
Pinpointing Interrupts in Embedded Real-Time Systems using Context
Checksums

Daniel Sundmark and Henrik Thane
MRTC, Mälardalen University

Box 883, SE-721 23 Västerås, Sweden
{daniel.sundmark, henrik.thane}@mdh.se

Abstract

When trying to track down bugs using cyclic debugging,
the ability to correctly reproduce executions is imperative.
In sequential, deterministic, non-real-time software, this re-
producibility is inherent. However, when the execution is
affected by preemptive interrupts, this will have severe ef-
fects on the ability to reproduce program behaviors deter-
ministically, since a reproduction requires the interrupts to
hit the program at the exact same instructions. In previ-
ous methods, this problem has been solved using different
kinds of instruction counters, that induce large execution
time perturbations, demand for specialized hardware, or
provide inexact results. This makes them highly unfit for
resource-constrained embedded real-time systems.

In this paper, we propose an alternative method for pin-
pointing interrupts in embedded real-time systems using
context checksums, which is not dependent on specific hard-
ware features or special compilers - but which rather can
be applied to any system. Although context checksums in
some cases also prove inexact or ambiguous, we will show
that they serve as a practical method for pinpointing and
reproducing interrupts in embedded real-time systems. Fur-
thermore, our method performs perfectly well with standard
development tools and operating systems, requires no addi-
tional hardware support and, according to preliminary re-
sults, consumes merely a tenth of the execution time of ex-
isting software-based methods for pinpointing interrupts.

1 Introduction

Cyclic debugging is the process of examining the be-
havior of a faulty execution in an iterative fashion, thereby
narrowing down the temporal and functional scope within
which the system infection (the execution of a bug) might
have taken place. By doing this, the bug can hopefully be
found and safely removed.

1.1 Background

Reproducibility in cyclic debugging is trivial as long
as the programs under investigation are deterministic (i.e.
their execution behavior depends only on input parame-
ters provided and controlled by the user). However, cor-
rect reproduction of execution behavior has always been a
problem during cyclic debugging of non-deterministic pro-
grams. Since such programs exhibit different execution be-
havior over different executions, encountered failures are
hard to reproduce and therefore hard to investigate in depth.

Interrupts are a major source of non-determinism in pro-
gram executions. As an interrupt occurs, the ongoing CPU
activity is halted, the state of the executing program is
stored and the interrupt is handled by an interrupt service
routine (ISR). To reproduce this scenario (e.g. for debug-
ging), we need to be able to correctly reproduce the occur-
rence of the interrupt. In other words, we must make sure
that the interrupt preempts the execution of the CPU activity
at the exact same state during the reproduction as it did in
the first execution. An intuitive solution might be to make
use of the program counter value at the occurrence of the in-
terrupt. If we make sure that the interrupt is forced upon the
program at the same program counter value during debug-
ging, the program will be interrupted at the correct instruc-
tion. However, program counter values might be revisited.
A loop, e.g., could execute a number of instructions during
each iteration. Using solely the program counter, we cannot
distinguish an interrupt occurring at some program counter
value during the third iteration of the loop from one occur-
ring at the same instruction during the seventh iteration of
the loop. Consequently, additional information is required.
We need some sort of a unique marker.

1.2 Related Work

Traditionally, the simplest unique marker technique is
the instruction counter. In its basic form, this is a mecha-
nism that counts machine code instructions as they are exe-



cuted. When an interrupt occurs, the counter value is sam-
pled along with the program counter in order to pinpoint the
location of occurrence.

1.2.1 Instruction Counters

In order to be able to count each instruction as it is exe-
cuted, there is a need for some kind of specialized hard-
ware [5, 7]. The hardware required to count instructions
is a simple counter incremented on each instruction execu-
tion cycle. Even though the hardware instruction counter
technique solves the problem of uniquely pinpointing the
location of occurence of interrupts, the method has draw-
backs. One of the more significant problems is lack of the
hardware needed in modern state-of-the-practice embedded
microprocessors. Even though some of the larger proces-
sors available today have registers capable of performing
instruction counting [1], this is no standard component in
smaller or embedded processors. In addition, for many ex-
isting hardware platforms, there is reason to doubt the ac-
curacy of the instruction counters [10].

