
Analyzing Resource-Usage Impact on Component-Based Systems Performance
and Reliability

Aida Čaušević Paul Pettersson Cristina Seceleanu

Mälardalen Research and Technology Centre (MRTC)
Mälardalen University, 72215 Västerås, Sweden

E-mail: {aida.delic, paul.pettersson, cristina.seceleanu}@mdh.se

Abstract

An early prediction of resource utilization and its im-
pact on system performance and reliability can reduce the
overall system cost, by allowing early correction of detected
problems, or changes in development plans with minimized
overhead. Nowadays, researchers are using both academic
and commercial models to predict such attributes, by mea-
suring them at earliest stages of system development. In
this paper, we give a short overview of existing prediction
models for performance and reliability, targeting popular
component-based frameworks. Next, we describe our own
approach for tackling such predictions, through an illustra-
tion on a small example that deals with estimations of en-
ergy consumption.

1. Introduction

In most component-based system development efforts,
a great deal of time is spent on ensuring that the functional
requirements are being properly implemented, while perfor-
mance and reliability requirements are given a lower prior-
ity [16]. The premise of this paper is that performance and
reliability, when added to functionality, constitute a neces-
sary and complete set of metrics for reducing the develop-
ment cost of complex component-based systems, be they
service-oriented or embedded systems.

As the degree of using existing hardware and software
resources affects quality attributes like performance and
reliability in particular, there is a strong need of system
models on which dedicated prediction methods can be ap-
plied, as early as possible in the development cycle. Such
methods should be able to estimate how various changes in
component-wise resource utilization impact on the respec-
tive response times (performance metric) or/and number of
software faults and errors (reliability metric). The predic-

tions would then later guide the designer towards poten-
tial redesigns, e.g., in case the system’s resource utilization
nears upper thresholds of performance criteria.

Most of the component-based frameworks (CBFs) for
system design rely on methods for estimating either per-
formance or reliability changes under given resource uti-
lization scenarios. However, few of the approaches can de-
liver predictions for any possible system behavior. Most
of them cover subsets of behaviors, by using simulation or
lightweight formal methods.

The goal of this paper is twofold: first, we briefly re-
view some of the most significant component models and
underlying approaches for analyzing the dependency be-
tween resource consumption, performance and/or reliabil-
ity attributes; second, we show how can formal verification
techniques, in particular model-checking, be used to predict
the performance and reliability of a small real-time, dis-
tributed system, modeled as apriced timed automata[4].
The intention is to describe a way of carrying out a signif-
icant number of experiments, without increasing the sys-
tem’s development cost.

2. Working Example: A Real-time Multi-
processor System

Let us consider a simple distributed system made of 5
components, out of whichC0, C1, C2 will be mapped, on
a selected target platform, onto 3 real-time tasks that have
to execute on 2 available processors, assumed to be compo-
nentsCPU0, CPU1. Moreover, a task componentCi can
be executed on just one available processor at any point of
time, and it cannot be split in more jobs and executed on
both processors. Except for componentC1 that can only
be executed on processorCPU1, the other two task compo-
nents can be executed on any available processor.

The tasks are characterized by attributes likecpu type,
computation time, anddeadline, and are assumed to be



independent and non-preemptible. The attributes specify
the type of CPU on which each component is allowed to ex-
ecute, the required computation time, and the relative dead-
line, respectively. The target system abstraction, that isthe
CPUs, have the attributestype andfrequency, denoting the
respective CPU’stype andspeed, respectively.

Assuming a component-based system model, our analy-
sis goal is to select both the best mapping of the task com-
ponents onto the available processors, and the optimal se-
quence of execution such that all tasks will meet their dead-
lines and the energy consumption for each execution is min-
imized. We recognize here both aperformanceas well as
a reliability prediction problem of the composition, as fol-
lows:

• performance: minimize the energy consumption of
each task, for each execution, given the fact that the
consumed energy is directly proportional to the task’s
execution time;

• reliability: minimize the number of software errors,
that is, number of times the tasks fail to meet their
deadlines, respectively.

