
Transformational Specification of Complex Legacy Real-Time Systems via
Semantic Anchoring

Yue Lu, Antonio Cicchetti, Stefan Bygde, Johan Kraft and Christer Norström
Mälardalen Real-Time Research Centre

Mälardalen University, Västerås, Sweden
{yue.lu, antonio.cicchetti, stefan.bygde, johan.kraft, christer.norstrom}@mdh.se

Abstract

RTSSim is a framework for simulating models extracted
from complex legacy real-time systems which are task-
oriented, run on a single processor and are developed in C.
Such RTSSim models describe functional and temporal be-
havior as well as the resource usage of the system. However,
the semantics specification of RTSSim models remains a
challenging problem indeed, especially with tractable com-
plexity to obtain a formal model which can be analyzed
for instance by a model checking tool. In this paper, we
present an approach towards using semantic anchoring for
the transformational specification of RTSSim models, by re-
lying on units with well-defined operational semantics and
tool support. Specifically, timed automata with tasks (TAT)
in TIMES is chosen as the semantic unit with the purpose
of anchoring different behavioral concerns of RTSSim mod-
els in all aspects. In this respect, model transformations
are conducted at the meta-model level allowing the original
operational semantics of RTSSim models to be preserved,
while at the same time it can be presented in TIMES models
in terms of a network of TAT.

1 Introduction

Most existing embedded real-time software systems to-
day have been developed in a traditional code-oriented man-
ner. Many of them are maintained over extended periods
of time, sometimes spanning decades, during which they
become larger and more complex as a result of the itera-
tive changes made as part of system maintenance activi-
ties. The increasing complexity makes these systems in-
creasingly hard and expensive to maintain and verify, hence
we refer to them as complex legacy systems. In our target
domain, they often consist of millions of lines of C code, are
task-oriented, and run on a single processor with real-time
constraints.

A key challenge in model-based analysis of such large

systems is how to obtain the necessary analysis model in a
reasonable effort. Manual modeling would be far too time-
consuming and error prone, for instance. Two methods for
automated model extraction are proposed by our parallel re-
search in [1]. A tool for automated model extraction based
on program slicing [10] is in development, named MXTC –
Model eXtraction Tool for C. The outcome of MXTC is a
set of models which describe the detailed behavior on code
level with respect to resource usage and interaction includ-
ing for example inter-process communication (IPC), CPU
time and usage of logical resources. Moreover, those mod-
els can be simulated directly in our RTSSim framework. The
semantics specification of RTSSim models remains a chal-
lenging problem due to the use of plain C code in RTSSim
modeling language. Especially, it is difficult to obtain a for-
mal model which for instance can be analyzed by a model
checking tool with tractable complexity.

Nevertheless, this issue can be attacked through a se-
mantic anchoring based approach [2], i.e. by transform-
ing RTSSim models to other models, which consist of se-
mantic units (e.g. finite state machines, timed automata
etc) with well-defined operational semantics and tool sup-
port. In other words, the elements and their relationships in
RTSSim modeling language can be translated toward their
counterparts at the meta-model level, i.e. the executable se-
mantic units with well-defined behaviour, in a specific tar-
get language. The resulting model consisting of a set of
semantic units, then can be subsequently used to specify
and formally analyze the behavior of RTSSim models by
exploiting the features of the target domain, while the orig-
inal system operational semantics are preserved [5, 9]. In
this paper, we present the concrete process of developing
such a transformational approach to specify the behavior of
RTSSim models via semantic anchoring, by choosing timed
automata with tasks (TAT) in TIMES [4] as target language.

Paper outline The remaining part of the paper is orga-
nized as follows: in Section 2 and Section 3, we intro-

2009 33rd Annual IEEE International Computer Software and Applications Conference

0730-3157/09 $25.00 © 2009 IEEE

DOI 10.1109/COMPSAC.2009.184

510

duce some background information on RTSSim and TAT in
TIMES, respectively. Section 4 describes in details how the
semantic gaps are bridged via an extensive, concrete model
transformation process. Finally, Section 5 concludes the pa-
per and discusses future work.

