efficient memory usage through stack sharing and is formal enough to
enable predictability of the resulting stack usage. To provide run-time support
for stack sharing, the thesis presents an integration of the stack sharing strategy
in an operating system for the component model. To determine the resulting
memory usage under stack sharing, a novel analysis method is presented. In
an evaluation, the thesis show that the analysis method is both fast and that it
gives tight bounds on the resulting stack usage, which makes it suitable for
industrial use. The thesis ends with a presentation showing the integration of
the proposed analysis technique in an integrated development environment.

The proposed techniques have been integrated in the commercial tool
Rubus-ICE from Arcticus Systems. The techniques will be available for de-
velopers in the upcoming release of Rubus-ICE.

i

To Stissen, Chibi, Krutte, Morris and Azze

Acknowledgements

I wish to thank all my colleagues at Arcticus Systems and Mälardalen
Real-Time Research Centre. A special thank you goes out to: Mikael Nolin,
Jukka Mäki-Turja, Christer Norström, Markus Bohlin, Jan Carlson, Sasikumar
Punnekkat, Kurt-Lennart Lundbäck, John Lundbäck, Hjördis Lundbäck, Mats
Lindberg and Staffan Sandberg.

This research has been supported by Arcticus Systems AB1, Mälardalen
Real-Time Research Centre2 and SAVE-IT3. SAVE-IT is an industrial graduate
school supported by the KK-foundation4.

Thank you!

Kaj Hänninen

1www.arcticus-systems.com
2www.mrtc.mdh.se
3www.mrtc.mdh.se/projects/save-it
4www.kks.se

v

List of Publications

Publications included in this thesis

Paper A: Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Present and

Future Requirements in Developing Industrial Embedded Real-Time Systems -

Interviews with Designers in the Vehicle Domain, In Proceedings of the 13th
Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems, Potsdam, Germany, March, 2006.

Paper B: Jukka Mäki-Turja, Kaj Hänninen, Mikael Nolin, Efficient

Development of Real-Time Systems Using Hybrid Scheduling, In Proceedings
of the 2005 International Conference on Embedded Systems and Applications,
Las Vegas, USA, June, 2005.

Paper C: Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Mats Lindberg,
John Lundbäck, Kurt-Lennart Lundbäck, The Rubus Component Model for

Resource Constrained Real-Time Systems, To appear in the Proceedings of
the 3rd IEEE International Symposium on Industrial Embedded Systems,
Montpellier, France, June, 2008.

Paper D: Kaj Hänninen, John Lundbäck, Kurt-Lennart Lundbäck, Jukka
Mäki-Turja, Mikael Nolin, Efficient Event-Triggered Tasks in an RTOS, In
Proceedings of the 2005 International Conference on Embedded Systems and
Applications, Las Vegas, USA, June, 2005.

Paper E: Kaj Hänninen, Jukka Mäki-Turja, Markus Bohlin, Jan Carlson,
Mikael Nolin, Determining Maximum Stack Usage in Preemptive Shared Stack

Systems, In Proceedings of the 27th IEEE Real-Time Systems Symposium,
Rio de Janeiro, Brazil, December, 2006.

vii

viii

Paper F: Kaj Hänninen, Jukka Mäki-Turja, Staffan Sandberg, John
Lundbäck, Mats Lindberg, Mikael Nolin, Kurt-Lennart Lundbäck, Introducing

a Plug-In Framework for Real-Time Analysis in Rubus-ICE, MRTC report
ISSN 1404-3041 ISRN MDH-MRTC-229/2008-1-SE, Mälardalen Real-Time
Research Centre, Mälardalen University, April, 2008. Submitted to the
13th IEEE International Conference on Emerging Technologies and Factory
Automation.

Publications relevant to thesis but not included

• Markus Bohlin, Kaj Hänninen, Jukka Mäki-Turja, Jan Carlson, Mikael
Nolin, Bounding Shared-Stack Usage in Systems with Offsets and Prece-

dences, To appear in the Proceedings of the 20th Euromicro Conference
on Real-Time Systems, Prague, Czech Republic, July, 2008.

• Mikael Nolin, Jukka Mäki-Turja, Kaj Hänninen, Achieving Industrial

Strength Timing Predictions of Embedded System Behavior, To appear
in the Proceedings of the 2008 International Conference on Embedded
Systems and Applications, Las Vegas, USA, July, 2008.

• Jukka Mäki-Turja, Mikael Nolin, Kaj Hänninen, Towards Efficient

Development of Embedded Real-Time Systems, the Component Based

Approach, In Proceedings of the 2006 International Conference on
Embedded Systems and Applications, Las Vegas, USA, June, 2006.

Other publications by the author

• Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Mats Lindberg, John
Lundbäck, Kurt-Lennart Lundbäck, Supporting Engineering Require-

ments in the Rubus Component Model, MRTC report ISSN 1404-3041
ISRN MDH-MRTC-223/2008-1-SE, Mälardalen Real-Time Research
Centre, Mälardalen University, February, 2008.

• Markus Bohlin, Kaj Hänninen, Jukka Mäki-Turja, Jan Carlson, Mikael
Nolin, Safe Shared Stack Bounds in Systems with Offsets and Prece-

dences, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-221/2008-
1-SE, Mälardalen Real-Time Research Centre, Mälardalen University,
January, 2008.

ix

• Markus Bohlin, Kaj Hänninen, Jukka Mäki-Turja, Shared Stack Analysis

in Transaction-Based Systems, Work in Progress Proceedings RTSS’07,
Tucson, Arizona, USA, December, 2007.

• Kaj Hänninen, Jukka Mäki-Turja, Markus Bohlin, Jan Carlson, Mikael
Nolin, Determining Maximum Stack Usage in Preemptive Shared Stack

Systems, In Proceedings of the 9th Real-Time in Sweden, Västerås, Swe-
den, August, 2007.

• Jukka Mäki-Turja, Kaj Hänninen, Mikael Nolin, Efficient Development

of Real-Time Systems Using Hybrid Scheduling, In Proceedings of the
9th Real-Time in Sweden, Västerås, Sweden, August, 2007.

• Kaj Hänninen, Introducing a Memory Efficient Execution Model in a

Tool-Suite for Real-Time Systems, Licentiate Thesis, Mälardalen Real-
Time Research Centre, Mälardalen University, September, 2006.

• Kaj Hänninen, Jukka Mäki-Turja, Markus Bohlin, Jan Carlson, Mikael
Nolin, Analysing Stack Usage in Preemptive Shared Stack Systems,
MRTC report ISSN 1404-3041 ISRN MDH-MRTC-202/2006-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, July,
2006.

• Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Investigation of In-

dustrial Requirements in Development of Embedded Real-Time Sys-

tems, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-185/2005-1-
SE, Mälardalen Real-Time Research Centre, Mälardalen University, Au-
gust, 2005.

• Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Industrial Require-

ments in Development of Embedded Real-Time Systems -Interviews with

Senior Designers, In Proceedings of the Work-in-Progress Session of the
17th Euromicro Conference on Real-Time Systems, Palma de Mallorca,
Spain, July, 2005.

• Kaj Hänninen, John Lundbäck, Kurt-Lennart Lundbäck, Jukka Mäki-
Turja, Mikael Nolin, Introducing Resource Efficient Event-Triggered

Tasks in an RTOS, MRTC report ISSN 1404-3041 ISRN MDH-MRTC-
170/2005-1-SE, Mälardalen Real-Time Research Centre, Mälardalen
University, February, 2005.

x

• Jukka Mäki-Turja, Kaj Hänninen, Mikael Nolin, Response Times

in Hybrid Scheduled Systems, MRTC report ISSN 1404-3041 ISRN
MDH-MRTC-169/2005-1-SE, Mälardalen Real-Time Research Centre,
Mälardalen University, February, 2005.

• Kaj Hänninen, Jukka Mäki-Turja, Component technology in Re-

source Constrained Embedded Real-Time Systems, Technical Report,
Mälardalen Real-Time Research Centre, Mälardalen University, March,
2004.

• Toni Riutta, Kaj Hänninen, Optimal Design, Master’s thesis, Mälardalen
University, Department of Computer Science and Engineering, February,
2003.

Contents

I Thesis 1

1 Introduction 3

1.1 Thesis problem formulation 5
1.2 Outline of thesis . 6

2 Real-time systems 7

2.1 Computational resources . 8
2.2 Trends on functionality . 8
2.3 Development . 9

2.3.1 Component based development 9
2.4 Execution models . 10
2.5 Predicting run-time behaviour 10
2.6 Research on predictable execution models 11
2.7 Summary . 12

3 Efficient memory utilization through stack sharing 13

3.1 Principle of stack sharing . 13
3.2 Stack sharing in development 15
3.3 Analysing shared stack usage 16
3.4 Supporting shared stack analysis in development 19

4 Thesis contribution 21

4.1 Summary of contributions 21
4.1.1 Contributions of included papers 22

4.2 Impact of contributions . 25

5 Conclusion and future work 27

xi

xii Contents

Bibliography 29

II Included Papers 35

6 Paper A:

Present and Future Requirements in Developing Industrial Em-

bedded Real-Time Systems

- Interviews with Designers in the Vehicle Domain 37

6.1 Introduction . 39
6.2 Investigation setup . 40
6.3 Investigation results . 42

6.3.1 Application characteristics 42
6.3.2 Functional application properties 44
6.3.3 Temporal application properties 45
6.3.4 Operating systems 46
6.3.5 Execution models 47
6.3.6 Resource limitations 47
6.3.7 Desired tool support 48
6.3.8 Software components 49

6.4 Discussion - our observations 49
6.5 Conclusions . 52
6.6 Verification of the investigation results 53
Bibliography . 53

7 Paper B:

Efficient Development of Real-Time Systems Using Hybrid

Scheduling 57

7.1 Introduction . 59
7.2 System description . 61

7.2.1 Example system . 62
7.3 Modelling the system . 63

7.3.1 Task model with offsets 64
7.3.2 System model . 65

7.4 Related work . 66
7.5 Case study . 67

7.5.1 An example system 67
7.6 Conclusions . 70
Bibliography . 71

Contents xiii

8 Paper C:

The Rubus Component Model for Resource Constrained Real-

Time Systems 75

8.1 Introduction . 77
8.2 Engineering requirements on RubusCMv3 78
8.3 Objective of RubusCMv3 . 79
8.4 The RubusCMv3 component model 80

8.4.1 Software logic . 80
8.4.2 Real-time properties in RubusCMv3 84

8.5 System example . 85
8.6 System development using RubusCMv3 89
8.7 Conclusions and future work 91
Bibliography . 92

9 Paper D:

Efficient Event-Triggered Tasks in an RTOS 97

9.1 Introduction . 99
9.2 The single shot execution model (SSX) 99
9.3 The Rubus operating system 101
9.4 Integration of SSX in Rubus 103
9.5 Evaluation of SSX in Rubus 105

9.5.1 Evaluation method 105
9.5.2 Application description 106
9.5.3 Results . 109

9.6 Conclusion and future work 109
Bibliography . 110

10 Paper E:

Determining Maximum Stack Usage in Preemptive Shared Stack

Systems 113

10.1 Introduction . 115
10.2 Related work . 116

10.2.1 Stack analysis . 116
10.2.2 Preemption analysis 117

10.3 Stack analysis of preemptive systems 117
10.4 System model for hybrid scheduled systems 120

10.4.1 Formal system model 120
10.5 Stack analysis of hybrid scheduled systems 121

10.5.1 Correctness . 124

xiv Contents

10.5.2 Computational complexity 124
10.6 Evaluation . 125

10.6.1 Simulation setup . 126
10.6.2 Results . 127

10.7 Conclusions and future work 129
Bibliography . 131

11 Paper F:

Introducing a Plug-In Framework for Real-Time Analysis in

Rubus-ICE 137

11.1 Introduction . 139
11.2 Rubus . 140

11.2.1 Rubus-ICE . 140
11.3 Plug-in framework for Rubus-ICE 141

11.3.1 Requirements on the plug-in framework 141
11.3.2 Requirements on Rubus-ICE plug-ins 143
11.3.3 Defining an API for plug-ins 143

11.4 Developing analysis plug-ins 144
11.5 Adding plug-ins to Rubus-ICE - A case study 147
11.6 Experiences summarised . 148
11.7 Conclusions and future work 150
Bibliography . 151

I

Thesis

1

Chapter 1

Introduction

Embedded computers play an important role in people’s everyday life. Prod-
ucts that used to be purely mechanical have incorporated computers to control
features and provide possibilities for more advanced functionality. Nowadays,
we can find computers in washing machines, DVD players, cellular phones,
cars and in a multitude of other products.

Throughout the years, the number of embedded systems has been increas-
ing and the trend indicates that the number of embedded systems will continue
to increase. With every new release of a system, the number of advanced fea-
tures is increasing either due to customer demands, legislation requirements or
simply because manufacturers want to increase the added value of their prod-
ucts by incorporating new features. As a consequence, the complexity in de-
velopment of embedded systems is increasing.

Component based development is slowly gaining popularity as a develop-
ment discipline in the embedded domain. The component based development
discipline enables system development at different levels of abstraction through
hierarchical composition of software units, i.e., components. It has been suc-
cessfully used in development of complex desktop applications for quite some
time, and is now being introduced as an alternative, and promising, way to cope
with the complexity in development of embedded systems.

Even though component based development has been introduced for em-
bedded development, many embedded systems are still being realized with
considerably simple methods. These methods originates from way back when
embedded systems almost exclusively consisted of control features, i.e., sys-
tems in which all features have similar, typical hard real-time, requirements.

3

4 Chapter 1. Introduction

Today however, the diversity of features, and mixture of real-time require-
ments in embedded systems, entail that these development methods are ade-
quate only for a subset of the features in a system. For instance, in real-time
systems, static scheduling is often used and sometimes even mandated, for re-
alization of safety critical functionality. For reasons, such as, tradition in devel-
opment, simplicity of use, or lack of proper support in development tools, static
scheduling is sometimes used to realize all features. Even though researchers
have proposed a large number of alternative models, in practice however, only
a few of the proposed models are used and supported in industrial development
tools. This implies that developers often force fit functionality with different
requirements to be executed under a single execution model, such as the static
scheduled model. This force fitting of functionality increases software com-
plexity and leads to poor resource utilization.

Many embedded systems are resource constrained in the sense that they
have a limited amount of computational resources. Processors for embedded
systems have only a fraction of the processing power of desktop computers.
In addition, the amount of available memory in embedded systems is signifi-
cantly lower than what is common in desktop computers. To improve resource
utilization, additional execution models need to be introduced in development.
However, not all execution models are suitable for embedded systems. In fact,
an execution model must be introduced with care, since different sub-domains
within the embedded domain have different requirements that need to be sup-
ported by the execution model. Properties such as safety and reliability are
considered important and need to be addressed in development of embedded
systems. This implies that execution models need to be verifiable, e.g., by
formal analysis or manual testing. This in turn, require analysis methods ap-
plicable for industrial use, i.e., analysis methods that are easy to use and have
low timing complexity.

This thesis will show how software development for embedded real-time
systems can be made more efficient, with respect to hardware utilization.
Specifically, the thesis will present the integration of a predictable memory
efficient execution model, denoted stack sharing, in a development context for
component based development of embedded real-time systems. To address
the issues outlined in the introduction, the thesis presents a novel component
model that support common requirements in development of control systems
for ground vehicles. The component model supports multiple execution mod-
els, giving developers means to avoid force fitting of functionality. Also, the
component model is developed to support predictable and efficient memory us-
age through stack sharing. To achieve efficient memory usage at run-time, the

Chapter 1. Introduction 5

thesis presents an integration of stack sharing in an operating system for the
proposed component model. In addition, a novel analysis method to predict
the memory consumption under stack sharing is presented and integrated in a
development environment.

1.1 Thesis problem formulation

To facilitate efficient development of complex industrial embedded systems,
suitable development models and efficient execution models for realization of
the systems are needed. The models should facilitate development of resource
constrained systems and allow features with different real-time requirements to
be realized in a single system. Also, the models need to be formal enough for
analysis and verification of properties and requirements. At the same time, to
gain industrial use, the models need to be adapted to the specific requirements
in industrial development and integrated in development tools. Addressing
these issues, this thesis investigates the following:

• What are the requirements in development, and properties, of embedded
real-time systems?

• How can industrial real-time systems benefit from additional execution
models?

Based on these investigations, the thesis then address:

• Component based development of embedded real-time systems, support-
ing efficient memory usage through stack sharing.

• Integration of stack sharing in a run-time environment.

• Predictability of the memory consumption under stack sharing, through
formal analysis methods.

• Integration of an analysis method for stack sharing, in a development
environment.

6 Chapter 1. Introduction

1.2 Outline of thesis

The reminder of this thesis is outlined as follows:

Part I

Chapter 2 presents the background for the work conducted in this thesis.
The chapter gives an introduction to real-time systems, development of
real-time systems and execution models for real-time systems.

Chapter 3 presents an efficient execution model, called stack sharing, for
real-time systems. The chapter outlines issues that need to be considered in
integration of stack sharing in a commercial development environment. The
chapter also presents how this thesis addresses these issues in integrating the
model in a development context.

Chapter 4 presents the overall contribution of the thesis. The chapter also
outlines the contribution of the author.

Chapter 5 concludes the work presented in this thesis and presents
directions for future work.

Part II

Part II of this thesis contains six papers that constitute the scientific contribu-
tions of this thesis.

Chapter 2

Real-time systems

Real-time systems can be found almost everywhere today. Many of us use them
on a daily basis. For example, a modern car contains some 40-80 computers,
most of which are classified as real-time systems. Most real-time systems are
embedded systems that interact with the environment by sensors and actuators.
An embedded real-time system in a car, for example, can be responsible of
controlling functions such as anti-lock braking, anti-skid, traction control and
other safety features as well as entertainment features.

The main distinction between real-time systems and conventional desktop
systems stem from the way in which timing is considered. In conventional
computer systems such as desktop systems, functional correctness is of main
concern, whereas real-time systems emphasize both functional and timing re-
quirements in computing.

The air bag, a safety feature in most cars, is a classical example that demon-
strates timing requirements in a computer system. The air bag is an inflatable
nylon bag, activated at collision and filled with a gas to protect the passen-
gers. There are several timing aspects that need to be considered for correct
functionality of an air bag. Inflating the bag too early, i.e., directly when the
collision is detected, might render the bag useless, in the sense that the gas
may already have escaped the bag when the passenger hits the bag. Inflating
the bag too late, might actually be dangerous for passengers, in the sense that
the inflating bag may hit the person with a great force. In essence, to provide
proper protection, the bag needs to be inflated within a certain time interval
after the collision is detected. The air bag is a typical feature with strict timing
requirements and thus can be classified as a real-time system.

7

8 Chapter 2. Real-time systems

2.1 Computational resources

Most embedded real time systems are resource constrained in some sense. The
processing power and the amount of memory in the systems are usually only a
fraction of what is common in desktop computers. For instance, back in 1990, a
processor running at 25MHz was considered as high performance in a desktop
system. Nowadays, with processor speeds reaching 4GHz, processors running
at 25MHz are of no use in desktop computers. However, in the embedded
domain, the use of low performance processor, such as 25MHz processors, is
not unusual. In addition, the amount of memory in a typical embedded system
is not even comparable to what is common in desktop computers. Typically,
the amount of available memory in embedded systems lies in the range of kilo-
bytes to mega-bytes. It is not uncommon that the features of a real-time system
are realized by, as many as, hundreds of threads that execute and compete for
the available resources in the same system. Hence, the limited resources in
embedded systems need to be utilized in an efficient way.

2.2 Trends on functionality

Products that used to be purely mechanical have incorporated computers to pro-
vide more advanced features and to increase the added value of the products.
Incorporating computers in products offers flexibility in the sense that new fea-
tures can be added in the computer software. The software in modern embed-
ded real-time systems account for an important part of the value growth of the
products [HNN08]. Embedded real-time systems have, by tradition, been used
to control physical processes. Consequently, the software in these systems con-
sisted almost exclusively of control algorithms with strict timing requirements.
With the flexibility offered by software, the number of features introduced in
embedded real-time systems has been increasing over the years. Nowadays,
embedded real-time systems are often responsible for handling a variety of
different type of features with different requirements. For instance, a typical
embedded real-time system in a passenger car manages control features, driv-
ing assistance, information and entertainment features [SVN07]. This implies
that embedded real-time systems need to manage both safety critical features
as well as less critical features in the same system. In addition, the trend indi-
cates that the number of features in embedded real-time system will continue
to increase.

Chapter 2. Real-time systems 9

2.3 Development

The fact that many embedded real-time systems contain a mix of features with
requirements ranging from hard real-time to soft, and even non real-time, raises
challenges that developers of these systems need to deal with to deliver safe and
reliable solutions.

Historically, embedded real-time systems have been developed using low
level programming languages to guarantee full control over the system be-
haviour. Throughout the years however, development of embedded real-time
systems has undergone changes to support the diverging requirements on ap-
plications. High level programming languages (for example C, C++, and Java)
have been adopted as alternatives to the traditional low level programming lan-
guages. A recent trend is the introduction of component based development in
the embedded community.

2.3.1 Component based development

Component based development is a discipline in which software systems are
built by assembling pieces of software units known as components. Many
component based development methodologies allow hierarchical composition
of components, enabling development of systems at variable levels of abstrac-
tion. Abstracting away unnecessary details, allowing developers to focus on
the problem at suitable abstraction levels, is in many cases a key in developing
complex systems. In the office-/Internet-area component based development
has had a tremendous impact. It has shown to be successful in development
of complex applications and is slowly gaining popularity in the embedded do-
main. The main problem to adapt component based development to the em-
bedded domain has been the lack of tools and component models that are able
to fulfil domain specific requirements on safety and reliability as well as pre-
dictable and efficient resource usage for embedded systems. For this reason,
many real-time systems are still developed with considerably simple methods,
with main focus on guaranteeing functional correctness and temporal proper-
ties.

To support efficient component-based development of embedded real-time
systems, at least three viewpoints should be taken in consideration, (i) the de-
velopers view, (ii) the analysis view, (iii) the view of the run-time system.
These viewpoints need to be jointly approached to find a suitable trade-off
between the requirements that need to be fulfilled. For example, a developer
(or designer) of a system should have a component model, architectural rules

10 Chapter 2. Real-time systems

and constraints at his disposal to develop a high level (abstract away from pure
source code) architecture of the application (system). From the analysis view-
point, the design/architecture must be formal enough so that automated anal-
ysis techniques, such as response time and memory utilization analysis, can
be performed. Finally, the run-time system should have a small run-time foot-
print, but still provide sufficient run-time services to the components of the
application.

2.4 Execution models

In development of embedded real-time systems, a developer must choose an
execution model to realize functionality. In general, an execution model can
be seen as a method that provides ways to execute features, i.e., to carry out
the functionality in a computer system. Each execution model affects the uti-
lization of the processor as well as the memory consumption. For developers
to utilize an execution model, the execution model needs to be supported at
design and run-time, e.g., by a component model and by an operating system.
Many operating systems only provide a few (often only one) execution mod-
els. In addition, very few component models have been explicitly designed
to support multiple execution models. This implies that developers have to
force fit functionality with diverging requirements to be executed under a sin-
gle execution model. Force fitting functionality to be executed under a single
execution model often results in increasing software complexity and poor re-
source utilization. Hence, as the need for new features in products increases,
better usage of the limited computational resources is needed. This can be
achieved by introducing resource efficient and predictable execution models in
development.

2.5 Predicting run-time behaviour

To enable predictability of systems run-time behaviour, developers annotate
models of real-time systems with temporal properties and requirements. Tem-
poral requirements are often the ones in focus when predictability of real-time
systems is addressed. With the increasing amount of functionality in resource
constrained real-time systems, the need to verify properties such as timing and
memory consumption, becomes more important.

There are a number of ways to verify timing requirements and to derive
bounds on memory consumption in real-time systems. In an industrial context,

Chapter 2. Real-time systems 11

verification of a system is often performed by executing the system and mea-
suring the properties. To verify whether a system meets its requirements, the
measurements are compared with the requirements. It is obvious that such a
verification approach seldom gives safe results, i.e., that the requirements are
fulfilled, simply because the measurements must represent the worst case be-
haviour of the properties affecting the verification. Executing a system in a
worst case manner with respect to some property, is non trivial and extremely
hard to accomplish. Even so, this kind of verification is common in industry. In
a more formal context, the requirements on a real-time system can be verified
by mathematical analysis methods. Throughout the years, the research commu-
nity have been active and proposed numerous analysis methods for real-time
systems (see for example [ABT+93, BTW95, EHS97, KAS93, Leh90, Pun97,
SRL87, SRL90, TB94, TC94, THW94, Tin92]). These methods are however
non trivial to understand and often hard to incorporate in an industrial context.
Experience shows that analysis methods are not easily transferred from an aca-
demic environment to industry [LR03, WAN03]. There are many reasons for
this, originating foremost from differences in requirements and assumptions
between industry and academia [NMTH08]. In addition, many analysis meth-
ods are applicable to small artificial systems, and experience therefore high
timing complexity when applied to large real world systems. In essence, to
successfully transfer complex analysis methods from academia to industry, the
methods need to be incorporated in development tools and adhere to the re-
quirements in the context in which they are integrated.

2.6 Research on predictable execution models

Research on real-time systems has provided a number of different schedul-
ing algorithms, analysis methods and execution models, see, e.g., [ABRW91,
But97, Liu00, LL73, SEF98, SSL89, SSRB98, XP90]. Recent results in
real-time scheduling theory, e.g., [AB98, Abe98, Bak90, BBLB03, MTN05,
PG03], make it possible to combine several execution models in one system
(and still achieve predictable timing and efficient resource usage). However,
these techniques by themselves, do not remove any problems. In addition, a
change in the software development model and tools is needed.

Most of the execution models and analysis techniques proposed by the real-
time research community have been developed with timing in focus. The aim
of these models has been to guarantee predictability of timing requirements
and to improve CPU utilization. Even though it is known that most embedded

12 Chapter 2. Real-time systems

real-time systems are resource constrained and that the systems need a cer-
tain amount of memory to realize features, relatively little work has been done
on execution models and analysis for efficient memory utilization. A com-
mon problem that need to be addressed, when introducing means for efficient
memory utilization in real-time systems, concerns how analysability of tempo-
ral requirements of functionality executed under the model can be guaranteed.
Hence, models for efficient memory utilization should be predictable with re-
spect to both the memory usage and timing behavior. There exist however,
techniques to improve the memory usage in real-time systems, see for example
[Bak90, CMM+04, CRM06, DMT00, GD07, GLN01, Dig, MSB05, Ros06,
RRW05]. One of them is stack sharing.

Stack sharing is an execution strategy that allows several tasks to share a
common memory area for execution. It is a strategy suitable for many type of
systems in the sense that it reduces the overall memory consumption and puts
only a few restriction on system development. For stack sharing to be success-
ful, the strategy in itself needs to be integrated and supported by a development
environment. Moreover, analysis methods that are able to give tight bounds on
the resulting stack usage, under stack sharing, and that are applicable in an
industrial setting, are needed.

2.7 Summary

With the increasing amount of diverging functionality in embedded real-time
systems, ranging from safety critical functionality to non critical functionality,
suitable and efficient execution models should be supported in development.
Stack sharing is such a model. It is a predictable model applicable to a wide
range of real-time systems.

To gain acceptance in industry, the model needs to be supported in
tools and development models, such as component models. Moreover, to
provide possibilities for predictability, analysis methods for stack sharing are
needed. These methods should be applicable in an industrial setting, i.e., they
should be developed to support relevant system models and give tight results
whilst having low timing complexity. The analysis methods then need to be
integrated in tools and adapted to the requirements in industrial development.

Chapter 3

Efficient memory utilization

through stack sharing

3.1 Principle of stack sharing

Computer systems utilize threads and processes to realize features. In real-
time systems, the sequential execution of program code is usually performed
by tasks. Each task requires a certain amount of memory and execution time
to realize a feature, i.e., to execute the code that define the feature. A task is
commonly defined by (i) a task control block (ii) the actual task code (program
code) and (iii) a stack memory area.

Task

TCB

Application code

Stack

Task

TCB

Application code

Stack

Figure 3.1: Common task structure. Each task has its own stack

13

14 Chapter 3. Efficient memory utilization through stack sharing

The task control block is used to save the internal states of a thread. The
task code is the application written by a developer and the stack is a mem-
ory area commonly processed in a last-in-first-out manner. The stack is used
to store register values, function parameters, local variables and memory ad-
dresses. In most computer systems, each task has its own stack area allocated
(see Fig. 3.1). Consequently, in systems with a large number of tasks the total
amount of memory needed for the run-time stacks can be large. In addition,
many systems allow high priority interrupts to utilize the stack of a task, im-
plying that each task also need to have stack space allocated for interrupts.

To reduce the amount of stack memory in systems, stack sharing can be
supported among tasks. Stack sharing is an execution strategy that allows sev-
eral tasks to share a common memory area as a shared run-time stack (Fig. 3.2).

Task 1

Task 2

Task 3
Shared stack

Task 1

Task 2

Task 3
Shared stack

Figure 3.2: Stack sharing among tasks. Several tasks utilize the same stack

The principle of stack sharing is very simple. It is easiest demonstrated by
an example. Consider two tasks (task A and task B) sharing a stack. Say that
task A executes and pushes data, i.e., adds data to the stack, and later on gets
preempted by task B. Then task B simply continues to utilize the stack from
the preemption point (see Fig. 3.3). This implies that the stack pointer, i.e.,
the pointer to the first available memory area in the stack, needs to be shared
among task A and task B. The possibility to reduce the total memory usage
under stack sharing, originates from the fact that several tasks can actually
share the same memory cells at different points in time. In essence, the basic
principle is to save resources by sharing them.