Here, the identified resources are energy and the computa-
tion resources, that is, the processors.

3. Quality Prediction in Current CBFs

In this section, we will give a brief overview of the cur-
rent prediction techniques for performance and/or reliabil-
ity, for some of the most popular state-of-the-art compo-
nent models, if possible, in the context of the above exam-
ple. Concretely, we will look at Palladio Component Model,
Klaper, SOFA, Koala, Robocop, and BIP.

3.1. Palladio

Palladio Component Model (PCM) represents a domain
modeling language used for model-driven performance pre-
diction [3]. The main purpose of introducing PCM is to
perform early performance prediction of alternative soft-
ware architectures. Therefore, the analysis methods are able
to calculate metrics like the response time of provided ser-
vices in a software system, with respect to parametric de-
pendencies within components, and the actual usage profile
of a software system. Simulation tools generate simulation
source code and scenarios, based on instances of the PCM
[11].

In our example’s context, assuming that both tasks and
processors are each described by a PCM, one could get the
following:

• performance: calculate the response time of each task,
for various task-processor allocation scenarios and
energy-usage profiles;

• reliability: no support provided.

The main advantage of PCM-based prediction methods is
that it reduces model complexity by providing models for
different component-based software engineering (CBSE)
developer roles, which are parameterized with the targeted
platform attributes. The disadvantage of the approach is
lack of support of reliability prediction techniques, of real-
time analysis, and the lower degree of assurance provided
by simulation, when compared to full formal verification.

3.2. SOFA

The Software Appliances (SOFA) component model,
in its current version SOFA 2 [7], provides a modeling
platform for software components, based on a hierarchical
model with nested components that are able to communi-
cate over defined interfaces. In terms of prediction, this
model comes together with an infrastructure that allows for
general component monitoring that gathers performance re-
lated information. The performance attributes are fed to the
performance modes, and then the gathered information is
feedbacked to the component model, whose resource usage
level is adjusted accordingly. The process is iterative, stop-
ping when a reasonable trade-off between resource-usage
and performance is obtained.

The component behavior is captured by annotating invo-
cations with lists of resource demands. The allocation of
resources is described within the deployment model. With
SOFA, one can predict how performance attributes change
when the application scale changes.

If we assume the working example of section 2, by em-
ploying this approach, we can get the following results:

• performance: predict each task’s completion time,
based on monitoring, and a chosen energy-demand
level;

• reliability: not supported.

3.3. KLAPER

KLAPER (Kernel LAnguage for PErformance and Re-
liability analysis) [9] is a kernel language intended to cap-
ture relevant information about non-functional attributes of
component-based systems (CBS), focusing mainly on per-
formance and reliability. To derive meaningful analysis
models from design models, one can work within the so-
called KLAPER-based transformation framework; the latter
accepts as input software design models expressed via het-
erogeneous notations, and produces as output various per-
formance and reliability models. Assuming that we virtu-
ally apply KLAPER-based transformations to our task and
processor models, the following can be predicted:



• performance: calculate each task’s execution time, as
a function of the service speed attribute represented by
the processor frequency;

• reliability: calculate each task’s probability of failure
to meet its respective deadline.

A remarkable feature of KLAPER is that it offers the pos-
sibility of a direct transformation from design-oriented into
different analysis-oriented notations such as Petri Nets,Dis-
crete Time Markov processes, and Extended Queueing Net-
works (EQN). Another advantage is that one can associate
scheduling policies with a resource, in order to model ac-
cess control policies. As such, the framework allows for
a direct estimation of the resource-usage impact on quality
attributes like performance and reliability. The lack of feed-
back between the analysis step and the design models could
be considered as a disadvantage of the approach.

3.4. Koala

Koala [15] is a software component model, introduced
by Philips Electronics, designed to build product families
of consumer electronics. Resource information is exposed
at the component’s interface. Theprovidesinterface defines
the operations offered by the component, whereas there-
quires interface defines the operations of other interfaces
that the component needs to use. Since in a Koala model
all the external functionality that is required by the compo-
nent needs to go through the “requires” interface, it is some-
what straightforward to estimate the use of the system’s re-
sources, such as memory utilization. To estimate a Koala
component’s static memory consumption, one can assume
that a special type ofreflectionprovides the interface.