2 System modeling of complex legacy sys-
tems in RTSSim

RTSSim is a framework with the purpose of modeling
and verifying by simulation complex real-time legacy sys-
tems which are task-oriented, run on a single processor and
are developed in C. RTSSim can be considered a imperative
and Turing-complete domain-specific language (DSL) de-
scribing both architecture and behavior of the target system.
Its syntax and semantics are as expressive as C program-
ming language, but are extended with RTSSim primitives
like message passing and task synchronization via binary
semaphore, for instance.

RTSSim employs a hierarchical model to specify the sys-
tem structure; going deeper, an RTSSim simulation model
consists of a number of tasks that interact transparently with
each other by IPC via message passing and task synchro-
nization via semaphore, and the resources (e.g. message
queues) there are in the system. A task may not be released
for execution until a certain time (the offset) has elapsed af-
ter the arrival of the activating event. Each task also has a
period, a maximum jitter, and a priority. Periods and prior-
ities can be changed at any time by any task in the applica-
tion, which is a particular feature of the system in our target
domain and makes it impossible to apply the separation-of-
concerns approach to address system behavior [6]. Jitter is
assumed to be a variation in task release time. Offsets and
arrival jitter are nonnegative and can both be larger than the
period. The scheduling policy of tasks in RTSSim is fixed-
priority preemptive scheduling (FPPS) and the lower num-
bered priorities are more significant. A task in RTSSim is
composed of a number of jobs and invoked modeling prim-
itives. Furthermore, the priority of the jobs inherits from
the adhering task. Behavioral modeling is encapsulated in
RTSSim architecture model, allowing tasks to be described
by different points of view:

a) Functional behavior is brought in by means of control flow
by operating on C code in RTSSim. Any valid data struc-
tures in C can be used in RTSSim, such as pointers. How-
ever, for simplicity, only plain integer variables, arrays,
structs are applied currently;

b) Timing behavior is specified in terms of Worst-Case Exe-
cution Time (WCET) estimate on jobs and modeling prim-
itives, which are usually over-estimated1. In the latter case
WCET estimates are only given by static WCET analysis.

1These WCET estimates are far more than the operations e.g. addition,

On the contrary, for jobs there are two alternatives accord-
ing to different applications: they can be modeled either in
terms of static WCET estimates that are used in applica-
tions with hard real-time constraints, or through dynamic
WCET estimates based on measurements with probability
distribution when dealing with applications with soft real-
time constraints. Detailed information regarding static and
dynamic WCET analysis in general can be found in [11].
The abstraction of the WCET estimate is passed as argu-
ment to the “execute” primitive, which advances the global
discrete-time simulation clock in RTSSim by the amount
of simulation time specified. In this paper, we only con-
sider using the static WCET estimates on jobs with the
purpose of having safe models which capture all the tim-
ing behavior including worst-case extracted from the real
system. Moreover, the preemption may only occur in the
RTSSim primitives, such as “execute”. They are modeled
by message passing (to be introduced in the latter para-
graph), while they inherit the priority from the adhering
task;

c) In RTSSim, the primary intertask communication mecha-
nism within a single CPU is message queues. They are
shared between tasks and considered as a kind of resource
usage in the system. They allow a variable number of mes-
sages, each of variable length, to be queued. A task sends
a message to a message queue with the modeling prim-
itive sendMsg. If the message queue is full, the sender
task is blocked until there is a room available in the queue.
Otherwise, the message is added to the queue’s buffer. A
task receives a message from a message queue with another
modeling primitive, i.e. recvMsg. The first message is im-
mediately dequeued and returned to the calling task in the
First-In-First-Out (FIFO) pattern either with data or -1 (if
the message queue is empty). Moreover, task synchroniza-
tion is in terms of binary semaphore. For simplicity, task
synchronization is not considered in this paper. Figure 1
shows a RTSSim task example i.e. CTRL_TASK.

3 Timed automata with tasks in TIMES

TAT, an extended version of timed automata with asyn-
chronous processes (real-time tasks), i.e. computation tasks
triggered by either periodically (periodic behavior) or by
external event streams modeled through appropriate timed
automata (controlled behavior). The main idea is to asso-
ciate each location of a timed automata with an abstraction
of an executable program (e.g. in C) called a task (or task
type) with task parameters: fixed scheduling priority, worst-
case computation time and deadline.

subtraction, multiplication, division and multiple of them would cost. It is
therefore safe to remove the time consumed by the operations in order to
decrease the complexity of the model.