Another problem is the sampling of the instruction
counter. For applications using an Operating System (OS)
or a Real-Time Operating System (RTOS), this may call for
OS- or RTOS support. For example, consider an interrupt
occurring at time tevt. At time tevt + δ, the hardware in-
struction counter is sampled. Obviously, we will receive the
instruction counter value of the latter, giving us a sampling
error equal to the number of instructions executed during δ.
This might be problematic, especially if δ varies from time
to time, due to ISR- or kernel jitter.

1.2.2 Software Instruction Counters

In 1989, Mellor-Crummey and LeBlanc proposed the use
of a software instruction counter (SIC) [9], suitable for sys-
tems running on top of platforms not equipped with the
instruction counter hardware. However, since a software-
based instruction counter performing the same task as a tra-
ditional hardware instruction counter would incur an intol-
erable overhead on the system, the software counterpart has
to be much more restrictive when selecting upon which in-
structions to increment.

The SIC idea is based on the fact that only backward
branches in a program can cause program counter values to
be revisited. For instance, in a sequential program without
backward branches, no instruction will be executed more
than once. In such a system, the program counter is a unique
marker, defining unique states in the execution. However,
using structures such as loops, subroutines and recursive
calls will require backward branches. Due to performance
reasons, the implementation of the SIC not only increments
on backward branches, but also on forward branches. In
short, the SIC is implemented as a register-bound counter,

requiring special compiler support. In addition, a platform-
specific tool is used to instrument the machine code with
incrementing instructions before each branch. According
to the authors, the SIC incurs an execution overhead of ap-
proximately 10% in the instrumented programs.

The problem of getting the correct instruction counter
value at sampling time tevt + δ is not solved using soft-
ware instruction counters, although we are only interested
in the number of backward branches rather than the number
of instructions during δ.

There has also been improvements to the SIC method,
e.g., [8], which managed an 4 – 22% overhead reduction
rate (i.e., a resulting CPU utilization overhead of about 9%)
by analysing the machine code and separating deterministic
scopes from non-deterministic scopes, and only instrument-
ing the non-deterministic scopes. Furthermore, [4], used an
approximate SIC, based on entry- and exit points of ISRs,
and was thus able to reproduce orderings of interrupts cor-
rectly, but the interrupts will not be reproduced at the correct
instruction.

1.2.3 Trace Port Solutions

It should also be noted that, for many microcontrollers,
there exist hardware-based solutions (e.g., JTAG [11] and
BDM [6]), where a trace port is able to in detail track the
execution of the system. However, even though these so-
lutions are useful in a lab environment, they are not well
suited for instrumentation of deployed systems in their in-
tended environment. Therefore, they are not considered in
the scope of this paper.

1.3 Problem Formulation

As discussed in the above section, several methods have
been proposed for pinpointing and reproducing interrupts.
However, due to variouos drawbacks, none of these meth-
ods has been fully accepted. All instruction counter meth-
ods require platform-dependent specialized development
tools, such as specialized compilers, in order to work.
When discussing embedded systems, additional drawbacks
become significant. Very few embedded microcontrollers
are equipped with sufficiently accurate hardware instruction
counters. Turning to software instruction counters, these
will require approximately 10% of the overall execution
time, a hard to meet requirement in resource constrained
systems. Consequently, a different approach, more adapted
to the requirements of embedded systems and able to per-
form using standard development tools, is needed.

1.4 Contribution

In this paper, we present a novel method for pinpointing
interrupts, suitable for embedded real-time systems. In our

2



method, we use an approximation of the state of the pre-
empted program at the time of the interrupt as a marker.
This approximation is represented in the form of the stack
pointer and a checksum of the execution environment of the
program, such as the registers or (part of) the program stack.
According to preliminary results, our method imposes an
execution time overhead of approximately 0.002 – 0.37 %
(27 – 5000 times less than that of the SIC) and requires no
additional hardware support to work. Our method primar-
ily focuses on embedded multi-tasking real-time systems,
running on top of a real-time operating system. However,
the method also applies to simpler system models without
operating system support, using interrupts to handle exter-
nal events. Here the calculation of the checksums could be
performed within the ISRs.