In the context of our example, one could analyze the fol-
lowing:

• performance: assuming that all the components (tasks)
of the example require the same amount of memory,
and that the latter is specified, yet some of the compo-
nents need to queue to get memory access, one could
analyze how various component configurations can af-
fect task execution and system performance, under dif-
ferent memory availability scenarios. In addition, if
one tags the task that uses the largest amount of mem-
ory as ”slow”, one could estimate the number of fail-
ures that affect the system budget, and compare the
new budget with the actual execution cost, hence cap-
turing performance changes;

• reliability: estimate the number of failures that might
occur during the execution of ”slow” tasks.

The above technique supports budgeting, that is, the
expected values of the resource consumption of non-
implemented components can also be accounted for. On

the other hand, the approach can be used to estimate the to-
tal system performance, in a compositional fashion, only on
specific, reduced-size scenarios for which the set of com-
ponents instantiated in a composition is known before run-
time.

3.5. ROBOCOP

The Robust Open Component Based Software architec-
ture for Configurable Devices Project (ROBOCOP) is in-
spired by the Koala component model. It consists of several
models that provide parts of the component information, re-
spectively.

To solve the static memory estimation problem, a
scenario-based simulation approach has been introduced [5,
6]. This approach delivers resource estimations for a set
of scenarios that represent critical usages/executions ofthe
system. The proposed resource model specifies the pre-
dicted resource consumption for all the operations imple-
mented by the services of an executable component. As
such, the model contains a number of cost functions that
give the operations’ costs. There can be multiple cost func-
tions, for each resource. To increase the faithfulness of the
prediction, the resources that are claimed and released are
specified per operation.

Let us assume that we have the resource-wise and func-
tional behavioral model (written for example in binary
code) for the components in our example, and the accompa-
nying application scenario that describes service instances
and bindings between the respective components. In such
case, we would be able to proceed with the analysis de-
scribed below:

• performance: for componentsC0, C1, C2 their worst-
case response times could be checked against the re-
spective deadlines;

• reliability: compute the number of missed deadlines
for C0, C1, C2; this result can reflect the reliability of
the modeled system.

Muskens and Chaudron are describing a method for run-
time resource consumption in multi-task CBS, via a formal
approach that allows prediction of dynamic resource con-
sumption [14].

3.6. BIP

The acronym BIP stands forBehavior, Interaction,
Priority, and is a framework for modeling heterogeneous
real-time CBS. Each component is obtained as a superpo-
sition of three layers. The lower layer describes the com-
ponent behavior, the intermediate layer includes connectors
that describe component interactions, and the upper layer



is a set of priority rules that model scheduling policies for
interactions. BIP does not make an explicit distinction be-
tween inputs and outputs, such that the global variables can
be treated either as inputs or as outputs. Basu et al. [2] give
an example of performance evaluation of timed tasks that
process events from a bursty event generator, all modeled
and executed in the BIP framework.

If we employed BIP to tackle our example, we would get
the following results:

• performance: worst-case execution time of
C0, C1, C2, for any valid task-processor alloca-
tion scenario, and scheduling analysis via formal
verification.

The advantage of the approach is threefold: (a) it ac-
counts for possible heterogeneity of components; (b) it pro-
vides a rigorous, correct-by-construction basis for the study
of architectural transformations, and (c) it is supported by
formal verification tools for the compositional analysis of
performance, or important properties such as deadlock-
freedom.

4. Our approach

Our appraoch is based on the SaveComp component
technology and its component modeling language Save-
Comp Component Model (SaveCCM), which have been de-
veloped within the SAVE project1 [8]. The semantics of the
core part of the language is given as models of timed au-
tomata. Having semantics defined in terms of timed au-
tomata, we are able to analyze SaveCCM models within
different model-checking tools (e.g. UPPAAL2). Recent re-
search on SaveCCM has been performed in the area of em-
bedded control applications of vehicular systems [1, 10].
The electronics in vehicles represents a class of systems
where quality attributes, such as reliability and resource
usage, have impact throughout the development process.
The analysis that has been done with SaveCCM within case
studies mainly address these topics.