Chapter 3. Efficient memory utilization through stack sharing 15

Shared stack

Data pushed by task A

G
ro

w
th

 d
ir

e
c

ti
o

n

Data pushed by task A
Data pushed by task A

Data pushed by task B

Data pushed by task B

Data pushed by task B
Data pushed by task B

T
a
s

k
 A

 i
s

 p
re

e
m

p
te

d
b

y
 t

a
s

k
 B

Shared stack

Data pushed by task A

G
ro

w
th

 d
ir

e
c

ti
o

n

Data pushed by task A
Data pushed by task A

Data pushed by task B

Data pushed by task B

Data pushed by task B
Data pushed by task B

T
a
s

k
 A

 i
s

 p
re

e
m

p
te

d
b

y
 t

a
s

k
 B

Figure 3.3: Stack sharing between task A and task B. When task A is pre-
empted by task B, task B continues to utilize the stack from the preemption
point

Throughout the years, a number of publications, e.g., [Bak90, CMM+04,
DMT00, GLN01, GD07, MSB05, RRW05] have addressed stack sharing.
Stack sharing has been supported by interrupt-driven systems for quite some
time and has also been adopted for pure time-driven and hybrid (static and dy-
namic) scheduled preemptive systems. Stack sharing is currently supported by
a number of operating systems, e.g. Rubus RTOS[Arc], Fusion RTOS[Uni],
Erika RTOS[Evi], SMX RTOS[Dig].

3.2 Stack sharing in development

Stack sharing is suitable for many types of systems in the sense that it is easy
to use and that it introduces only a few, mainly two, restrictions in develop-
ment. Under stack sharing, tasks are (i) prohibited to self suspend, (e.g., timed
sleep or other delay functions may not be used in the application code of task
that participate in stack sharing) and (ii) task synchronization, e.g., access to
shared resources, should be done using an early blocking resource access proto-
col such as the Immediate Priority Ceiling Protocol[BW96] or Stack Resource
Policy[Bak90]. By adhering to these restrictions, developers can utilize stack
sharing for a number of different types of systems, both preemptive and non-

16 Chapter 3. Efficient memory utilization through stack sharing

preemptive systems.
To utilize stack sharing in systems development, tools as well as run-time

environments and development methods need to have support for stack sharing.
For instance, in a component based development context, stack sharing need to
be supported by the component model. This implies that components need to
have their run-time semantics specified in such way that they do not violate the
above restrictions. Moreover, the component model needs to be formal enough
to allow analysis of memory consumption under stack sharing. Paper C in this
thesis proposes a novel component model, for resource constrained systems,
that support stack sharing. The model enforces a run-to-completion semantics
on the software logic to support stack sharing. Furthermore, to enable shared
stack analysis, each software item in the model has an execution profile that
denotes the individual stack usage of the item. In addition, the run-time en-
vironment that provides the execution of the components (often a real-time
operating system), also needs to provide support for stack sharing. Introducing
support for stack sharing, i.e., an additional execution model, in a real-time
operating system, requires careful design to minimize the overhead of the new
model and side effects (both temporal and spatial) affecting predictability of
the existing models. Paper D, addresses these issues and presents an integra-
tion of stack sharing in a real-time operating system with multiple execution
models.

3.3 Analysing shared stack usage

When developing systems, with or without stack sharing, the memory that con-
stitutes a stack must be allocated. Hence, a developer needs to calculate or es-
timate the total amount of memory needed for a stack. This is non-trivial in the
sense that the actual stack usage of a task, thus the memory required, depends
on many factors, e.g., the number of variables in the application code and the
way functions are called from within a task etc. It is imperative that the amount
of memory allocated for the stack is enough for a task to realize a feature. Se-
rious errors, such as stack overflow can occur if a task need more stack than it
has allocated. Stack errors, such as overflows, are considered extremely hard
to detect since overflows are often sporadic.

There are basically two common ways to come up with the total amount of
memory required for a stack. In industry, the total amount of memory is often
estimated. The stack is then allocated with the estimated size. The system
is then simply executed and the stack usage of tasks is monitored. This may

Chapter 3. Efficient memory utilization through stack sharing 17

be achieved by filling the stack area with pre-determined values before the
system is executed. When the system is terminated, the number of values being
overwritten in the pre-determined pattern gives an idea of the stack usage under
the particular execution scenario. This is, of course, not a fool proof way of
determining the amount of memory required for a stack, however, it is not an
uncommon method. A more formal way to determine the stack size needed for
a task, may be done by tools such as [Tid, Abs].

In stack sharing, additional properties need to be considered in determining
the maximum amount of memory required for a shared stack. Determining the
worst-case memory usage, i.e., total amount of memory required for the shared
stack in preemptive systems, require:

• Analysis of stack usage of individual tasks (or threads)

• Analysis of possible preemptions among tasks in the system

Hence, under stack sharing, preemption patterns, i.e., the way in which
tasks may preempt each other, affects the amount of memory required for the
shared stack. A number of publications have addressed shared stack analysis
(see for example [DMT00, GLN01, GD07, RRW05, CMM+04]).

Performing a preemption analysis, i.e., determining the possible preemp-
tion patterns, is more or less complex depending on the system model. For
example, under priority based execution, priorities are used to dispatch tasks
for execution, i.e., a task with high priority may preempt a task with low prior-
ity. Hence, the number of unique priorities in the system defines a maximum
preemption depth. A commonly used engineering approach to determine the
total shared stack usage in priority-based systems is to estimate the maximum
stack usage of individual tasks and then compute the sum of maximum stack
usage for each priority level. Thus, it is an approach that always assumes fully
nested preemption pattern among tasks, and do not consider the actual preemp-
tions that can occur between tasks. From a preemption point of view, this is a
safe approach, but it may in many cases be pessimistic and result in rather poor
stack utilization. This can be demonstrated with a simple example. Consider
the task set in Table 3.1, where P denotes the priority, T denotes the period
time an C the worst case execution time of the tasks.

Assume that all tasks in the example share a common stack, and that all
tasks are activated at t = 0, then the traditional engineering approach would
require the shared stack to be 30 bytes (sum of maximum stack usage in each
priority level). However, considering the information we have about the system
in the example, it is easy to see that no preemption can occur between the tasks
(see trace in Fig. 3.4). Hence 10 bytes would be enough for the shared stack.

18 Chapter 3. Efficient memory utilization through stack sharing

Table 3.1: An example: Task set in a preemptive system
Task P T C Stack usage (bytes)
τ1 High 10 2 10
τ2 Medium 10 2 10
τ3 Low 10 2 10

0 5 10 t

t 1 t2 t 3 t1 t2 t 3

150 5 10 t

t 1 t2 t 3 t1 t2 t 3

15

Figure 3.4: Execution trace of task set in Table 3.1

Improving shared stack usage can be achieved by changing the task at-
tributes, which may or may not change the system behaviour, or by improving
the analysis method, i.e., reducing the pessimism of the method. For exam-
ple, the priorities of the tasks in the example could be altered without affecting
the temporal behaviour or the actual functionality realized by the tasks. The
tasks could all have been assigned high priority and still execute exactly as the
original system, i.e., an execution trace would look like in Fig. 3.4. The tradi-
tional analysis would now yield in a shared stack usage of 10 bytes. Another
approach to improve stack analysis is to improve the preemption analysis, i.e.,
the preemption analysis should reflect only the preemption patterns that actu-
ally can occur. This approach differs from the previous one in the sense that it
does not require any modifications of priorities or other task attributes.

The fact that a task may only be preempted during its execution, need to be
considered when improving a preemption analysis. Basically this means that
a task can only be preempted in a time interval defined by its actual start time
and actual finishing time. Considering this interval as a possible time for pre-
emption, would improve shared stack analysis. However, the actual start time
and the actual finishing time of a task are dynamic parameters that may change
from one execution to another. In many systems however, these dynamic pa-
rameters can be bounded by static compile time properties. These bounds can
then be used to improve the preemption analysis. Such an approach is pre-
sented in Paper E. The dynamic parameters are bounded by offsets and worse
case response times. These bounds reflect the possible time interval in which a

Chapter 3. Efficient memory utilization through stack sharing 19

task may execute and possibly be preempted. The method presented in paper
E, is applicable for industrial systems in the sense that it has reasonably low
timing complexity and it is developed for an industrially used system model.

3.4 Supporting shared stack analysis in develop-

ment

For stack sharing to be accepted in an industrial development context, the anal-
ysis method for predictability of the resulting stack usage needs to be supported
in development tools, e.g., in an Integrated Development Environment (IDE).
As with many analysis methods, stack analysis is complex and hard to imple-
ment by non-experts. Hence, means to integrate complex analysis in devel-
opment environments are needed. The plug-in concept is a promising way to
achieve this.

In resent years, plug-in based tools have gained popularity. These tools
allow plug-ins to extend the features of the tool. For example, Eclipse [Ecl],
an open development platform, allows plug-ins to extend the functionality of
the Eclipse platform. Plug-ins can be seen as programs that provide certain
functions by interacting with a host application. In essence, plug-ins can be
developed in isolation and then integrated with a host application. This makes
the concept suitable for integration of complex analysis methods in a develop-
ment environment. Supporting plug-ins in a development environment allows
researchers, the experts on analysis methods, to develop their analysis methods
in isolation. These methods can then be plugged-in in a development environ-
ment. Paper F in this thesis presents the development of a plug-in framework
for integration of real-time analysis methods in Rubus-ICE [Arc]. The paper
outlines requirements on the framework as well as the development of applica-
tion programming interface enabling plug-ins to interact with its host applica-
tion. Even though a plug-in concept eases the integration of analysis methods
in industrial tools, a number of issues still need to be considered for successful
integration of analysis methods in an industrial context. For example, the fact
that analysis methods are transferred from a controlled research setting to an
industrial setting, requires extensive error handling to be introduced in analysis
methods. Moreover, even though the implementation of an analysis method
may have been verified in a research setting, it often needs to be verified again
once integrated. Paper F presents some of the issues that need to be considered
from an analysis developer’s view.

Chapter 4

Thesis contribution

This thesis presents scientific contributions for development of embedded re-
source constrained real-time systems. By taking advantage of the novel execu-
tion models provided by the research community, the contributions show that
efficient memory utilization can achieved in embedded real-time systems.

4.1 Summary of contributions

The contributions of this thesis can be summarized as follows.
The thesis present:

• A summary of properties and common requirements in development of
industrial embedded real-time systems.

• A demonstration of how development of embedded real-time systems
can be made more efficient, with respect to hardware utilization, by in-
troduction of additional execution models.

• A component model, supporting efficient and predictable stack usage,
for embedded real-time systems.

• An implementation of a memory efficient execution model in a real-time
operating system.

• An analysis method, suitable for industrial use, for verification of the
memory efficient execution model.

21

22 Chapter 4. Thesis contribution

• The integration of analysis methods in an IDE for development of em-
bedded real-time systems.

These contributions are presented in the following scientific papers.

4.1.1 Contributions of included papers

Paper A: Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Present and

Future Requirements in Developing Industrial Embedded Real-Time Systems -

Interviews with Designers in the Vehicle Domain, In Proceedings of the 13th
Annual IEEE International Conference and Workshop on the Engineering of
Computer Based Systems, Potsdam, Germany, March 2006.

Paper A presents common requirements in development of vehicular em-
bedded real-time systems. The requirements were collected in a series of in-
terviews with ten senior designers from four Swedish companies. The paper
shows that reliability and safety are the main properties in focus during devel-
opment. It also shows that the amount of functionality has been increasing in
the systems and that requirements are fulfilled using considerably homogenous
development methods. The paper also show that there will be even stronger re-
quirements on dependability and control performance and that requirements on
soft and resource demanding functionality will continue to increase.

Personal contribution: Kaj was the main author of the paper and has
been involved in all parts of the work. He was responsible of preparing the
study and establishing the research questions. Furthermore, he coordinated the
interviews and compiled the results.

Paper B: Jukka Mäki-Turja, Kaj Hänninen, Mikael Nolin, Efficient

Development of Real-Time Systems Using Hybrid Scheduling, In Proceedings
of the 2005 International Conference on Embedded Systems and Applications,
Las Vegas, USA, June 2005.

Paper B show how developers can benefit from additional execution models
in development. An industrial case study demonstrate how multiple execution
models enables more efficient use of computational resources, resulting in a
cheaper or more competitive product and that more functionality can be fitted
into legacy, resource constrained, hardware.

Personal contribution: Kaj has been involved in the case study part of the
paper. He provided the basis, i.e., system information and requirements for the
case study.

Chapter 4. Thesis contribution 23

Paper C: Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Mats Lindberg,
John Lundbäck, Kurt-Lennart Lundbäck, The Rubus Component Model for

Resource Constrained Real-Time systems, To appear in the Proceedings of
the 3rd IEEE International Symposium on Industrial Embedded Systems,
Montpellier, France, June, 2008.

Paper C presents a component model for development of embedded sys-
tems for ground vehicles. The industrial requirements presented in paper A
were considered for the component model. The model aims at supporting de-
sign, analysis as well as efficient and predictable stack usage.

Personal contribution: Kaj was the main author of the paper. He has
been involved in all parts of the work.

Paper D: Kaj Hänninen, John Lundbäck, Kurt-Lennart Lundbäck, Jukka
Mäki-Turja, Mikael Nolin, Efficient event-Triggered Tasks in an RTOS, In
Proceedings of the 2005 International Conference on Embedded Systems and
Applications, Las Vegas, USA, June 2005.

Paper D presents an implementation of a resource efficient execution model
in a real-time operating system. The model is suitable for component based
control software. The execution model, denoted single-shot execution (SSX),
is realized with very simple and resource efficient run-time mechanisms and is
highly predictable, hence suitable for use in resource constrained real-time sys-
tems. The paper also presents an evaluation, showing that significant memory
reductions can be obtained by stack sharing.

Personal contribution: Kaj was the main author of the paper and has
been involved in all parts of the work. He was responsible of implementing the
execution model in the operating system and evaluating the implementation.

Paper E: Kaj Hänninen, Jukka Mäki-Turja , Markus Bohlin, Jan Carlson,
Mikael Nolin, Determining Maximum Stack Usage in Preemptive Shared Stack

Systems, In Proceedings of the 27th IEEE Real-Time Systems Symposium,
Rio de Janeiro, Brazil, December, 2006.

Paper E presents methods to determine the maximum stack memory used
in preemptive, shared stack, real-time systems. A general and exact problem
formulation applicable for any preemptive system model is presented. The ex-
act formulation is however, not suitable for development of industrial systems,
because it based on dynamic properties. The paper also presents an approx-

24 Chapter 4. Thesis contribution

imate analysis method that is suitable for industrial use. The method safely
approximate the total stack usage by using static (compile time) information
about the system model and the underlying run-time system. The approximate
method supports a relevant and commercially available system model: A hy-
brid, statically and dynamically, scheduled system. Evaluations show that the
approximate method significantly reduces the amount of stack memory needed,
when compared to a traditional analysis technique.

Personal contribution: Kaj was the main author of the paper. He initiated
and coordinated the work and did the background research. He was also
responsible for parts of the implementation and did the evaluations.

Paper F: Kaj Hänninen, Jukka Mäki-Turja, Staffan Sandberg, John
Lundbäck, Mats Lindberg, Mikael Nolin, Kurt-Lennart Lundbäck, Introducing

a Plug-In Framework for Real-Time Analysis in Rubus-ICE, MRTC report
ISSN 1404-3041 ISRN MDH-MRTC-229/2008-1-SE, Mälardalen Real-Time
Research Centre, Mälardalen University, April, 2008. Submitted to the
13th IEEE International Conference on Emerging Technologies and Factory
Automation.

Paper F present the development of a plug-in framework for integration
of real-time analysis methods in a commercial IDE for embedded real-time
systems. The paper also present the integration, of two state of the art analysis
techniques (i) response-time analysis for tasks with offsets and (ii) shared stack
analysis, in the framework. The paper shows that the framework is well suited
for integration of complex analysis methods, however, the paper shows that a
considerable amount of modifications of analysis methods are needed to adapt
them for industrial use due to differences in requirements and assumptions
between industry and academia.

Personal contribution: Kaj was the main author of the paper. He was
involved in all parts and responsible for specifying the requirements on the
plug-in framework and to realize the analysis methods as plug-ins.

Chapter 4. Thesis contribution 25

4.2 Impact of contributions

The contributions of this thesis have both industrial and scientific impact.

• From a scientific point of view, the contributions give researchers a pic-
ture of issues in transferring research results to industrial use. The thesis
show that a considerable amount of work, addressing different issues, is
needed to integrate results from academia to industry. In addition, the
contributions in Paper E are highly relevant for the research community,
in the sense that the paper presents methods to determine the possible
preemption patterns in a system.

• From an industrial point of view, the thesis provides contributions on
encapsulating novel real-time theory for efficient memory utilization,
into methods and software engineering tools. This allows engineers to
take advantage of the theories developed by the real-time research com-
munity. In general, the thesis provides means for development of pre-
dictable, memory efficient and reusable software based products. The
results presented in the included papers, are implemented in a commer-
cial tool suite called Rubus. The results will be available for developers
with the upcoming release of the tool suite.

Chapter 5

Conclusion and future work

This thesis addresses the introduction of a memory efficient execution strategy,
called stack sharing, in development of industrial embedded real-time systems.

The thesis shows, by an investigation of industrial requirements, that in-
dustrial embedded real-time systems need to support an increasing number of
features with mixed real-time requirements. This requires predictable and ef-
ficient use of the computational resources in the systems. The thesis shows
that this can be achieved by stack sharing. Stack sharing is a predictable and
efficient execution strategy that reduces the memory consumption in systems,
hence making it suitable for resource constrained real-time systems.

To achieve industrial use of stack sharing, the thesis presents a component
model supporting stack sharing in development of embedded real-time
systems with mixed real-time requirements. Furthermore, an integration of
stack sharing in a real-time operating system is presented. The integration
is presented in detail to highlight common issues in implementing execution
models in a real-time operating system. The thesis also presents a novel
analysis method for shared stack analysis. In an evaluation, the thesis show
that the analysis method is both fast and that it gives tight bounds on the
resulting stack usage, which makes it suitable for industrial use. The thesis
presents the integration of the analysis method in an integrated development
environment.

Altogether, the thesis presents both design and run-time techniques for
efficient memory utilization in embedded real-time systems. The proposed
techniques have clear scientific impact. Moreover, the techniques have been

27

28 Chapter 5. Conclusion and future work

implemented in the Rubus tool suite. Rubus is currently used by a number
of companies developing embedded real-time systems. With the upcoming
release of the tool suite, the scientific results presented in this thesis will be
available for developers using Rubus.

Several directions could be taken as future work. For instance:

• Even though it has been shown that stack sharing could theoretically
reduce the memory utilization in systems, evaluating the memory reduc-
tions in a real-world setting still needs to be done. This would, amongst
other things, reveal the actual applicability of stack sharing considering
the restrictions (see Section 3.2) introduced by stack sharing.

• Reducing the pessimism of shared stack analysis methods could also be
addressed as future work. The analysis method presented in this thesis
requires worst case response times as input to the preemption analysis.
The response time analysis could for example be extended to represent
jitter as well as blocking more accurately. This would result in an im-
proved shared stack analysis.

• Investigating how the preemption analysis, presented in paper E, can be
applied in other contexts would be of interest. For example, it might
be possible to extend the preemption analysis to support analysis of: (i)
memory consumption in systems with dynamic memory allocation, (ii)
cache usage, (iii) buffer requirements in synchronisation protocols.

Bibliography

[AB98] L. Abeni and G. Buttazzo. Integrating Multimedia Applications in
Hard Real-Time Systems. In Proceedings of the 19th IEEE Real-

Time Systems Symposium (RTSS’98), pages 4–13. IEEE Com-
puter Society, Madrid, Spain, December 1998.

[Abe98] L. Abeni. Server Mechanisms for Multimedia Applications.
Technical Report RETIS TR98-01, Scuola Superiore S. Anna,
Pisa, Italy, 1998.

[ABRW91] N. Audsley, A. Burns, M. Richardson, and A. Wellings. Hard
Real-Time Scheduling: The Deadline Monotonic Approach. In
Proceedings 8th IEEE Workshop on Real-Time Operating Sys-

tems and Software, 1991.

[Abs] Absint. Web page, http://www.absint.com/stackanalyzer/.

[ABT+93] N.C. Audsley, A. Burns, K. Tindell, M.F. Richardson, and A.J.
Wellings. Applying New Scheduling Theory to Static Priority
Pre-emptive Scheduling. Software Engineering Journal, 8(5):
284–292, 1993.

[Arc] Arcticus Systems. Web page, http://www.arcticus-systems.com.

[Bak90] T.P. Baker. A Stack Based Resource Allocation Policy for Real-
Time Processes. In Proceedings of the 11th IEEE Real-Time Sys-

tems Symposium. IEEE, 1990.

[BBLB03] Scott Brandt, Scott Banachowski, Caixue Lin, and Timothy Bis-
son. Dynamic Integrated Scheduling of Hard Real-Time, Soft
Real-Time, and Non-Real-Time Processes. In Proc. 24th IEEE

29

30 Bibliography

Real-Time Systems Symposium (RTSS). IEEE Computer Society,
December 2003.

[BTW95] A. Burns, K. Tindell, and A Wellings. Effective Analysis for En-
gineering Real-Time Fixed Priority Schedulers. IEEE Transac-

tions on Software Engineering, 22(5):475–480, May 1995.

[But97] G.C. Buttazzo. Hard Real-Time Computing Systems. Kluwer
Academic Publishers, 1997. ISBN 0-7923-9994-3.

[BW96] A. Burns and A. Wellings. Real-Time Systems and Programming

Languages, chapter 13.10.1 Immediate Ceiling Priority Inheri-
tance. Addison-Wesley, second edition, 1996.

[CMM+04] K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T.A. Henzinger, and
J. Palsberg. Stack size analysis for interrupt-driven programs. Inf.

Comput., 194(2):144–174, 2004. ISSN 0890-5401.

[CRM06] A. Crespo, I. Ripoll, and M. Masmano. Dynamic Memory Man-

agement for Embedded Real-Time Systems, volume 225 of IFIP

International Federation for Information Processing. Springer,
2006.

[Dig] Micro Digital. Web page, http://www.smxinfo.com/mt.htm.

[DMT00] R. Davis, N. Merriam, and N. Tracey. How Embedded Applica-
tions using an RTOS can stay within On-chip Memory Limits. In
Proceedings of the WiP and Industrial Experience Session, Eu-

romicro Conference on Real-Time Systems, June 2000.

[Ecl] Eclipse - an open development platform. Web page, http://www.-
eclipse.org/.

[EHS97] A. Ermedahl, H. Hansson, and M. Sjödin. Response-Time Guar-
antees in ATM Networks. In Proc. 18th IEEE Real-Time Sys-

tems Symposium (RTSS), pages 274–284. IEEE Computer Society
Press, December 1997. URL http://www.docs.uu.se/~

mic/papers.html.

[Evi] Evidence Srl. Web page, http://www.evidence.eu.com.

Bibliography 31

[GD07] R. Ghattas and A.G. Dean. Preemption Threshold Schedul-
ing:Stack Optimality, Enhancements and Analysis. In Proceed-

ings of the 13th IEEE REal-Time and Embedded Technology and

Applications Symposium, April 2007.

[GLN01] P. Gai, G. Lipari, and M. Di Natale. Minimizing Memory Uti-
lization of Real-Time Task Sets in Single and Multi-Processor
Systems-on-a-chip. In Proceedings of the 22nd Real-Time Sys-

tems Symposium. London, UK, Dec 2001.

[HNN08] Hans Hansson, Mikael Nolin, and Thomas Nolte. Beating the
Automotive Code Complexity Challenge. In National Workshop

on High-Confidence Automotive Cyber-Physical Systems. Troy,
Michigan, USA, April 2008.

[KAS93] D.I. Katcher, H. Arakawa, and J.K. Strosnider. Engineering and
Analysis of Fixed Priority Schedulers. IEEE Transactions on

Software Engineering, 19(9):920–934, September 1993.

[Leh90] J. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with
Arbitrary Deadlines. In Proc. 11th IEEE Real-Time Systems Sym-

posium (RTSS), pages 201–212, December 1990.

[Liu00] J. Liu. Real-Time Systems. Prentice Hall, 2000. ISBN 0-13-
099651-3.

[LL73] C. Liu and J. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment. Journal of the ACM, 20
(1):46–61, 1973.

[LR03] R. Lencevicius and A. Ran. Can Fixed Priority Scheduling Work
in Practice? In Proc. 24th IEEE Real-Time Systems Symposium

(RTSS), page 358, December 2003.

[MSB05] B. Middha, M. Simpson, and R. Barua. MTSS: Multi Task Stack
Sharing for Embedded Systems. In Proceedings of the ACM In-

ternational Conference on Compilers, Architecture, and Synthesis

for Embedded Systems. San Francisco, CA, Sept 2005.

[MTN05] J. Mäki-Turja and M. Nolin. Fast and Tight Response-Times for
Tasks with Offsets. In Proceedings of the 17th Euromicro Confer-

ence on Real-Time Systems. IEEE Computer Society, July 2005.

32 Bibliography

[NMTH08] M. Nolin, J. Mäki-Turja, and K. Hänninen. Achieving Industrial
Strength Timing Prediction of Embedded System Behavior. In
International conference on Embedded Systems and Applications

(ESA), July 2008.

[PG03] J.C. Palencia Gutiérrez and M. González Harbour. Response
Time Analysis for Tasks Scheduled under EDF within Fixed
Priorities. In Proc. 24th IEEE Real-Time Systems Symposium

(RTSS), December 2003.

[Pun97] S. Punnekkat. Schedulability Analysis for Fault Tolerant Real-

time Systems. PhD thesis, University of York, June 1997.

[Ros06] C. Del Rosso. The Method, the Tools and Rationales for Assess-
ing Dynamic Memory Efficiency in Embedded Real-Time Sys-
tems in Practice. In Proceedings of the International Conference

on Software Engineering Advances, 2006.

[RRW05] J. Regehr, A. Reid, and K. Webb. Eliminating Stack Overflow by
Abstract Interpretation. ACM Transactions on Embedded Com-

puting Systems, 4(4):751–778, Nov 2005.

[SEF98] K. Sandström, C. Eriksson, and G. Fohler. Handling Interrupts
with Static Scheduling in an Automotive Vehicle Control System.
In Proceedings of the 5th International Conference on Real-Time

Computing Systems and Applications, 1998.

[SRL87] L. Sha, R. Rajkumar, and J.P. Lehoczky. Task Scheduling in Dis-
tributed Real-Time Systems. In IEEE Industrial Electronics Con-

ference, 1987.

[SRL90] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance Pro-
tocols: an Approach to Real Time Synchronization . IEEE Trans-

actions on Computers, 39(9):1175–1185, September 1990.

[SSL89] B. Sprunt, L. Sha, and J.P. Lehoczky. Aperiodic Task Scheduling
for Hard Real-Time Systems. Real-Time Systems Journal, 1(1),
1989.

[SSRB98] J.A. Stankovic, M. Spuri, K. Ramamritham, and G.C Buttazzo.
Deadline Scheduling for Real-Time Systems, EDF and Related

Algorithms. Kluwer Academic Publishers, 1998. ISBN 0-7923-
8269-2.

[SVN07] A. Sangiovanni-Vincentelli and M. Di Natale. Embedded System
Design for Automotive Applications. Computer, 40(10):42–51,
2007.

[TB94] K. Tindell and A. Burns. Fixed Priority Scheduling of Hard Real-
Time Multimedia Disk Traffic. The Computer Journal, 37(8):
691–697, 1994.

[TC94] K. Tindell and J. Clark. Holistic Schedulability Analysis For Dis-
tributed Hard Real-Time Systems. Technical Report YCS197,
Real-Time Systems Research Group, Department of Computer
Science, University of York, November 1994. URL ftp://-
ftp.cs.york.ac.uk/pub/realtime/papers/YCS197.ps.Z.

[THW94] K. Tindell, H. Hansson, and A. Wellings. Analysing Real-Time
Communications: Controller Area Network (CAN). In Proc.

15th IEEE Real-Time Systems Symposium (RTSS), pages 259–
263. IEEE, IEEE Computer Society Press, December 1994.

[Tid] Tidorum. Web page, http://www.tidorum.fi/bound-t/.

[Tin92] K. Tindell. An Extendible Approach for Analyzing Fixed Prior-
ity Hard Real-Time Tasks. Technical Report YCS189, Dept. of
Computer Science, University of York, England, 1992.

[Uni] Unicoi Systems. Web page,
http://www.unicoi.com/fusion_rtos/fusion_rtos.htm.

[WAN03] A. Wall, J. Andersson, and C. Norström. Probabilistic
Simulation-based Analysis of Complex Real-Times Systems. In
6th IEEE International Symposium on Object-oriented Real-time

distributed Computing. Hakodate, Hokkaido, Japan, May 2003.

[XP90] J. Xu and D.L Parnas. Scheduling Processes with Release Times,
Deadlines, Precedence and Exclusion Relations. IEEE Transac-

tion on Software Engineering, 16(3), 1990.

II

Included Papers

35

Chapter 6

Paper A:

Present and Future

Requirements in Developing

Industrial Embedded

Real-Time Systems

- Interviews with Designers

in the Vehicle Domain

Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin
In Proceedings of the 13th Annual IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems, Potsdam, Germany,
March, 2006.

37

Abstract

In this paper, we aim at capturing the industrial viewpoint of todays and fu-
ture requirements in development of embedded real-time systems. We do this
by interviewing ten senior designers at four Swedish companies, developing
embedded applications in the vehicle domain. This study shows that reliability
and safety are the main properties in focus during development. It also shows
that the amount of functionality has been increasing in the examined systems.
Still the present requirements are fulfilled using considerably homogenous de-
velopment methods. The study also shows that, in the future, there will be
even stronger requirements on dependability and control performance at the
same time as requirements on more softer and resource demanding functional-
ity will continue to increase. Consequently, the complexity will increase, and
with diverging requirements, more heterogeneous development methods are
called for to fulfil all application specific requirements.

