
RTSSim - A Simulation Framework for Complex

Embedded Systems

Johan Kraft

School of Innovation, Design and Engineering

Mälardalen University, Västerås, Sweden

johan.kraft@mdh.se

April 9, 2009

Abstract

This report presents the current state of RTSSim, a simulation frame-
work for complex embedded systems focusing on timing and resource us-
age properties. The report presents the core concepts of RTSSim, the
elements of RTSSim simulation models and associated operations, as well
as an example of a fairly complex RTSSim simulation model.

1 Overview

RTSSim has been developed to allow for simulation-based analysis of task tim-
ing, resource usage and other dynamic properties of embedded systems, which
are hard to understand from the source code alone.

A simulation model for RTSSim is expressed in plain C code and is focused
on tasks (i.e. processes/threads). Currently, only single CPU-core models are
supported, but it is possible to model input from an environment (other systems
or CPU cores). The tasks in the simulation model describes the tasks of a real or
�ctive embedded system, with a focus on behavior relevant for timing or resource
usage properties, such as task interactions (communication, synchronization),
task attribute changes (e.g. priority) and important state changes.

Each task in RTSSim is a C program, which executes in a �sandbox� envi-
ronment with similar services and runtime mechanisms as a normal real-time
operating system. The scheduling policy or RTSSim is preemptive �xed-priority
scheduling and each task has scheduling attributes such as priority, periodicity
and o�set. It is possible to change these parameters dynamically, in the task
model code, to implement a custom scheduling policy.

An RTSSim simulation is performed by compiling the model together with
the RTSSim library (in a Microsoft Visual Studio project) and running the re-
sulting executable. The output is, depending on con�guration, either a detailed

1

trace �le for the Tracealyzer tool [?], or a text�le with timing statistics for a
speci�c task.

Compared to traditional testing, an RTSSim simulation is often 100-1000
times faster than running real test-cases on the target system. This is partly
due to the typically higher abstraction-level of the simulation model and faster
CPU of desktop computers. Moreover, RTSSim can run large amounts of sim-
ulations automatically and explore di�erent scheduling/timing scenarios much
more e�erently than ordinary testing. The simulator can be used in two ways,
depending on the properties of interest. For estimation of average case behav-
ior (performance), Monte-Carlo (random) simulation is used. For estimation
of extreme values, two methods for simulation optimization have been devel-
oped in our research, MABERA [?] and HCRR (publication pending). In these
methods, RTSSim is used in an iterative manner by an optimization algorithm,
which tries to �nd as extreme values as possible for the speci�ed property, e.g.,
task response time. Note that these methods are still �best e�ort� approaches,
just like Monte-Carlo simulation, but are signi�cantly more e�cient in �nding
extreme values for non-trivial simulation models.

2 Concepts of RTSSim

RTSSim models time using an integer variable, clk. All time-dependant opera-
tions of RTSSim (task activations, timeouts, delays and simulation termination)
depends on clk. The clk variable is only advanced explicitly, through a special
RTSSim library routine. Due to this �virtual time�, the timing behavior of the
host computer does not a�ect the simulation result.

An RTSSim model may contain three types of RTSSim-speci�c elements:
tasks, message boxes and semaphores.

An RTSSim simulation model typically contains stochastic selections. The
most visible is the jitter attribute of tasks, which adds a random variation in
task release time, enabling modeling of stochastic tasks. RTSSim determines
stochastic selections either using pseudo-random numbers generated during run-
time (resulting in random monte-carlo simulation), or from values speci�ed as
parameters to RTSSim when it is controlled by a simulation optimization al-
gorithm. When using random simulation, RTSSim reports the �seed value�
used to initiate the random number generator. Thereby it is possible to repli-
cate previous simulations. Another types of stochastic selections are execution
time variations (stochastic increment of the simulation clock) and model-speci�c
stochastic selections, typically in tasks used to model the environment.

Note that RTSSim is completely deterministic when used in simulation op-
timization approaches such as HCRR or MABERA. The term �stochastic se-
lections� is a bit misleading when RTSSim is used in that context, as such
selections are directly controlled by the input data to RTSSim in that case.
However, the �stochastic selections� are in some sense always stochastic from a
model point-of-view, as the model does not decide their outcome.