In our previous work, we have proposed a method, De-
terministic Replay [15], for recording and reproducing (or
replaying) the execution behavior of non-deterministic real-
time systems. The technique presented and evaluated in this
paper is incorporated into the Deterministic Replay method,
allowing replay debugging of interrupt-driven embedded
real-time systems.

1.5 Paper Outline

The remainder of this paper is organized as follows: In
Section 2, our method is described in detail. In Section 3,
we address the issue of the accuracy of our approximative
method and in Section 4, we evaluate this accuracy through
simulation. Here, we also evaluate the system perturbation
of our method. In Section 6, we conclude the paper and
Section 5 discusses future work.

2 Context Checksums

The basic idea of our method is to reproduce interrupts
by recording the program counter values and unique mark-
ers of their occurrence. In order to reproduce these inter-
rupts, a debugger breakpoint is set at each interrupted pro-
gram counter address and the program is restarted in the de-
bugger. As a breakpoint is hit, the unique marker of the cur-
rent execution is compared to the recorded unique marker
value. If these markers match, we consider this interrupt to
be pinpointed and an interrupt is forced upon the system.

In this section, we will describe how our method uses the
stack pointer together with approximations of the data in the
execution context as unique markers. As an introduction,
we will describe our concept of the execution context.

2.1 Execution Context

Looking back on the example formulated in Section 1.1,
where a program counter value is indistinguishably revis-

ited a number of times, a good solution in theory would be
to make use of the loop counter together with the program
counter value as a unique marker. Unfortunately, not all
loops have loop counters. In a more general sense, it is very
hard to determine exactly which parts of the program con-
text that differentiate between specific loop iterations, sub-
routine calls or recursive calls. Ideally, we would base our
unique marker on the entire content of the execution context
in order to be able to differentiate between loop iterations.
However, considering the amount of data used to represent
this context, we face a practical problem when recording
it during execution due to the massive perturbation to the
system. Consequently, we need to derive a subset of the
execution context suitable for unique marker use.

The program execution context is basically a set of data
stored in registers, on the stack or on the heap. Since the
processor registers are small and very fast, these hold the
most current parts of the execution context. And, since they
are small and very fast, they make exellent candidates as a
basis for the execution context-based unique markers.

2.2 Register Checksum

One solution would be to store the contents of each pro-
cessor register. However, in most embedded systems, mem-
ory resources are scarce. Storing all registers at each inter-
rupt might incur an intolerable perturbation on the memory
usage of the system. In our method, we handle this problem
by separately storing the stack pointer, as it is invaluable for
differentiating between recursive calls, and calculating and
storing a checksum of the contents of the remaining regis-
ters. By doing this, we destroy information, but still pre-
serve an approximative representation of the register con-
tents from the time of the interrupt.

The register checksum operation is a simple addition of
all processor registers. Overflow of the accumulated check-
sum is ignored. Hence, if the processor is equipped with
eight general-purpose 16-bit registers (R0...R7), the regis-
ter checksum CR is calculated as follows:

CR = (R0 +R1 + ...+R7) mod 216

Due to the modest size and the ease of access of proces-
sor registers, the computational cost of calculating a register
checksum is very small. However, since the register check-
sum is based solely on the processor registers, its main dis-
advantage is that it only covers a minor subset of the ex-
ecution context. If an interrupt occurs within a loop and
the actual parameters differentiating between iterations are
not included in this subset, we will not be able to uniquely
pinpoint the occurrence of the interrupt.

3



2.3 Stack Checksum

In order to capture the interrupt occurrences not success-
fully pinpointed by the register checksum, we must expand
the execution context included in the context checksum. As
we already used the registers, the remainder of the execu-
tion context is located on the stack and on the heap. In our
method, we chose to work with the program stack contents.
This has two reasons: First, implementing a stack check-
sum calculation in an instrumentation probe [12] is signif-
icantly easier than implementing a heap checksum in the
same probe. The stack area is well defined, continuous and
often easy to access from within the probe. Second, with-
out having extensive proof of this, we assume that variables
influencing the program control flow, such as loop counters,
are often allocated on the stack rather than on the heap.