In this section, we will present our model, which is based
on Priced Timed Automata (PTA) theory [4], an extension
of Timed Automata (TA) with costs on locations and edges.
In PTA, costs are associated with edges, to define the cost
of executing a corresponding action transition, and loca-
tion, to define the cost per time unit of delaying there. The
PTA framework provides modeling and analysis of contin-
uous, monotonically increasing consumption of resources,
e.g. energy consumption. Since the PTA framework does

1SAVE project is supported by Swedish Foundation for Strategic Re-
search.

2The UPPAAL tool is developed in collaboration between Uppsala Uni-
versity, Sweden and Aalborg University in Denmark. More information is
available at http://www.uppaal.com/

Figure 1. SaveCCM component model

not provide combined reasoning about monotonic (e.g. en-
ergy) and non-monotonic resources (e.g. memory), we will
treat the whole amount of required memory as static, allo-
cate the total memory amount at the beginning of each task
execution, and model it as a discrete value. This problem
can be solved with multi-priced TA [13], which are PTA
with multiple cost variables evolving according to given
rates for each location. Due to space limitation, we will not
describe the model of priced timed automata here, but refer
the reader to [4] for a thorough description of the frame-
work.

4.1. Example Revisited: Analyzing the
Multiprocessor System’s Performance
and Reliability using UPPAAL

To exemplify our approach, we recall the component-
based system presented as our working example in Sec-
tion 2. The system model is depicted as a SaveCCM-based
description in Figure 1. We model the example system as
the composition of three real-time tasksT0, T1, andT2, cor-
responding, in the Save-CCM representation, toC0, C1,
and C2, respectively, and two processorsP0 and P1 de-
scribing componentsCPU0 andCPU1. Note that tasks
are assumed to be independent, that is, their execution do
not depend on the state, results, or side effects of the other
tasks.

Our first goal is to model non-preemptive multiprocessor



Execution_CPU2
failure1!=0

Execution_CPU1
failure1!=0

Ack_SendStart

p3==2 && t1>D1
ack4!
p3:=0, t1:=0,failure1+=1,
F1:=failure1

p1==1 && t1>D1
ack3!

p1:=0, t1:=0,failure1+=1,
F1:=failure1

p3:=c2

p1:=c1

p3==2 && t1<D1

ack2!
p3:=0, t1:=0,
failure1:=0, n1++

syn1?
p:=0

p1==1 && t1<D1
ack1!

p1:=0, t1:=0,
failure1:=0, n1++

syn2?
p:=0

Figure 2. The model of a task.

task scheduling. Tasks (Ti) can be executed in parallel if
there are available processing resources (Pj), enabling mul-
tiple requests to be served simultaneously. Each task (Ti) is
defined by its deadline (Di). Processors (Pj) are character-
ized by their period (Perj) and consumed energy (Ej). We
introduce the notion oftask execution time(ETi), since the
consumed energy is directly proportional to the latter. As
such, in a quite simplified form,ETi can be equated to:

ETi = NoCyc ∗ Perj

wherei ∈ {0, 1, 2} is the task identifier,j ∈ {0, 1} is the
processor identifier, and NoCyc represents the total number
of CPU cycles per task, which we assume known.

The consumed energy, per task, is given by the following
equation, also in an abstracted form:

Ei = ETi ∗ wj ∗ PWj ,

wherePWj models CPU power dissipation, which we as-
sume fixed and known. Note thatEi is a weighted function
of ETi andPWj , where the given weightwj expresses the
relative importance ofEi, which in turn influences the final
cost. The accumulated energy consumption is then given as
the following cost:

c =

2∑

i=0

Ei

Choosing the values of the weights is subjective, depending
on both the application and the analysis goals.

When a task execution completes by meeting its dead-
line, it sends an acknowledgment to some processor to in-
form that the execution is finished. Our complementary

Ack_Receive

cost’==w*ET[p]*PW1Execution

Start

ack3? ack1?