Paper A 39

6.1 Introduction

There is an increasing trend towards software solutions in embedded systems.
Replacing mechanical functionality with computer-controlled solutions gives
opportunities for more advanced and more flexible functionality, e.g., anti-
lock braking, traction control etc. Over the years, a large number of publi-
cations, e.g., [GLT02, GLT03, kFSC04, Koo96, MFN04, MkFN05, NGS+01,
PLC+97] has addressed design issues, embedded application trends or require-
ments in development of industrial embedded systems. Möller et al [MFN04]
present the industrial requirements, both technical as well as process related
requirements, on component technologies in the heavy vehicle domain. Åker-
holm et al [kFSC04] presents an investigation concerning classification of qual-
ity attributes for component technologies in the vehicle industry. The investiga-
tion show that dependability characteristics (safety, reliability and predictabil-
ity) are considered as the most important ones. Koopman [Koo96] presents
attributes of four different types of embedded systems (signal processing sys-
tems, mission critical and distributed control systems and consumer electronic
systems). Koopman addresses requirements, life-cycle support and business
models in development of embedded systems. Graaf et al [GLT03] presents an
industrial inventory of seven companies developing embedded software prod-
ucts. Their inventory of state of practice addresses requirements engineering
and architectural issues such as design and analysis. The inventory covers com-
panies from many different domains, e.g., developers of mobile phones and
consumer electronics, distributed data management solutions etc. In this paper,
we investigate the industrial requirements in the vehicle domain, especially re-
quirements related to real-time issues on a high overall level, such as safety
and reliability requirements of embedded application/products, as well as on a
lower technical level, such as choice of operating system (OS) and execution
models. The study was performed as a series of interviews with ten senior
designers at four Swedish companies. Specifically, we address the following
questions:

• Q1. What characterise the embedded applications?

• Q2. What are the designers concern on application properties such as
safety, maintainability, testability, reliability, portability and reusability?

• Q3. How are the applications verified/analysed?

• Q4. What are the considerations in choosing an OS, and execution
model?

40 Paper A

• Q5. What resources are considered as constrained in the systems, and to
what degree?

• Q6. What kind of tool support is needed in the development of future
systems?

• Q7. What are the designers experiences of software components, i.e.,
component based development?

The aim of this work is foremost to explore and describe the current and
future industrial requirements as perceived by the senior designers. The paper
is organised as follows. In Section 6.2, we describe the framework used in the
study of the requirements. In Section 6.3, we describe the results of the con-
ducted interviews. In Section 6.4, we address the main questions of the study
and discuss our observations of the interviews. In Section 6.5, we conclude
our investigation. The paper ends, in Section 6.6, with a discussion concerning
verification of the presented results.

6.2 Investigation setup

For this study, we adopted the investigation framework described by Robson
[Rob02]. According to the framework, both the purpose of a study and the
theory guiding the study should form as guidance when developing the actual
research questions. The substance and the form of the research questions form
the basis when deciding on suitable investigation method and sampling strat-
egy.
Purpose: The main objective of this study was to investigate the typical set of
industrial requirements in development within the embedded control commu-
nity in the vehicle domain. The results are expected to form a foundation for
further research on tool support, design, analysis and synthesis of embedded
real-time systems using multiple execution models.
Theories: Our experience is that there has been little effort done to encapsulate
novel theories by supporting development tools and techniques in the indus-
trial domain. Traditionally, the development of these systems tends to focus
on the safety critical parts, which constitutes a small fraction of the total sys-
tem functionality. Homogenous development methods are often used for both
the safety-critical and the non-critical functionality in the systems. This results
in unnecessary complex designs and over utilised systems, where valuable re-
sources such as processing time and memory resources are wasted. We believe

Paper A 41

that there is a need for more sophisticated development support compromising
of additional tool support and more domain and application specific develop-
ment platforms, resulting in a more heterogeneous development environment
and resource efficient run-time structure. The development platform should
aim at handling complexity by relieving the developer of too low details while
preserving predictability for core functionality as well as flexibility for less
critical functionality in the run-time structure.
Questions: We compromised upon a set of quantitative and qualitative, closed
and open-ended questions. The main purpose of the quantitative questions was
to facilitate analysis of importance among application properties.
Data collection: Due to the substance and the form of the research questions,
the study was conducted as face-to-face interviews using a questionnaire. A
pilot study was performed at an OS and development tool vendor. The purpose
of the pilot study was to refine the data collection plans and to evaluate the
feasibility of the chosen data collection method. The structure of the question-
naire was refined and additional questions were added, as a result of the pilot
study.
Sampling: In this study, we use purposive non-probability samples, i.e., the
samples are selected as to interest (we do not make generalisation to any pop-
ulation beyond the samples). Four successful and renowned companies in the
Swedish vehicle domain were participating in the study. The samples repre-
sent both subcontractors as well as own equipment manufacturers. Moreover,
the selection is a representative subset of both off-road and road vehicles. The
companies range from small and medium-sized enterprises to large corporate
groups. The thorough examination of the applications and development pro-
cesses require us for secrecy reasons to refer the companies as A, B, C and D.
Ten software designers with several years of experience from development of
control systems for embedded real-time systems participated in the study. For
preparation reasons, the questionnaire was mailed in advance to each intervie-
wee.
Analysis: Upon agreement with the interviewees, each interview was tape-
recorded. The recordings and notes taken during the interviews were inter-
preted and analysed both individually and at group basis. We did however not
use any specific software package to interpret or analyse the collected data.
Biases: Several factors may introduce unwanted biases in a real-world study.
For example, recording interviews may affect the respondent, welcoming or
sharing the respondents’ views may affect the interview, and so on. To avoid
or at least minimise possible biases, we followed recommendations given in
[Pet96, Rob02, Yin03] about how to construct questionnaires and conduct face-

42 Paper A

to-face interviews in real-world situations. It is our experience that the research
questions were easily understood and similarly interpreted by the interviewees,
and that the recording had no or very little effect on the respondents and the
outcome of the interviews.

6.3 Investigation results

In the following section, we describe: (i) Real-time and functional character-
istics of the examined applications. (ii) The interviewees concern on selected
application properties. (iii) The currently used resource management policies
and available execution models of the examined applications. (iv) The actual
resource situation in the examined systems, i.e., availability of computing re-
sources such as CPU time and memory. (v) Some desired support in develop-
ment tools, as expressed by the interviewees.

6.3.1 Application characteristics

The product volumes of the investigated applications are typically less than
1000 products per year. The applications are mainly used as control appli-
cations for various types of vehicles. In addition to control functionality, the
applications typically contain functionality for information handling such as
logging for diagnostic purposes and presentation of data, i.e., visual interac-
tion with the system operators. The architectures of the examined systems are
of distributed character where several nodes, Electronic Control Units (ECUs),
perform computations and communicate with each other mainly via CAN
buses. Each ECU is usually dedicated to handle specific type of functionality,
e.g., an engine controller is mainly responsible for controlling engine specific
functionality such as fuel injection, ignition etc. The number of ECUs in the
systems has typically been increasing over the years. For example, table 6.1
shows the amount of software and the number of control units in evolution of
a single product at one of the investigated companies.

Current characteristics: The examined applications are realized by hard
and soft real-time tasks. In several systems, hard real-time tasks are used to
model the majority of all functionality. In extreme cases, as much as 95% of
the functionality is modelled by hard real-time tasks. In addition, functionality
with requirements that are neither hard nor soft, but somewhere in-between, is
often modelled as hard. In context to this, the designers stress that develop-
ment of hard application tasks is considered as more controllable and simpler

Paper A 43

Table 6.1: An example of the amount of software and the number of ECUs in
a single vehicle, at company A

Year 1991 1997 2002
Lines of code 20000 55000 140000
Files (.c, .h) 50 400 700

ECUs 1 2 3

than development of soft application tasks. In addition, several interviewees
consider time-triggered systems to be the most convenient way to model hard
real-time functionality. Typical technical requirements in the examined appli-
cations include; jitter requirements and precedence relations among tasks. The
timing constraints, e.g., deadlines on different functionality, can vary as much
as three orders of magnitude in a single application, typically from millisec-
onds to several seconds. The amount of safety critical functionality varies in
the investigated applications. In all of the examined applications, the control
functionality is considered as being most safety critical and developed mainly
using the time-triggered paradigm. Several interviewees consider their systems
being I/O intensive. In some systems, as much as 30% of the available pro-
cessing time and hundreds of I/O pins is used to handle I/O functionality. The
I/O functionality is realised by both time and event-triggered execution mod-
els. However, it is most commonly realised using the time-triggered model,
i.e., through polling. The information intensity in the investigated applica-
tions varies. In some applications, the information originates from logging and
diagnostics of the systems operational conditions, whereas other applications
receive and process external information that is presented to the users during
operation.
Future characteristics: The interviewees believe that the information intensity
and number of control functionality will increase in the future. They state that
in the future both legislation and insurance reasons will force development of
more sophisticated control algorithms and require an increasing amount of in-
formation to be saved for diagnostic reasons. In addition, designers from one
company predicts that legislations, especially non-pollution laws, and future
trends in development of vehicle engines will require better control precision.
This will result in an increased transformation from open to closed loop con-
trolling. Furthermore, some interviewees predict that functionality interacting
with the environment will be developed using fewer sensors in the future and
that certain conditions/states of the environment will be derived using the re-

44 Paper A

maining set of sensors. Classification of functionality in Safety Integrity Levels
(SIL) [Com00] is also believed to be an important activity in the future.

6.3.2 Functional application properties

In this section, we present the interviewees concern on the following applica-
tion properties: safety, maintainability, testability, reliability, portability and
reusability.
Safety: Safety is considered as a derived property originating foremost from
analysis and testing. In some of the examined systems, redundancy and cer-
tain safety properties are solved outside the actual software implementation, by
physical cabling etc. The software in these systems can be overridden by me-
chanics in case the software malfunctions and a safety critical situation occurs.
Maintainability: Some interviewees state that the developers consider and try
to facilitate future maintainability of applications. Some interviewees also state
that they have very strong requirements (economical and quality) on applica-
tions being error free since withdrawing an erroneous application would be
very costly due to the product volumes. There seems to be an agreement on
that maintainability will have to be considered as a more important property
in the future, specifically in the context of upgradeability. The lifespan of the
examined systems can be several decades and customers put demand on new
features and require hardware replacement parts to be available during the en-
tire lifespan of a system. This requires applications to be well structured and
easy to understand for future developers (maintainers).
Testability: Testability is stated as an important and necessary property to
achieve reliability and safety. Today testing is the main technique to verify
functional requirements.
Reliability: Several interviewees state that a company’s reputation is very much
dependent on the reliability of the delivered systems; i.e., it is considered as be-
ing of utmost importance to develop systems that actually are, and perceived
by customers as, reliable. Failure in producing reliable systems is often stated
to origin from erroneous requirement specifications, i.e., not from the imple-
mentation itself.
Portability: Some interviewees do not consider portability during development,
simply because they seldom change hardware or OSs. Other respondents claim
that portability is an increasing concern and that it is mainly facilitated by sep-
aration of hardware and software dependent functionality.
Reusability: Reusability of both soft- and hardware is an ongoing activity in
all of the examined systems. However, the amount of reusable software varies

Paper A 45

in the examined systems. Some interviewees’ state that reusability of archi-
tectures is not achieved until they have undergone several modifications, hence
it may takes years before certain parts of architectures are actually reusable.
To facilitate reusability among different systems, some of the companies have
developed common software platforms. The platforms contain all common
functionality and have standardised interfaces. General software components
are also mentioned as reusable entities. The components are general in the
sense that they are, to a large degree, application independent.
Additional properties: When asked for additional properties that are consid-
ered as important for their applications, the interviewees mentioned robust-
ness, scalability and usability. Robustness is defined by the respondents as
’the absence of unexpected behaviour’ or as ’an additional degree of reliabil-
ity’. Scalability is considered in the context of development as the ability to
scale systems using the available development tools. Usability of architectures
is mentioned as a process related issue. In that context, the usability of ar-
chitectures is said to be dependent on whether it facilitates understanding and
communication between developers. All of the respondents stress the impor-
tance of architectural descriptions as means of communication between people,
i.e., not only as logical or structural system description.

6.3.3 Temporal application properties

This section describes the interviewees view on the temporal analysability of
the applications and verification of functional/temporal behaviour. It also ad-
dresses the verification of resource utilisation in the examined applications.
Analysability and verification: Analysis of real-time properties such as
response-times, jitter, and precedence relations, are commonly performed in
development of the examined applications. In this context, some interviewees
stress the desire of better analysis support in development tools and state that
analysing a whole system with respect to temporal and spatial attributes is very
difficult, sometimes even intractable. Due to the difficulties in analysing a
complete system, and for upgradeability reasons, some of the examined sys-
tems are intentionally over-dimensioned with respect to processing power and
memory resources. The emphasis on verification is foremost on the functional
behaviour. Our experience is that the temporal attributes are not serving as
direct guiding factors (albeit they are more or less considered) during develop-
ment.
Functional behaviour: All of the respondents had a unanimous opinion that
analysis and verification of the functional behaviour was the most important

46 Paper A

activity in the verification and analysis processes (more important than analy-
sis and verification of temporal behaviour). The functional behaviour is mainly
verified by manual and automatic module and systems tests. Failure mode and
effect analysis (FMEA) are commonly performed both during development and
on complete systems. Several interviewees state that source code inspection is
performed among the developers and that it serves as analysis/verification of
functional behaviour.
Temporal behaviour: The verification of temporal behaviour was said to have
lower importance than of functional behaviour. The temporal verification of
the examined systems commonly involves verification of precedence relations
among functions and verifying that deadlines are met, i.e., that estimated worst-
case execution times holds and that calculated worst case response-times are
met.
Verification of resource utilisation: Many of the examined systems have been
evolving for several years. The amount of resources, e.g., the number of control
units, has been increasing over the years. Currently, all of the examined sys-
tems have more than enough processing time and available memory to perform
the intended computations. Hence, verification of resource utilisation, such
as memory consumption, is considered of lower importance. However, some
interviewees desire possibilities to analyse memory consumption, mainly to
be used when the available resources are running low, i.e., before additional
resources (ECUs) have to be added to the system.

6.3.4 Operating systems

In this section, we describe the issues involved in choosing operating system
and the execution models used in the examined applications. We describe the
main motivations to why these operating systems were chosen and the intervie-
wees expressed experience of the used execution models. When investigating
the type of technical considerations that has bearing on the choice of OS for
the embedded applications, we discovered several non-technical considerations
that are strong motivators to the choice of a specific OS, e.g., requirements
on coordination to use a common OS at different departments of a company.
These requirements do not directly reflect the technical need in development.
The technical requirements are commonly considered later on. However, the
requirements on simplicity, i.e., ease of use, is a motivator both when choosing
OS and among available execution models The commercial operating systems
that are used, or have been used, in the embedded applications by the investi-
gated companies are Rubus [Arc], VxWorks [Win], OSE [Ene], O’Tool [Arc],

Paper A 47

RTX [Ard] and WinCE [Mic]. In addition, one of the investigated companies
develops their own operating systems, used in a majority of their applications.
The main motivation for this is that their own operating systems are claimed to
be simpler, more robust and have less run-time footprint (timing and memory
overhead) than the commercial OSes. The interviewees’ state that the main
considerations when choosing a commercial operating system include:

• Cost (royalties, licenses).

• Availability of supported development tools related to the OS.

• The supported execution models in the OS, i.e., its suitability for the
application domain.

• Coordination within a corporate group or subsidiaries to use a common
OS.

• Recommendations originating from other companies evaluating the OS.

• The popularity of the OS, i.e., to what extent is the OS used by other
companies.

• The OSs internal timing and memory overhead.

• Safety classification issues.

6.3.5 Execution models

Both time- and event-triggered execution models are used in all of the exam-
ined applications. The time-triggered model is commonly used for control
functionality whereas the even-triggered model is used mainly for informa-
tion handling for diagnostic reasons. The interviewees state that the choice
of execution model in development is mainly dependent on: (i) Verification
possibilities, both functional and temporal. (ii) Flexibility of adding new func-
tionality. (iii) Required response-time on functionality. (iv) Simplicity of use
in development.

6.3.6 Resource limitations

This section describes the current resource situation in the examined systems,
as expressed by the interviewees. We investigated whether and to what degree,
the amount of processing time, RAM, ROM and communication bandwidth,

48 Paper A

were considered constrained in the systems. As described in Section 6.3.3,
many of the examined systems are intentionally over-dimensioned; hence, the
interviewees did not consider any of the resources as being particularly con-
strained during software development. However, in case the systems would
run out of resources, the interviewees’ state that they would most probably
consider installing additional hardware resources rather than redesigning the
way the applications utilises the resources. This is however, said to be depen-
dent on the urgency of system delivery. In extreme cases, functionality has
been removed from the examined systems, when the available resources have
been fully utilised.

6.3.7 Desired tool support

In this section, we present the interviewees expressed desire concerning sup-
port in development tools and their experiences of software components, i.e.,
component-based development [CL02]. The expressed wishes, concerning
support in development tools, amplify the requirements on verification, safety
and reliability aspects. The concise picture seems to be requirements on sim-
ulation and verification possibilities of applications on PCs. Moreover, an in-
tegrated possibility for model-based development with Matlab and Simulink
together with automated code generation is another common desire expressed
by the interviewees. The following is a list of desired tool support, as expressed
by the interviewees. The desired support addresses both technical and process
related issues. The interviewees would like to see:

• Simulation of the embedded applications on PCs.

• Replacing of text based user interfaces with graphical user interfaces.

• Support for model based development with possibilities to exchange in-
formation between tools from different vendors.

• Abstractions of graphical models, i.e., visualisation of architectures at
different levels and from different views.

• Automatic code generation, e.g., from models to source code.

• Support for formal verification of source code.

• Support for execution time analysis.

Paper A 49

• Possibilities to identify or trace the requirement specifications from the
source code, and vice versa.

The current support in development tools varies at the companies. For
example, one company has extensive support for simulation of embedded ap-
plications on a PC, whereas others do not have simulation possibilities at all.
However, none of the examined companies has all of the listed support in their
development tools.

6.3.8 Software components

Only one of the examined companies explicitly state that they use software
components in the development of their applications. The company uses both
in-house as well as third party developed components. The reasons to why
the other investigated companies do not use software components are related
to facts such as difficulties in understanding the concept of component-based
development. Furthermore, issues such as modifiability of functionality are
stated as a restricting factor for use of software components. However, all of the
interviewees’ state that the abstraction possibilities that components provide, is
one of the main motivators of component based development, simply because
it facilitates understanding and communication between developers.

6.4 Discussion - our observations

In this section, we address the main questions of the study and present our own
observations and conclusions of the interviews.

Q1. What characterise the embedded applications?
The fact that more and more mechanical solutions are replaced with soft-

ware, results in an increasing complexity both in size and in diversity. The
applications are evolving and contain more heterogeneous functionality that
before. In the future, this requires abilities to cope with (i) increasing data han-
dling and (ii) increasing complexity in control functionality. It is common that
applications contain a mix of hard and soft real-time tasks. We observed that a
surprisingly small fraction (e.g., 25% at company A) of the requirements re-
flects need of hard real-time tasks. Still, the use of hard real-time tasks is very
high (75% at company A). We believe that the high utilisation of hard tasks
is mainly related to three reasons: (i) simplicity in development (ii) for veri-
fications/reproducibility reasons (iii) tradition in development. The simplicity
in development originates from years of evolving support in development tools

50 Paper A

that to large extents is intended for development of safety critical real-time sys-
tems. There is also a tradition in using hard real-time tasks for the majority of
functionality, simply because developers tend to rely on designs from previous
projects, instead of scrutinizing and considering the designs appropriateness
for the diverging type of functionality found in today’s and in future applica-
tions. Hence, the predicted increase in information intensity and diversity of
functionality, require use of more suitable development models, i.e., models
for diverging strategies that can handle both safety critical functionality as well
as more flexible and resource efficient functionality in the same system.

Q2. What are the designers concern on application properties such as
safety, maintainability, testability, reliability, portability and reusability?

The future classification of functionality in Safety Integrity Levels (SIL)
implies that reliability, safety, analysability and testability will continue to be
very important application properties in the future. Moreover, we believe that
facilitating maintainability of the applications will be a more important activity
to consider due to the increasing complexity, long product life cycles and de-
mand on upgradeability of the applications. However, moving into the area of
more maintainable systems, through, e.g., raising the level of abstraction and
introducing reusable frameworks, introduces challenges since it must be done
without compromising the systems safety or reliability.

Q3. How are the applications verified/analysed?
Functional behaviour is typically verified through testing on the target plat-

form, whereas properties such as temporal behaviour are mainly verified with
support of software analysis tools. Worst-case execution times are commonly
estimated during development, and later on, verified through measurements on
the target platform. The interviewees desire tools for verification of both func-
tional and temporal behaviour of embedded applications on PCs. We believe
that for the large fraction of future functionality, predictable and flexible exe-
cution models, where combinations of different analysis techniques that focus
more on average case behaviour and quality of service rather than on worst-
case behaviour, will be significant.

Q4. What are the considerations in choosing an OS, and execution model?
Politics and non-technical aspects are strong motivators in choosing OS.

It is obvious that such issues could motivate the use of an OS that is more
or less suitable to fulfil the technical issues in an application domain or spe-
cific needs within a corporate group. We believe that the increasing com-
plexity in the examined application domain require more focus on technical
issues, such as availability of novel tool support related to the OS and possi-
bility to utilise more suitable execution models in the OS. For example, with

Paper A 51

increasing demand on safety classification such as SIL, the OS must be able
to support the trade off between technical aspects such as verifiability and ef-
ficiency. For example, the small core of safety critical functionality should be
allowed to use more resources if it must fulfil the SIL classification and be
verifiable (testable and analysable), whereas the rest of the functionality (non-
safety-critical) should utilise more resource efficient run-time mechanism to
implement the functionality.

Q5. What resources are constrained in the systems, and to what degree?
Our investigation revealed that the computational resources are not consid-

ered as constrained during software development. We believe there are two
possible reasons for this. (i) The investigated companies are already using
resource efficient development methods (legacy methods), originating from
times when all functionality was homogenously implemented. (ii) The sys-
tems are over-dimensioned at the same time as the developers put most effort
in implementing complex functionality without having tool support to analyse
resource consumption, e.g., memory usage. The increasing number of ECUs
reveal that the computational resources are highly utilised from time to time,
i.e., before addition of hardware. With an increase in diverging functionality,
the current situation where a static schedule is used for the majority of all func-
tionality, will either be intractable or overly resource demanding (ending up in
new ECUs being added) in the future. Instead, the future development tools
need to support an efficient and verifiable way to allocate resources, so that
the developers either can: (i) Continue their efficient way of developing with
efficient tool support adapted to the diverging functionality in the application
domain, or (ii) Have novel tool support that allows them to begin developing
systems using efficient and resource saving models. Some interviewees ex-
perience that the quality of software increases when developers do not have to
worry about resource consumption. Hence, future support for resource efficient
development needs to be automated to as large extents as possible.

Q6. What kind of tool support is needed in the development of future
systems?

The view on future requirements is that safety critical functionality needs
to be certifiable and the emphasis on less critical functionality will be on more
efficient resource usage (e.g., average resource utilisation rather than worst
case utilisation). This requires system integration tools with possibilities to
take domain specific models that support efficient automatic code generation,
reproducibility for the safety critical functionality and efficient resource usage
for the rest. In addition, to cope with the increasing complexity developers
need tools that lift the level of abstraction, i.e., tools that provide both different

52 Paper A

levels of abstraction as well as different views (e.g., temporal and functional)
at each level of abstraction. It is imperative that the tools relieve some burden
of developers (our study show that simplicity is a strong motivator in develop-
ment) for example by letting synthesis tools provide details (such as assigning
temporal attributes, priorities etc.) so that requirements are met.

Q7. What are the designers experiences of software components, i.e., com-
ponent based development

There is an ongoing activity at one of the investigated companies concern-
ing reusability of general type (application independent) software components.
We believe that general components facilitate development and may increase
the software quality since they are often adapted in several applications and
being subject to extensive testing. However, to be resource efficient, or pre-
dictable for safety critical parts, these type of components need to be efficiently,
and/or predictably, synthesised, i.e., become application specific in the run time
system. Hence, the components should be general and execution model inde-
pendent during development, and then mapped to an application specific run-
time structure.

6.5 Conclusions

In this paper, we presented some requirements in development of industrial
embedded systems in the vehicle domain. The requirements were collected by
a number of interviews with ten senior designers at four companies in Swe-
den. Many of the investigated applications are developed using methods that
are adequate for the (relatively small) parts that are safety critical. Less critical
parts are adapted to fit into the framework of the critical parts. With the in-
creasing size and complexity of software, this homogenous way of developing
applications will, we believe, be inadequate. In the future software develop-
ment strategies, methods and tools must be able to capture the different diverse
requirements of the applications and trends in the application domains. Rang-
ing from a small core part of the application that is safety critical to a larger
part of the system focused on, for example, quality of service and average
case behaviour. The characteristics of the examined systems and the predicted
increase in information intensity and higher precision on control functional-
ity, would allow for more suitable execution models, i.e., resource saving and
quality enhancing, to be introduced (one company even expressed their inter-
est in execution models addressing variable quality of service levels). A wide
spectrum of different kind of tool support is desired in development of the ap-

Paper A 53

plications. For example, tools for model-based development with simulation
possibilities and automatic code generation are considered as highly desirable.
Furthermore, the use of software components and CBSE in general, provides
possibilities for architectural descriptions at a high level. The importance of ar-
chitectural descriptions as means of communication between developers, i.e.,
not only as logical or structural system descriptions, implies that a strong moti-
vator to use software components is their ability to serve as descriptive entities,
i.e., not only as reusable entities.

6.6 Verification of the investigation results

According to Robson [Rob02] there are no standardised means of assuring
complete reliability in a study that use flexible design strategy. We did however
follow recommendations in [Rob02] to minimise threats to the reliability of the
conducted study by:

• Studying and minimising possible sources of biases.

• Describing the application characteristics, properties etc. (Section 6.3)
based on information from notes and tape recordings taken during the
interviews.

• Interpreting the respondents answers at a group basis when necessary.

• Verifying the observations (Section 6.4 and Section 6.5), with the help
of a senior designer with expertise in vehicular real-time systems.

• Verifying our observations (Section 6.4) with representatives from two
of the participating companies.

Bibliography

Bibliography

[Arc] Arcticus Systems. Web page, http://www.arcticus-systems.se.

[Ard] Ardence. Web page, http://www.vci.com.

[CL02] I. Crnkovic and M. Larsson. Building Reliable Component-Based

Software Systems. Artech House, 2002. ISBN 1-58053-327-2.

[Com00] International Electrotechnical Commission. Functional Safety and

IEC 61508, May 2000.

[Ene] Enea Embedded Technology. Web page, http://www.ose.com.

[GLT02] B. Graaf, M. Lormans, and H. Toetenel. Software Technologies for
Embedded Systems: An Industry Inventory. In 4th International

Conference on Product Focused Software Process Improvement.
Rovaniemi, Finland, 2002.

[GLT03] B. Graaf, M. Lormans, and H. Toetenel. Embedded Software En-
gineering: The State of the Practice. IEEE Software, 20(6), 2003.

[kFSC04] M. Åkerholm, J. Fredriksson, K. Sandström, and I. Crnkovic.
Quality Attribute Support in a Component Technology for Vehic-
ular Software. In Fourth Conference on Software Engineering Re-

search and Practice in Sweden. Linköping, Sweden, October 2004.

[Koo96] P. Koopman. Embedded Systems Design Issues(the Rest of the
Story). In Proceeding of the International Conference on Com-

puter Design(ICCD). Austin, October 1996.

[MFN04] A. Möller, J. Fröberg, and M. Nolin. Industrial Requirements on
Component Technologies for Embedded Systems. In International

54

Symposium on Component-based Software Engineering(CBSE7).
Edingburgh, Scotland, May 2004.

[Mic] Microsoft. Web page, http://msdn.microsoft.com/embedded/-
prevver/ce.net/.

[MkFN05] A. Möller, M. Åkerholm, J. Fröberg, and M. Nolin. Industrial
Grading of Quality Requirements for Automotive Software Com-
ponent Technologies. In Embedded Real-Time Systems Implemen-

tation Workshop in conjunction with the 26th IEEE International

Real-Time Systems Symposium. Miami, USA, December 2005.

[NGS+01] C. Norström, M. Gustafsson, K. Sandström, J. Mäki-Turja, and N-
E. Bånkestad. Experiences from Introducing State-of-the-art Real-
Time Techniques in the Automotive Industry. In Eight Annual

IEEE International Conference and Workshop on the Engineering

of Computer-Based Systems. Washington, US, April 2001.

[Pet96] M G.E. Peterson. User Satisfaction Surveys, What the Engineer
Should Know. In Proceedings of the Ninth IEEE Symposium on

Computer-Based Medical Systems, June 1996.

[PLC+97] P.G. Paulin, C. Liem, M. Cornero, F. Nacabal, and G. Goossens.
Embedded Software in Real-Time Signal Processing Systems: Ap-
plication and Architecture Trends. In Proceedings of the IEEE,

Volume 85, Issue 3, 1997.

[Rob02] C. Robson. Real World Research, 2nd edition. Blackwell Publish-
ing, 2002. ISBN 0-631-21305-8.

[Win] Wind river. Web page, http://www.windriver.com.

[Yin03] R. Yin. Case Study Research, 3rd edition. Sage Publications, 2003.
ISBN 0-7619-2553-8.

Chapter 7

Paper B:

Efficient Development of

Real-Time Systems Using

Hybrid Scheduling

Jukka Mäki-Turja, Kaj Hänninen, Mikael Nolin
In Proceedings of the 2005 International Conference on Embedded Systems
and Applications, Las Vegas, USA, June, 2005.

57

Abstract

This paper will show how advanced embedded real-time systems, with
functionality ranging from time-triggered control functionality to event-
triggered user interaction, can be made more efficient. Efficient with respect to
development effort as well as run-time resource utilization. This is achieved by
using a hybrid, static and dynamic, scheduling strategy. The approach is appli-
cable even for hard real-time systems since tight response time guarantees can
be given by the response time analysis method for tasks with offsets.