The checksum operation of the stack checksum is iden-
tical to the one performed in order to calculate the register
checksum. Here, the subset of the execution context in-
cluded in the checksum is bounded by the boundaries of
the stack of the executing program. Hence, on a 16-bit ar-
chitecture, the stack checksum CS is calculated using the
following formula:

CS = (SSP + SSP+1 + ...+ SSB) mod 216

In the above formula, SX denotes the byte at stack ad-
dress X . SP denotes the value of the stack pointer at the
time of the interrupt and SB denotes the value of the stack
base of the interrupted program.

The stack checksum should be viewed upon as a com-
plement to the register checksum rather than a stand-alone
solution for pinpointing interrupts. The reason for this is
the fact that the execution overhead of the stack checksum
exceeds the overhead of the register checksum to such an
extent that the perturbation of the latter becomes negligible.
In addition, discarding the option of using a register check-
sum when choosing a stack checksum solution will elimi-
nate the possibility of detecting changes in register-bound
variables over loop iterations.

2.3.1 Instrumentation Jitter

Besides the size issue, there is another property that sepa-
rates the register checksum from the stack checksum. For
the register checksum, we always use the same number of
elements in order to calculate the checksum. If the proces-
sor has eight registers, the checksum will always calculate
the register checksum by accumulating the values stored in
these eigth registers. Hence, we can guarantee a constant
execution time as far as number of instructions are con-
cerned. Using a stack checksum, the situation is different.
The stack base is constant whereas the stack pointer varies
over time. This implies a variable size of the stack and thus

a variable execution time of the stack checksum calculation,
depending on the size of the stack at the time of the inter-
rupt. In addition, the execution time of the stack checksum
calculation will only be bounded by the stack limit.

Variations in execution time of software are usually re-
ferred to as jitter. In multi-tasking systems (such as most
embedded real-time systems), designers try to keep the jit-
ter to a minimum, since it comprises the testability and an-
alyzability of the system [14]. Therefore, jitter introduced
by instrumentation activities (such as the stack checksum
calculation) may complicate testing of sensitive systems,
even though the instrumentation was included in order to
increase the analyzability.

2.4 Partial Stack Checksum

To reduce the execution time perturbation and the prob-
lem of instrumentation jitter when using the stack checksum
technique, an option is not to include the entire program
stack in the stack checksum. A partial stack checksum CP

would be calculated similarily to the original stack check-
sum (once again on a 16-bit platform):

CP = (SSP + SSP+1 + ...+ SSX) mod 216

However, the upper boundary SX of the stack interval
to be included in the checksum is chosen such that:

SP ≤ SX ≤ SB

By using this formula, we once again reduce the percent-
age of the execution context included in the stack checksum,
thereby reducing the accuracy of the unique marker approx-
imation. In turn, we obtain the following benefits:

• Eliminating instrumentation jitter
By defining SX in terms of a constant positive off-
set to SP (denoted x in Figure 1) such that the in-
terval [SP, SX] delimits a constant number of bytes
on the stack, we make sure that the stack checksum
will be calculated using a constant number of instruc-
tions. This will eliminate the instrumentation jitter of
the checksum calculation (not considering cache ef-
fects or similar). In the case where the size of the fixed
interval [SP, SX] exceeds the size of the actual pro-
gram stack (i.e. when SX > SB), this can be detected
and the remaining instructions can be simulated using
additions of zero to the checksum or similar.

• Bounding and reducing instrumentation overhead
Intuitively, reducing the percentage of the stack in-
cluded in the stack checksum will reduce the execution
time of the stack checksum calculation. By selecting a
tolerable limit (according to system specification), the

4



h()

g()

P
ro

g
ra

m
 S

ta
c
k

SB

BP

SP

SX

x

Figure 1. Different delimiter alternatives for
the stack checksum.

instrumentation overhead can easily be reduced and
bounded, while jitter is eliminated. On the other hand,
if total elimination of instrumentation jitter is no major
requirement, a reasonable candidate for SX may be
the base of the stack for the current subroutine. Many
processors are equipped with a dedicated register hold-
ing the value of this base pointer (BP in Figure 1) to
the current scope of execution.