2

3 Tasks

The tasks de�ne the behavior of the simulation. A task has a name, a set of
scheduling attributes (priority, periodicity, o�set and jitter) as well an entry
function. The entry function (which is automatically called by the RTSSim
scheduler) is a C function taking one parameter, a pointer to its task control
block, which it needs for using the RTSSim library routines. Tasks may be
periodic, sporadic or �one-shot�, depending on the attributes period and jitter.
A period of -1 implies a one-shot task, i.e., a task that is only activated once
(at the o�set time). Sporadic tasks are speci�ed by a positive period (minimum
interarrival time) and a positive, non-zero jitter (the maximum variation in in-
terarrival time), meaning that it has a variable but bounded interarrival time.
Periodic tasks are speci�ed using a positive period and a jitter of 0. The entry
function of periodic and sporadic tasks should return to RTSSim and may there-
fore not contain any in�nite main loops; this is however allowed for one-shot
tasks.

3.1 Creating a task using createTask

TCB* createTask(char* name, int prio, int period, int o�set, int jitter, void
(*func)(void* TCB))

This routine creates and initiates a task in RTSSim and is normally called
from the �model_init� function, but may also be used dynamically, from the
task code. A task has four scheduling attributes:

• prio: The scheduling priority (importance) of the task. Lower values are
more signi�cant, so 0 is the top priority.

• period: The periodicity of the task. If -1, the task is a one-shot task,
meaning that it is only released once (at current time (clk) + o�set)

• o�set: Allows separation of tasks in time. If the o�set of a task is 100 and
period is 4000, the task will be released at 100, 4100, 8100 etc.

• jitter: Speci�es the maximum jitter of sporadic tasks. If the jitter of
a task is 100 and period is 4000, the �rst instance of the task will be
released somewhere in the interval [0..99], the second activation will occur
[4000..4099] time units after the previous release of the task. Thus, the
average interarrival time of this task is around 4050.

3.2 Advancing the simulation clock using execute

void execute(int duration)

The execute routine is used to advance the simulation clock (clk), which drives
the simulation forwards. The size of the clock advance is speci�ed in the dura-
tion parameter and should model the real modeled system's CPU usage for a

3

particular pieces of code. This information is typically obtained from detailed
measurements, or from estimations if the modeled system is not implemented.
Depending on the model's level of abstraction, a call to the execute routine may
represent the code of a whole task or a smaller section of code. During the dura-
tion of the execute call, the task may be preempted by other tasks. In that case,
RTSSim remembers the amount of execution time left to consume, and continues
consuming the remaining CPU time when the task is again allowed to execute.
Note that preemptions does not occur outside RTSSim library functions, so
�normal� C code is executed in a non-preemtive manner. To allow preemptions
in between such C statements (other statements than calls to RTSSim library
routines), an execute statement should be added in between. Random execu-
tion time variations can be implemented by passing pseudo-random values (in
a suitable range) to the execute routine.

3.3 Waiting for a speci�ed duration using delay

void delay(int duration)

A call to the delay routine puts the task to sleep for duration time units. After
the speci�ed time has passed, the calling task becomes ready for execution.

4 Message boxes

A message box is a FIFO bu�er storing messages between tasks. An RTSSim
task may put messages in the message box using the sendMessage library rou-
tine and fetch messages using the recvMessage library routine. A message is a
32-bit positive integer value, which typically represents a message code (a ser-
vice request or status answer). Negative values are not recommended, as the
recvMessage operation uses negative return values to represent error codes (e.g.
timeout).

4.1 Creating a message box using createMBOX

MBOX createMBOX(char* name, int size);

Creates a message box with speci�ed name and size, i.e. the maximum number
of messages the messagebox can store before blocking occurs. Returns a handle
necessary for later sendMessage and recvMessage calls on the created message
box.

4.2 Sending a message using sendMessage

int sendMessage(MBOX mbox, int msg, int timeout)

Attempts to send message msg is to the messagebox mbox. If mbox is full,

4

the sending task is blocked until there is room for the message, or a timeout
occurs. If timeout parameter is FOREVER, no timeout will occur (it waits �for-
ever�). If the timeout is 0, a timeout occurs immediately if there is no empty
slot in the messagebox. If a timeout occurs, the return code is TIMEOUT, oth-
erwise OK. The message should be a single 32-bit integer value. Negative values
are not allowed, as recvMessage uses negative values for error return codes.