An industrial case study will demonstrate how this approach enables more
efficient use of computational resources, resulting in a cheaper or more com-
petitive product since more functionality can be fitted into legacy, resource
constrained, hardware.

Paper B 59

7.1 Introduction

As the complexity of embedded real-time systems keeps growing, both by in-
creases in size and in diversity, the developers are faced with the increasing
challenge of modelling, analyzing, implementing and testing both the func-
tional as well as the temporal behavior of these systems. This paper will present
ways to simplify some of that complexity by introducing methods to verify the
temporal correctness for a larger class of such systems.

Traditionally, one design parameter has been what execution model to
choose. Two common and widespread execution models are the static and
dynamic execution models:

• Static scheduling, where a schedule is produced off-line. The schedule
contains all scheduling decisions, such as when to execute each task or to
send each message. During run-time a simple dispatcher dispatches tasks ac-
cording to the schedule. Static scheduling is sometimes referred to as time-
triggered scheduling.

• Dynamic scheduling, where scheduling decisions are made on-line by a run-
time scheduler. Typically some task attribute (such as priority or deadline)
is used by the scheduler to decide what task to execute. The scheduler im-
plements some queueing discipline, such as fixed priority scheduling or ear-
liest deadline first. Dynamic scheduling is sometimes referred to as event-
triggered scheduling.

Since both models have their pros and cons, the design decision of which
one to use is not simple. A few trade-offs when choosing execution model are:

• Overhead – Since all scheduling and synchronization decision are made off-
line in the static approach, the run-time overhead for scheduling is kept low.
In dynamic scheduling these decisions are made on-line, often resulting in a
larger overhead.

• Responsiveness – Statically scheduled systems are inflexible and have there-
fore limited possibility in responding to dynamic events, resulting in poor
responsiveness. Dynamically scheduled systems, on the other hand, handles
dynamic events naturally and can provide high degree of responsiveness.

• Resource usage – In order to provide some degree of responsiveness for dy-
namic events in the environment, statically scheduled systems tend to waste
resources on redundant polling, whereas event-triggered dynamic schedulers
only handle the actual events, enabling better service to soft or non-real time
functionality when events do not occur at their maximum rate.

• Overload – In static scheduling the effects of overload are highly predictable.

60 Paper B

The exact capacity, e.g. in terms of number of inputs handled, is known and
the effect of lost events, e.g. due to slow polling, can be predicted. In dynamic
scheduling, no natural overload control is inherent. Instead, ad-hoc mecha-
nisms are used to prevent, e.g., faulty sensors from flooding the systems with
interrupts. A dynamically scheduled system which becomes overloaded is
unpredictable, it is often difficult to assess which buffer will overflow and
thus which tasks will miss their deadlines.

• Determinism – A statically scheduled system is highly deterministic, it exe-
cutes according to the pre-defined schedule each time. A dynamically sched-
uled system, on the other hand, may exhibit different behavior each time the
system is run, due to, e.g., race conditions on shared resources. This has a
major impact on reproducibility, and thus also on the functional testability,
of the system. Determinism also simplifies the verification process which is
a major part when certifying safety critical applications.

• Complex constraints – Statically scheduled systems can handle more com-
plicated inter-task relation constraints. For example, control systems, where
control performance is important, need to have small (input and/or output)
jitter, which is easier to accommodate in a static scheduler than with simpler
dynamic scheduling parameters.

• Adding new functionality – Once a static schedule has been constructed
it can be very hard to add new functionality in the system, a completely
new schedule has to be constructed. For a dynamically scheduled system,
new functions can be added with a minimum of impact on other parts of the
system.

For further discussions on these trade-offs see [XP00] which advocates cyclic
scheduling), and [Loc92] which advocates dynamic, fixed priority, scheduling.

As can be seen, both approaches have their virtues and one often wishes to
have both approaches available when developing embedded real-time applica-
tions. This desire is clearly illustrated by the last few years of development in
the area of field busses for automotive applications. The Controller Area Net-
work (CAN) [CAN92] has been predominant in the automotive industry. CAN
provides dynamic scheduling (using fixed priority scheduling). However, the
automotive industry felt a need for a more dependable and predictable bus ar-
chitecture. So when Kopetz brought attention to his Time Triggered Protocol
(TTP) [KG94], which provides static scheduling, many automotive manufac-
turers and their sub-contractors embraced the new technology. It was soon
recognized that TTP was a bit too static. Hence, a consortium of automotive
manufacturers and sub-contractors started the development of FlexRay [Flx],

Paper B 61

which provides both static and dynamic scheduling. Also, on the operating-
system side, products that support both static and dynamic scheduling have
emerged. For instance, Arcticus Systems’ operating system Rubus [Arc], and
the open source real-time operating system Asterix [Ast]. In fact, most priority
driven operating systems can implement hybrid static and dynamic scheduling
by letting a dispatcher (a time-table) execute at highest priority.

Thus, we see that the need to combine static and dynamic scheduling have
led to some practical solutions available today. However, one problem with
systems that tries to combine static and dynamic scheduling is that they often
consider the dynamic part as non real-time, e.g. [Arc, Flx]. That is, dynamic
scheduled tasks/messages are not given any response-time guarantees, only
best-effort service is provided. However, in order to fully utilize the potential
of combining static and dynamic scheduling in hard real-time systems, both
the dynamic and the static parts need to be able to provide response-time guar-
antees. A recent study of industrial needs recognizes that one of the key issues
for embedded systems is analyzability [MFN04].

This paper presents a method to model hybrid, statically and dynamically,
scheduled systems with the task model with offsets [MTN04]. With this model,
and the corresponding response time analysis, tight response time guarantees
can be given also for dynamically scheduled tasks. The modelled system can be
realized with commercially available operating systems support. Furthermore,
in a case study we show how a legacy system at Volvo Construction Equipment
could benefit from this approach by migrating functionality from the resource
demanding statically scheduled part to the dynamically scheduled part, freeing
system resources while still fulfilling original temporal constraints.

Paper Outline: Next, Section 7.2 describes the type of systems studied in
this paper. Section 7.3 shows how these systems can be modelled using the task
model with offsets. Section 7.4 discusses related work. Section 7.5 illustrates,
through a case study, how this approach can be applied to a legacy system,
migrating functions from a static schedule, freeing system resources. Finally,
Section 7.6 presents our conclusions.

7.2 System description
In this paper, we address the issue of providing tight response-time guaran-
tees to dynamically scheduled tasks running “in the background” of a static
schedule. The system model contains:

• Interrupts. There may be multiple interrupt levels, i.e., an interrupt may be
preempted by higher level interrupts.

62 Paper B

• A static cyclic schedule.
◦A set of periodic static tasks (functions) are scheduled in the schedule. Each

task has a known worst case execution time (WCET).
◦The schedule has a length (a duration) that is equal to the LCM (least com-

mon multiple) of all statically scheduled function periods. The schedule is
constructed off-line by a scheduling tool.

◦Each function is scheduled at an offset relative to the start of the schedule.
This is also referred to as a function’s release time.

◦The static cyclic scheduler activates each function in the schedule at its
release time. When the whole schedule has been executed the schedule is
restarted from the beginning.

Interrupts may preempt the execution of statically scheduled functions.
• A set dynamically dispatched tasks. We call each such task a dynamic task.

These tasks executes in the time slots available between interrupts and stat-
ically scheduled functions. Dynamic tasks are scheduled by a fixed priority
preemptive scheduler. They are assumed to be periodic or, at least, to have a
known minimum time between two invocations.

We assume that a static cyclic schedule has been constructed prior to the
analysis of dynamic tasks. Furthermore, we assume that the schedule is valid
even if its functions are preempted by interrupts. How a scheduler can generate
a feasible schedule, with interfering interrupts, is described in [SEF98].

7.2.1 Example system
Fig. 7.1 shows a static cyclic schedule of length 20, with 4 functions released
at times 0, 5, 10 and 15, with WCETs 4, 1, 1 and 3 respectively.

0 2015105

Figure 7.1: Example of static cyclic schedule

In Fig. 7.2 we see an example execution scenario when executing the sched-
ule from Fig. 7.1, with one interfering interrupt source and one dynamically
scheduled task (two instances of that task are activated). We make the obser-
vation that both interrupts and the static schedule act like higher priority tasks
from the dynamic tasks’ point of view.

Paper B 63

0 2015105

Interrupt

Static Schedule

Dynamic Task

Execution Pattern

A
rr

iv
a

ls
 a

n
d

E
x
e

c
u

ti
o

n
 T

im
e

s

Figure 7.2: Example execution scenario

One of the main objectives of this paper is to enable response-time calcula-
tions for dynamic tasks. The goal is to model static schedules (and interrupts)
so as to incur as little interference on dynamic tasks execution as possible.
Thus, modelling both functions’ WCETs as well as their release times as accu-
rately as possible.

7.3 Modelling the system
Classical response-time analysis (see e.g. [ABD+95, BW96, JP86]), assumes
that a critical instant1 occurs when all tasks are released simultaneously. Using
this model, the static schedule described in Section 7.2, can be modelled as
4 tasks. These tasks would have a period of 20 and WCETs of 4, 1, 1, and
3 respectively. However, this approach is overly pessimistic since it assumes
that all four static tasks can be released for execution at the same time. In
our example, assuming no interrupt interference, a dynamic task with a WCET
of 1, would have a response time of 10 (4+1+1+3+1). However, looking at
Fig. 7.1 one can see that the actual worst possible response-time is 5 (if the
dynamic tasks coincides with the static function scheduled at time 0).

In static schedules it is impossible for all static tasks to start at the same
time. The task model with offset introduced by [PG98, Tin92] is able to cap-
ture the time separation in static schedules, and thus reduce the pessimism.

1Point in time, where the task under analysis is released for execution, resulting in the longest
possible response-time.

64 Paper B

In [MTN04] we further reduced the pessimism in the corresponding response
time formulae.

7.3.1 Task model with offsets
The task set, Γ, in [MTN04] consists of a set of k transactions, Γ1, . . . , Γk.
Each transaction Γi is activated by a periodic sequence of events with period Ti.
A transaction Γi, contains |Γi| number of tasks, and each task is activated when
a relative time, offset, elapses after the arrival of the event.

τij is used to denote a task. The first subscript denotes which transaction the
task belongs to, and the second subscript denotes the number of the task within
that transaction. A task τij is defined by a worst case execution time (Cij), an
offset (Oij), a deadline (Dij), maximum jitter (Jij), maximum blocking from
lower priority tasks (Bij), and a priority (Pij). The task set Γ is formally
expressed as follows:

Γ :={Γ1, . . . , Γk}

Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉

τij :=〈Cij , Oij , Dij , Jij , Bij , Pij〉

There are no restrictions placed on offset, deadline or jitter. The maximum
blocking time for a task, τij , is the maximum time it has to wait for a resource
which is locked by a lower priority task. In order to calculate the blocking
time for a task, usually, a resource locking protocol like priority ceiling or
immediate inheritance is needed. Algorithms to calculate blocking times for
different resource locking protocols are presented in [But97]. Priorities can be
assigned with any method (e.g. rate monotonic, deadline monotonic, or user
defined priorities). One must assume that the load of the task set is less than
100%.2

Parameters for an example transaction (Γi) with two tasks (τi1 and τi2) is
depicted in Fig. 7.3. The offset denotes the earliest possible release time of a
task relative to the start of its transaction and jitter (illustrated by the shaded
region) denotes maximum possible variability in the actual release of a task.
The upward arrows denotes earliest possible release of a task and the height
of the arrow corresponds to the amount of execution released. The end of the
shaded region represents the latest possible release of a task.

2This can easily be tested, and if not fulfilled some response-times may be infinite; rendering
the task set unschedulable.

Paper B 65

0

O i1=2

Oi2=5

C i2=1 Time

1 2 3 4 5 6 7 8 9 10

Ti=10

C i1=2

J i1=8

J i2=1

Figure 7.3: Example transaction

7.3.2 System model
The system in Section 7.2 can be modelled, and dynamic tasks subsequently
analyzed for response times, with the above task model as follows (subscripts
i, s, and d denote a generic interrupt, static, and dynamic transaction respec-
tively):

• Each interrupt will be modelled as a transaction, Γi, containing one single
task (i.e., |Γi| = 1) with Ti set to minimum inter-arrival time of the corre-
sponding interrupt. These interrupt tasks will have the highest priorities in
the system. If there are several interrupt levels, priorities are assigned ac-
cordingly, i.e., highest priority to highest interrupt level.

• The static schedule is modelled as one transaction, Γs, where each release
time in the schedule is modelled as one task, τsj , where the offset ,Osj , is set
to the corresponding release time. The worst case execution time, Csj , is set
to the corresponding functions WCET. The priority, one suffices, for static
tasks must be lower than for any interrupt, but higher than those for dynamic
tasks.

Our example schedule of Fig. 7.1 will be modelled as a transaction (Ts =
20) with 4 tasks, with offsets 0, 5, 10, 15 and worst case execution time of 4,
1, 1, 3 respectively.

• Dynamic tasks will have the most variability on how they are modelled.
In the simplest case they are modelled exactly the same way as interrupts
but with lower priorities. This situation corresponds to simple periodic (or
sporadic) dynamic tasks with no jitter, no time separation (offsets), and no
blocking. However depending on the nature of the dynamic tasks their cor-
responding transaction can be extended by:
◦jitter if there is variability in their periodicity,

66 Paper B

◦by blocking if they share resources and providing the run-time system sup-
ports an analyzable resource sharing protocol, and

◦offsets if there are temporal dependencies, such as precedence, among dy-
namic tasks.

Note that dynamic tasks cannot communicate with static tasks, via locked
resources, since they must not affect their temporal behavior. However, there
exist methods to communicate between these two systems that will not affect
the temporal behavior of static tasks, see e.g. [NNT+04].

Assuming the dynamic task of Fig. 7.2 is a sporadic task with minimum
inter-arrival time of 10 time units and a release jitter of 3 time units, it is
modelled as a transaction with Td = 10 containing one task with Jdj = 3.
The execution time is 2 and since it is the lowest priority task the blocking is
zero (Cdj = 2 and Bdj = 0).

The formulae to calculate the response times rely on a relaxed critical in-
stant assumption stating that only one task out of every transaction has to coin-
cide with the critical instant. The complete formulae can be found in [MTN04],
and would, for our example system of Fig. 7.2, result in a response time of 5
time units for a dynamic task with Cdj = 1, assuming no interrupt interference.

Since all type of tasks, interrupt, static, and dynamic, can be analyzed for
responsiveness, the inability of providing response time guarantees will no
longer be a basis for rejecting an execution model for a function, thus making
hybrid static and dynamic scheduling suitable even for hard real-time systems.

7.4 Related work

There has been number of research projects addressing the issue of com-
bining several execution models [BBLB03, RS01, SRLK02]. These provide
reservation-based guarantees where task characteristics are not fully known in
advance. Furthermore, no commercially available real-time operating system
support exist for them. Our approach is to model existing systems, supported
by commercial RTOSes, where task attributes are fully known at design time.
However, [RRW+03] aims at modelling real situations through hierarchically
modelling different schedulers. They cover preemptive and non-preemptive
priority schedulers and do not model static schedulers. In fact, the work pre-
sented in this paper could extend their more general framework with the ability
to model also static schedulers.

Paper B 67

7.5 Case study
A case study [RH03] conducted at Volvo Construction Equipment (VCE)
[VCE], with the objective of finding a way to use available resources in a
more efficient way has studied the design trade-offs between static and dy-
namic scheduling.

VCE has a tradition in statically scheduled systems. This is mainly due to
the safety critical nature of their control systems in their heavy machinery, e.g.,
articulated haulers, trucks, wheel loaders and excavators. Rubus OS by Arcti-
cus [Arc], used by VCE, has run-time support for the system model described
in Section 7.2.

Currently at VCE, all safety critical functionality is implemented in the
static part and only soft real-time or non real-time activity resides in the dy-
namic part. In recent interviews (in an ongoing research project) they state that
about 20-25% of their applications are considered safety critical, mainly re-
siding in transmission and engine control. However, some operational modes,
have static schedule utilization as high as 74%.

The demand on more functionality in next generation machinery is grow-
ing. However, the static schedule is getting close to full utilization, leaving
little or no room for new functionality. This can either be addressed with new
and more expensive hardware or to find a better way of utilizing the current
hardware resources.

Demand on responsiveness (i.e. deadlines) for functionality in the static
part ranges from a few milliseconds up to several seconds. This could po-
tentially result in very large schedules (with corresponding high memory con-
sumption). VCE’s solution to this has been to fix the schedule length at 100ms,
which result in waste of computing resources due to redundant polling for any
function with a responsiveness demand higher than 100ms (even functions with
responsiveness demand within 100ms but associated with events that occur sel-
dom will in this case waste computing resources). A solution that could get rid
of this redundant polling, while still guaranteeing the responsiveness and with-
out increasing the schedule length, would be highly desirable.

7.5.1 An example system
Here we will present an example system that can be viewed as a simplified
version of one of the systems constructed by VCE. A complete system would
consists of several hundreds of tasks [RH03] and would be too complex to
present in this paper. We will show how functions currently residing in the
static part can be moved to the dynamic part and, by using the response-time

68 Paper B

analysis of [MTN04], still guarantee that the function deadlines will be met.
Type of functionality that could be moved, according to [RH03], consists of
events that by nature are event-triggered, visual interaction with driver, and
logging of operational statistics. Another example of functionality that may be
moved to the dynamic part is control functionality that is not part of sampling
or actuation. Control performance is often sensitive to jitter in sampling and
actuation and therefore often placed in a static schedule [Cer99]. However,
the control calculation and updating of control state do not have these strict
requirements on jitter and their responsiveness requirement is only restricted by
the corresponding output action and sampling in the next period respectively.
Therefore control and updating control state functionality could be moved to
the dynamic part.

Task i Ti Ci Di U100 UT

A 10 2 10 20% 20%
B 20 2 5 10% 10%
C 50 1 2 2% 2%
D 50 6 50 12% 12%
E 100 8 100 8% 8%
F 2000 7 100 7% 0.35%
G 2000 8 100 8% 0.4%
H 2000 8 2000 8% 0.4%

Table 7.1: The set of tasks in the Static system

For our example, the task specification in table 7.1 will be used. (For sim-
plicity we will in this example ignore interrupt interference.) Tasks F and G
handle events that may occur once every 2000ms, and with a response time
requirement of 100ms. Placing tasks F and G in a static schedule, means that
they would have to be polled at the rate of their deadline (100ms) instead of
their period (2000ms) (since we do not know exactly when the events are going
to occur). Task H, however, could be polled at the rate of its period (2000ms),
however, the resulting schedule would become too large and memory consum-
ing (it would have to extend for 2000ms and thus consume over 20kb of ROM).
Setting the schedule length to 100ms would be adequate for all tasks except
task H. Hence, the schedule length is set to 100ms, and a resulting schedule
can be seen in Fig. 7.4 on the facing page.

In table 7.1, U100 represents the task utilization when scheduled in a static
schedule with a period of 100ms, and UT represents the utilization when tasks

Paper B 69

are scheduled with their period.

0 40302010 50 90807060 100

ABc DG FE c D BBBB AAAAAAAA A H

Figure 7.4: Static schedule for table 7.1 task set

The total utilization of the static schedule is 75%. Adding new functional-
ity, requiring some kind of temporal guarantee, to this system can be difficult,
there are not many free time-slots in the schedule, especially if there has to be
room also for interrupts and non-real-time functionality.

Improving the system

However if tasks F, G, and H could be made event triggered, by placing them
in the dynamic part of the Rubus OS, some resources could be freed. The
resulting static schedule can be seen in Fig. 7.5. The utilization for the static
schedule now becomes 52%. The utilization for the three dynamic tasks are
1,15%, resulting in a total utilization of just above 53%. Thus, by moving these
three tasks from the static schedule we free nearly 22%3 of the CPU resources.

0 40302010 50 90807060 100

ABc DE c D BBBB AAAAAAAA A

Figure 7.5: Schedule without tasks F, G and H

Now, it remains to see whether the three tasks will meet their deadlines
when running as dynamic tasks. To be able to calculate response times for
tasks F, G, and H we model the static schedule as a transaction with Ts = 100.
WCETs and offsets are set as follows:

Csj = (5, 10, 4, 2, 10, 3, 10, 2, 4, 2)

Osj = (0, 10, 20, 30, 40, 50, 60, 70, 80, 90)

3Increase in overhead for tasks F, G, and H as dynamic tasks will be marginal, hence not
considered here.

70 Paper B

Assuming that F, G, and H have priorities high, medium, and low respec-
tively, we can calculate the response times for the three tasks according to
[MTN04]. And the result is:

RF = 26 RG = 44 RH = 64

We see that all three tasks will meet their deadlines of table 7.1. In fact,
their responsiveness is considerably increased compared to being statically
scheduled every 100ms. It could be mentioned that by removing tasks F, G
and H from the schedule we have enabled shorter response times for other dy-
namic tasks, that might have existed in the system, as well. The schedule in
Fig. 7.4 has a longest busy period of 54ms (between 30–84), whereas the new
schedule in Fig. 7.5 has a longest busy period of 14ms (between 10–24). Since
any dynamic task (in the worst case) will have to wait for the longest busy
period, we now have significantly reduced that time.

With the approach presented in this paper the static schedule could be kept
small (with respect to memory consumption as well as utilization). By mod-
elling the static schedule as one transaction, response time analysis for task
with offsets can be used to evaluate timeliness for the dynamic part.

Our solution reduce utilization by moving functionality, previously polled
excessively, from the static schedule to the dynamic part. Our method also
gives a possibility to shrink the static schedule since functions with long peri-
ods can be moved from the static schedule. It should be mentioned however,
that all tasks in the static schedule share a common stack, whereas moving
tasks from the schedule to the dynamic part may require them to have sep-
arate stacks, hence increasing the memory consumption for dynamic tasks.
However, using a resource locking protocol such as the immediate inheritance
allows also dynamic tasks to share a single stack [But97, Nor99].

The possibility to selectively migrate functions from static scheduled
legacy systems to dynamic scheduled systems will substantially facilitate for
companies to gradually move into the area of dynamic scheduling, and thus,
in the long run, help companies to use cheaper hardware for, or fit more func-
tions into, their products. Also the development process becomes easier be-
cause event triggered functionality does not have to be force-fitted into a static
model.

7.6 Conclusions
As stated in [MFN04] analyzability is one of the major concern for embedded
systems development. We have in this paper shown how a hybrid, static and

Paper B 71

dynamic, scheduling model can be modeled and dynamic tasks analyzed for
responsiveness. The type of system presented can be realized by commercially
available OS support, e.g., Rubus OS by Arcticus [Arc]. In fact, any fixed
priority OS complemented with an external static scheduler can implement this
type of system with the static schedule as a task at highest priority.

A hybrid, static and dynamic, scheduling model simplifies the design trade-
offs of which scheduling model to choose. Appropriate scheduling model can
be chosen on function level instead of system level. Since temporal guaran-
tees can be provided, this approach will also be applicable for hard real-time
systems. Choosing the most appropriate model for each function, instead of
force-fitting it to an overall model, not only simplifies the design choices but
also gives the possibility to save system resources and improve responsiveness.
This is demonstrated in a case study [RH03] at Volvo Construction Equipment
using the commercial real-time operating system Rubus by Arcticus [Arc].

Bibliography

Bibliography

[ABD+95] N.C. Audsley, A. Burns, R.I. Davis, K. Tindell, and A.J. Wellings.
Fixed Priority Pre-Emptive Scheduling: An Historical Perspec-
tive. Real-Time Systems, 8(2/3):173–198, 1995.

[Arc] Arcticus Systems. Web page, http://www.arcticus-systems.com.

[Ast] The Asterix Real-Time Kernel. Web page, http://www.mrtc.mdh.-
se/projects/asterix/.

[BBLB03] Scott Brandt, Scott Banachowski, Caixue Lin, and Timothy Bis-
son. Dynamic Integrated Scheduling of Hard Real-Time, Soft
Real-Time, and Non-Real-Time Processes. In Proc. 24th IEEE

Real-Time Systems Symposium (RTSS). IEEE Computer Society,
December 2003.

[But97] G.C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Aca-
demic Publishers, 1997. ISBN 0-7923-9994-3.

[BW96] A. Burns and A. Wellings. Real-Time Systems and Programming

Languages. Addison-Wesley, second edition, 1996. ISBN 0-201-
40365-X.

[CAN92] Road Vehicles – Interchange of Digital Information – Controller
Area Network (CAN) for High Speed Communications, February
1992. ISO/DIS 11898.

[Cer99] A. Cervin. Improved Scheduling of Control Tasks. In Proc. of the

11th Euromicro Workshop of Real-Time Systems, pages 4 – 10,
June 1999.

[Flx] FlexRay. Web page, http://www.flexray-group.org/.

72

Bibliography 73

[JP86] M. Joseph and P. Pandya. Finding Response Times in a Real-Time
System. The Computer Journal, 29(5):390–395, 1986.

[KG94] H. Kopetz and G. Grünsteidl. TTP – A Protocol for Fault-Tolerant
Real-Time Systems. IEEE Computer, pages 14–23, January 1994.

[Loc92] C.D. Locke. Software Architecture For Hard Real-Time Appli-
cations - Cyclic Executives vs. Fixed Priority Executives. The

Journal of Real-Time Systems, 4:37–53, 1992.

[MFN04] Anders Möller, Joakim Fröberg, and Mikael Nolin. Industrial Re-
quirements on Component Technologies for Embedded Systems.
In 7th International Symposium on Component-based Software

Engineering (CBSE7). IEEE Computer Society, May 2004.

[MTN04] Jukka Mäki-Turja and Mikael Nolin. Tighter Response-Times for
Tasks with Offsets. In Proc. of the 10th International conference

on Real-Time Computing Systems and Applications (RTCSA’04),
August 2004.

[NNT+04] Dag Nyström, Mikael Nolin, Aleksandra Tesanovic, Chris-
ter Norström, and Jörgen Hansson. Pessimistic Concurrency-
Control and Versioning to Support Database Pointers in Real-
Time Databases. In Proc. of the 16th Euromicro Conference on

Real-Time Systems, June 2004.

[Nor99] Northern Real-Time Applications. SSX5 True RTOS, 1999.

[PG98] J.C. Palencia Gutiérrez and M. Gonzáles Harbour. Schedulability
Analysis for Tasks with Static and Dynamic Offsets. In Proc. 19th

IEEE Real-Time Systems Symposium (RTSS), December 1998.

[RH03] T. Riutta and K. Hänninen. Optimal Design. Master’s thesis,
Mälardalens Högskola, Dept of Computer Science and Engineer-
ing, February 2003.

[RRW+03] J. Regher, A. Reid, K. Webb, M. Parker, and J. Lepreau. Evolving
Real-Time Systems Using Hierarchical Scheduling and Concur-
rency Analysis. In Proc. 24th IEEE Real-Time Systems Sympo-

sium (RTSS). IEEE Computer Society, December 2003.

[RS01] J. Regher and J.A. Stankovic. HLS: A Framework for Compos-
ing Soft Real-Time Schedulers. In Proc. 22th IEEE Real-Time

Systems Symposium (RTSS). IEEE Computer Society, December
2001.

[SEF98] Kristian Sandström, Christer Eriksson, and Gerhard Fohler. Han-
dling Interrupts with Static Scheduling in an Automotive Vehi-
cle Control System. In 5th International Workshop on Real-Time

Computing Systems and Applications (RTCSA ’98), pages 158–
165. IEEE Computer Society, Hiroshima, Japan, October 1998.

[SRLK02] S. Saewong, R. Rajkumar, J.P. Lehoczky, and M.H. Klein. Analy-
sis of Hierarchical Fixed Priority Scheduling. In Proc. of the 14th

Euromicro Conference on Real-Time Systems. IEEE Computer So-
ciety, June 2002.

[Tin92] K. Tindell. Using Offset Information to Analyse Static Priority
Pre-emptively Scheduled Task Sets. Technical Report YCS-182,
Dept. of Computer Science, University of York, England, 1992.

[VCE] Volvo construction equipment. Web page,
http://www.volvoce.com.

[XP00] J. Xu and D.L. Parnas. Priority Scheduling Versus Pre-Run-Time
Scheduling. The Journal of Real-Time Systems, 18(1):7–23, Jan-
uary 2000.

Chapter 8

Paper C:

The Rubus Component

Model for Resource

Constrained Real-Time

Systems

Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Mats Lindberg, John Lund-
bäck, Kurt-Lennart Lundbäck
To appear in the Proceedings of the 3rd IEEE International Symposium on In-
dustrial Embedded Systems, Montpellier, France, June, 2008.

75

Abstract

In this paper we present a component model for development of distributed
real-time systems. The model is developed to support development of embed-
ded control systems for ground vehicles. The model aims at supporting three
important activities in real-time development, (i) design, (ii) analysis and (iii)
synthesis. These activities emphasise different and sometimes conflicting re-
quirements that need to be balanced. For example, developers desire freedom
in designing to solve complex tasks, analysis tools require the design to be
formal enough for analysis and synthesis need to be efficient for low run-time
footprint. We have considered industrial requirements for these activities and
developed the RubusCMv3 component model. The model has been developed
in close cooperation with industrial partners and it is currently being evaluated
on real systems.

Paper C 77

8.1 Introduction

The industrial requirements on embedded computer systems are constantly
evolving. With the flexibility offered by software, the complexity of system
designs and the amount of advanced computer controlled functionality in prod-
ucts is increasing. In the automotive domain, for example, systems are typically
characterised by having a mix of requirements ranging from hard real-time,
soft and even non real-time whilst operating in a resource constrained environ-
ment. Historically, developers of embedded real-time systems have used low
level programming languages to guarantee full control of the system behaviour.
Hence, many embedded real-time systems have become overly complex and
hard to manage during functionality or technology shifts. The variety of func-
tionality in today’s embedded systems requires development methods and tools
that support flexible and efficient development.