511

1 void CTRL_TASK(TCB* tcb)
2 {
3 int msg;
4 int ioevent;
5 int i;
6

7 sendMessage(tcb, DCQ, MSG_GETSTS, FOREVER);
8

9 i = 0;
10 do{
11

12 ioevent = recvMessage(tcb, IOQ, 0);
13

14 if (ioevent > -1)
15 {
16 i++;
17 execute(tcb, cCTRLioevent);
18 }
19

20 }while (ioevent > -1);
21 }

Figure 1. A RTSSim task example CTRL_TASK

As in timed automata, assume a finite alphabet Act
ranged over by a, b etc. and a finite set of real-valued clocks
C ranged over by x1, x2 etc. Let B(C) ranged over by g
denote the set of conjunctive formulas of atomic constraints
in the form: xi ∼ C or xi − xj ∼ D, where xi, xj are
clocks, ∼∈ {≤, <,≥, >} and C, D are natural numbers.
The elements of B(C) are called clock constraints. Syn-
tactically, a TAT over actions Act, clocks C, and task types
P is a tuple 〈N, l0, E, I, M〉, where: N is a finite set of
locations ranged over by l,m, n, lo is the initial location,
E ⊆ N × B(C) × Act × 2C × N is the set of edges,
I : N 7→ B(C) is a function assigning each location with
a clock constraint (a location invariant), M : N ↪→ P is
a partial function assigning locations with task types (e.g.
some of the locations may have no tasks).

Given a scheduling strategy Sch and a function repre-
senting the available computing resource Run, the seman-
tics of an automaton A = 〈N, l0, E, I, M〉 with initial
state (l0, u0, q0) is a labeled transition system with an ini-
tial state. Discrete and delay transitions are defined by the
following a) and b) rules, respectively:

a) (l, u, q) a−→Sch (m, u[r 7→ 0], Sch(M(m) :: q))
if l

gar−−→ m and u |= g

b) (l, u, q) t−→Sch (l, u + t, Run(q, t))
if (u + t) 7→ I(l)

where u |= g denotes that the clock assignment u satisfies
the constraint g, u + t denotes the clock assignment which
maps each clock x to the value u(x) + t, u[r 7→ 0] for
r ⊆ C denotes the clock assignment which maps each clock
in r to 0 and agrees with u for the other clocks (i.e. C\r),
M(m) :: q denotes the queue with M(m) inserted in q.

Withal, the standard timed automata is the underlying
timed automata of TAT, of which flavor is extended with

for instance finite domain integers, constant and (multidi-
mensional) arrays of bounded integers, as well as (urgent)
channels and clocks. A network of TAT is a finite set of
automata processes composed in parallel with a CCS-like
parallel composition operator [7]. The synchronization be-
tween two TAT is via a paired channels on edges, e.g. a?
and a!. The functional behavior of real-time task in TIMES
is specified in task interface in terms of for instance Condi-
tional (Ternary) Operator (?:) that can be used as a shortcut
for if/else statement. All such operations will be taken at the
end of task execution. The Figure 2 and Figure 3 show two
examples of TAT which are wrt. anchoring the semantic
differences in RTSSim task CTRL_TASK referred in Fig-
ure 1. Readers can refer to TIMES tool online help for a
more thorough description of TAT used in TIMES tool.

Figure 2. mcf_tat for RTSSim CTRL_TASK in Figure 1,
after semantic anchoring

4 Model transformation from RTSSim to
TIMES

Based on the description and discussion made in the pre-
vious two sections, the processes and timed automata ex-
tended with tasks (TAT) in TIMES can be chosen specifi-
cally as the basic architectural elements, to which RTSSim
tasks and (subset of) C code (refers to the description in
Section 2) that describes a task’s behavior, can be anchored.