ET[p]+=NoCyc*P[0]

syn1!

c1:=1,
cost+=5*w1

Figure 3. The model of the processing unit.

goal is to model a system that would let us predict the total
resource usage and its impact on performance and reliabil-
ity.

4.2 PTA Models

We model our example as a collection of five non-
deterministic PTA. The PTA (also called processes) com-
municate using synchronization channels and shared global
variables (i.e. variables that can be read and written by allof
the processes). The model consists of three automata rep-
resenting the tasks (T0, T1, T2) that are competing for two
available automata representing the processors (CPU0 and
CPU1).

The model of a task is shown as a PTA in Figure 2. It has
two locations:Start andAckSend. The synchronization
with an available processor is modeled by using two chan-
nels,syn1 (models synchronization with processorP0), and
syn2 (models synchronization with processorP1). The ex-
ecution start of a task is controlled by thefailure1 variable
— a counter (bounded integer) that indicates whether the
task failed to meet its deadline or not. The counter is ini-
tially set to one, and increased if a failure occurs. If the
execution is successful, that is, the deadline is met, the vari-
able is reset to zero. This also indicates that the task is no
longer in the ready queue. For each task, the variablepi is
assigned the processor number (cj) on which it is currently
executing. Depending on the execution result, one of two
types of acknowledgment can be sent; in case the task com-
pletes successfully,ack1 or ack2 are sent, depending on
which CPU the task is synchronizing with; in case the task
fails to meet its deadline,ack3 or ack4 are sent.

The PTA model of a processor consists of two locations:
Start and AckReceive. In Figure 3, a synchronization
channelsyn1 is used for synchronization with the tasks
present in the ready queue. Variablecj stores the proces-
sor number used by task variablepi to identify the task that
is being executed on the respective processor. If the exe-
cution is successful, acknowledgmentack1 is received by
the processor, orack3 otherwise. Thecost of energy con-
sumption is influenced by the assigned weights, execution
times, and CPU power dissipation as described previously
in this section. The minimum cost of energy consumption



Scenario Order of execution Cost
1 (T0, P0)-(T1, P0)-(T2, P0) 15
2 (T0, P1)-(T2, P0)-(T1, P0) 20
3 (T0, P0)-(T2, P1)-(T1, P0) 30

Table 1. Best task mapping with minimum
cost.

Sequence of task executionRatio
(T0, P1)-(T2, P0)-(T1, P1) 23/10
(T2, P0)-(T0, P1)-(T1, P1) 47/10
(T2, P0)-(T1, P1)-(T0, P0) 20/10
(T1, P1)-(T2, P0)-(T0, P0) 37/10

Table 2. Ratio between number of failures oc-
curred and system executions

is the infimum of the costs of all finite executions from the
first to the last state.

4.3 Analysis

The best performance analysis could include finding the
best mapping of tasks onto available processors, such that
all task deadlines are met, but also the execution order for
which the power consumption is minimal. The results are
presented as cost values of the computed optimal execution
traces. Recall that in our example taskT1 can be only exe-
cuted on processorP0.

Usually, the reliability of a system reflects its ability
to perform a given function under present conditions, in a
specified period of time. Our assumption is that during nor-
mal system execution, failures can occur, and this affects
directly the overall system reliability. In order to account
for failures in our PTA-based model, we analyze the reli-
ability via a ratio between the number of failures occurred
during all system invocations, and the number of system in-
vocations. The results are given in Table 2.

We note that the cost is minimum in case when all tasks
T0, T1, andT2 are competing for the same processor. The
cost value presented in Table 1 shows that the cost is min-
imal if all tasks are being executed on processorP0, which
is assumed to be ”less expensive”, than the other one. Of
course, cost could be higher if we assigned additional cost
for waiting in ready queue. Table 1 presents the cost results
assuming all tasks complete successfully. Beside the min-
imum cost, we also present in Table 1 costs for scenarios
in whichT1 has to wait additional time for tasksT0 andT2

to complete. TasksT0 andT2 arrive beforeT1 to the ready
queue and they are allowed to compete for all available CPU

resources. In these scenarios, taskT1 is forced to wait in the
ready queue, despite the fact that early execution of this task
would result in lower cost for the whole system. Clearly, if
failures occur during execution, such that the tasks need to
be executed more than once in order to complete, the final
cost is much higher.