In resent years, Component Based Development (CBD), has shown to be
successful in development of complex desktop applications. It is an emerg-
ing development discipline in which software systems are built by assembling
pieces of software units, components, into larger systems. Components are
self contained units that provide natural units of reuse by encapsulating func-
tionality into manageable blocks of software. In general, components provide
possibilities for high level architectural descriptions, hence, serving as descrip-
tive entities and reusable logic.

Component based engineering has had a tremendous impact in the office-
/Internet-area. Today, there exists several commercial component technolo-
gies for the desktop- and Internet-market, e.g., COM/DCOM [Mica], Corba
[OMG][OMG02], Java Beans/EJB [SUNa][SUNb], .NET [Micb] are readily
available and used by developers on a day-to-day basis. However, these tech-
nologies are typically not suitable for embedded control systems [MÅFN04].
In the embedded systems domain, CBSE is still only perceived as a promising
future technology. Several component models and technologies for embed-
ded systems have been proposed (e.g. Koala [vO02], PECOS [MSZ02][PEC],
MetaH [Ves97], VEST [Sta01], the control server [CE03], ReFlex [Wal03]
and [DGL+04] etc.). Projects such a Space4U [Spa], its predecessor Robo-
cop [Rob], DECOS [DEC], SAVE [SAV] and PROGRESS [PRO] are targeting
CBSE for embedded systems. Ever still, there is an apprehension that current
tools and methods for embedded CBSE are lacking one or more key-properties
to support industrial requirements such as:

• giving the software developer suitable level of expressiveness and/or ab-
straction

78 Paper C

• enabling development of both safety critical and flexible functionality in
a system

• enabling code and architecture reuse

• supporting development of predictable and resource efficient systems

To summarise, we recognise three important aspects of component based
software development for resource constrained and predictable real-time sys-
tems: (a) the aspects of the developer, (b) the aspects of the analysis frame-
work, and (c) the aspect of the run-time system. These three different aspects
emphasise different, and sometimes conflicting, requirements for design, anal-
ysis and synthesis. For example, the developers must have sufficient methods
and tools to design the overall software architecture. The analysis framework
needs the architecture to be formal enough for automated analysis of important
properties. And finally, the solution must be able to execute resource efficiently
in the run-time platform. Any development strategy, for resource constrained
and predictable real-time systems, has to take into account and balance these
aspects to gain industrial usefulness.

In this paper we present a novel component model, RubusCMv3, for devel-
opment of embedded control systems with a mix of hard, soft and non real-time
requirements. The model is developed as a joint effort between industrial part-
ners and the MultEx project [Mul] at Mälardalen Real-Time research Centre.
The objective of the model is to support and balance common requirements in
design, analysis and synthesis of embedded real-time control systems.

Paper outline. The reminder of this paper is organised as follows. In Sec-
tion 8.2 we outline some common requirements in development of embedded
software. In Section 8.3 we describe the main objectives of the RubusCMv3
component model. In Section 8.4 the architectural elements of RubusCMv3
are presented. In Section 8.5 we show a simple design of an oil pressure su-
pervision to illustrate features of RubusCMv3. In Section 8.6 we discuss the
key-properties supported by RubusCMv3. Finally, in Section 8.7 we conclude
the work described in this paper.

8.2 Engineering requirements on RubusCMv3

The fact that more and more mechanical solutions are replaced with software,
results in an increasing system complexity. Today’s embedded systems are typ-
ically characterised by having a mix of functionality with requirements ranging

Paper C 79

from hard real-time, soft and even non real-time. Many of these systems op-
erate in resource constrained environments that need to satisfy requirements
on dependability and efficient resource usage. For example, in a recent study
[HMTN06], we discovered that vehicular systems are rapidly evolving and
contain more heterogeneous functionality than before. Control applications,
information handling and entertainment supplies, are nowadays supported in
software by a mix of hard and soft real-time requirements. In addition, de-
velopers predict an increase in information intensity and a continuing increase
in diversity of functionality. Safety and reliability are of utmost importance
and considered key properties in development. This implies that development
models must be able to support development and analysis of safety critical
functionality, as well as development of flexible and resource efficient func-
tionality.

8.3 Objective of RubusCMv3

This section describes the main objectives of the Rubus component model. The
objectives are derived from a recent study of industrial requirements in devel-
opment of embedded systems in the vehicle domain [HMTN06]. One of the
key objectives of the RubusCMv3 model is to support an overall descriptive
view of the system functionality, i.e., serving as a system description facilitat-
ing reasoning about the functionality at a high level. Furthermore, abstraction
mechanisms should be supported through hierarchical decomposition. This
allows reasoning on different levels of abstraction. Besides having different
levels of abstraction a user should be able to see the system through different
views, highlighting different aspects. For example, a developer might be in-
terested in the functional view when first designing the system, and later on,
focus on the real-time temporal aspects, hiding unnecessary details of the func-
tional aspects. Thus it must be possible to express both real-time requirements
and real-time properties of the design. The overall purpose of the component
model should be to express the infrastructure of software functions, i.e., the
interaction between software functions in terms of data- and control-flow. One
important principle is to separate code and infrastructure, i.e., explicit synchro-
nisation or data access should all be visible in the infrastructure level. Sepa-
rating code and infrastructure facilitates analysis and reuse of components in
different contexts.

The component model should have a formal syntax and semantics and thus
lend itself to formal analysis at an early stage. This allows timing errors to be

80 Paper C

revealed at an early stage in development. Real-time attributes on components
can be expressed as budgets or estimates, enabling analysis of, for example,
memory consumption and temporal attributes. These budgets can then serve as
implementation requirements at a later stage in development.

The resulting architecture must be efficiently mapped to a run-system. With
the diverging type of functionality in today’s embedded systems, suitable ex-
ecution models, such as hybrid scheduling [MTHN05], have to be supported.
Hence, the user should be able to express events in terms of clocks and inter-
nal/external events.

8.4 The RubusCMv3 component model

The component model is developed as a part of the Rubus concept [Arc]. Rubus
emanates from Basement [HLS96], and was first introduced for industrial use
in 1996. Throughout the years Rubus been used by a number of companies,
e.g., [BAE, Kno, Mec, VCE] for development of real-time software.

The RubusCMv3 model is intentionally simple, still giving enough expres-
siveness for development and analysis of resource constrained systems with
mixed real-time requirements. It is intended for development of software ar-
chitectures expressing data-flow and synchronisation between software entities
in single and multi-node systems.

In the following sections, we describe the architectural elements for hierar-
chical decomposition of software logic and assignment of real-time properties
in RubusCMv3. Throughout this paper, we collectively denote software ele-
ments as software items (SWIs).

8.4.1 Software logic

Software circuits

Software circuits (SWCs) are the basic unit of hierarchical decomposition in
RubusCMv3. The primary purpose of an SWC is to encapsulate functions,
hence a SWC can have multiple behaviours, each one represented by a spe-
cific entry function serving as the starting point of execution. Each SWC is
defined by its behaviour, interface and an internal state data. Interfaces man-
age interaction between SWCs through ports. Two types of ports are sup-
ported, data ports for data flow and trigger ports for control flow. A SWC re-
ceives data(D)/triggering(T) on its input ports(I) and produces data/triggering
to its output ports(O). Fig. 8.1 shows the graphical notation of an SWC in

Paper C 81

RubusCMv3. OTU denotes unconditional triggering, i.e., a trigger signal that
is always produced, whereas OTC denotes conditional triggering meaning that
the trigger signal on the OTC port may be produced, depending on conditions
within the SWC. Data transfer/triggering between two SWCs require that out-
put ports of the transmitting component are connected to input ports on the
receiving component. If a data output port and a trigger output port from the
same component is connected to one other component, then the run-time envi-
ronment must guarantee that the data will arrive to the destination before it is
triggered by the source.

ID OD

IT OTU

OTC

SWC

ID OD

IT OTU

OTC

SWC

Figure 8.1: Graphical description of a software circuit

A SWC becomes eligible for execution when its trigger condition is true,
i.e., when the input trigger port receives a trigger signal. Each SWCs executes
with a run to completion semantics as shown in Fig. 8.2, i.e., a SWC is not
allowed to have synchronisation primitives defined within its behaviour (i.e.,
in the source code of the component), meaning that all synchronisations must
visible in the design and represented by synchronisation objects. Before an
SWC becomes executing it first reads the data on the data input ports. When
the SWC terminates, it produces data/trigger on its output ports and reverts to
its idle state.

A SWC may preserve its internal state data between executions. The
internal state of an SWC must be initialised by a constructor in the SWC and
cleaned up by a destructor in the SWC. The constructor must be called by the
run-time environment at system start up, and the destructor must be called
when the system is shutdown in an orderly fashion.

Assemblies and composites

Assemblies and composites (ASMs/CMPs) provide ways to connect a set
of SWCs. They also provide means for hierarchical decomposition of
SWCs and their connections. ASMs/CMPs provides no semantics, hence the
purpose of ASMs/CMPs is to provide structure and increased abstraction,

82 Paper C

IDLE

READY

COPY INPUT

EXECUTE

PRODUCE OUTPUT

TERMINATE

1

2

3

4

5

6

IDLE

READY

COPY INPUT

EXECUTE

PRODUCE OUTPUT

TERMINATE

IDLE

READY

COPY INPUT

EXECUTE

PRODUCE OUTPUT

TERMINATE

11

22

33

44

55

66

Figure 8.2: Run-cycle of software circuit

i.e., to abstract details of the software architecture. Assemblies and com-
posites communicate through a set in- and output ports, similar to SWCs.
Composites differ from assemblies in the sense that a composite object
can be divided and parts of it can be deployed on different nodes, whereas
assembly objects are un-dividable objects that cannot be split during deploy-
ment, i.e., an assembly object can only be deployed as a whole objects to
a single node. Fig. 8.3 shows the graphical notation of an ASM in RubusCMv3

ID OD

IT OTU

ID

IT

SWC_A SWC_B

OD

OTU

ID

IT

OD

OT

ASM_AB

ID OD

IT OTU

ID

IT

SWC_A SWC_B

OD

OTU

ID

IT

OD

OT

ASM_AB

Figure 8.3: Graphical description of an assembly

Modes

Modes are means to distinguish different states or conditions of a system. Each
mode describes the functionality that is relevant for that mode. For example, a
system may execute a certain type of functionality during start-up, and other
type of functionality when in operational mode. Mode transitions are specified
in order to show the transitions that are legal in the system. This is illustrated
by a high level state diagram describing switches between different system
functionality. In RubusCMv3, the mode objects are treated as self contained

Paper C 83

applications, realising the operational conditions of a system. Modes are
semantically seen as synchronised only within a single node. Fig. 8.4 shows
an example of modes and transitions within an Electronic Control Unit (ECU).

INIT. RUNNING
SHUT

DOWN

ERROR

ECU

INIT. RUNNING
SHUT

DOWN

ERROR

ECU

Figure 8.4: Example of modes and mode transitions in an ECU

System

A system is the top level hierarchical entity, describing the software logic and
architecture for a complete, possibly distributed, system. A system contains
no assignments to platforms.

Logic objects for data and triggering

RubusCMv3 also defines the following software logic items for data and trig-
gering (Fig. 8.5):

• Source items are used to, (i) define constant values on data input ports,
(ii) indicate an unconnected trigger input port, i.e., a port that will not be
triggered.

• Sink items are terminators of data- and trigger output ports. The sink
object indicates that the data or trigger from the output port will be ter-
minated, i.e., the control or data flow from the port terminates at the
sink.

• Named data items can be described as collectors of data. The item has
blackboard semantics, i.e., any of the architectural element (described
above), can write and read from a named data. Moreover, entities that
are external to the model may read and write named data.

84 Paper C

• Clock items define periodic triggering. A clock object has an trigger
output port activated with a specified frequency. In addition, a clock
object may define a possible delay (offset time) specifying the minimum
delay, from that the clock produces a trigger out, until the first logic
object connected to the trigger output port on the clock, may be activated
for execution.

• Interrupt and event items define external interrupts, internal and exter-
nal events. These items are used to define events generated either by
hardware or other software items. Events are specified by a minimum
interarrival time (MINT) and priority. MINT specifies the shortest time
between two consecutive activation of an event. The priority denotes the
priority of the event (for events that correspond to interrupts, the priority
denotes the interrupt priority).

• Down sampling items may be used to alter the frequency of trigger-
ing. For example, consider a control flow between SWCs (SWC_1
and SWC_2), then, without a down sampling object, a trigger signal
from an output port of SWC_1 is immediately delivered to the input
port of SWC_2. When attaching a down sampling item to the control
flow, the delivery of the trigger signal from the output port of SWC_1
to the input port of SWC_2 may be altered in the following way: If
DOWNSAMPLE-FACTOR is x then the receiving port (input port on
SWC_2 in this case) is triggered no more than every xth time.

• Precedence items are used to express precedence within an sequence of
connected unconditional output ports. These items have two or more
trigger input ports and one trigger output port. Each of the SWIs con-
nected to the input ports of a precedence item must have a single com-
mon ancestor in the a graph of preceding trigger ports. This means that a
precedence item cannot be used to synchronise between different trigger
chains.

8.4.2 Real-time properties in RubusCMv3

The software logic defined by the constituents of RubusCMv3 may be the as-
sociated with real-time execution properties defining actions that trigger ex-
ecutions, requirements on execution and timing properties of SWCs. To en-
able real-time analysis, each SWC is associated with a run-time profile de-
scribing the execution-time and memory consumption on different platforms.

Paper C 85

Named data

Const

Terminator

(Data Port)

Source items

Terminator

(Output Trigger Port)
Sink items

Input Data Port
value zero

Not connected

(Input Trigger Port)

Input Data Port

Constant Value

ExtTrigger items Clock Interrupt
Internal

event

External

event

x
Control flow

items
Down sampling >>> Precedence

Named data

Const

Terminator

(Data Port)

Source items

Terminator

(Output Trigger Port)
Sink items

Input Data Port
value zero

Not connected

(Input Trigger Port)

Input Data Port

Constant Value

ExtExtTrigger items Clock Interrupt
Internal

event

External

event

x
Control flow

items
Down sampling >>> Precedence

Figure 8.5: Logic items for data and triggering

Three types of real-time requirements are currently supported in RubusCMv3
(i) deadline on completion and (ii) offset and (iii) period jitter.

8.5 System example

In this section, we show a simple design of an oil pressure supervision (see
Fig. 8.6) to illustrate some features of RubusCMv3. Assume that the require-
ments for the example are as follows:

• Correct oil pressure is important for the longevity of an combustion en-
gine, hence the oil pressure of an engine should be regularly monitored.
In case of abnormal oil pressure levels, the pressure level should be
logged and an alarm, notifying the operator, must be raised within 5
seconds.

Oil pressure monitor

Oil

pressure
Operator

Oil pressure monitor

Oil

pressure
Operator

Figure 8.6: Example, oil pressure supervision

A typical development scenario using RubusCMv3 includes identifying
and composing the software architecture, deploying the architecture and as-

86 Paper C

signing real-time properties to the design.
For this example, we assume that a pressure sensor is used to measure the

oil pressure and a LED to inform the operator of abnormal pressure conditions,
hence, the software parts in this example are illustrated by the constituents of
the oil pressure monitor composite in Fig. 8.7. The monitor consist of an object
for supervision of the oil pressure, an object logging abnormal conditions and
an alarm object informing the operator of abnormal oil pressure.

Supervision Alarm

Oil pressure monitor

Logging

Pressure Operator

Supervision Alarm

Oil pressure monitor

Logging

Pressure Operator

Figure 8.7: Example, oil monitor software parts

We are now ready to create a more detailed design of the oil monitor object
and applying the requirements on the software. Recall that in RubusCMv3,
boxes represent data, triangles represent activation interfaces and the arrows
show direction of data and control flow. A clock is assigned to the supervision
object for periodic monitoring of the oil pressure. We assume that abnormal
pressure conditions are sporadic, hence the logging and alarming of abnormal
pressure is activated by events. The real time requirement, describing the maxi-
mum time delay (5 seconds) from the occurrence of abnormal oil pressure until
the alarm is raised, is assigned to the design (see Fig. 8.8).

Supervision Alarm

Oil pressure monitor

Logging

Sensor LED

sensor – LED : 5sekSupervision Alarm

Oil pressure monitor

Logging

Sensor LED

sensor – LED : 5sek

Figure 8.8: Example, oil monitor software logic

Figure 8.8 shows that the data flow and the control flow are separated in the
design. Separating data from control flow makes it easier to extract parts from

Paper C 87

the design and display only the data flow or only the control flow between
object. We can now go further in to details and design the functionality for
each of the objects in the oil pressure monitor. For simplicity, we only show an
detailed example of the supervision assembly (Fig. 8.9).

A/D

Supervision

ManagerA/D

Supervision

Manager

Figure 8.9: Example, supervision software logic

A key feature of RubusCMv3 is to allow developers to focus on function-
ality on system level, without considering the hardware architecture. To this
point, the functionality is designed without hardware architectural concerns.
However, in reality, the hardware architecture of a system is often established
based on the physical conditions and hence conceptually established at an early
point in development. In addition, the placement of sensors and other elements
for sensing environmental conditions are guiding the placement of the com-
putational hardware. For the rest of this example we assume that the pressure
sensor is connected to an engine ECU and that the LED display is connected
to a cabin ECU. The engine ECU is physically placed in the engine compart-
ment and the cabin ECU in the cabin. A CAN bus is used for communication
between the ECUs (Fig. 8.10).

Engine ECU Cabin ECU

CAN

Engine ECU Cabin ECU

CAN

Figure 8.10: Example, ECUs

Objects describing ECUs can have a set of operational modes, i.e., states,
and transitions between modes within an ECU. Assuming that we need to

88 Paper C

deploy parts of our functionality to the drive mode of the engine ECU and
other parts of our functionality to the drive mode of the cabin ECU, we then
need to decide how to design the communication between the ECUs. In our
example we assume that we need an object that packages messages into frames
(CAN send) and an interrupt that activates the transmission of messages. At
the receiving end we assign a CAN receive object that unpacks the messages
and activates the software that alarms the operator of abnormal oil pressure
conditions. Fig. 8.11 shows the software logic of each mode.

Alarm

Drive mode, cabin ECU

CAN receive

LED

CAN

interrupt

Supervision

CAN send

Drive mode, engine ECU

Logging

Sensor

Alarm

Drive mode, cabin ECU

CAN receive

LED

CAN

interrupt

Supervision

CAN send

Drive mode, engine ECU

Logging

Sensor

Figure 8.11: Example, mode logic

To enable timing- and memory analysis of our example design, the objects
need to be assigned properties such as worst case execution times and maxi-
mum stack usage etc. At this point, we may or may not have source code for
the objects. We can however, assign timing and memory budgets to the objects
and perform analysis. We can then choose to write or retrieve the source code
to get more accurate figures on timing and memory consumption. For our ex-
ample, we also need to consider timing in messages transmission on the CAN
bus.

Paper C 89

8.6 System development using RubusCMv3

The RubusCMv3 model provides constructs for systems design through hier-
archical decomposition of software logic, giving developers the possibility de-
sign the logic at different levels of abstraction. By separating data- and control-
flow, developers can exploit the benefits of addressing different views, e.g., the
logical or the temporal view of a design. The oil pressure example shows the
separation of concerns in different phases of development. First, the design
of the complete functionality is put in focus, without hardware concerns. Sec-
ondly, the data flow and control flow are separated for abstraction reasons. The
example also shows different levels of abstraction of a software entity, i.e., the
monitor object consist of a supervision object that consists of an A/D converter
and an oil manager.

The example also illustrates how a distributed functionality, with hard and
non real-time requirements, can be realised by two execution models (EMs).
The hard real time requirement, realised by a time-triggered EM, concerns the
maximum delay from abnormal pressure until an alarm is raised, whereas the
logging of abnormal pressures, realised by the event-triggered EM, lack ex-
plicit timing requirements. Industrial systems often contain a mix of different
real-time requirements. Still, many of these systems are developed using only
the time triggered EM. The time triggered EM is, of course, suitable for peri-
odic control systems and other type of functionality that need to be managed
or polled periodically. However, the mixed requirements on systems indicate
that the event-triggered execution model could also be used in systems de-
velopment. For this reason, RubusCMv3 supports two fundamental execution
models, the time- and event-triggered models. Hence, developers can choose
different EMs for different subsystems, e.g., static scheduling for critical core
functions (which is often desired, and sometimes even mandated by safety stan-
dards and certification agencies [Com00]) while allowing less critical functions
to be executed using a less resource demanding and flexible EM.

The fact that EMs are logical objects defined in the infrastructure, instead
of being coded into the components, will facilitated component reuse, since
components can be developed independent of the EMs. This, in turn, will
in a long term perspective decrease the software development costs. Also,
for companies that sustain a product line,1 software reuse is crucial and is an
important factor in decreasing the time-to-market for new products.

To formally verify whether the real-time properties of a Rubus design is

1A product line is a series of related, but yet distinct, products. Economical benefits are
achieved by synergies in the development and maintenance of the products in the product line.

90 Paper C

met, response time analysis such as [Red03, MT05, DBBL07, PPE+06] may
be used. In addition to formal analysis, verification of the logical functionality
may be done by, for example, stimulating data and triggering. We have devel-
oped a framework for such verification of SWCs and ASMs/CMPs on PCs, see
Fig. 8.12. The framework reads input data from, for example, Matlab. The data
is then fed to the simulation process that controls the stimulation of input ports
and state variables using probes. The output from the simulation process can
be fed back to, for example, Matlab. This gives developers possibilities to test
the logical functionality of software elements, even without having the actual
hardware at hand. The framework has been successfully tested in development
and it is currently used by our industrial partners.

Probe
In

Circuit

Probe
Out

Circuit

Circuit

Circuit

Test Object

Component Process

Rubus OS/Win.

Simulation Control Process

Probe In

data

Probe

Out data

Execution

Control

Stimulation Process

Files/GUI/Matlab/LabView Files/GUI/Matlab/LabView

Stimulation PC

Shared memory

Shared memory TCP/IP

Probe
In

Circuit

Probe
Out

Circuit

Circuit

Circuit

Test Object

Component Process

Rubus OS/Win.

Simulation Control Process

Probe In

data

Probe

Out data

Execution

Control

Stimulation Process

Files/GUI/Matlab/LabView Files/GUI/Matlab/LabView

Stimulation PC

Shared memory

Shared memory TCP/IP

Figure 8.12: Framework for testing of logical functionality of Rubus software
elements

For resource constrained embedded systems, the resulting design must be
resource efficiently mapped to a run time system. The mapping of logical soft-
ware items to executable threads can of course be done in several ways. How-
ever, the RubusCMv3 model provides possibilities to map several components
into one executable thread, minimising contexts switch overheads. This is pos-

Paper C 91

sible since the model provides possibilities to realise functionality as transac-
tions, i.e., a sequential execution of components triggered by a common source
such as a clock item. In addition, the run-to-completion semantics of SWCs
and the fact that synchronisation is done in the infrastructure, enables efficient
use of memory by stack sharing. Stack sharing allows several tasks to share,
i.e., execute, on a single stack, even in preemptive systems. It has been shown
that significant memory savings can be achieved by stack sharing. Today, there
exists a number of methods to formally analyse the amount of stack needed in
shared stack systems, e.g., [BHMT+08, DMT00, HMTB+06].

A run-time environment is essential to provide the infrastructure services
that are needed to execute the logic defined by a component model. Further-
more, a run-time environment must also be able to preserve the semantics and
support efficient execution of the logics defined by a component model. In
general, RubusCMv3 do not restrict the use of a specific run-time environment,
in fact, any run-time environment that endorse the semantics of RubusCMv3
can be used. However, to fully support RubusCMv3 model the run-time envi-
ronment must be able to realise the complete set of logic with the semantics
defined by the model. Currently, we have extended the Rubus-RTOS [Arc] to
fully support the RubusCMv3 model.

8.7 Conclusions and future work

Today’s embedded systems are typically characterised by having a mix of func-
tionality with requirements ranging from hard real-time, soft and even non real-
time. Many of these systems operate in resource constrained environments that
need to satisfy requirements on dependability as well as efficient resource us-
age. Current trends predict a continuing increase in diversity of functionality
in systems, resulting in an increasing system complexity. Component Based
Development (CBD) is a promising and emerging development discipline for
real-time systems, providing many attractive qualities such as encapsulation,
high level description and reusable logic.

This paper presented the RubusCMv3 component model, a novel compo-
nent model for development of resource constrained embedded real-time sys-
tems. The model has been developed in close cooperation with industrial part-
ners. It aims at supporting three important activities in real-time development,
(i) design, (ii) analysis and (iii) synthesis. These activities emphasise differ-
ent and sometimes conflicting requirements that need to be balanced. The
model provides methods to express the infrastructure of software functions,

92 Paper C

i.e., the interaction between software functions in terms of data- and control-
flow. The resulting architecture is formal enough for analysis of timing and
memory properties. The components and the infrastructure allows for a re-
source efficient mapping onto a run-time structure.

The model is integrated in the next generation of the Rubus tool suite
(RubusICE), the model is currently evaluated on real systems. We have suc-
cessfully converted a traditionally developed industrial system, into a compo-
nent based system using RubusCMv3. Future work consists of evaluating the
component model in other industrial settings.

Bibliography

[Arc] Arcticus Systems. Web page, http://www.arcticus-systems.com.

[BAE] BAE Systems Hägglunds. Web page, http://www.baesystems.-
com/hagglunds.

[BHMT+08] M Bohlin, K Hänninen, J. Mäki-Turja, J Carlson, and M. Nolin.
Safe Shared Stack Bounds in Systems with Offsets and Prece-
dences. Technical Report MRTC no. 221, Mälardalen Real-Time
Research Centre (MRTC), January 2008.

[CE03] A. Cervin and J. Eker. The Control Server Model: A Computa-
tional Model for Real-Time Control Tasks. In Proc. of the 15th

Euromicro Conference on Real-Time Systems, July 2003.

[Com00] International Electrotechnical Commission. Functional Safety

and IEC 61508, May 2000.

[DBBL07] R.I. Davis, A. Burns, R.J Bril, and J.J Lukkien. Controller Area
Network (CAN) schedulability analysis: Refuted, revisited and
revised. Real-Time Systems, 35(3):239–272, 2007.

[DEC] DECOS - Dependable Embedded Components and Systems.
Web page, http://www.decos.at.

[DGL+04] M. Díaz, D. Garrido, L.M. Llopis, F. Rus, and J.M. Troya. Inte-
grating Real-Time Analysis in a Component Model for Embed-
ded Systems. In Proceedings of the 30th Euromicro Conference,
pages 14–21. IEEE Computer Society, Rennes, France, Septem-
ber 2004.

93

94 Bibliography

[DMT00] R. Davis, N. Merriam, and N. Tracey. How Embedded Applica-
tions using an RTOS can stay within On-chip Memory Limits. In
Proc. of the WiP and Industrial Experience Session, Euromicro

Conference on Real-Time Systems, June 2000.

[HLS96] H. Hansson, H. Lawson, and M. Strömberg. BASEMENT a Dis-
tributed Real-Time Architecture for Vehicle Applications. Jour-

nal of Real-Time Systems, 3(11):223–244, November 1996.

[HMTB+06] K Hänninen, J Mäki-Turja, M Bohlin, J Carlson, and M Nolin.
Determining Maximum Stack Usage in Preemptive Shared Stack
Systems. In Proc. 27th IEEE Real-Time Systems Symposium

(RTSS), pages 445–453, December 2006.

[HMTN06] K. Hänninen, J. Mäki-Turja, and M. Nolin. Present and Future
Requirements in Developing Industrial Embedded Real-Time
Systems -Interviews with Designers in the Vehicle Domain. In
Proceedings of the 13th International Conference and Workshop

on the Engineering of Computer Based Systems, pages 139–147.
IEEE Computer Society, Potsdam, Germany, March 2006.

[Kno] Knorr-bremse. Web page,
http://www.knorr-bremse.com.

[MÅFN04] Anders Möller, Mikael Åkerholm, Johan Fredriksson, and
Mikael Nolin. Evaluation of Component Technologies with
Respect to Industrial Requirements. In Euromicro Conference,

Component-Based Software Engineering Track, August 2004.

[Mec] Mecel. Web page, http://www.mecel.se/.

[Mica] Microsoft. Microsoft COM Technologies. Web page, http://-
www.microsoft.com/com/.

[Micb] Microsoft. .NET. Web page, http://www.microsoft.com/net/.

[MSZ02] P. O. Müller, C. M. Stich, and C. Zeidler. Building Reliable

Component-Based Software Systems, chapter Component Based
Embedded Systems, pages 303–323. Artech House publisher,
2002. ISBN 1-58053-327-2.

Bibliography 95

[MT05] J. Mäki-Turja. Engineering Strength Response-Time Analysis,

A Timing Analysis Approach for the Development of Real-Time

Systems. PhD thesis, Mälardalen University, Department of
Computer Science and Electronics, 2005. 179 pp.

[MTHN05] J. Mäki-Turja, K. Hänninen, and M. Nolin. Efficient Develop-
ment of Real-Time Systems Using Hybrid Scheduling. In In-

ternational conference on Embedded Systems and Applications

(ESA), June 2005.

[Mul] MultEx project. Web page, http://www.mrtc.mdh.se/projects/-
multex/.

[OMG] OMG. CORBA. Web page, http://www.omg.org/corba/.

[OMG02] OMG. CORBA Component Model 3.0, June 2002.
Web page, http://www.omg.org/technology/documents/formal/-
components.htm.

[PEC] PECOS project. Web page, http://www.pecos-project.org.

[PPE+06] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei. Timing Analysis
of the FlexRay Communication Protocol. In Proc. of the 18th

Euromicro Conference on Real-Time Systems, July 2006.

[PRO] PROGRESS. Web page, http://www.mrtc.mdh.se/progress/.

[Red03] O. Redell. Response Time Analysis for Implementation of Dis-

tributed Control Systems. PhD thesis, KTH, Department of Ma-
chine Design, 2003. Series: TRITA-MMK 2003:17.