512

Figure 3. syn_ta for RTSSim CTRL_TASK in Figure 1,
after semantic anchoring

However, since the RTSSim semantics differ from their
counterparts, i.e. TAT in TIMES in all aspects listed in Ta-
ble 4, hence an extensive model transformation at the meta-
model level has to be performed in the interest of bridging
the semantic gaps between the two models.

Due to that the priority and period of the concerning task
in RTSSim can be changed at runtime by any other tasks,
the model transformation between RTSSim and TIMES at
the meta-model level cannot be done in a separation of a be-
havioral concerns approach (i.e. the model transformation
wrt. system timing and functional behavior can be fully
separated), which increases the complexity of the work.

The key factor to overcome the semantic differences be-
tween RTSSim models and TAT in TIMES is to identify
how to model RTSSim tasks, and develop a discrete-time
scheduler in TIMES which manages the execution concur-
rency of jobs and modeling primitives in tasks in the right
preemption pattern. In order to achieve this objective, there
are three modeling procedures have to be accomplished suc-
cessively:

a) Finding out a way to model RTSSim tasks: representing the
timing information of tasks via the abstraction of WCET
estimates on jobs and intertask communication modeling
primitives; modeling the special task behavior that the pri-
ority and period of the concerning task can be changed
at runtime by another task; transforming task control flow
which is specified in C;

b) Modeling RTSSim task parameters, i.e. encoding RTSSim
task period, offset and jitter as the parameters in automaton
template (an uninstantiated TAT and possibly some param-
eters) in TIMES;

c) Modeling the discrete-time scheduler in TIMES based on
the previous 2 steps.

Our solutions proposed in this paper will be presented
step-by-step in the following subsections.

4.1 Modeling RTSSim tasks in TIMES

4.1.1 Representing RTSSim discrete timing unit in
TIMES

In RTSSim models, the time (i.e. a global simulation clock)
can only be advanced by the modeling primitive “execute”2.
While, TIMES systems evolve with continuous model-time,
i.e. the model-time indeed proceeds with a constant pace.
Withal, the conceptual ticks of clocks in TIMES can only
capture the timing points at integer instants over contin-
uum in the real-value domain. We therefore propose to map
one time unit in RTSSim to one (conceptual) clock tick in
TIMES, such that the temporal behavior of RTSSim jobs
and modeling primitives represented as multiples of the ba-
sic timing unit can be precisely specified in TIMES as mul-
tiple of the clock ticks.

4.1.2 Modeling RTSSim task control flow in TIMES

The RTSSim tasks can be released periodically with jitter
and offset, which makes to find the precise value of the
hyper-period (least common multiple of tasks periods) dif-
ficult. Moreover, the times of preemption will occur at run-
time when a job or modeling primitive is executing, is dif-
ficult to know. We therefore propose to model each con-
trol flow of a RTSSim task in TIMES by one TAT and one
timed automata, which are referred to as mcf_tat (main con-
trol flow TAT) and syn_ta (synchronization timed automata)
respectively in the following context. In each mcf_tat, the
control flow of RTSSim task is specified in terms of loca-
tions which are connected with each other by edges (or tran-
sitions) between locations. Some of the locations are asso-
ciated with one real-time task for each, which models either
a job or a modeling primitive invoked by the RTSSim task
control structure. Besides, each mcf_tat has a real-valued,
local clock which is used to model the period of RTSSim
task. The synchronization between mcf_tat and syn_ta is
conducted by a set of pairs of urgent channels, i.e. a? and
a!, such that after the current running real-time tasks fin-
ishes the execution, syn_ta can drive mcf_tat to move to
the next location without time elapsed. Figure 2 and Fig-
ure 3 illustrate the way of modeling the control flow of the
RTSSim task CTRL_TASK in Figure 1 by a pair of mcf_tat
and syn_ta in TIMES. In these pictures, the real-time tasks
in TIMES are noted in bold style and the type of all the
channels are urgent.

2Primitive “execute” is either invoked by RTSSim tasks, or idle task
which is with the least significant priority and will not stop advancing the
global simulation clock until there is a task to run.