3 Approximation Accuracy

In the above section, we have proposed a set of approx-
imations of unique markers designed to be able to pinpoint
locations of occurrence of interrupts. As our method is in-
exact, this raises questions of how accurate these approx-
imations are. In this section, we will discuss the ambigu-
ity of our method, starting by describing our method in a
more formal notion: Given a program P , we define SP to
be the set of states that can be reached in an arbitrary ex-
ecution of P . Each element s ∈ SP is made up of a tu-
ple < pcs, envs >, where pcs is an executable address in
the program code and envs is a reachable program environ-
ment. Furthermore, an execution EP of P is defined as an
ordered set of visited states. Hence, in a more formal notion,
given an execution EP that is preempted by an interrupt at
state si, our aim is to uniquely identify si.

If no information is extracted during the execution, we
know nothing of when the interrupt preempted the program.
The interrupt may have occurred anywhere during the exe-
cution. In other words, there is no element s ∈ EP that
can be disqualified from being the potential state of the in-
terrupt. By identifying the program counter of the state of
the interrupt pci, we are able to eliminate a large subset of

the set of visited states in the program execution. Those
states for which pc 6= pci can be discarded from further
investigation. However, we are still left with a set of insep-
arable states, since we cannot differentiate between the var-
ious state environments. Adding the stack pointer and the
register- and stack checksum will aid in further pruning the
execution state set. Using these, we have access to an ap-
proximative representation of the program environment of
si. Using these prunings, we will end up with a non-empty
set Ei for which the following is true:

Ei = {s : s ∈ EP ∧ pci = pcs ∧ envi ≈ envs}

Ideally, at this stage Ei will include exactly one element
(the actual state of the interrupt). Unfortunately, we can-
not guarantee that the environment approximation and the
program counter value are not valid for other states in EP .
The reason for the inability of differentiating between si

and other states in EP is twofold:

• Insufficient scope of execution context

Intuitively, including a smaller scope of execution con-
text in the context checksum will increase the risk of
leaving important variables out. Thus, a register check-
sum alone will provide less accuracy than a register
checksum combined with a stack checksum. If we
are dependent on variables located on the heap, which
are addressed by memory direct machine code opera-
tions, typically possible in a CISC architecture, neither
register- nor stack checksums will be of any use.

• Checksum ambiguity

As the checksum by default is a non-reversible oper-
ation, two completely different stacks or sets of reg-
isters may give rise to the exact same checksum. For
example, both 1 + 3 + 5 and 7 + 2 + 0 equals 9, even
though they contain entirely different terms. In addi-
tion, since overflow is handled in no other way than
a simple modulo operation, our method will not differ
between a checksum of 1 and one of 2n + 1, where n
is the number of bits in the checksum.

It should be noted that our method will never fail in pin-
pointing the correct state of the interrupt si. The problem
is that it also might find false positives, i.e. it might pin-
point other states as well. Due to the fact that the interrupt-
matching set Ei is ordered (states are ordered in the same
sequence as in which they were visited in the original execu-
tion), in our current implementation, the method will choose
the state that is reached first. Yet the question remains, how
frequently do we find the correct state first?

5



P
 R

 I
 O

 R
 I
 T

 Y

T I M E

P

t

I

Figure 2. Execution of program P preempted
at time t by interrupt I

4 Evaluation

In order to evaluate the approximation accuracy and the
level of perturbation of our method, we have conducted a
number of tests. In the accuracy tests, a tailor-made pro-
gram P was written, executed and preempted by an inter-
rupt I . Our test platform was the IAR Embedded Work-
bench (EW) [2], a commercial integrated development en-
vironment for embedded systems. We used the NEC V850
(a RISC architecture processor) version of EW and our tests
were performed using the Deterministic Replay implemen-
tation on the EW V850 target simulator. Using the cycle
counter of the simulator, we were able to simulate interrupts
after a fixed number of clock cycles.