[Rob] Robocop project. Web page, http://www.extra.research.philips.-
com/euprojects/robocop/index.htm.

[SAV] SAVE. SAVE project. Web page, http://www.artes.uu.se/++/-
SAVE/.

[Spa] Space4U project. Web page, http://www.extra.research.philips.-
com/euprojects/space4u.

[Sta01] John A. Stankovic. VEST — A Toolset for Constructing and An-
alyzing Component Based Embedded Systems. Lecture Notes

in Computer Science, 2211:390–402, 2001. URL citeseer.

nj.nec.com/stankovic00vest.html.

[SUNa] SUN Microsystems. Enterprise Javabeans Technology. Web
page, http://java.sun.com/products/ejb/.

[SUNb] SUN Microsystems. Introducing Java Beans. Web
page, http://developer.java.sun.com/developer/onlineTraining/-
Beans/Beans1/index.html.

[VCE] Volvo construction equipment. Web page,
http://www.volvoce.com.

[Ves97] S. Vestal. Support for Real-Time Multi-Processor Avionics. In
Proc. 18th IEEE Real-Time Systems Symposium (RTSS), pages
11–21, December 1997.

[vO02] Rob van Ommering. Building Reliable Component-Based Soft-

ware Systems, chapter The Koala Component Model, pages 223–
236. Artech House Publishers, July 2002. ISBN 1-58053-327-2.

[Wal03] A. Wall. Architectural Modeling and Analysis of Complex Real-

Time Systems. PhD thesis, Mälardalen University, Dept. of Com-
puter Science and Engineering, September 2003.

Chapter 9

Paper D:

Efficient Event-Triggered

Tasks in an RTOS

Kaj Hänninen, John Lundbäck, Kurt-Lennart Lundbäck, Jukka Mäki-Turja,
Mikael Nolin
In Proceedings of the 2005 International Conference on Embedded Systems
and Applications, Las Vegas, USA, June, 2005.

97

Abstract

In this paper, we add predictable and resource efficient event-triggered
tasks in an RTOS. This is done by introducing an execution model suitable
for example control software and component-based software. The execution
model, denoted single-shot execution (SSX), can be realized with very simple
and resource efficient run-time mechanisms and is highly predictable, hence
suitable for use in resource constrained real-time systems. In an evaluation,
we show that significant memory reductions can be obtained by using the SSX
model.

Paper D 99

9.1 Introduction

When designing software for embedded systems, resource consumption is of-
ten a major concern. Software consumes resources primarily in two domains:
the time domain (execution time), and the memory domain (e.g., RAM and
flash memory). For systems without real-time requirements, the resource con-
sumption in the time domain may be of less importance. However, most em-
bedded systems are either used to control or monitor some physical process,
or used interactively by a human operator. In both of these cases, it is often
required that the system responds within fixed time limits. Hence, methods
for development of embedded systems need to allow design of both memory
and time efficient systems. Moreover, predictable use of the resources are re-
quired. Predictions of the amount of resources needed to execute the system
are used to dimension the system resources (e.g., selecting CPU and amount
of memory). The current trend in development of embedded systems is to-
wards using high-level design tools with a model-based approach. Models are
described in tools like Rational Rose, Rhapsody, Simulink, etc. From these
models, whole applications or application templates are generated. However,
this system generation seldom considers resource consumption. The resulting
systems become overly resource consuming and even worse; they exhibit un-
predictable resource consumption at run-time. In this paper, we describe and
evaluate the integration of a resource efficient and predictable execution model,
denoted single shot execution model (SSX), in a commercial real-time operat-
ing system. The execution model facilitates stack sharing to reduce memory
consumption and priority scheduling to allow timing predictions. The paper
is organized as follows. In section 9.2, we describe the properties of the SSX
model and the prerequisites needed to utilize the model. In section 9.3, we
describe our target platform, the Rubus RTOS. In section 9.4, we describe the
integration of SSX in Rubus and in section 9.5, we evaluate the stack usage un-
der the SSX model in different execution scenarios. In section 9.6, we conclude
the integration of SSX in Rubus.

9.2 The single shot execution model (SSX)

Throughout the years, research in real-time scheduling and real-time oper-
ating systems has resulted in a vast number of different execution models,
e.g.,[Bak90, DMT00, Loc92, Nor, XP00], one of them being the single shot ex-
ecution model in which tasks are considered to terminate at the end of each in-

100 Paper D

vocation, i.e., execute to completion (as opposed to indefinitely looping tasks).
Baker [Bak90] and Davis et al. [DMT00] shows that the single shot execu-
tion model, with an immediate priority ceiling protocol, enables possibilities
for efficient resource usage by stack sharing among several tasks. Stack shar-
ing in the SSX model is feasible because higher priority tasks are allowed to
pre-empt lower priority tasks and execute to completion (i.e., terminate) before
lower priority tasks are allowed to resume their execution. However, the fact
that a task must execute to completion (terminate) before any lower priority
task is allowed to execute, puts some restrictions on suspensions of tasks in the
SSX model:

• To guarantee correct stack access, self-scheduling of SSX tasks, i.e., call-
ing timed sleep or delay functions may not be used in the application
code of SSX tasks.

• Task synchronization should be done using the Immediate Priority Ceil-
ing Protocol (IPCP). This ensures that a task will never be allowed to
start executing, before it is guaranteed to have access to all resources it
needs. Hence, calls for accessing shared resources, such as semaphores,
will never result in blocking due to locked resources. Any possible
blocking will occur before the task is allowed to start execute.

However, these design restriction also facilitate predictability since the ad-
ministration of the tasks is left entirely to the operating system. Moreover,
it is known that the immediate priority ceiling protocol is deadlock free and
exhibits an upper bound on blocking times for tasks sharing resources. This
implies that an analysis technique such as response-time analysis [ABD+95]
enables analysis of temporal properties of an SSX system. The SSX model is
conceptually very simple, at run-time a task can be in one of three states: termi-
nated, ready, or executing. The main difference, from a developers view, is that
a conventional RTOS often uses so called self-scheduled tasks. This means that
a task is activated once, typically at system start-up, and eventually, after some
possible initialization code, ends up in an infinite loop where it self-schedules
itself, e.g., using delay calls. An SSX task, on the other hand, when activated
by the OS, executes with no delay calls, and terminates upon completion. This
means that such tasks have to be re-scheduled by the OS in order to provide
a continuous service. Figure 9.1 illustrates the structural difference between a
conventional task and an SSX task.

In this paper, we present an integration of the SSX model in the Rubus
RTOS. We also present a quantitative evaluation of stack usage under different
execution scenarios.

Paper D 101����������	�
����������
//Task code������������� ����������	�
��

//Task code�����������	�
����������
//Task code������������� ����������	�
��

//Task code�
Figure 9.1: Looping task (left). Typical SSX task (right)

9.3 The Rubus operating system

Rubus is a real-time operating system developed by Arcticus Systems [Arc].
Rubus is targeted towards systems that typically require handling of both safety
critical functions as well as less critical functions. The emphasis of Rubus is
placed on satisfying reliability, safety and temporal verification of applications.
It can be seen as a hybrid operating system in the sense that it supports both
statically and dynamically scheduled tasks. The key features of Rubus RTOS
are:

• Guaranteed real-time service for safety critical applications

• Best-effort service for non-safety critical applications

• Support for time- and even-triggered execution of tasks

• Support for component based applications

Rubus consist of three separate kernels (Figure 9.2). Each kernel supports
a specific type of execution model.

The Red kernel supports time driven execution of static scheduled ’Red
tasks’, mainly to be utilized for applications with fixed hard real-time require-
ments. The static schedule is created off-line by the Rubus Configuration Com-
piler. Synchronizations of shared resources are handled by time separation in
the static schedule. All tasks executed under the Red kernel share a common
stack. A Red task is implemented by a C function, and the task is completed
when the function returns. The Blue kernel administrates event driven exe-
cution of dynamic scheduled ’Blue tasks’, mainly intended for applications
having soft real-time requirements. Task handled by the Blue kernel are sched-
uled on-line by a fixed priority pre-emptive scheduler. Synchronizations among

102 Paper D

Rubus OS
Red Kernel
Red Threads

Basic Services

Green Kernel
Interrupts

Blue Kernel
Blue Threads

Figure 9.2: Rubus RTOS architecture

Blue tasks are managed by a Priority Ceiling Protocol (PCP)[SRL90]. As op-
posed to the Red execution model, the Blue execution model does not support
stack sharing among Blue tasks. Blue tasks are commonly used as indefinitely
looping tasks (see Figure 9.1) periodically reactivated by system calls, e.g.,
blueSleep, that suspends the execution of Blue tasks for a specified time in-
terval. The Green kernel handles external interrupts. The ’Green tasks’ are
scheduled on-line with a priority based scheduling algorithm dependent of the
application hardware, i.e., microprocessor. The Rubus off-line scheduler is
guaranteed to generate a static schedule (see Red kernel above) with sufficient
slack available to handle interrupts [SEF98]. When a Green task is executed,
it may utilize the stack of the currently active Red or Blue task, implying that
the active task may need to supply stack space for interrupt handling. Dispatch
priorities of the tasks executing under the different kernels are illustrated in
Figure 9.3. Tasks managed by the Green kernel have highest priority, and tasks
managed by the Blue kernel have lowest priority.

 High ��� ������� �!!"# �$%"� �����

Low

Figure 9.3: Task priorities in Rubus

Paper D 103

Rubus supports the possibility to utilize software components for applica-
tion development. The computational part of the supported software compo-
nents is realized either by a Green, Red or by a Blue task.

9.4 Integration of SSX in Rubus

Introducing a new execution model in an operating system for resource con-
strained embedded real-time systems, require careful design to minimize the
overhead of the new model and effects (temporal and spatial) on existing mod-
els. On one hand, we could minimize the memory overhead imposed by the
new execution model, by sharing administrative code in the kernel between the
existing execution models and the new execution model. In doing so, we would
impose additional timing overhead on the existing models wherever a kernel
needs to be able to separate the different models, e.g., at sorting, queuing and
error handling etc. On the other hand, we could avoid imposing timing effects
on the existing models by separating the models, i.e., modularize, and allow
the kernel to administrate the new SSX model in isolation from the existing
execution models. This approach would increase the number of administrative
functions, thus requiring more memory. In this implementation, we choose
to share administrative OS code between the SSX model and the Blue model
since the timing overhead imposed by the SSX model, on the Blue model, is
very low. A new execution model may be introduced to a system by changing
the current scheduling policy or existing task model. In our case, we retain
the same scheduling policy for the SSX model as for the Blue model (fixed
priority scheduling). However, a new task model is introduced to support the
SSX model. Each task in Rubus is defined by its: basic attributes, Task Control
Block (TCB), stack/heap memory area and application code. By adding peri-
odicity and deadline attributes to the existing task model, we are able to share
all fundamental task structures between SSX tasks and the existing Blue tasks.
Administration of SSX tasks is handled entirely by the Blue kernel (Figure
9.4).

The resulting relation of task priorities in Rubus, including SSX, is illus-
trated in Figure 9.5. The priority assignments and the fact that the administra-
tion of SSX tasks are handled entirely by the Blue kernel, makes the temporal
attributes of tasks using the SSX model fully analyzable. In systems consisting
solely of SSX tasks, the analysis can be performed with [ABD+95]. The SSX
tasks can also be analyzed in hybrid systems consisting of Interrupts, Red tasks
and SSX tasks with [MTHN05].

104 Paper D

Rubus OS
Red Kernel
Red Threads

Basic Services

Green Kernel
Interrupts

Blue Kernel
Blue + SSX

Threads

Figure 9.4: Rubus RTOS architecture with SSX model

 High

Low

&'()*+,+-./'0012/+334)*+,+
 561')*+,+

Figure 9.5: Task priorities in Rubus, including SSX

All tasks executing under the SSX model share a common stack (in fact,
there is nothing that prevents stack sharing also between Red and SSX tasks).
The common stack pointer, for SSX tasks, is globally accessible, hence it does
not have to be stored in the TCBs. To support resource sharing in the SSX
model, the immediate priority ceiling protocol was implemented. The follow-
ing is a summary of all major changes made in Rubus to support the SSX
execution model:

• Separation of tasks administrated by the Blue kernel and executed under
different models

• Modification of administrative functions to support SSX tasks

• Error detection for SSX tasks

• Activation functionality for the SSX tasks

• Introduction of the immediate priority ceiling protocol

The integration of SSX in Rubus allows the execution model to be directly
applicable for the Rubus component model. Hence, the possibility to utilize

Paper D 105

software component for applications has been extended to include four execu-
tion models, the Green, the Red, the Blue and the SSX model. The shared stack
in the SSX model can be safely dimensioned, as shown below, by summing the
maximum stack usage of all tasks in each priority level, and adding stack-space
for interrupts. SSX tasks with equal priorities cannot pre-empt each other in
Rubus, hence it suffice to take the maximum stack usage in each priority level.

j

Pi
P

ssx sususu
ij

 maxint ∑
∈∀

∈∀

+=
τ

sussx, denotes maximum stack usage of all SSX tasks. suint, denotes
interrupt stack usage. Pi denotes the set of tasks with priority i. P denotes the
set of all priority levels. τi denotes task i. su(τi) denotes stack usage, including
context switch overhead, of task i. A more accurate dimensioning approach
would be to examine possible pre-emptions, and identify the pre-emption(s)
resulting in maximum stack usage. Identification of possible pre-emptions in a
fixed priority based system is considered in [RG04].

9.5 Evaluation of SSX in Rubus

Stack sharing allows for an efficient memory usage, which may avoid or at least
postpone the need for additional RAM in evolving systems. To illustrate how a
shared stack affects memory usage, we simulate different execution scenarios
where the total stack usage varies a lot depending on the execution model in
use. We simulate three different execution scenarios using two different execu-
tion models, the Blue and the SSX model, for each scenario. The first scenario
is obtained from a flyer promoting the SSX5 RTOS [Nor]. The second scenario
models a traditional control application, where a sequence of tasks is used to
sense, calculate control parameters, and actuate. These tasks are executed in
sequence, hence they do not pre-empt each other. The third scenario illustrates
a system with full pre-emption depth, i.e., all tasks are pre-empted. The sce-
nario can be seen as an example where the benefit of SSX is less, e.g., SSX as
interrupt handling tasks in systems with multiple interrupt levels.

9.5.1 Evaluation method

The evaluations are performed under a Rubus OS simulator running on a PC.
We calculate the stack usage as the maximum number of data pushed onto the

106 Paper D

stack, from the dispatching of a task until it has finished execution. In doing so,
we are able to include the concealed pushes of stack frames, i.e., stack usage
occurring before execution of the actual task code, in the calculations. All
stacks are initially filled with a pre determined data pattern. We then calculate
the number of overwritten data patterns, i.e., stack usage, by examining the
content of the stacks at termination of the system. It is assumed that tasks do
not push frames identical to the pre determined data pattern at run time.

9.5.2 Application description

In each of the following execution scenarios, timer interrupts are generated at
a frequency of 100Hz. Each timer interrupt activates the Blue kernel task, re-
sponsible for time supervision and dispatching of the tasks in the system. The
service routine for timer interrupts, having highest priority in the system, ex-
ecute on the stack of an active task. However, in the following scenarios, the
worst-case execution times of the tasks are very short, resulting in all tasks fin-
ishing their executions before any consecutive timer interrupt hits the system.
The run time model in each of the following scenarios is fixed priority, pre-
emptive scheduling. We denote the priority of a task with Π, and its period, or
in the case of sporadic tasks, its minimum interarrival time with T.

Scenario 1

The task set in the following scenario, obtained from a flyer evaluating the
overheads of SSX5 [Nor], consists of; seven periodic tasks with periodicities
ranging from 10ms to 80ms, and three interrupt handling tasks with a minimum
interarrival time of 20ms (see Table 9.1).

Running the system under the SSX model (with one shared stack for tasks
τ1 - τ10), results in a total stack usage of 316 bytes. With the Blue kernel stack
included, the total stack usage is 460 bytes. Yet again, we evaluate scenario
1 but with the difference that tasks τ1 - τ7 are executed as Blue tasks (Blue
execution model), achieving a pseudo periodic behavior by a call to a sleep
function. According to the Rubus OS reference [Arc], the suspension (sleep)
of the tasks requires two additional local variables, and besides the sleep call,
an additional call to a function that converts the suspension time into timer
ticks, resulting in increased stack usage (from 72 bytes to approximately 152
bytes) for a Blue task. This results in a total stack usage of 1480 bytes for
tasks τ1 - τ10. With the Blue kernel stack included, the total stack usage
is 1612 bytes. We noticed that the kernel uses 12 bytes less stack under the
Blue model, than under the SSX model. This is due to Blue tasks scheduling
themselves, instead of being assigned an activation time by the kernel. Table

Paper D 107

Table 9.1: Task set, Scenario 1
Task Π T(ms) Stack usage(bytes) SSX/Blue

τKERNEL 15 10 144/132
τ1 5 10 72/152
τ2 5 10 72/152
τ3 4 20 72/152
τ4 4 20 72/152
τ5 3 40 72/152
τ6 2 80 72/152
τ7 2 80 72/152
τ8 5 ≥ 20 72/72
τ9 5 ≥ 20 72/72
τ10 5 ≥ 20 72/72

9.2 shows the resulting stack usage for scenario 1.

Table 9.2: Stack usage, Scenario 1
Exec. model Total stack usage (bytes)

SSX 460
Blue 1612

Savings ≈71%

Scenario 2

The following scenario consists of pure periodic tasks with harmonic period
times (see Table 9.3). The scenario can be seen as a simplification of a typical
vehicular control system, e.g., as described in [RH03].

Table 9.4 shows the resulting stack usage for scenario 2 under the SSX and
Blue execution models.

Scenario 3

The previous scenario shows an ideal situation for introducing SSX tasks.
However, in applications where most tasks are asynchronous and pre-emptions
appear randomly, the gains of SSX tasks is less, Thus, this scenario is pre-
pared to show that the total stack usage, in certain situations, is nearly identical
between the SSX and Blue execution model. The task set in this scenario con-
sists of one periodic task τ4 and three event-triggered tasks τ1 - τ3 (see Table

108 Paper D

Table 9.3: Task set, Scenario 2
Task Π T(ms) Stack usage(bytes) SSX/Blue

τKERNEL 15 10 144/132
τ1 5 10 72/152
τ2 5 10 72/152
τ3 4 20 72/152
τ4 4 20 72/152
τ5 3 40 72/152
τ6 2 80 72/152
τ7 2 80 72/152

Table 9.4: Stack usage, Scenario 2
Exec. model Total stack usage (bytes)

SSX 216
Blue 1196

Savings ≈82%

9.5). The execution of the task set is prepared to exhibit full pre-emption depth
meaning that if a task can be pre-empted it will be so. Each task is assigned a
unique priority, thus enabling pre-emption between each pair of tasks.

Table 9.5: Task set, Scenario 3
Task Π T(ms) Stack usage(bytes) SSX/Blue

τKERNEL 15 10 144/132
τ1 5 - 72/72
τ2 4 - 72/72
τ3 3 - 72/72
τ4 2 80 72/152

Table 9.6 shows the resulting stack usage for scenario 3 under the SSX and
Blue execution models.

Paper D 109

Table 9.6: Stack usage, Scenario 3
Exec. model Total stack usage (bytes)

SSX 612
Blue 708

Savings ≈14%

9.5.3 Results

Simulations have shown that stack memory usage in Rubus OS varies when
comparing systems executed under the SSX model and systems executed under
the Blue model. The differences in stack usage are mainly dependent on the
type of application being realized. The fact that each Blue task is allocated its
own stack makes them less memory efficient in all scenarios. In an example
system of 7 non-pre-emptable tasks, the difference in stack memory usage is as
much as 82% less for SSX tasks than for Blue tasks. Another system derived
from a flyer on SSX5, results in a difference of 71% less stack usage for the
SSX tasks than for the Blue tasks. However, less difference in stack usage is
observed in situations of deeply nested pre-emptions. As the pre-emption depth
increases, the difference in stack usage typically decreases. This is shown by
our simulations of a system with full pre-emption depth where the difference
in stack usage between the SSX model and the Blue model, is relatively low.
Hence, the SSX model is specifically suitable for applications where jobs (or
transactions) of dependent tasks are modeled without pre-emptions within the
jobs, e.g., control systems. On the contrary, the SSX model is less beneficial
for applications experiencing large pre-emption depths. However, in any type
of application, the SSX model is at least as resource efficient, with respect to
stack usage, as the Blue model. This makes the SSX model an attractive choice
when developing systems.

9.6 Conclusion and future work

In this paper, we presented the integration of a resource efficient and pre-
dictable single shot execution model in the Rubus RTOS. The model allows
for efficient stack usage and predictability of temporal attributes. These facts
make the model attractive for development of resource constrained real-time
systems. The integration has shown that the model can be integrated with very

110 Paper D

simple run-time mechanisms. As future work, we are planning to include sup-
port for development and analysis (temporal and spatial) of SSX in Rubus Vi-
sual Studio (VS), which is an integrated environment for design, simulation
and analyzing of embedded real-time applications.

Bibliography

[ABD+95] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings.
Fixed Priority Pre-Emptive Scheduling: An Historical Perspec-
tive. In Real-Time Systems, 8(2/3), 1995.

[Arc] Arcticus Systems. Web page, http://www.arcticus-systems.se.

[Bak90] T.P. Baker. A Stack Based Resource Allocation Policy for Real-
Time Processes. In Proceedings of the 11th IEEE Real-Time Sys-

tems Symposium. IEEE, 1990.

[DMT00] R. Davis, N. Merriam, and N. Tracey. How Embedded Applica-
tions using an RTOS can stay within On-chip Memory Limits. In
Proceedings of the WiP and Industrial Experience Session, Eu-

romicro Conference on Real-Time Systems, June 2000.

[Loc92] C.D. Locke. Software Architecture For Hard Real-Time Appli-
cations - Cyclic Executives vs. Fixed Priority Executives. The

Journal of Real-Time Systems, 4:37–53, 1992.

[MTHN05] J. Mäki-Turja, K. Hänninen, and M. Nolin. Efficient Development
of Real-Time Systems using Hybrid Scheduling. In Proceedings

of the International Conference on Embedded Systems and Appli-

cations (ESA), June 2005.

[Nor] Northern Real-Time Applications, SSX5 true RTOS. Web page,
http://www.ssx5.com/NRTAHome.htm.

[RG04] R.Dobrin and G.Fohler. Reducing the number of preemptions in
fixed priority scheduling. In Proceedings of the 16th Euromicro

Conference on Real-Time Systems, July 2004.

111

[RH03] T. Riutta and K. Hänninen. Optimal Design. Master’s thesis,
Dept. of Computer Science and Engineering, Mälardalen Univer-
sity, 2003.

[SEF98] K. Sandström, C. Eriksson, and G. Fohler. Handling Interrupts
with Static Scheduling in an Automotive Vehicle Control System.
In Proceedings of the 5th International Conference on Real-Time

Computing Systems and Applications, 1998.

[SRL90] L. Sha, R. Rajkumar, and JP. Lehoczky. Priority Inheritance Proto-
cols: An Approach to Real-Time Synchronization. In IEEE Trans-

actions on Computers, Volume: 39, Issue 9, 1990.

[XP00] J. Xu and D.L. Parnas. Priority Scheduling Versus Pre-Run-Time
Scheduling. The Journal of Real-Time Systems, 18(1):7–23, Jan-
uary 2000.

Chapter 10

Paper E:

Determining Maximum

Stack Usage in Preemptive

Shared Stack Systems

Kaj Hänninen, Jukka Mäki-Turja, Markus Bohlin, Jan Carlson, Mikael Nolin
In Proceedings of the 27th IEEE Real-Time Systems Symposium, Rio de
Janeiro, Brazil, December, 2006.

113

Abstract

This paper presents a novel method to determine the maximum stack memory
used in preemptive, shared stack, real-time systems. We provide a general and
exact problem formulation applicable for any preemptive system model based
on dynamic (run-time) properties.

We also show how to safely approximate the exact stack usage by using
static (compile time) information about the system model and the underlying
run-time system on a relevant and commercially available system model: A
hybrid, statically and dynamically, scheduled system.

Comprehensive evaluations show that our technique significantly reduces
the amount of stack memory needed compared to existing analysis techniques.
For typical task sets a decrease in the order of 70% is typical.

Paper E 115

10.1 Introduction

In conventional multitasking systems, each thread of execution (task) has its
own allocated execution stack. In systems with a large number of tasks a large
number of stacks are required. Hence the total amount of RAM needed for the
stacks can grow exceedingly large.

Stack sharing is a memory model in which several tasks share one com-
mon run-time stack. It has been shown that stack sharing can result in memory
savings [DMT00, HLL+05] compared to the conventional stack model. The
shared stack model is applicable to both non-preemptive as well as preemp-
tive systems, and it is especially suitable in resource constrained embedded
real-time systems with limited amount of memory. Stack sharing is currently
supported by many commercial real-time kernels, e.g., [Arc, Dig, Gro, Uni].

The traditional method to calculate the memory requirements for a shared
run-time stack in preemptive systems is to sum the maximum stack usage of
tasks in each preemption level and possibly consider additional overheads such
as memory used by interrupts and context switches. A major drawback with the
traditional calculation method is that it often results in over allocation of stack
memory by presuming that all tasks with maximum stack usage in each priority
level can preempt each other in a nested fashion during run-time. However,
there may, in many cases, be no actual possibility for these tasks to preempt
each other (e.g., due to explicit or implicit separation in time). Moreover, the
possible preemptions may not be able to occur in a nested fashion.

Taking advantage of the fact that many real-time system exhibit a pre-
dictable temporal behavior, it is possible to identify feasible preemption sce-
narios, i.e., which preemptions can in fact occur, and whether they can occur in
a nested fashion or not. Therefore, a more accurate stack analysis can be made.
One example of a system that lends itself to such analysis is a hybrid, stati-
cally and dynamically, scheduled system. Such a system consists of an off-line
scheduler producing the static schedule and a fixed priority scheduler (FPS)
that dispatches tasks at run-time. The commercial operating system, Rubus OS
by Arcticus Systems AB [Arc], supports such a system model. The Rubus OS
is mainly used in resource-constrained embedded real-time systems. For in-
stance, in the vehicular industry, Volvo Construction Equipment (VCE) [VCE],
BAE Systems Hägglunds [BAE], and Haldex Traction Systems [Hal] all use the
Rubus OS in their vehicles or components.

In this paper, we present the general problem of analyzing a shared sys-
tem stack for resource constrained preemptive real-time systems. We provide
a general and exact problem formulation applicable for preemptive systems

116 Paper E

based on dynamic run-time properties. We also present an approximate stack
analysis method to derive a safe upper bound on stack usage in static offset
based, fixed priority and preemptive systems that use a shared stack. We evalu-
ate and show that the proposed method gives significantly lower upper bounds
on stack memory requirements than existing stack dimensioning methods for
fixed priority systems.

Paper outline. Section 10.2 describes related work and sets the context
for the contributions of this paper. In sections 10.3, 10.4, and 10.5 we present
the exact formulation of determining the maximum stack usage and our safe
approximation of the stack usage for our target system model. Section 10.6
presents an evaluation of our approximative analysis method, and Section 10.7
concludes the paper.

10.2 Related work

The notion of shared stack has been used in several publications to describe the
ability to utilize either a common run-time stack or a pool of run-time stacks.
For example, in [Mic], stack sharing is performed by having a pool of available
stack areas. When a task starts executing, it fetches a stack from the pool, and
returns it at termination. In [MSB05], Middha et al. address stack sharing in
the sense that the stack of a task can grow into the stack area of another task.

In this paper, we use the notion of stack sharing when several tasks use one
common, statically allocated, run-time stack. This type of stack sharing can be
efficiently implemented in systems where tasks have run-to-completion seman-
tics, and do not suspend themselves. This type of stack sharing is supported by
several commercial real-time operating systems, e.g., [Arc, Gro, Uni].

10.2.1 Stack analysis

In [Bak90], Baker presents the Stack Resource Policy (SRP) that permits stack
sharing among processes in static and in some dynamic priority preemptive
systems. The basic method to determine the maximum amount of stack usage
in SRP is to identify the maximum stack usage for tasks at each priority level
(or preemption level) and then to sum up these maximums for each priority
level. A safe upper bound (SPL) on the total stack usage using information
about priority levels can formally be expressed as:

SPL =
∑

l∈prio-levels

max
i∈tasks with prio l

(Si) (10.1)

Paper E 117

where Si is the maximum stack usage of task i.

Gai et al. [GLN01] present SRP with preemption thresholds (SRPT). They
present a procedure to minimize shared stack usage, without jeopardizing
schedulability, by use of non-preemption groups for tasks using SRPT. They
extend the work of Saksena and Wang [SW00] by taking the stack usage of
tasks into account when establishing non-preemption groups.

In [DMT00] Davis et al. address stack memory requirements by using
non-preemption groups to reduce the amount of memory needed for a shared
stack. They show that the number of preemption levels required for typical
systems can be relatively small, while maintaining schedulability.

Although non-preemption groups can reduce the amount of RAM needed
for a shared stack, the use of non-preemption groups affects a system by re-
stricting the occurrences of preemptions, which can have a negative affect on
schedulability. Also, the method we present in this paper can further reduce the
system stack by performing our analysis after preemption groups have been as-
signed.

10.2.2 Preemption analysis

A large number of publications address preemption analysis for different rea-
sons, see, e.g., [ARJ97, CRJ05, DF04, LLH+01, Reg02, RM06, SSE05]. For
example, in [LLH+01] Lee et al. present a technique to bound cache-related
preemption delays in fixed-priority preemptive systems. They account for task
phasing and nested preemption patterns among tasks to establish an upper
bound on the cache timing delay introduced by preemptions. Our work relates
to theirs in the sense that we also investigate occurrences of nested preemption
patterns. However, our objectives differ in that Lee et al. are mainly interested
in timing delays caused by cache reloading and preemption patterns whereas
we address shared memory requirements as an effect of nested preemption pat-
terns.