Example:

#define MY_MSG_CODE 123

int status;

status = sendMessage(MyMBOX, MY_MSG_CODE, 1000);

if (status == TIMEOUT)

{

/* timeout error handling */

...

}

4.3 Receiving a message using recvMessage

int recvMessage(MBOX mbox, int timeout)

A message is received from the messagebox mbox. If mbox is empty, the task
is blocked until a message arrives or the timeout occurs. If timeout is speci�ed
as FOREVER (-1), no timeout will occur. If timeout is speci�ed to 0, the task
is not blocked by an empty mbox, but immediately timeouts if no message is
available.

Example:

int msg;

msg = recvMessage(MyMBOX, FOREVER);

switch (msg)

{

case TIMEOUT: /* timeout error handling */

break;

case REQUEST1: ...

break;

case REQUEST2: ...

break;

}

5 Semaphore

RTSSim provides a classic Djikstra binary semaphore, for mutual exclusion be-
tween tasks. A semaphore is locked using the sem_wait library routine (corre-

5

sponding to Djikstra's P) and released using sem_post routine (corresponding
to Djikstra's V).

5.1 Creating a Semaphore using createSemaphore

SEMAPHORE createSemaphore(char* name);

Creates a semaphore with speci�ed name. To lock the new semaphore, a call to
sem_wait is also required. Returns a handle necessary for later sem_wait and
sem_post calls on the created semaphore.

5.2 Locking a Semaphore using sem_wait

int sem_wait(SEMAPHORE sem, int timeout)

Attempts to lock a semaphore. If the semaphore is already locked (typically
by another task), the operation blocks until it is allowed to lock the semaphore
or the timeout occur. If the semaphore was locked, the return code is OK, oth-
erwise, if a timeout occurs, the return code is TIMEOUT. The time duration to
wait before timeout is speci�ed in the timeout parameter. If this is 0, a timeout
will immediately occur if the semaphore was already locked. If the timeout is
speci�ed to FOREVER, no timeout will occur.

Example:

int status;

status = sem_wait(MySem, 10000);

if (status == TIMEOUT)

{

/* failed locking the semaphore */

...

}

5.3 Releasing a Semaphore using sem_post

int sem_post(SEMAPHORE sem)

A previously locked semaphore is unlocked. If other tasks are waiting to lock
the semaphore, they will be made ready to execute.

Example:

sem_post(MySem);

6

6 Modeling the system environment

As previously mentioned, RTSSim can only simulate the scheduling on one CPU,
but is is possible to model the input from other nodes, I/O interfaces, sensors
etc, by using environment tasks. Such tasks should not call the execute routine
and are therefore �invisible� in the simulation, except for their intended impact,
as they don�t consume any CPU time. Such tasks should have top-priority, i.e.,
priority 0.

7 Simulation output

RTSSim can generate two types of output, either a detailed trace of the sim-
ulation, or a text �le with statistics for a speci�c task. The former is used to
study the details of a simulation and the latter when using RTSSim in a simu-
lation optimization algorithm, such as MABERA or HCRR. The statistic text
�le contains the highest response time and execution time for a speci�c task.
If using RTSSim in batch mode, i.e., in order to run several independent simu-
lations, the text�le will contain the result of each simulation result. The trace
output option generates a binary �le for the graphical Tracealyzer tool [?], con-
taining an exact, timed trace of the task scheduling, communication events and
model-speci�c events. An example of the trace view is depicted by Figure ??.

7

Figure 1: A Tracealyzer view of the example RTSSim model presented in Sec-
tion ?? (speci�cally the extreme scenario described in Section ??)

8

8 Example model

This section gives an example of the essential parts of a fairly complex RTSSim
model. This model was used for the evaluation of the MABERA method for
simulation optimization, presented in [?]. This model describes a �ctive system,
but is inspired a control system for industrial robots, developed by ABB. The
tasks of this model violate several assumptions of the traditional methods for
analytical response-time analysis. The tasks in the model may:

• trigger the execution of other tasks through communication using message
queues,

• be triggered both by timers and events, or a combination of both,

• have di�erent temporal behaviors depending on the contents of received
messages and the value of shared state variables,

• be blocked on sending and receiving of messages, and

• change the scheduling priority of tasks as a response to certain events.