In our experiments, both P and I were implemented as
real-time tasks running on top of the Asterix real-time oper-
ating system [13]. By varying the time t (or rather the num-
ber of clock cycles during t), we can cause I to preempt
P at different states of its execution (see Figure 2). The
accuracy tests and their results are described further in Sec-
tion 4.1. As for the perturbation tests, these were performed
on a 2.5 million LOC industrial robotics application [12]
with approximately 70 tasks running on top of an Intel PII
400 MHz processor and the commercial VxWorks real-time
operating system [3] in order to produce results relevant to
industrial applications. These tests will be further discussed
in Section 4.2.

There are several reasons for choosing different test plat-
forms for different experiments. In a way, it would be de-
sirable to use the full-scale industrial application for the ac-
curacy tests as well. However, using a tailor-made program
instead, it is possible to force execution scenarios upon the
method in such a way that it is tested more thoroughly. In
addition, due to the current implementations, applications
running on top of Asterix are significantly more manage-
able with respect to interactive debugging. This is an in-
valuable property when examining and comparing program
states during run-time.

sr1 sr2 sr3 sr4P main

100

1

2

4

8

Figure 3. The structure of test program P .

4.1 Approximation Accuracy

To be able to test the accuracy of the context check-
sum methods under different circumstances, the program P
was written such that its properties could be easily changed.
Over all tests, however, P preserved its basic structure (de-
picted in Figure 3). In short, P consists of a main function
and four subroutines sr1..sr4. In a loop with 100 iterations,
P main calls sr1, which in turn performs some calculations
and calls sr2. The sr2 subroutine, in turn, calls sr3 in two
loop iterations. From sr3, sr4 is called four times. In its
structure, sr4 has a loop that iterates eight times.

On the lowest subroutine level, this yields 6400 itera-
tions (100 ∗ 1 ∗ 2 ∗ 4 ∗ 8) in the sr4 loop for each execution
of P , meaning that each instruction in this loop is visited
6400 times. As a consequence, in an execution of P , ev-
ery instruction of the sr4 loop will result in 6400 states in
EP . All of these states will have identical program counter
values, but different environments. Hence, P is well suited
for examination of how well our method will perform re-
garding differentiation between states with identical pro-
gram counter values. In our tests, we used four different
allocation schemes in order to investigate the performance
of our method. These schemes were modeled such that the
allocation of variables were placed in different parts of the
execution context:

1. Stack Allocation 1

In this scheme, all variables (loop counters and calcu-
lation variables) were allocated on the stack of each
subroutine. No parameters were passed.

2. Stack Allocation 2

This scheme allocated like Stack Allocation 1, but also
passed parameters explicitly between subroutines.

3. Heap Allocation 1

In this scheme, all variables were allocated globally.
No parameters were passed.

4. Heap Allocation 2

All variables were allocated globally and parameters
were passed between subroutines.

6



49%59%*93%100%Partial stack 
checksum

73%68%*100%100%Stack 
checksum

46%54%45%*42%Register 
checksum

Heap 
allocation 2

Heap 
allocation 1

Stack 
allocation 2

Stack 
allocation 1

Figure 4. Success rates for different unique
marker techniques.

Each of these schemes were tested using the register
checksum, the stack checksum and the partial stack check-
sum. We used the scope of the current subroutine as a de-
limiter of the partial stack interval (corresponding to the
[SP,BP ] interval in Figure 1). This yielded 12 different
test scenarios, all tested by executing P during t time units.
At time t, P was preempted by an interrupt, and the unique
marker and the program counter were sampled. Then, P
was deterministically re-executed until the program counter
and the unique marker matched those that were sampled. At
this point, we compared the current state of execution with
the original interrupt state by comparing the values of a set
of globally defined loop counters. If the states matched, we
considered the test successful.