In [DF04], Dobrin and Fohler present a method to reduce the number of
preemptions in fixed priority based systems. They define three fundamental
conditions that have to be satisfied in order for a preemption to occur. The same
conditions form the basis of our upper bound method described in Section 10.5.

118 Paper E

10.3 Stack analysis of preemptive systems

The primary purpose of an execution stack is to store local data which consists
of variables and state registers, parameters to subroutines and return addresses.
Real-time systems typically have a separate stack, statically allocated, for each
task. However, under certain conditions, tasks can share stack to achieve a
lower overall memory footprint of the system.

In this paper we consider systems where a subset of tasks use a common,
statically allocated, run-time stack. For this to be possible, we assume that a
task only uses the stack between the start time of an instance and the finish-
ing time of that instance, i.e., no data remains on the stack from one instance
of a task to the next. Furthermore, we require non-interleaving task execu-
tion [Bak90, DMT00]. If υj begins executing between the start and finish of
υi, then υi is not allowed to resume execution until υj has finished. In prac-
tice, this is ensured by not allowing tasks to suspend themselves voluntarily, or
to be suspended by blocking once they have started their execution. In prac-
tice this means that OS-primitives like sleep() and wait_for_event()
cannot be used, and that any blocking on shared resources must be handled be-
fore execution start, e.g., with a semaphore protocol like immediate inheritance
protocol [BW96].

We formally define the start and finishing time of a task instance υi, as
follows:

st i The absolute time when υi actually begins executing.

ft i The absolute time when υi terminates its execution.

At any given point in time, the worst case total stack usage of the system equals
the sum of the stack usage for each individual task instance. Thus, with si(t)
denoting the actual stack usage of υi at time t, the maximum stack usage of the
system can be expressed as follows:

max
t∈time instant

∑

υi∈task instances

si(t) (10.2)

This corresponds to the amount of memory that must be statically allocated
for the shared stack to ensure the absence of stack overflow errors. For some
systems, e.g., non-preemptive, statically scheduled systems with simple task
code, it might be possible to directly compute or estimate si(t). In general,
however, they are not directly computable before the system is executed.

We note that the total stack usage depends on three basic properties:

(i) the stack memory usage of each task instance

Paper E 119

(ii) the possible preemptions that may occur between any two instances

(iii) the ways in which preemptions can be nested

Determining the stack memory usage of a single task instance requires
knowledge of the possible control-flow paths within the task code [HF05].
In [BDP01] Brylow et al. present a static checker for interrupt driven soft-
ware. The checker is able to calculate the stack size of assembler programs by
producing a control-flow graph annotated with information about time, space,
safety and liveness.

However, due to the difficulties in determining the exact stack usage at
every point in time for a given task instance, shared-stack analysis methods
often assume that whenever a task is preempted, it is preempted when it uses
its maximum stack depth. We make the same assumption, and use Si to denote
the maximum stack usage for task instance υi. Thus, when υi and υj are
instances of the same task, we have Si = Sj . Bounds on maximum stack
usage for a given task can be derived by abstract interpretation using tools such
as AbsInt [Abs] and Bound-T [Tid].

In order to calculate the maximum stack usage of the full system, we need
to account for all possible preemption patterns. Under the assumption of non-
interleaving task execution, a task instance, υi, is preempted by another task
instance, υj , if (and only if) the following holds:

st i < st j < ft i (10.3)

In particular, we are interested in chains of nested preemptions. We define
a preemption chain to be a set {υ1, υ2, . . . , υk} of task instances such that

st1 < st2 < · · · < stk < ftk < ftk−1 < · · · < ft1 (10.4)

Under the assumption that the worst case stack usage of a task occur when
the task is preempted, the worst case stack usage SWC for a shared stack
preemptive system can be expressed as follows:

SWC = max
PC∈preemption chains

∑

υi∈PC

Si (10.5)

This formulation, however, cannot be directly used for analyzing and di-
mensioning the shared system stack since it is based on the dynamic (only
available at run-time) properties st i and ft i. To be able to statically analyze the
system, one has to relate the static (compile-time) properties to these dynamic

120 Paper E

properties. This is done by establishing how the system model, scheduling
policy, and run-time mechanism constrain the values of the actual start and
finishing times. The problem can be viewed as a scheduling problem with the
objective of maximizing the total stack usage of the schedule, subject to system
constraints on how tasks are ordered in the schedule.

10.4 System model for hybrid scheduled systems

The system model we adopt is based on the commercial operating system
Rubus OS by Arcticus Systems AB [Arc], which supports the execution of
both time triggered and event triggered tasks. The Rubus OS is mainly in-
tended for, and used in dependable resource-constrained embedded real-time
systems.

The system model is a hybrid, static and dynamic, scheduled system where
a subset of the tasks are dispatched by a static cyclic scheduler (time triggered
tasks). The rest of the tasks are dispatched by events in the system (event
triggered tasks). The static schedule is constructed off-line and a fixed priority
scheduler (FPS) dispatches tasks at run-time. The event-triggered tasks can be
categorized in two different classes: (i) event-triggered interrupts which have
higher priority than the time-triggered tasks, and (ii) background scheduled
event-triggered tasks which have lower priority than the time-triggered tasks.

The time triggered tasks share a common system stack. It is the objective
of this paper to analyze, and ultimately dimension this shared system stack
efficiently. The time-triggered subsystem is used to host safety critical appli-
cations. Hence, to isolate it from any erroneous event-triggered tasks, it uses
its own stack.

10.4.1 Formal system model

The system model used in this paper can be seen as an offset based model with
static offsets [GH98, MTHN05, MTN05, Tin92], defined as follows: The sys-
tem, Γ, consists of a set of k transactions Γ1, . . . , Γk. Each transaction Γi is
activated by a periodic sequence of events with period Ti. For non-periodic,
events Ti denotes the minimum inter-arrival time between two consecutive
events. The activating events are mutually independent, i.e., phasing between
them is arbitrary.

A transaction, Γi, contains |Γi| tasks, and each task may not be activated
(released for execution) until a time, offset, elapses after the arrival of the acti-

Paper E 121

vating event.
We use τij to denote a task. The first subscript denotes which transaction

the task belongs to, and the second subscript denotes the number of the task
within the transaction. A task, τij , is defined by a worst case execution time
(Cij), an offset (Oij), a deadline (Dij), maximum jitter (Jij), maximum block-
ing from lower priority tasks (Bij), and a priority (Pij). Furthermore, Sij is
used to denote the maximum stack usage of τij . The system model is formally
expressed as:

Γ :={〈Γ1, T1〉, . . . , 〈Γk, Tk〉}

Γi :={τi1, . . . , τi|Γi|}

τij :=〈Cij , Oij , Dij , Jij , Bij , Pij , Sij〉

We assume that the system is schedulable and that the worst case response-
time for each task, (Rij), has been calculated [MTN05].

Due to the non-interleaving criterion for stack sharing, we require that tasks
exhibit run-to-completion semantics when activated, i.e., they cannot suspend
themselves. An invocation of a task can be viewed as a function call from the
operating system, and the invocation terminates when the function call returns.
When tasks share the same priority, they are served on a first-come first-served
basis.

We assume that if access to shared resources is not handled by the static
scheduler by time separation, a resource sharing protocol where blocking is
done before start of execution is employed (such as the stack resource protocol
[Bak90] or the immediate inheritance protocol [BW96]).

Relating back to Rubus OS, one can view the system as a transaction based
system with one transaction, Γt, corresponding to the static schedule (time-
triggered tasks) and any number of transactions corresponding to higher prior-
ity event triggered tasks (interrupts). For the even-triggered transactions there
are no restrictions placed on offset, deadline or jitter, i.e., they can each be
either smaller or greater than the period. Since Γt represents the static sched-
ule, which is cyclical with period Tt, offset, jitter and deadline are less than
the period, i.e., Otj , Dtj , Jtj ≤ Tt for the time-triggered transaction. How
a scheduler can generate a feasible schedule with interfering interrupts is de-
scribed in [SEF98, MTHN05].

It is the objective of this paper to find a tight upper bound on the shared
system stack for the tasks in the time-triggered transaction Γt. Task j belonging
to Γt we will denote τtj . The tasks in the transaction can be preempted by other
tasks in the transaction and by higher priority event triggered tasks.

122 Paper E

10.5 Stack analysis of hybrid scheduled systems

In this section, we describe a polynomial time method to establish a safe up-
per bound on the shared stack usage for the system model described in Sec-
tion 10.4. The upper bound is safe in the sense that the run-time stack can
never exceed the calculated upper bound.

A safe upper-bound estimate of the exact problem can be found by using
offsets and maximum response times as approximations of actual start and fin-
ishing times. Generalizing the preemption criteria identified by Dobrin and
Fohler [DF04], we form the binary relation τti ≺ τtj with the interpretation
that τti may be preempted by τtj . The relation holds whenever (1) τti can be-
come ready before τtj , (2) τti possibly finishes (i.e., has a response time) after
the start of τtj , and (3) τti has lower priority than τtj . The relation can now
formally be defined as:

τti ≺ τtj ≡ Oti < Otj + Jtj + Btj ∧ Otj < Rti ∧ Pti < Ptj (10.6)

Lemma 1. The ≺ relation is a safe approximation of the possible preemptions

between tasks in Γt. That is, if τti can under any run-time circumstance be

preempted by τtj , then τti ≺ τtj will hold.

Proof of Lemma 1. Suppose that τti is preempted by τtj . We show that this

implies (1) Oti < Otj + Jtj + Btj , (2) Otj < Rti, and (3) Pti < Ptj .

(3) follows directly from the preemption. Now let t be the time instant

when τtj has finished blocking, which implies t ≤ Otj + Jtj + Btj . Then

a possibly empty interval [t, sttj] of execution with higher priority than τtj

follows, in which τti cannot execute because Pti < Ptj . Since τti must start

before τtj , we can conclude that stti < t, which together with Oti ≤ stti and

t ≤ Otj + Jtj + Btj gives us Oti < Otj + Jtj + Btj and (1). From Equation

10.3 we have sttj < ftti and this together with Otj ≤ sttj and ftti ≤ Rti leads

to Otj < Rti and (2), which completes the proof. �

The upper-bound problem can now be informally stated as finding the max-
imum stack usage of all possible preemption chains in Γt. This equals find-
ing the time instant in the schedule which has a maximum stack usage, given
the approximation of actual start and finishing times with offsets and response
times respectively, and assuming that at all preemptions the preempted task
uses its maximal stack.

A sequence Q of tasks is a possible preemption chain (PPC) if it holds that
τti ≺ τtj for all τti, τtj in Q where τti occurs before τtj in the sequence. The

Paper E 123

stack usage SUQ of a PPC Q is the sum of the stack usage of the individual
tasks in the chain, i.e., SUQ =

∑
τti∈Q Sti.

A straightforward computation of a safe upper bound for a set of tasks in-
volves computing the stack usage for all PPCs. However, for a set of n tasks
there exist 2n−1 different PPCs in the worst case, which yields an exponential
time complexity for an algorithm based on this idea. A more efficient algo-
rithm can be constructed by first finding sets of tasks which all overlap in time
without regarding priorities. These sets can then be investigated, in turn, to find
a PPC with maximal stack usage.

We let the relation τti � τtj hold whenever the semiclosed intervals
[Oti, Rti) and [Otj , Rtj) intersect, or more formally:

τti � τtj ≡ Oti < Rtj ∧ Otj < Rti (10.7)

The relation � is a relaxation of the ≺ relation. That is, τti ≺ τtj → τti �
τtj . To see this, suppose that τti ≺ τtj which implies Oti < Otj + Jtj + Btj ∧
Otj < Rti, according to Equation 10.6. Since Otj + Jtj + Btj ≤ Rtj follows
from the notion of response time, we have Oti < Rtj ∧Otj < Rti, which also
is the definition of τti � τtj .

We can now define an overlap set Kr as a set of tasks where:

∀τti, τtj ∈ Kr : τti � τtj

The stack usage SUKr
of an overlap set Kr is defined as the maximum

stack usage SUQ of all PPCs Q where Q ⊆ Kr:

SUKr
= max

∀Q⊆Kr:PPC (Q)
(SUQ) (10.8)

Kr is maximal, if and only if, there exists no overlap set, Ks, such that Kr ⊂
Ks.

Lemma 2. For any PPC Q, there exists a maximal overlap set Kr such that

Q ⊆ Kr.

Proof of Lemma 2. From the definitions of a PPC and the ≺ and � relations,

we know that for all tasks τti ≺ τtj in Q it also holds that τti � τtj , and thus

Q is an overlap set. Then, either Q is maximal, or it can become maximal by

extending it with additional tasks. In either case, the lemma holds. �

In all, the algorithm for computing the upper bound SUB on the maximum
stack usage for a set of tasks Γt can be summarized as follows:

124 Paper E

1. Find the maximal overlap sets in Γt:
K = {K1, K2, . . . , Kk}.

2. For each of them, compute SUKr
according to Equation 10.8.

3. The upper bound of the stack usage for Γt can now be computed as
follows:

SUB = max
∀Kr∈K

(SUKr
) (10.9)

Informally, we start by finding all sets of tasks that can overlap in time
based on their offsets and worst case response times, which safely approxi-
mates their actual start and finishing times. For each such set (Ki), we find all
possible preemption chains (PPCs) by also taking task priorities and maximal
jitter and blocking time into account, and compute the stack usage for each
chain. The stack usage of Ki is the maximum stack usage of all its PPCs, and
the maximum stack usage (SUB) of the system is then obtained by taking the
maximum stack usage of every Ki.

10.5.1 Correctness

In order to claim correctness of our approximate stack analysis method, we
have to show that it never underestimates the actual stack usage that can occur
during run-time.

Theorem 1. The value computed by the SUB algorithm is a safe upper bound

on the actual worst case stack usage for tasks in Γt. Formally, SWC ≤ SUB .

Proof. Let Ψ ⊆ Γt be the sequence of tasks instances participating in the
preemption situation which cause the worst case stack usage, that is, SWC =∑

τti∈Ψ Sti. According to Lemma 1, we must have τti ≺ τtj for tasks τti and
τtj that occur in that order in Ψ, and thus Ψ is a PPC with SUΨ = SWC .
Then, Lemma 2 ensures that there exists a maximal overlap set Kr such that
Ψ ⊆ Kr, and we have SUΨ ≤ SUKr

. Thus, SWC ≤ SUKr
≤ SUB , which

concludes the proof.

10.5.2 Computational complexity

The relaxation of ≺ into interval intersection (Equation 10.7) allows us to ef-
ficiently compute an upper bound on the stack usage (Equation 10.9) by ap-
plying a polynomial longest path algorithm on the linearly-bounded number of
maximal overlap sets.

Paper E 125

To first see that the set of maximal overlap sets K = {K1, K2, . . . , Kk}
contain at most n elements, i.e., k ≤ n, consider the graph (Γt, E), where
Γt is the set of vertices and E = {τtiτtj | (τti � τtj) ∧ τti, τtj ∈ Γt} is
the set of edges. From Equation 10.7, we have that edges τtiτtj ∈ E corre-
spond to intersection of the semi-closed intervals [Oti, Rti) and [Otj , Rtj), and
therefore the graph is an interval graph [MM99]. Because every interval graph
is also chordal [MM99], all maximal complete subgraphs in (Γt, E), which
correspond to all maximal overlap sets, can be found in linear time [RT75].
Furthermore, for chordal graphs there exists at most n such sets, and thus we
have at most n overlap sets [MM99].

The problem of finding the worst PPC within a single overlap set Kr is
significantly easier than for an arbitrary set of tasks. Since it holds that τti �
τtj for all tasks τti, τtj ∈ Kr, and therefore in particular that Oti < Rtj for all
tasks in Kr, we need only look for a maximum stack usage chain Q where (1)
Oti < Otj + Jtj + Btj , and (2) Pti < Ptj for all tasks τti and τtj in that order
in Q to find the worst PPC. A directed graph consisting of tasks in Kr and arcs
corresponding to properties (1) and (2) is acyclic, and for such graphs a longest-
path type algorithm can be used to find the worst PPC [CLRS01]. There exist
longest-path algorithms with a time complexity of O(n + m), where n is the
number of tasks and m is the number of possible preemptions, of which there
are at most n(n − 1)/2. Taking the maximum of a maximal PPC in each set,
Kr, of which there are at most n, we will, therefore, find a maximum stack
size PPC in at most O(n3) time.

10.6 Evaluation

We evaluate the efficiency of our proposed method to establish a safe upper
bound on shared stack usage by randomly generating realistic sized task sets.
The size, load and stack usage of the task sets are derived from a wheel-loader
application by Volvo Construction Equipment [VCE]. We use three different
methods to calculate the shared system stack usage:

SPL The traditional method to dimension a shared system stack by summing
up the maximum stack usage in each priority level.

SUB The safe upper bound on the shared stack usage presented in Sec-
tion 10.5

SLB A lower bound on on the shared stack usage, for each task set.

126 Paper E

The lower bound is established using simple heuristics that tries to maxi-
mize shared stack usage by generating only feasible preemption scenarios for
the task set, and thus, represents scenarios that definitely can occur. From all
PPCs, the heuristic selects a sample set of roughly 500 chains. For each of
them, the method tries to construct a feasible arrival pattern for the ET tasks
and actual execution time values that cause an actual preemption between the
tasks in the chain. The quality of this heuristic method degrades as the length
of the chains or the total number of PPCs increases, which can be seen in the
figures.

By establishing a safe upper bound and a feasible lower bound, we know
that the actual worst case stack usage is bounded by SUB and SLB. The rea-
son for including SLB is to give an indication on the maximum amount of
improvement there might be for SUB.

10.6.1 Simulation setup

In our simulator we generate random task sets as input to the stack analysis
application. The task generator takes the following input parameters:

• Total number of TT (time triggered) tasks (default = 250)

• Total load of TT tasks (default = 60%)

• Minimum and maximum priorities of TT tasks (default = 1 and 32)

• Minimum and maximum stack usage of TT tasks (default = 128 and
2048)

• Total number of ET (event triggered) tasks (default = 8)

• Total load of ET tasks (default = 20%)

• The shortest possible minimum inter-arrival time of an ET task (default
= 1.000)

The generated schedule for TT tasks is always 10.000 time units. All ET tasks
have higher priority than TT tasks. The default values for the input parameters
represent a base configuration derived from a real application [VCE].

Using these parameters a task set with the following characteristics is gen-
erated:

• Each TT offset (Oti) is randomly and uniformly distributed between 0
and 10.000.

Paper E 127

• Worst case execution times for TT tasks, Cti, are initially randomly as-
signed between 1 and 1000 time units. The execution times get adjusted
by multiplying all Cti by a fraction, so that the the TT load (as defined
by the input parameter) is obtained.

• TT priorities are assigned randomly between minimum and maximum
value with a uniform distribution.

10.6.2 Results

Each diagram shows three graphs corresponding to the stack usage calculated
by the three methods: SPL, SUB, and SLB. Each point in the graphs represents
the mean value of 100 generated task sets. We also measured the 95% confi-
dence interval for the mean values. These are not shown because of their small
size (less than 7% of the y-value for each point). We also measured the CPU
time to calculate an upper bound on shared stack usage for each generated task
set. Using the method described in Section 10.5, the calculations took less than
63ms per task set, on an Intel Pentium 4, 2.8GHz with 512MB of RAM.

 0

 50

 100

 150

 200

 250

 50 100 150 200 250

Sh
ar

ed
 s

ta
ck

 u
sa

ge
 (

K
B

)

Maximum priority of TT tasks

SPL SUB SLB

Figure 10.1: Varying the number of priority levels of TT tasks

In Fig. 10.1, we vary the maximum priority for TT tasks between 1 and
300, keeping the minimum priority at 1. This gives a distribution of possible
priorities (priority levels), from 1 to n, where n is indicated by the x-axis. We

128 Paper E

see, in Fig. 10.2 which zooms in on Fig. 10.1, for maximum priorities up to
10, that the difference in stack usage between SPL and SUB is less noticeable
with a low number of priority levels. However, for larger numbers of priority
levels the difference is significant. SPL is not expected to flatten out before all
tasks actually have unique priorities, whereas our method (SUB) flattens out
significantly earlier. We conclude that the maximum number of tasks in any
preemption chain is increasing very slowly (or not at all) when the number of
TT tasks increases above a certain value, since the system load is constant.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8 9 10

Sh
ar

ed
 s

ta
ck

 u
sa

ge
 (

K
B

)

Maximum priority of TT tasks

SPL SUB SLB

Figure 10.2: Varying the number of priority levels of TT tasks (zoom of
Fig. 10.1)

In Fig. 10.3, we vary the maximum stack usage of each TT task between
128 bytes and 4096 bytes. We do this by assigning an initial stack of 128
bytes for each TT task, i.e., initially the stack size variation is zero. We then
vary the stack size between 128 and 512 bytes, 128 and 1024 bytes, and so
on. The diagram shows that SUB gives significantly lower values on shared
stack usage than the traditional SPL. We also notice that an increase in stack
variation scales up, linearly, the differences between SPL and SUB. The linear-
ity is expected, since an increase in stack variation does not affect occurrences
of possible preemptions in the system, i.e., possible nested preemptions are
retained.

In Fig. 10.4 we vary the maximum number of TT tasks between 5 and 275.
We see that the shared stack usage of the traditional SPL is dramatically in-

Paper E 129

 0

 20

 40

 60

 80

 100

 120

 0 512 1024 1536 2048 2560 3072 3584 4096

Sh
ar

ed
 s

ta
ck

 u
sa

ge
 (

K
B

)

Maximum stack usage of TT tasks (bytes)

SPL SUB SLB

Figure 10.3: Varying stack usage of TT tasks

creasing in the beginning. This is due to the fact that when the number of
TT tasks is lower than the maximum priority of TT tasks (32), most TT tasks
have unique priorities. SUB, on the other hand, increases much slower than
SPL because the maximum number of tasks involved in any preemption chain
is slowly increasing. SUB is expected to further approach SPL since increas-
ing the number of tasks will increase the likelihood of larger number of tasks
involved in the preemption chains.

In Fig. 10.5, we vary the total load of TT tasks between 10% (0.1) and
70% (0.7). The figure shows that the shared stack usage of SPL is constant,
whereas, SUB is slowly increasing. SPL is expected to be constant since it is
only affected by the number of priority levels and unaffected by the actual pre-
emptions that can occur in a system. The increase of SUB is due to increasing
response-times of TT tasks when the TT load increases, which will increase
the likelihood of larger number of tasks involved in nested preemptions.

10.7 Conclusions and future work

This paper presents a novel method to determine the maximum stack memory
used in preemptive, shared stack, real-time systems. We provide a general and
exact problem formulation applicable for any preemptive system model based

130 Paper E

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

Sh
ar

ed
 s

ta
ck

 u
sa

ge
 (

K
B

)

Number of TT tasks

SPL SUB SLB

Figure 10.4: Varying the number of TT tasks

on dynamic (run-time) properties.
By approximating these run-time properties, together with information

about the underlying run-time system, we present a method to safely approx-
imate the maximum system stack usage at compile time. We do this for a
relevant and commercially available system model: A hybrid, statically and
dynamically, scheduled system. Such a system model provides lot of static in-
formation that we can use to estimate the dynamic start- and finishing-times.
Our method finds the nested preemption pattern that results in the maximum
shared stack usage. We prove that our method is a safe upper bound of the
exact system stack usage and show that our method has a polynomial time
complexity.

In a comprehensive simulation study, we evaluated our technique and com-
pared it to the traditional method to estimate stack usage. We find that our
method significantly reduces the amount of stack memory needed. For realis-
tically sized task sets, a decrease in the order of 70% is typical.

In this paper, we focused on a system model for a given commercial real-
time operating system. In the future, we plan to extend our approximation
method to a more general system model, to incorporate all the features of the
general model for tasks with offsets [GH98]. Such an extension would make
the presented analysis technique applicable to a wider range of systems.

Our current method could also be extended to account for other types of

Paper E 131

 0

 10

 20

 30

 40

 50

 60

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Sh
ar

ed
 s

ta
ck

 u
sa

ge
 (

K
B

)

Total load of TT tasks

SPL SUB SLB

Figure 10.5: Varying the load of TT tasks

information that can further limit the number of possible preemptions. We cur-
rently only account for separation in time (offsets and response-times) between
tasks. However, in many systems other types of information, such as prece-
dence and mutual-exclusion relations may exists between tasks, thus limiting
the possible preemptions.

The method presented here could also be used in synthesis and configura-
tion tools that generate optimized systems from given application constraint.
In this case, the results from our analysis can be used to guide optimization
or heuristic techniques that try to map application functionality to run-time
objects.

Bibliography

Bibliography

[Abs] Absint. Web page, http://www.absint.com/stackanalyzer/.

[Arc] Arcticus Systems. Web page, http://www.arcticus-systems.se.

[ARJ97] J. H. Anderson, S. Ramamurthy, and K. Jeffay. Real-Time Com-
puting with Lock-Free Shared Objects. ACM Transactions on

Computing Systems, 15(2):134–165, May 1997.

[BAE] Bae systems hägglunds. Web page, http://www.haggve.se.

[Bak90] T.P. Baker. A Stack Based Resource Allocation Policy for Real-
Time Processes. In Proceedings of the 11th IEEE Real-Time Sys-

tems Symposium. IEEE, 1990.

[BDP01] D. Brylow, N. Damgaard, and J. Palsberg. Static Checking of
Interrupt-Driven Software. In Proceedings of the 23rd Interna-

tional Conference on Software Engineering, May 2001.

[BW96] A. Burns and A. Wellings. Real-Time Systems and Programming

Languages, chapter 13.10.1 Immediate Ceiling Priority Inheri-
tance. Addison-Wesley, second edition, 1996.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Intro-

duction to algorithms. MIT Press, Cambridge, MA, USA, second
edition, 2001. ISBN 0-262-03293-7.

[CRJ05] H. Cho, B. Ravindran, and E. D. Jensen. A Space-Optimal Wait-
Free Real-Time Synchronization Protocol. In Proceedings of the

17th Euromicro Conference on Real-Time Systems, July 2005.

132

Bibliography 133

[DF04] R. Dobrin and G. Fohler. Reducing the Number of Preemptions
in Fixed Priority Scheduling. In 16th Euromicro Conference on

Real-time Systems. Catania, Sicily, Italy, July 2004.

[Dig] Micro Digital. Web page, http://www.smxinfo.com/mt.htm.

[DMT00] R. Davis, N. Merriam, and N. Tracey. How Embedded Applica-
tions using an RTOS can stay within On-chip Memory Limits. In
Proceedings of the WiP and Industrial Experience Session, Eu-

romicro Conference on Real-Time Systems, June 2000.

[GH98] J. C. Palencia Gutierrez and M. Gonzalez Harbour. Schedulability
Analysis for Tasks with Static and Dynamic Offsets. In Proceed-

ings of the 19th Real-Time Systems Symposium, Dec 1998.

[GLN01] P. Gai, G. Lipari, and M. Di Natale. Minimizing Memory Uti-
lization of Real-Time Task Sets in Single and Multi-Processor
Systems-on-a-chip. In Proceedings of the 22nd Real-Time Sys-

tems Symposium. London, UK, Dec 2001.

[Gro] Live Devices ETAS Group. Web page,
http://en.etasgroup.com/products/rta/.

[Hal] Haldex traction systems. Web page, http://www.haldex-traction.-
com/.

[HF05] R. Heckmann and C. Ferdinand. Verifying Safety-Critical Tim-
ing and Memory-Usage Properties of Embedded Software by Ab-
stract Interpretation. In Proceedings of the Design, Automation

and Test in Europe, March 2005.

[HLL+05] K. Hänninen, J. Lundbäck, K.-L. Lundbäck, J. Mäki-Turja, and
M. Nolin. Efficient Event-Triggered Tasks in an RTOS. In Pro-

ceedings of the International Conference on Embedded Systems

and Applications, June 2005.

[LLH+01] C. G. Lee, K. Lee, J. Hahn, Y. M. Seo, S. Lyul Min, R. Ha,
S. Hong, C. Yun Park, M. Lee, and C. Sang Kim. Bound-
ing Cache-Related Preemption Delay for Real-Time Systems.
IEEE Transactions on Software Engineering, 27(9):805–826, Sept
2001.

[Mic] Micro Digital Inc. smx Features and Architecture.

134 Bibliography

[MM99] T. A. McKee and F.R. McMorris. Topics in intersection graph

theory. SIAM Monographs on Discrete Mathematics and Applica-
tions #2. Society for Industrial and Applied Mathematics (SIAM),
1999.

[MSB05] B. Middha, M. Simpson, and R. Barua. MTSS: Multi Task Stack
Sharing for Embedded Systems. In Proceedings of the ACM In-

ternational Conference on Compilers, Architecture, and Synthesis

for Embedded Systems. San Francisco, CA, Sept 2005.

[MTHN05] J. Mäki-Turja, K. Hänninen, and M. Nolin. Efficient Development
of Real-Time Systems Using Hybrid Scheduling. In International

conference on Embedded Systems and Applications (ESA), June
2005.

[MTN05] J. Mäki-Turja and M. Nolin. Fast and Tight Response-Times for
Tasks with Offsets. In Proceedings of the 17th Euromicro Confer-

ence on Real-Time Systems. IEEE Computer Society, July 2005.

[Reg02] J. Regehr. Scheduling Tasks with Mixed Preemption Relations
for Robustness to Timing Faults. In Proceedings of the 23rd IEEE

Real-Time Systems Symposium, Dec 2002.

[RM06] H. Ramaprasad and F. Mueller. Bounding Preemption Delay
within Data Cache Reference Patterns for Real-Time Tasks. In
Proceedings of the 12th IEEE Real-Time and Embedded Technol-

ogy and Applications Symposium, April 2006.

[RT75] D. J. Rose and R. E. Tarjan. Algorithmic Aspects of Vertex Elimi-
nation. In STOC ’75: Proceedings of seventh annual ACM sympo-

sium on Theory of computing, pages 245–254. ACM Press, New
York, NY, USA, 1975.