513

Behavioral Concerns RTSSim TIMES
Time The global simulation clock can be only advanced by

RTSSim modeling primitive “execute” over discrete time
Continuous time in the modeling environment

Priority and period of the
task on focus

Priority and period of the task on focus can be changed at
runtime, and the lower numbered priority is more signifi-
cant

Priority and period of real-time tasks in TAT cannot be
changed at runtime, and the higher numbered priority is
more significant

Communication IPC via message passing between tasks with execution
concurrency

Synchronization of TAT transitions via channels

Table 1. Behavioral gaps between RTSSim and TIMES

4.1.3 Modeling RTSSim jobs in TIMES

All the jobs in RTSSim tasks which are not concerning (i.e.
the tasks of which priorities cannot be changed at runtime)
are modeled in a similar way in TIMES, by one real-time
task as the abstraction of WCET estimate and one auxiliary
flag (i.e. bounded integer) to denote when the real-time task
finishes its execution with or without being preempted. The
relevant parameters of such real-time tasks in TIMES are
set wrt. the following pattern: i.e. B (behavioral type of the
task) is set to be C (controlled); C (execution time) equals to
the value specified in RTSSim job; D (the relative deadline)
of each job is assigned to be infinite; Pr (priority of the task)
is the same value as the priority of the adhering task but in a
reverse order. Moreover, each real-time task is labeled with
the same name of job.

Regarding the concerning task in our target domain, its
priority can only be changed from one priority to another
at runtime. Except for assigning different priorities, each
job in such task is modeled as a pair of two real-time tasks
with the same parameter set as described before. With
the intention to make such two real-time tasks more eas-
ily be identified in TIMES model, their names are con-
sequently decorated by different postfix, i.e. either with
“_l” (noted for the less significant priority) or with “_h”
(noted for the more significant priority). The real-time tasks
execute_cCTRLioevent with postfix "_l" and "_h" in the
TIMES model depicted in Figure 2 can be referred to as
an example.

4.1.4 Modeling RTSSim primitives on message passing

In TIMES, there is no data exchanged between processes
in the adopted hand-shaking interaction mechanism, which
is different from the RTSSim intertask communication be-
havior introduced in Section 2. A natural way to bridge
the gap between the above semantic differences is to model
the RTSSim communication mechanism via message pass-
ing in TIMES through shared variables and data structures.
Information between TAT processes is exchanged by updat-
ing and reading from these global resources. The modeling
pattern is listed as follows:

a) Each message queue in RTSSim is modeled as a bounded
integer array with a bounded integer array index. The
length of the array is the same as the length of the mes-
sage queue in RTSSim models;

b) The RTSSim message passing modeling primitives i.e.
sendMsg and recvMsg which are not invoked by the con-
cerning task, are modeled as two real-time tasks in TIMES
with the same parameters wrt. controlled behavioral type,
constant execution time (i.e. 2 time units costed in RTSSim
are anchored to 2 clock ticks in TIMES), infinite deadline,
and the same priority as the adhering RTSSim task. More-
over, the described modeling pattern is used for one spe-
cific message queue. So if there is another message queue
declared in the RTSSim models, accordingly another pair
of two real-time tasks in TIMES which operates on that
message queue has to be modeled. The only difference be-
tween each paired real-time tasks is the detailed functional
behavior wrt. operating the certain message queue in the
task interface. If such modeling primitives are used in the
concerning task, then each of them will be modeled as two
real-time tasks in the similar way as modeling jobs in the
concerning task, i.e. with the same parameters and func-
tional behavior but different priorities;

c) The operations specified in the task interface on adding or
retrieving a data from a FIFO message queue can be easily
achieved with the help from Conditional (Ternary) Opera-
tor (?:). Due to limited space, it is not described in details.

Figure 4. Encoding RTSSim task parameters as the pa-
rameters in automaton template in TIMES

4.2 Modeling RTSSim task parameters in TIMES

Except for the task priority issue which has been re-
solved in Subsection 4.1.3, the other RTSSim task parame-

514

ters i.e. period, jitter and offset are encoded in automaton
templates in TIMES as three parameters T (period), O (off-
set) and J (jitter) with the type const respectively. Moreover,
the period of the concerning task which can be changed at
runtime by other tasks, is modeled as a global bounded in-
teger with the interval [min_period, max_period] coming
from the requirements. Consequently, the value of such
global bounded integers can be easily changed by for in-
stance an action on an edge in mcf_tat which models an-
other RTSSim task. Refer to Figure 4 as an example.