The modeled �ctive system controls a set of electric motors based on pe-
riodic sensor readings and aperiodic events. The calculations necessary for a
real control system is not included in this model, the model mainly describes
execution time, communication and other behavior that impact the temporal
behavior. The model contains four periodic tasks:

Task Priority Period
PLAN_TASK 50 40000 or 10000
CTRL_TASK 40 or 20 10000 or 20000
IO_TASK 30 5000
DRIVE_TASK 10 2000

An overview of the model is given in Figure ??, where colors are used to indi-
cate priority (red indicates top priority, yellow medium priority and green lowest
priority. The illustration also shows the message queues (named XXQ) which
the tasks use to communicate. The queue DDQ is critical in the application
and not allowed to become empty.

PLAN_TASK is responsible for high level planning of how to move the
physical object connected to the motors. It periodically sends coordinates to
CTRL_TASK through the queue CDQ (CTRL Data Queue). CTRL_TASK
calculates control references for the motors with respect to input from CDQ and
from IO_TASK, through the queue IOQ. The resulting motor control references
from CTRL_TASK are sent to DRIVE_TASK, through DDQ, which controls
the motors. The purpose of IO_TASK is to collects bu�ered I/O events from the
system's environment (and send this information to CTRL_TASK). Depending
on the physical state of the controlled system, di�erent numbers of I/O messages

9

are received from the environment (e.g., sensors). The number of incoming
messages for IO_TASK are modeled using the integer variable nofEvents, which
is increased by the environment task IO_ENVTASK, by 0, 1 or 2, every 1000
time units. IO_TASK, which has a period of 5000, decreases this variable
by 1 for each message that is sent to IOQ. The increments of nofEvents in
IO_ENVTASK is a simulator input (or random if monte-carlo simulation).

As indicated by the table, both CTRL_TASK and PLAN_TASK may
change priority and periodicity in response to speci�c events in the model. The
period of CTRL_TASK is normally 20000 time units, but when a movement is
approaching the target, the period is decreased to 10000 in order to improve con-
trol performance. The priority of CTRL_TASK is boosted if the input queue
for DRIVE_TASK has decreased below a certain threshold, since this queue
must never become empty. PLAN_TASK uses a shorter periodicity when idle,
in order to faster detect a start event.

There are three types of events from the system�s environment: START,
STOP and GETSTATUS. These events are sent to PLAN_TASK through the
queue PCQ (PLAN Command Queue), which processes them accordingly; some
are forwarded to CTRL_TASK and DRIVE_TASK, through their command
queues CCQ and DCQ. The START event will cause the system to change state
into active, which means that it powers up and controls the motors. The STOP
event causes the system to power down the motors and go to idle state. The
GETSTATUS event causes all tasks to send a status message to the user inter-
face (an environment task). These events impact the execution time of the tasks.
The events are generated by the environment tasks GETSTATUS_ENVTASK,
START_ENVTASK and STOP_ENVTASK.

Figure 2: The tasks and communication dependencies of the example model

10

8.1 An extreme scenario

This model can not be analyzed using traditional methods such as RTA, but
using a simulation optimization method, HCRR, we have identi�ed an extreme
scenario regarding the response time of CTRL_TASK, the most complex task in
the model, which is believed to be the worst case response time. The response
time of CTRL_TASK is in the average case around 3200, but can reach a
value of 8474. The scenario, which is depicted by in the example trace view of
Figure ??, depends on the following conditions:

• The number of messages in IOQ is 32 when the critical instance of CTRL_TASK
begins to execute. This is very high, in fact the largest IOQ size observed
in any experiment on this model.

• An instance of IO_TASK preempts the critical CTRL_TASK instance
and re�lls IOQ with 10 messages during the CTRL_TASK's IOQ read
loop, increasing the iterations of this loop from 32 to 42.

• A rare sporadic event (GETSTATUS) had just occurred, which results in
messages for the following instance of CTRL_TASK and DRIVE_TASK,
which increase their execution times.

• As a result of the long execution time of the critical instance of CTRL_TASK
(6224), it is preempted by �ve instances of DRIVE_TASK (one with un-
usually long execution time, due to a preceding GETSTATUS event) and
two instances of IO_TASK.