[SEF98] Kristian Sandström, Christer Eriksson, and Gerhard Fohler. Han-
dling Interrupts with Static Scheduling in an Automotive Vehi-
cle Control System. In 5th International Workshop on Real-Time

Computing Systems and Applications (RTCSA ’98), pages 158–
165. IEEE Computer Society, Hiroshima, Japan, October 1998.

[SSE05] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling Analysis of
real-Time Systems with Precise Modeling of Cache Related Pre-
emption Delay. In Proceedings of the 17th Euromicro Conference

on Real-Time Systems, July 2005.

[SW00] M. Saksena and Y. Wang. Scalable Real-Time System Design
using Preemption Thresholds. In Proceedings of the 21st Real-

Time System Symposium, Dec 2000.

[Tid] Tidorum. Web page, http://www.tidorum.fi/bound-t/.

[Tin92] K. Tindell. Using Offset Information to Analyse Static Priority
Pre-emptively Scheduled Task Sets. Technical Report YCS-182,
Dept. of Computer Science, University of York, England, 1992.

[Uni] Unicoi Systems. Web page,
http://www.unicoi.com/fusion_rtos/fusion_rtos.htm.

[VCE] Volvo construction equipment. Web page,
http://www.volvoce.com.

Chapter 11

Paper F:

Introducing a Plug-In

Framework for Real-Time

Analysis in Rubus-ICE

Kaj Hänninen, Jukka Mäki-Turja, Staffan Sandberg, John Lundbäck, Mats
Lindberg, Mikael Nolin, Kurt-Lennart Lundbäck
MRTC report ISSN 1404-3041 ISRN MDH-MRTC-229/2008-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University, April,
2008. Submitted to the 13th IEEE International Conference on Emerging
Technologies and Factory Automation.

137

Abstract

In this paper, we present the development of a plug-in framework for integra-
tion of real-time analysis methods in the Rubus Integrated Component Envi-
ronment (Rubus-ICE). We also present the implementation, and evaluate the
integration, of two state of the art analysis techniques (i) response-time anal-
ysis for tasks with offsets and (ii) shared stack analysis, as plug-ins, in the
Rubus-ICE framework.

The paper shows that the proposed framework is well suited for integration
of complex analysis methods. However, experience also show that analysis
methods are not easily transferred from an academic environment to industry.
The main reason for this, we believe, originates from differences in require-
ments and assumptions between industry and academia.

Paper F 139

11.1 Introduction

Throughout the years, research on analysis and scheduling has been a signif-
icant area within the real-time community. A large number of analysis tech-
niques have been proposed for verification of real-time properties in real-time
systems (see for example [ABT+93, BTW95, EHS97, JP86, KAS93, Leh90,
Pun97, SAr+04, SRL87, SRL90, TB94, TC94, THW94, Tin92]). However,
many of these techniques are state of the art and non-trivial to understand and
even more complex to integrate in an industrial development context. In indus-
trial development, a number of tools are used for design, implementation, anal-
ysis and verification. These tools are often manufactured by different vendors.
The challenge then becomes to integrate state of the art analysis techniques in
an existing tool-suite with tools from different vendors. These difficulties are
often hard to overcome; hence many useful analysis techniques never find their
way to practical use.

In recent years, plug-in based tools, e.g., Eclipse [Ecl] and JDeveloper
[Ora] etc. have gained popularity. The plug-in concept has several properties
that eases the integration of research results in a development environment, for
example, (i) allowing the extension of the functionality of a host application by
add-on applications (ii) allowing development of add-on plug-ins in isolation,
meaning that developers do not need to compile the source code of the plug in
with the source code of its host application.

In this paper, we describe the development of a plug-in framework for in-
tegration of real-time analysis methods in the Rubus Integrated Component
Environment (Rubus-ICE)[Arc]. We present the Rubus-ICE environment, an
IDE targeted for component based development of real-time systems. We then
describe the implementation of two novel analysis methods as plug-ins and
highlight issues in integration of the plug-ins in a case study.

The contributions of this paper include a proof of concept implementation
where state-of-the-art academic results can be deployed in an existing commer-
cial industrial environment. We also report on experiences from transferring
academic result to industrial environments and the issues that needs to be dealt
with in order to successfully achieve such transfer.

Paper outline. The reminder of this paper is organised as follows. In
Section 11.2 we present the Rubus development environment. Section 11.3
presents the development of the plug-in framework for Rubus-ICE. In Sec-
tion 11.4 we presents the development of two novel analysis methods as plug-
ins, for integration in Rubus-ICE. Section Section 11.5 presents a brief case
study on the integration of the analysis plug-ins in the proposed framework.

140 Paper F

Section Section 11.6 summarises our experiences in developing the framework
and introducing novel research results for industrial use. In Section 11.7 we
conclude the work and outline some future work.

11.2 Rubus

Rubus is a collection of tools for development of embedded real-time systems.
Rubus was introduced for industrial use in 1996. Throughout the years, Rubus
has been used by a number of companies, e.g., [BAE, Hal, Kno, VCE] for de-
velopment of safety critical as well as less critical vehicular software. Although
successfully used by real-time developers, the tools in the Rubus framework
have by tradition been tightly coupled with each other, making it difficult to in-
tegrate additional analysis methods in the framework. Over the years, the tools-
suite has evolved to support novel requirements in development. The current
version of the tool-suite, Rubus-ICE, is aimed to be plug-in based to facilitate
integration of third party applications, such as real-time analysis methods, in
the framework.

11.2.1 Rubus-ICE

Rubus-ICE is an IDE consisting of set of tools for systems engineering, design
and analysis of component-based real-time systems. The four core elements of
Rubus-ICE are as follows:

• Designer: A graphical design tool for component based modelling of
systems.

• Compiler: A tool that verifies syntax of the model data created with the
designer.

• Builder: A tool that passes design-data in sequence to any number of
user specified plug-in modules.

• Coder: A tool that generates the RTOS specific requirements defined by
the user.

To exemplify the steps involved in using Rubus-ICE, assume that a devel-
oper initially creates a component-based design using Designer. The Designer
saves the design in XML format. The compiler then parses the design repre-
sentation and verifies the syntax of the design. The compiler creates an inter-
mediate representation (ICCM file) of the design. The ICCM file is then used

Paper F 141

by the builder. Figure 11.1 shows the sequence in which the core elements of
Rubus-ICE are executed.

Plug-ins

Designer

Compiler

Builder

Coder

XML

ICCM

Code

XML

Plug-ins

Designer

Compiler

Builder

Coder

XMLXML

ICCMICCM

CodeCode

XMLXML

Figure 11.1: Rubus-ICE with a plug-in framework

11.3 Plug-in framework for Rubus-ICE

In this section we describe the development of a plug-in framework for Rubus-
ICE. The aim of the framework is to enable integration of novel real-time anal-
ysis methods, as plug-ins, in the IDE. Facilitating integration of third-party de-
veloped analysis methods is of specific interest. Hence, the framework should
allow a plug-in developer to implement plug-ins in isolation, i.e., without hav-
ing the Rubus tool suite at hand, and deliver the plug-ins as binaries or source
code. In the following, we describe the overall requirements on the plug-in
framework. We then outline the requirements that need to be fulfilled for plug-
ins to be included in the framework. We also present the development of an
application programming interface (API) for development of Rubus-ICE plug-
ins.

11.3.1 Requirements on the plug-in framework

We start by stating the high level requirements on the plug-in framework. From
a developer and a user perspective the following requirements should be ful-
filled by the framework:

142 Paper F

• A plug-in should be developed as stand alone applications performing a
specific task.

• A user should be able to choose, by configuring a build, to execute any
available plug-in during the build. Hence, the plug-ins should interface
the Builder tool in Rubus-ICE.

• Plug-ins should execute in sequence, meaning that a plug-in should exe-
cute to completion and terminate before the next plug-in is executed.

• A user should be able view the progress of a plug-in and to abort the
execution of a plug-in if needed.

Figure 11.1 shows the sequence in which the core elements of Rubus-ICE,
including plug-ins, are to be executed. The requirements on the framework
are motivated by the following. For example, a user might be interested in
analysing only temporal aspects of a design, during certain phases in develop-
ment. Later on, the user might be interested in analysing both temporal and
spatial aspects. Hence it should be possible to enable and disable the execu-
tion of plug-ins between the builds. The requirement that each plug-in should
perform one specific task is required to prevent several plug-ins to perform
similar, possibly time consuming, analysis during build. For example, if sev-
eral analysis algorithms require response times to be calculated as input to the
algorithms, then the response-time analysis should be developed as a separate
plug-in that is executed only once. The fact that plug-ins are required to execute
in sequence facilitate the possibility of several plug-ins to collaborate and solve
a larger task. Moreover, in the research community, several analysis methods
are proposed as extensions of previously published methods. Requiring the
plug-ins to execute in a sequence eases the integration of the extensions in the
IDE. User interaction and the possibility to abort the execution of a plug-in is
motivated by the fact that the timing complexity of an analysis method may
increase dramatically if a system is changed between two builds. For example,
analysis methods with exponential complexity may actually perform well, i.e.,
deliver results in reasonably amount of time, for a certain system. However,
for such algorithms, even small changes in system parameters may dramati-
cally increase the time to obtain results. In these type of situations, the analysis
may be unusable and aborted by the user. In addition, providing feedback to
users when a plug-in fails or when the results of a plug-in differs from what is
expected, is important.

Paper F 143

11.3.2 Requirements on Rubus-ICE plug-ins

Many analysis methods developed in a research context assume that certain as-
sumptions are fulfilled for the analysis to be valid. For example, in the research
community, an analysis algorithm is generally developed for a specific system
model, i.e., the results of the analysis is only valid if the correct system model
is used. Thus, for each plug-in, the supported system model, i.e., properties
and attributes of the supported system, must be specified.

To simplify verification of plug-ins, we require plug-ins to adhere to the
following execution sequence: (i) reading required system attributes, (ii) exe-
cuting the functionality of the plug in and (iii) writing results to the ICCM file.
Hence, each plug-in should have a required interface, an internal behaviour and
a provided interface. Accessing system attributes should be done by service re-
quest provided by an Application Programming Interface.

Each plug-in must have its error handling routines specified. This includes
specifying (i) the type of error that the plug-in handles, and (ii) how these error
are handled. In addition, in an industrial context, interaction with the user is
imperative. Hence, each plug-in needs to define an interface against the user.
This interface should provide, e.g., information of the progress of the plug-ins.

The fact that a user should be able to choose, by configuring a build, to
load and execute any available plug-in during the build implies that plug-in
can be delivered as Dynamic Link Libraries (DLLs) or as source code (C or
C++ code).

In essence, for each Rubus-ICE plug-in, the following should specified: (i)
the system model supported by the plug-in, (ii) the type of data required by the
plug-in, (iii) the type of data produced by the plug-in, (iv) the type of errors
handled by the plug-in and (v) user interface.

11.3.3 Defining an API for plug-ins

To support implementation of plug-ins, we defined an API (Application Pro-
gramming Interface). The API specifies and provides a uniform way to access
services that may be needed by plug-ins. Currently, the API supports com-
mon services for the system model defined by the Rubus Component Model
(RubusCM) [HMTN+08]. In defining the API, we considered common as-
sumptions made by researcher developing analysis algorithms. We also con-
sidered common attributes and properties that need to be available for analysis
algorithms. For instance, the API provide possibilities to extract transactions,
tasks, task attributes, task dependencies, execution policies, execution sched-

144 Paper F

ules, memory-models and so on, from the design. In addition, the API provide
services to append the results, produced by a plug-in, in the ICCM file. These
results may then be used by subsequent plug-ins.

11.4 Developing analysis plug-ins

In this section, we describe the development and integration of two analysis
plug-ins for Rubus-ICE. The plug-ins are intended to be stand alone applica-
tions computing: (i) the worst case response-time (RTA)[MTN04] of tasks and
(ii) the maximum shared stack usage (SSA)[HMTB+06] of the system. Both
the RTA and SSA algorithms have originally been implemented for research
purposes, e.g., for evaluating the efficiency of the RTA and SSA algorithms. In
a research context, the algorithms have been part of a larger application con-
sisting of a task generator, a package for statistics an a graph generator (see
Fig. 11.2).

Task generator

Analysis algorithm

Statistics package

Graph generator

Task generator

Analysis algorithm

Statistics package

Graph generator

Figure 11.2: Analysis method in a research context

As preparation, the functionality belonging to the algorithms were ex-
tracted from the application. These functions constitute the core of the RTA
and the core of the SSA plug-ins. According to the requirements specified
in Section 11.3.2, the system information is accessed by the provided API.
Fig. 11.3 shows a conceptual structure of the RTA and SSA plug-ins.

API calls

Analysis algorithm

API calls

API calls

Analysis algorithm

API calls

Figure 11.3: Analysis method in a plug-in context

Paper F 145

The RTA plug-in is based on work by Mäki-Turja and Nolin [MTN04]. The
plug-in will compute the worst case response-time of tasks. The SSA plug-in
is based on work by Hänninen et al. [HMTB+06] and will compute an upper
bound on shared system stack. We start by specifying the system model for the
RTA and SSA plug-ins. We then define the required and provided interfaces as
well as the error handling and user interface of each plug-in.

The system model in both [MTN04] and [HMTB+06] is an offset based
model with transactions (a transactions is defined by a set of tasks with timing
dependencies). Each transaction consist of one or more tasks. Tasks, in turn,
have common real-time attributes such as worst case execution times, dead-
lines, priorities etc. For the RTA and SSA plug-ins, this implies that we need
to extract transactions and task attributes from the design, execute the analysis
and store the analysis results. Furthermore, from [MTN04] we know that the
RTA interface should support the following:

• The RTA plug-in require, (i) Transactions with specified Period time (or
MINT), (ii) the WCET, Offset and the Priority of the tasks in each trans-
action.

• The RTA provides the worst case response time (WCRT), relative to the
activation of the transaction, of each task.

From [HMTB+06] we know that the SSA interface should support the fol-
lowing:

• The SSA plug-in require, (i) Transactions participating in stack sharing,
(ii) the WCRT, Offset, Stack usage and the Priority of the tasks in each
transaction.

• The SSA provides an upper bound on shared stack usage of the transac-
tions.

Recall that since plug-ins are executed in succession in Rubus-ICE, each
plug in must specify the data it needs and the data it produces. This is required
for correct execution sequence of the plug-ins. For example, the above shows
that the SSA plug in require worst case response-times for stack analysis, i.e.,
the RTA plug-in must be executed before the SSA plug-in, showing that analy-
sis methods may have intricate dependencies that need to be considered when
establishing the execution sequence of plug-ins.

When designing the error handling of the plug-ins, we observed that if
something fails during analysis, the plug-in must be able to handle and isolate

146 Paper F

the fault. The plug-in must also inform the host application of the fault. This
is needed to isolate, i.e., to prevent the fault or erroneous values to propagate.
For example, if the system is overloaded, i.e., the processor utilisation exceeds
100%, the response time analysis, being an iterative method, may never termi-
nate. An even worse scenarios could occur if a variable overflows, then the RTA
might actually terminate producing erroneous results. In a controlled research
setting, this might not be a problem, since task generators are often configured
to produce schedulable task sets as input to an analysis method. In an indus-
trial setting, this assumption no longer hold. It is obvious that conditions such
as overloads, variable overflows etc. need to be handled and dealt with prop-
erly. We also defined the actions that should be taken if, during analysis, the
response-time of a task is larger than its deadline, i.e., the task is missing its
deadline. The question then is, should we continue or abort the analysis. Al-
though, this kind of situation might not be considered as an error, however, it
might affect the execution of subsequent plug-ins. For instance, the algorithm
in the RTA plug-in put no restrictions on response-times, i.e., response-time
may be larger than the deadlines without affecting the correctness of the anal-
ysis. The SSA algorithm, on the other hand, require that a response-time is
smaller (or equal) than the deadline.

The following list the error handling that need to be supported by the RTA
and SSA plug-ins:

• The values of the read task attributes need to be checked.

• Overload conditions need to be checked during analysis.

• Variable overflow need to be checked during analysis.

For both the RTA and SSA plug-in, we define a simple interface against the
user. The interface provides information of the progress of the plug-in and a
summary of the analysis results. Fig. 11.4 shows the complete structure of the
RTA and SSA plug-ins.

11.5 Adding plug-ins to Rubus-ICE - A case study

The plug-in framework, described in Section 11.3, allows users of Rubus-ICE
to include third part developed plug-ins to the Rubus-ICE framework. To point
out issues that may occur when adding plug-ins to the framework, we inte-
grated the RTA and SSA plug-ins in Rubus-ICE. We believe that the RTA and
SSA plug-ins represents typical analysis proposed by researchers and that the

Paper F 147

Analysis algorithm
User interaction

Error handling

API calls

API calls

Analysis algorithm
User interaction

Error handling

API calls

API calls

Analysis algorithm
User interaction

Error handling

API calls

API calls

Figure 11.4: Analysis plug-in in an industrial context

integration of RTA and SSA plug-ins relieve issues that may be encountered
when integrating other type of real-time analysis methods in Rubus-ICE.

The prerequisites for the integration was as follows:

• The plug-ins were implemented, adhering to the requirements in Sec-
tion 11.3.2, and delivered as source code to the integrator.

• Both the RTA and SSA plug-ins should be integrated in Rubus-ICE.

The plug-ins were integrated in Rubus-ICE by a developer at Arcticus Sys-
tems. The developer had no previous experience of integrating real-time anal-
ysis methods, but was familiar with the overall objective of the plug-in frame-
work and had been involved in specifying the requirements on the framework
(Section 11.3.1). During integration, the developer was asked to note all is-
sues that occurred during the integration. Integrating the plug-ins include (i)
enabling configuration of a build sequence, (ii) establishing a correct execution
sequence of plug-ins, (iii) verifying the functionality of the plug-ins and (iv)
verifying the error handling of each plug-in. Even though the functionality,
including error handling, of the RTA and SSA plug-ins have been verified in
isolation, the integration in-itself may introduce unexpected errors, hence the
plug-ins need to be verified once integrated. The following summarises the
experiences of the integration as encountered by the integrator:

• Integration of the RTA and SSA plug-ins in Builder, i.e., enabling con-
figuration of the build sequence to include the RTA ans SSA plug-ins,
proceeded without notable difficulties.

• Establishing the execution sequence of the plug-ins was eased by the
interface specifications included with the plug-ins.

148 Paper F

• Verification of the functionality of each plug-in was experienced as trou-
blesome. The integrator needed to consult the creators of the plug-ins to
perform the verification. To verify the functionality of, for example, the
RTA plug-in, example systems with only a few tasks were created. The
results of the plug-in then needed to be verified by hand. It is obvious
that larger systems are intractable to analyse by hand. Hence only small
systems, with varying architecture, were possible to analyse.

• Certain type of error handling was difficult to verify. For example, veri-
fying that variable overflows was handled properly was difficult, simply
because it was difficult to create systems, or modify the attributes of the
system, in such way that it resulted in variable overflows at the same
time as the results of the plug-in seemed valid (see error handling in
Section 11.4).

• When verifying the functionality of the RTA plug-in, the integrator dis-
covered that the RTA plug-in sometimes produced pessimistic, albeit
safe, response-times. When investigating the reason to this, we discov-
ered that the API service extracting transactions from the design needed
to be modified. The extraction, although being correct in a sense, failed
to exploit the benefits of the analysis. Specifically, since the analysis is
developed for an offset based system (offsets represents timing depen-
dencies), these dependencies must be extracted from the design, and the
better the extraction can represent the timing dependencies, the tighter
the results from the analysis.

Altogether, the integration of the RTA and SSA plug-in in Rubus-ICE was
experienced as fairly easy. We believe that the fact that both plug-ins were
developed according to the requirements outlined in Section 11.3.2, facilitated
the integration. Verification of the functionality was experienced as the most
difficult task and the most time consuming activity. A continuous communi-
cation between the integrator and the plug-in developer was needed during the
integration. This clearly demonstrates that the work of a plug-in developer do
not end with the delivery of a plug-in. Even though the plug-in concept allows
integration of third-party developed software, such as novel analysis methods,
in a larger context, we believe that when transferring research results for indus-
trial use, especially for use in development of safety critical systems, collab-
oration between the integrator and the plug-in developer is needed throughout
the whole process for a successful end result.

Paper F 149

11.6 Experiences summarised

We initiated this work with the aim of developing a plug-in framework to en-
able integration of third-party developed software. We showed, by integrating
two plug-ins in the framework, that it is possible to add complex real-time
analysis methods to Rubus-ICE. However, we discovered that a considerable
amount of work is needed to prepare and integrate research results for indus-
trial use. The main reason for this, we believe, is that the requirements and
assumptions on analysis methods, in an industrial context, differs from the
requirements/assumptions in a research context. For example, in an indus-
trial context many analysis methods are used in developing safety critical soft-
ware, implying that stringent error handling as well as thorough verification of
the functionality is needed before analysis methods are accepted for industrial
use. We also noticed that verification of the plug-ins, after being integrated in
Rubus-ICE, required the help of the plug-in developer, since analysis methods
are often very hard to understand and too difficult to verify by non-experts.
When defining the user interface of the plug-ins, we discovered that it was
non-trivial to provide constructive feedback to the users (compare to finding 9
in [NGS+01]). For example, since the RTA plug-in can be used to verify the
schedulability of a system, the plug-in may occasionally discover that a system
is unschedulable. The question then is, should we suggest modifications (e.g.,
changing priorities) of the attributes in the system, i.e., guiding the developer
to possibly end up with a schedulable system. In many cases there are a large
number of possible reasons why a system is unschedulable, hence suggesting
constructive modifications is non-trivial.

Although we managed to integrate two novel analysis methods (the RTA
and SSA plug-ins) in the framework, several issues still remain to addressed,
for example:

• How can we guarantee that a plug-in only does what it is meant to do. For
example, in the current framework it is possible for a plug-in to overwrite
any values in the ICCM. These value may later be used by subsequent
plug-ins and result in erroneous results.

• How should the output results from a plug-in be named in the ICCM.
For example, if two plug-ins collaborate to solve a larger task, i.e., a
plug-in reads the results of the other plug-in, then the plug-in reading
the values produced by another plug-in need to have knowledge of the
naming, simply to be able to fetch the values from the ICCM. Currently,
there is no standard notation within the real-time community on how to

150 Paper F

name the results produced by an analysis.

• How should we aggregate several plug-ins into a single assembly. Con-
sider, for instance, priority assignment (assigning the dispatching prior-
ity to tasks). In real-time engineering, the arduous work of priority as-
signment is sometimes performed by hand. With the assigned priorities
at hand, response time analysis can then be performed to verify schedula-
bility of a system. In case the system turns out to be un-schedulable, the
priorities are modified and response-time analysis is performed again.
The process is basically an iteration of priority assignment and schedula-
bility check by response-time analysis. The iteration is often performed
until a schedulable system is found. This could be an automated pro-
cedure using two plug ins in the proposed framework, one that assign
priorities and one that performs response-time analysis (e.g., the RTA
plug-in). However, iterating the execution of these plug-ins, require them
to be grouped in a single plug-in. Currently, there is no other way of it-
erating the execution of two or more plug-ins in the framework.

11.7 Conclusions and future work

In recent years, plug-in based development tools has increased in popularity.
The plug-in concept enable third-party developed software to extend the func-
tionality of a host application by add-ons, giving tool manufacturers a con-
siderable simple way of adding new features and enhancing the value of their
products. Developers can also benefit from the plug-in concept in the sense that
plug-ins can be developed in isolation and do not require deep knowledge of
the host application utilising the plug-in. These facts make the plug-in concept
especially interesting when transferring complex research result for industrial
use. Most of the published results from the research community are far too
difficult to understand and even harder to implement for laymen, implying that
many useful results never find their way to practical use.

In this paper we presented the development of a plug-in framework for
Rubus Integrated Component Environment, an IDE for development of embed-
ded real-time systems. The plug-in framework aims at facilitating integration
of novel analysis methods in the framework. We presented the framework and
implemented two novel analysis methods as plug-ins. The plug-ins were inte-
grated in the framework by a developer without previous expertise in analysis
methods for real-time systems. We showed that the framework is well suited
for integration of complex analysis methods, however, we also showed that a

Paper F 151

considerable amount of modifications of analysis methods are needed to adapt
them for industrial use. In addition, a continuous communication between the
researchers developing the plug-ins and the industrial representative integrating
the plug-ins, was needed throughout the process.

As future work, we plan to extend the application programming interface to
support other type of system models. Currently the Rubus system model is the
only one supported. We also intend to define a way to aggregate several plug-
ins into a larger one (an assembly consisting of several separate plug-ins). We
believe that many engineering activities, such as priority assignment, schedule
creation and task allocation etc. could be automated by aggregated plug-ins.

Bibliography

Bibliography

[ABT+93] N.C. Audsley, A. Burns, K. Tindell, M.F. Richardson, and A.J.
Wellings. Applying New Scheduling Theory to Static Priority
Pre-emptive Scheduling. Software Engineering Journal, 8(5):
284–292, 1993.

[Arc] Arcticus Systems. Web page, http://www.arcticus-systems.se.

[BAE] BAE Systems Hägglunds. Web page, http://www.baesystems.-
com/hagglunds.

[BTW95] A. Burns, K. Tindell, and A Wellings. Effective Analysis for
Engineering Real-Time Fixed Priority Schedulers. IEEE Trans-

actions on Software Engineering, 22(5):475–480, May 1995.

[Ecl] Eclipse - an open development platform. Web page, http://-
www.eclipse.org/.

[EHS97] A. Ermedahl, H. Hansson, and M. Sjödin. Response-Time Guar-
antees in ATM Networks. In Proc. 18th IEEE Real-Time Sys-

tems Symposium (RTSS), pages 274–284. IEEE Computer So-
ciety Press, December 1997. URL http://www.docs.uu.

se/~mic/papers.html.

[Hal] Haldex traction systems. Web page, http://www.haldex-
traction.com/.

[HMTB+06] K. Hänninen, J. Mäki-Turja, M. Bohlin, J. Carlsson, and M. No-
lin. Determining Maximum Stack Usage in Preemptive Shared
Stack Systems. In Proceedings of the 27th IEEE Real-Time Sys-

tems Symposium, Dec 2006.

152

Bibliography 153

[HMTN+08] Kaj Hänninen, Jukka Mäki-Turja, Mikael Nolin, Mats Lindberg,
John Lundbäck, and Kurt-Lennart Lundbäck. Supporting Engi-
neering Requirements in the Rubus Component Model. Tech-
nical Report ISSN 1404-3041 ISRN MDH-MRTC-223/2008-1-
SE, Mälardalen University, February 2008.

[JP86] M. Joseph and P. Pandya. Finding Response Times in a Real-
Time System. The Computer Journal, 29(5):390–395, 1986.

[KAS93] D.I. Katcher, H. Arakawa, and J.K. Strosnider. Engineering and
Analysis of Fixed Priority Schedulers. IEEE Transactions on

Software Engineering, 19(9):920–934, September 1993.

[Kno] Knorr-bremse. Web page,
http://www.knorr-bremse.com.

[Leh90] J. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets
with Arbitrary Deadlines. In Proc. 11th IEEE Real-Time Sys-

tems Symposium (RTSS), pages 201–212, December 1990.

[MTN04] J. Mäki-Turja and M. Nolin. Tighter Response-Times for Tasks
with Offsets. In Proc. of the 10th International conference on

Real-Time Computing Systems and Applications (RTCSA’04).
Springer-Verlag, Göteborg, Sweden, August 2004.

[NGS+01] C. Norström, M. Gustafsson, K. Sandström, J. Mäki-Turja, and
N. E. Bånkestad. Experiences from Introducing State-of-the-
art Real-Time Techniques in the Automotive Industry. In Eigth

IEEE International Conference and Workshop on the Engineer-

ing of Computer-Based Systems. IEEE Computer Society, April
2001.

[Ora] Oracle JDeveloper Overview, An Oracle White Paper.
Web page, http://www.oracle.com/technology/products/jdev/-
collateral/papers/1013/jdev1013_overview.pdf.

[Pun97] S. Punnekkat. Schedulability Analysis for Fault Tolerant Real-

time Systems. PhD thesis, University of York, June 1997.

[SAr+04] L. Sha, T. Abdelzaher, K-E. Årzén, A. Cervin, T. Baker,
A. Burns, G. Buttazzo, M. Caccamo, J. Lehoczky, and A. K.
Mok. Real Time Scheduling Theory: A Historical Perspective.
Real-Time Systems, 28(2/3):101–155, 2004.

[SRL87] L. Sha, R. Rajkumar, and J.P. Lehoczky. Task Scheduling in
Distributed Real-Time Systems. In IEEE Industrial Electronics

Conference, 1987.

[SRL90] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority Inheritance
Protocols: an Approach to Real Time Synchronization . IEEE

Transactions on Computers, 39(9):1175–1185, September 1990.

[TB94] K. Tindell and A. Burns. Fixed Priority Scheduling of Hard
Real-Time Multimedia Disk Traffic. The Computer Journal, 37
(8):691–697, 1994.

[TC94] K. Tindell and J. Clark. Holistic Schedulability Analysis
For Distributed Hard Real-Time Systems. Technical Report
YCS197, Real-Time Systems Research Group, Department of
Computer Science, University of York, November 1994. URL
ftp://ftp.cs.york.ac.uk/pub/realtime/papers/YCS197.ps.Z.

[THW94] K. Tindell, H. Hansson, and A. Wellings. Analysing Real-Time
Communications: Controller Area Network (CAN). In Proc.

15th IEEE Real-Time Systems Symposium (RTSS), pages 259–
263. IEEE, IEEE Computer Society Press, December 1994.

[Tin92] K. Tindell. An Extendible Approach for Analyzing Fixed Prior-
ity Hard Real-Time Tasks. Technical Report YCS189, Dept. of
Computer Science, University of York, England, 1992.

[VCE] Volvo construction equipment. Web page,
http://www.volvoce.com.