As stated in Section 4, by varying t, we can cause the in-
terrupt to preempt the program at different states each time.
In our tests, we started at a t value of 10000 clock cycles
and in increments of 200, we raised it to 18000 cycles. This
produced 41 test cases in each of the 12 test scenarios. The
reason for the sparse number of tests is that they had to be
performed by hand. Each test case yielded a binary out-
come (either the interrupt is successfully pinpointed, or it is
not). In Figure 4, the results of the accuracy simulations are
shown. Naturally, since the partial stack checksum and the
stack checksum are complementary techniques to the reg-
ister checksum, these always exhibit a better accuracy. If
all variables are allocated on the stack, the stack checksum
techniques outperformed the register checksum techniques
by far. However, if all variables were allocated on the heap,
the difference was not that significant. It should also be
noted that a checksum of parts of the stack in many cases
performed nearly as well as a full stack checksum.

4.2 Perturbation

As the unique marker checksums need to be sampled
during run-time at the occurrence of an interrupt, this im-
poses a perturbation to the execution of the context switch.
However, contrary to the perturbation of the SIC, discussed
in Section 1.2.2, the size of this perturbation is not propor-

0.003 - 0.37%0.002 - 0,007%Overall perturbartion

0.40 µs0.37 µsBCET

0.11 ms1.75 µsWCET

Stack checksumRegister checksum

0.003 - 0.37%0.002 - 0,007%Overall perturbartion

0.40 µs0.37 µsBCET

0.11 ms1.75 µsWCET

Stack checksumRegister checksum

Figure 5. Perturbation levels for stack- and
register checksum.

tional to the number of branches in the code, but to the num-
ber of interrupts in an execution.

In order to test the level of perturbation of our method,
we measured the execution-time perturbation of the check-
sum calculations in a full-scale industrial robotics system
[12]. While letting the system perform some simple robot
arm movements, we sampled the unique markers at inter-
rupt occurrences as well as the execution time of the unique
marker code. The upper and lower boundaries of the instru-
mentation execution time is presented in Figure 5.

As we can see from the figure, the instrumentation jitter
of the stack checksum is several magnitudes larger than that
of the register checksum. The alterations in stack checksum
execution time are mostly due to differences in the size of
the stack at the time of the interrupt, whereas the register
checksum execution time alterations are due to cache ef-
fects (since the registers are sampled from the task control
blocks rather than the actual hardware registers). Regard-
ing the level of perturbation, this should be compared with
that of the software instruction counter [9], which requires
approximately 10% of the overall CPU utilization.

5 Discussion and Future Work

When considering the results of the above evaluation, we
would again like to stress that the program P used for this
evaluation was designed to be malignant to our method. For
example, both heap allocations assume that all variables af-
fecting the program flow of control are allocated globally, a
practice neither recommended nor common in real systems.
However, as the checksum markers proposed in this paper
for reproducing asynchronous events are approximate, and
not always truly unique, we face a problem of handling the
situations when the markers ambiguously pinpoint program
locations. This basically occurs when the execution context
of the location li of an interrupt i generates the same check-
sum as another location l2, such that li and l2 are on the
same PC address and l2 predates li in the execution. Luck-
ily, this problem can be handled in a number of ways:

First, we believe that the precision of the checksum
markers can be significantly improved by combining them
with additional markers, such as system call markers, and

7



debugger cycle counters [2]. System call markers are per-
task counters, incremented each time a potentially blocking
system call is invoked by the task. If the call blocks the
task, the value of the counter is recorded as a marker and
the counter is reset. This way we may distinguish between
in-between blocking intervals during reproduction. Debug-
ger cycle counters increase marker accuracy by mapping the
recorded event timestamps to small cycle counter intervals
in which the event is feasible. As for now, inclusion of these
markers is listed as future work. Second, if the ambiguity
is discovered (by detecting dissimilarities between the ini-
tial and the replayed execution), the replay execution can be
reset and restarted with an added skip count on l2.

That being said, considering a full program execution,
we might have to deal with pinpointing not only one, but
two, four, or even hundreds of preemptive interrupts. Given
an execution preempted by ni uncorrelated interrupts and
a Pi probability of pinpointing one interrupt correctly, the
probability of reproducing the entire execution with all in-
terrupts in place is Pni

i . With large numbers of interrupts,
the probability of correctly reproducing the entire execution
will be close to zero. Therefore, we will look further into
ways of significantly raising the accuracy of our markers.