The number of messages in IOQ has a major impact on the execution time
of CTRL_TASK. The number of messages in IOQ is increased when IO_TASK
executes, every 5000 time units, and depends on the global variable nofEvents.
Maximum 12 messages are sent to IOQ at each instance of IO_TASK. The
nofEvents variable is in turn increased by an environment task, IO_ENVTASK,
which executes every 1000 time units. This increases nofEvent by 0, 1 or 2
(according to simulator input data or random selection, depending on mode).
Reaching an IOQ size of 32 required an intricate sequence of input data (i.e. the
nofEvent increase by 0, 1 or 2); if always increasing by 2, the IOQ size becomes
maximum 30, resulting in a response time of 8324, compared to the worst case
of 8474. The reason for this is in the relative timing between previous instances
of CTRL_TASK and IO_TASK:

In the worst-case scenario identi�ed, the CTRL_TASK instance preceding
the critical instance had only 3 messages in IOQ to consume, which allowed it to
�nish the read loop before IO_TASK re�lled it, which implied that these mes-
sages were instead processed by the next (the critical) CTRL_TASK instance.

In the �tweaked� case, where only 2:s where given as input (i.e., added to
nofEvents), the previous CTRL_TASK instance had more messages in IOQ to
consume, which took longer time and made the IO_TASK preempt and re�ll
IOQ during the read-loop. Thereby, these messages were consumed by this

11

previous task instance, which decreased the IOQ size for the next (the critical)
instance of CTRL_TASK.

The large IOQ size in this case (32) was partly caused by DRIVE_TASK; it
increased the priority of CTRL_TASK momentarily, as the number of messages
in DDQ has dropped below a speci�ed threshold. This is a mechanism to prevent
bu�er-underrun situations on DDQ (it may not become empty) and implies that
instances of IO_TASK are delayed, which changes the relative timing between
IOQ's producer (IO_TASK) and consumer (CTRL_TASK).

12

8.2 Model code

void PLAN_TASK(TCB* tcb)

{

int nFLCs;

int cmd;

SUBSYSTEM_DATA* subsystem = tcb->userdata;

// process all pending requests in PCQ

do

{

cmd = recvMessage(tcb, subsystem->PCQ, 0);

execute(tcb, cPLANdecode);

if (cmd != -1)

{

switch(cmd)

{

case MSG_START:

subsystem->remainingFLC = 130;

trcrec_store_probe(subsystem->probe_remaining_FLC,

subsystem->remainingFLC);

subsystem->planstate = PLANSTATE_BEGIN;

trcrec_store_probe(subsystem->probe_plan_task_state,

subsystem->planstate);

execute(tcb, cPLANstart);

break;

case MSG_STOP:

subsystem->planstate = PLANSTATE_IDLE;

trcrec_store_probe(subsystem->probe_plan_task_state,

subsystem->planstate);

execute(tcb, cPLANstop);

break;

case MSG_GETSTS:

execute(tcb, cPLANgetsts);

sendMessage(tcb, subsystem->GSQ, MSG_STS_PLAN, FOREVER);

sendMessage(tcb, subsystem->CCQ, MSG_GETSTS, FOREVER);

break;

default:

sim_fail_int("PLAN_TASK got message: %d\n", cmd);

}

}

}while (cmd != -1); // until no more messages

13

// execute periodic behavior, depending on state

switch (subsystem->planstate)

{

case PLANSTATE_BEGIN:

subsystem->planstate = PLANSTATE_WORKING;

trcrec_store_probe(subsystem->probe_plan_task_state,

subsystem->planstate);

subsystem->closeToTarget = 0;

trcrec_store_probe(subsystem->probe_close_to_target,

subsystem->closeToTarget);

if (subsystem->remainingFLC < CDQSIZE)

{

nFLCs = subsystem->remainingFLC;

}else{

nFLCs = CDQSIZE;

}

while (nFLCs > 0)

{

execute(tcb, cPLANflc);

sendMessage(tcb, subsystem->CDQ, MSG_FLC, FOREVER);

nFLCs--;

subsystem->remainingFLC--;

}

tcb->period = 40000;

break;

case PLANSTATE_WORKING:

if (subsystem->remainingFLC < 4)

{

nFLCs = subsystem->remainingFLC;