4.3 Modeling the discrete-time scheduler in
TIMES

According to the modeling pattern described previously
regarding RTSSim tasks and its parameters, the effort spent
on modeling the RTSSim discrete-time scheduler can be
largely eased by combiningly using an encoding FPPS
scheduler (using two clocks) in TIMES presented in [3],
where task queue and operations on the queue related to
the given scheduling strategy are encoded as a timed au-
tomaton (called the scheduler). Once given the parame-
ters and arrival pattern of real-time tasks under the spe-
cific scheduling strategy, the tasks execution concurrency
can be controlled automatically in TIMES, e.g. when to re-
lease, be preempted, resume and finish the execution. This
is also one motivate for using TIMES in this work, rather
than UPPAAL [8], with the scope of analyzing the complex
legacy system which is task-oriented and running on a sin-
gle processor. Moreover, the scheduling policy adopted in
this work is user-defined priorities preemptive scheduling
in TIMES.

5 Conclusions and future work

In this paper we present a transformational approach to-
wards semantics specification of complex legacy real-time
systems which are task-oriented, run on a single processor
and are developed in C. I.e. via semantic anchoring, the
RTSSim models (subset of C code) extracted from complex
legacy systems based on program slicing, are transformed
to a network of timed automata with tasks (TAT) in TIMES
with original semantics preserved. One important continua-
tion work is to apply the formal analyzable model in TIMES
obtained in this work to the research wrt. WCET analysis of
tasks with intricate dependencies through shared variables.

An industrial evaluation of RTSSim model extraction is in
progress together with ABB Robotics and in future work
we intend to investigate the proposed approach on RTSSim
models generated from that system. Furthermore, anchor-
ing other semantic differences such as task synchronization
and more complex data structures in C, will be also consid-
ered.
Acknowledgment

This work was supported by the Swedish Foundation
for Strategic Research via the strategic research centre
PROGRESS. Withal, we are grateful to Dr. Cristina Sece-
leanu for comments and improvement suggestions.

References

[1] J. Andersson, J. Huselius, C. Norström, and A. Wall. Extracting
simulation models from complex embedded real-time systems. In
Procs. of the Int. Conf. ICSEA’06. IEEE, 2006.

[2] K. Chen, J. Sztipanovits, S. Abdelwahed, and E. Jackson. Seman-
tic anchoring with model transformations. In Procs. of ECMDA-FA
2005, Nuremberg, Germany, November 2005.

[3] E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Schedulabil-
ity analysis of fixed-priority systems using timed automata. Theor.
Comput. Sci., 354(2):301–317, 2006.

[4] E. Fersman, P. Pettersson, and W. Yi. Timed automata with asyn-
chronous processes: schedulability and decidability. In Procs. of
TACAS 2002, pages 67–82. Springer-Verlag, 2002.

[5] Xu Ke, P. Pettersson, K. Sierszecki, and C. Angelov. Verification of
comdes-ii systems using uppaal with model transformation. In Procs.
of the Int. Conf. RTCSA08. IEEE Computer Society Press, 2008.

[6] Xu Ke, K. Sierszecki, and C. Angelov. Comdes-ii: A component-
based framework for generative development of distributed real-time
control systems. In Procs. of the Int. Conf. RTCSA ’07, pages 199–
208. IEEE Computer Society, 2007.

[7] R. Milner. Communication and Concurrency. Prentice-Hall, Inc.,
1989.

[8] Uppaal, www.uppaal.com, 2008.

[9] A. Vallecillo. A Journey through the Secret Life of Models. In
Perspectives Workshop: MECS, number 08331 in Dagstuhl Seminar
Proceedings. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
Germany, 2008.

[10] M. Weiser. Program Slicing. In Proc. of the Int. Conf. ICSE’81,
pages 439–449. IEEE Press, 1981.

[11] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström.
The worst-case execution-time problem—overview of methods and
survey of tools. Trans. on Embedded Computing Sys., 7(3):1–53,
2008.

515