6 Conclusions

In this paper, we have presented an alternative to exist-
ing approaches for pinpointing interrupts in embedded real-
time systems, based on checksums of parts of the execu-
tion context, e.g., registers or the stack. The need for non-
standard tools of existing methods leads to problems when
trying to port these methods to different platforms, proces-
sors, operating systems or compilers. Furthermore, these
methods suffer from drawbacks such as insufficient hard-
ware support [5, 7], inexact pinpointing of interrupts [4, 10]
or large execution time perturbation [9].

Our method is approximate, but the accuracy depends
on whether variables are allocated on the stack rather than
on the heap. In the best cases presented in this paper, both
the stack- and the partial stack checksum produce perfect
results. This is achieved with an instrumentation perturba-
tion at least ten times lower than that of the software in-
struction counter. Furthermore, our method only makes use
of standard compilers, operating systems and platforms and
requires no specialized hardware in order to work correctly.

References

[1] Intel Architecture Software Developer’s Manual 24319202,
1999.

[2] www.iar.com, April 2008.

[3] www.windriver.com, April 2008.

[4] K. Audenaert and L. Levrouw. Interrupt Replay: A Debug-
ging Method for Parallel Programs with Interrupts. Journal
of Microprocessors and Microsystems, Elsevier, 18(10):601
– 612, December 1994.

[5] T. A. Cargill and B. N. Locanthi. Cheap Hardware Support
for Software Debugging and Profiling. In Proceedings of the
2nd International Conference on Architechtural Support for
Programming Languages and Operating Systems, pages 82
– 83, October 1987.

[6] S. Howard. A Background Debugging Mode Driver Pack-
age for Modular Microcontroller. Semiconductor Applica-
tion Note AN1230/D, Motorola Inc., 1996.

[7] M. Johnson. Some Requirements for Architectural Support
of Debugging. In Proceedings of the Symposium on Arhci-
tectural Support for Programming Languages and Operating
Systems, pages 140 – 148. ACM, March 1982.

[8] D. Kim, Y.-H. Lee, D. Liu, and A. Lee. Enhanced Software
Instruction Counter Method for Test Coverage Analysis of
Real-Time Software. In Proceedings of IEEE International
Conference on Real-Time Computing Systems and Applica-
tions (RTCSA), March 2002.

[9] J. Mellor-Crummey and T. LeBlanc. A Software Instruction
Counter. In Proceedings of the Third International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 78 – 86. ACM, April 1989.

[10] O. Oppitz. A Particular Bug Trap: Execution Replay Us-
ing Virtual Machines. In M. Ronsse, K. De Bosschere (eds),
proceedings of the Fifth International Workshop on Auto-
mated Debugging (AADEBUG), pages 269 – 272. COmputer
Research Repository (http://www.acm.org/corr/), September
2003.

[11] I. Std. IEEE Standard Test Access Port and Boundary-Scan
Architecture. Technical Report 1532-2001, IEEE, 2001.

[12] D. Sundmark, H. Thane, J. Huselius, and A. Pettersson. Re-
play Debugging of Complex Real-Time Systems: Experi-
ences from Two Industrial Case Studies. In Proceedings
of the 5th International Workshop on Algorithmic and Au-
tomated Debugging (AADEBUG03), pages 211–222, Gent,
Belgium, September 2003.

[13] H. Thane, A. Pettersson, and H. Hansson. Integration Test-
ing of Fixed Priority Scheduled Real-Time Systems. In Pro-
ceedings of Real-Time Embedded Systems Workshop, Lon-
don UK, December 3 2001.

[14] H. Thane and D. Sundmark. Debugging Using Time Ma-
chines: replay your embedded system’s history. In Proceed-
ings of the Real-Time & Embedded Computing Conference,
page Kap 22, November 2001.

[15] H. Thane, D. Sundmark, J. Huselius, and A. Pettersson.
Replay Debugging of Real-Time Systems Using Time Ma-
chines. In Proceedings of Parallel and Distributed Systems:
Testing and Debugging (PADTAD), pages 288 – 295. ACM,
April 2003.

8