}else{

nFLCs = 4;

}

while (nFLCs > 0)

{

execute(tcb, cPLANflc);

sendMessage(tcb, subsystem->CDQ, MSG_FLC, FOREVER);

nFLCs--;

subsystem->remainingFLC--;

}

tcb->period = 40000;

break;

case PLANSTATE_IDLE:

14

tcb->period = 10000;

break;

}

trcrec_store_probe(subsystem->probe_remaining_FLC,

subsystem->remainingFLC);

if (((subsystem->remainingFLC <= 0) &&

(subsystem->planstate != PLANSTATE_IDLE)) ||

((subsystem->remainingFLC > 0) &&

(subsystem->planstate == PLANSTATE_IDLE)))

{

execute(tcb, cPlanLast);

subsystem->planstate = PLANSTATE_IDLE;

subsystem->closeToTarget = 1;

trcrec_store_probe(subsystem->probe_close_to_target,

subsystem->closeToTarget);

subsystem->remainingFLC = 0;

sendMessage(tcb, subsystem->CDQ, MSG_LAST, FOREVER);

trcrec_store_probe(subsystem->probe_plan_task_state,

subsystem->planstate);

}

}

void CTRL_TASK(TCB* tcb)

{

int msg = -1;

int ioevent;

int i;

int nSLC = -1;

int nofIOEvents = 0;

SUBSYSTEM_DATA* subsystem = tcb->userdata;

msg = recvMessage(tcb, subsystem->CCQ, 0);

execute(tcb, cCTRLdecode);

if (msg > -1)

{

switch (msg)

{

case MSG_GETSTS:

sendMessage(tcb, subsystem->GSQ, MSG_STS_CTRL, FOREVER);

execute(tcb,cCTRLgetsts);

sendMessage(tcb, subsystem->DCQ, MSG_GETSTS, FOREVER);

break;

15

default:

sim_fail_int("CTRL_TASK got message: %d\n", msg);

break;

}

}

// consume all IO events

i = 0;

do{

ioevent = recvMessage(tcb, subsystem->IOQ, 0);

if (ioevent > -1)

{

i++;

execute(tcb, cCTRLioevent);

}

}while (ioevent > -1);

if (subsystem->closeToTarget == 0)

{

nSLC = 10;

tcb->period = 20000;

}

else

{

nSLC = 5;

tcb->period = 10000;

}

// Process any FLC message from PLAN_TASK

msg = recvMessage(tcb, subsystem->CDQ, 0);

if (msg > -1)

{

switch(msg)

{

case MSG_FLC:

if (subsystem->idle == 1)

{

subsystem->idle = 0;

trcrec_store_probe(subsystem->probe_ctrl_idle,

subsystem->idle);

}

while (nSLC-- > 0)

{

// generate SLC data to DRIVE

execute(tcb,cCTRLslc);

sendMessage(tcb, subsystem->DDQ, MSG_SLC, FOREVER);

16

}

break;

case MSG_LAST:

subsystem->idle = 1;

subsystem->closeToTarget = 0;

execute(tcb,cCTRLlast);

trcrec_store_probe(subsystem->probe_ctrl_idle,

subsystem->idle);

break;

default:

sim_fail_int("CTRL_TASK got message %d\n", msg);

break;

}

}

else // if no message

{

if (subsystem->idle == 0)

{

// if expecting message

sim_fail("CTRL_TASK starvation!\n");

}

}

// if idle, generate default data (slcd)

if (subsystem->idle == 1)

{

while (nSLC-- > 0)

{

execute(tcb,cCTRLslcd);

sendMessage(tcb, subsystem->DDQ, MSG_SLCD, FOREVER);

}

}

}

void DRIVE_TASK(TCB* tcb)

{

int msg;

SUBSYSTEM_DATA* subsystem = tcb->userdata;

msg = recvMessage(tcb,subsystem->DDQ,0);

execute(tcb,cDRIVEdecode);

if (msg == -1)

17

{

sim_fail("DRIVE_TASK starvation!\n");

}

if (subsystem->DDQ->current_size < MINDDQSIZE)

{

// boost priority of CTRL_TASK, now higher than IO_TASK

subsystem->ctrl_task->prio =

20 + subsystem->subsystem_index;

}

else

{

// normal priority of CTRL_TASK, lower than IO_TASK

subsystem->ctrl_task->prio =

40 + subsystem->subsystem_index;

}

trcrec_store_probe(subsystem->probe_ctrl_prio,

subsystem->ctrl_task->prio);

// process data message from CTRL_TASK

switch(msg)

{

case MSG_SLC:

execute(tcb, cDRIVEslc);

if (subsystem->ismoving == 0)

{

subsystem->ismoving = 1;

trcrec_store_probe(subsystem->probe_drive_ismoving,

subsystem->ismoving);

sendMessage(tcb, subsystem->SSQ, MSG_MOVING, FOREVER);

}

break;

case MSG_SLCD:

execute(tcb, cDRIVEslcd);

if (subsystem->ismoving == 1)

{

subsystem->ismoving = 0;

trcrec_store_probe(subsystem->probe_drive_ismoving,

subsystem->ismoving);

sendMessage(tcb, subsystem->SSQ, MSG_NOTMOVING, FOREVER);

}

break;

default:

sim_fail_int("Warning, DRIVE_TASK unhandled message: %d\n", msg);

18

break;

}

// check for command, i.e., any getstatus requests

msg = recvMessage(tcb, subsystem->DCQ, 0);

if (msg > -1)

{

switch(msg)

{

case MSG_GETSTS:

execute(tcb, cDRIVEgetsts);

sendMessage(tcb, subsystem->GSQ, MSG_STS_DRIVE, FOREVER);

break;

default:

sim_fail_int("DRIVE_TASK got message %d\n", msg);

break;

}

}

}

void IO_TASK(TCB* tcb)

{

int status;

int eventsToProcess = 0;

SUBSYSTEM_DATA* subsystem = tcb->userdata;

if (subsystem->nofEvents > 12)

{

// save some IO events for next job

eventsToProcess = 12;

}

else

{

// normal case, process all IO events

eventsToProcess = subsystem->nofEvents;

}

while(eventsToProcess-- > 0)

{

execute(tcb, cIOEvent);

subsystem->nofEvents--;

status = sendMessage(tcb, subsystem->IOQ, 1, 0);

if (status < 0)

{

printf("IOQ overflow! clk: %d\n", clk);

}

19

}

}

void IO_ENVTASK(TCB* tcb)

{

nofEvents += (int)(getRandomValue() % 3);

}

void GETSTATUS_ENVTASK(TCB* tcb)

{

int reply;

sendMessage(tcb, PCQ, MSG_GETSTS, FOREVER);

reply = recvMessage(tcb, GSQ, FOREVER);

if (reply != MSG_STS_PLAN)

{

printf("Warning, got unexpected message %d\n",reply);

}

reply = recvMessage(tcb, GSQ, FOREVER);

if (reply != MSG_STS_CTRL)

{

printf("Warning, got unexpected message %d\n",reply);

}

reply = recvMessage(tcb, GSQ, FOREVER);

if (reply < 0)

return;

if (reply != MSG_STS_DRIVE)

{

printf("Warning, got unexpected message %d\n",reply);

}

}

void START_ENVTASK(TCB* tcb)

{

int reply;

sendMessage(tcb,PCQ,MSG_START, FOREVER);

20

reply = recvMessage(tcb, SSQ, FOREVER);

if (reply != MSG_MOVING)

{

printf("Warning, got unexpected message %d\n",reply);

}

// create the STOP task dynamically, as a one-shot task (period -1)

createTask("STOP_ENVTASK",

0, // priority

-1, // period (one-shot)

clk + 100000, // offset (start time) is set to current time + 100000

100000, // jitter

STOP_ENVTASK);

}

void STOP_ENVTASK(TCB* tcb)

{

int reply;

sendMessage(tcb,PCQ,MSG_STOP, FOREVER);

reply = recvMessage(tcb, SSQ, FOREVER);

if (reply != MSG_NOTMOVING)

{

printf("Warning, got unexpected message %d\n",reply);

}

}

References

[1] Tracealyzer website, http://www.tracealyzer.se.
[2] J. Kraft, Y. Lu, C. Norström, and A. Wall. A metaheuristic approach for best e�ort

timing analysis targeting complex legacy real-time systems. In Proc. of the 14th

IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS
08), April 2008.

21