We have noticed that most of the failures occur in sit-
uations when two tasks with the greatest and the smallest
computation time and deadline (T2 and T0, respectively)
are competing for the same free processor, andT2 gains
its CPU time (see Table 2). In that case,T0 has to wait
an additional time to start its execution. This problem can
be easily solved by including some additional scheduling
policy, however this is out of the scope of this paper.

5. Conclusions and Future Work

In this paper, we have briefly reviewed the perfor-
mance/reliability analysis techniques available in the state-
of-the-art component-based frameworks, and their possibil-
ity of estimating the impact of changing resource usage on
the above mentioned quality attributes. Although exten-
sive work has tackled such problems, the real-time systems
area is left less researched. This has motivated us to pro-
pose a priced timed automata model-checking approach for
component-based systems described in the SaveCCM mod-
eling language that is designed for a real-time and embed-
ded systems. As demonstrated in a small accompanying
example, our approach allows for rigorous predictions of
performance and/or reliability, depending on the prices of
using various resources, such as CPU, memory etc.

In the future, we plan to investigate the possibility of car-
rying out probabilistic quantitative predictions, by express-
ing properties to be verified in a probabilistic temporal logic
(e.g., PCTL) [12].

Acknowledgments: The authors are grateful to Petr
Tuma, Mikael Sjödin, and Tiberiu Seceleanu for their valu-
able comments on the example used in this paper. This work
was partially funded in the context of the Q-ImPrESS re-
search project (FP7-215013) by the European Union under
the Information and Communication Technologies priority
of the Seventh Research Framework Programme. We also
want to express our gratitude to the Swedish national strate-
gic research center PROGRESS, supported by the Swedish
Foundation for Strategic Research (SSF) and Mälardalen
University, for co-funding this work.

References

[1] M. Åkerholm, J. Fredriksson, K. Sandström, and
I. Crnkovic. Quality attribute support in a component
technology for vehicular software. InFourth Conference



on Software Engineering Research and Practice in Sweden,
October 2004.

[2] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous
real-time components in bip. InSEFM ’06: Proceedings
of the Fourth IEEE International Conference on Software
Engineering and Formal Methods, pages 3–12, Washington,
DC, USA, 2006. IEEE Computer Society.

[3] S. Becker, H. Koziolek, and R. Reussner. Model-based per-
formance prediction with the palladio component model. In
WOSP ’07: Proceedings of the 6th international workshop
on Software and performance, pages 54–65, New York, NY,
USA, 2007. ACM.

[4] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Petters-
son, J. Romijn, and F. Vaandrager. Minimum-Cost Reach-
ability for Priced Timed Automata. In M. D. D. Benedetto
and A. Sangiovanni-Vincentelli, editors,Proceedings of the
4th International Workshop on Hybris Systems: Computa-
tion and Control, number 2034 in Lecture Notes in Com-
puter Sciences, pages 147–161. Springer–Verlag, 2001.

[5] E. Bondarev, M. R. V. Chaudron, and P. H. N. de With.
Compositional performance analysis of component-based
systems on heterogeneous multiprocessor platforms. In
EUROMICRO-SEAA, pages 81–91, 2006.

[6] E. Bondarev, P. de With, M. Chaudron, and J. Muskens.
Modelling of input-parameter dependency for performance
predictions of component-based embedded systems. InEU-
ROMICRO ’05: Proceedings of the 31st EUROMICRO Con-
ference on Software Engineering and Advanced Applica-
tions, pages 36–43, Washington, DC, USA, 2005. IEEE
Computer Society.

[7] T. Bures, P. Hnetynka, and F. Plasil. Sofa 2.0: Balancing
advanced features in a hierarchical component model. In
SERA ’06: Proceedings of the Fourth International Confer-
ence on Software Engineering Research, Management and
Applications, pages 40–48, Washington, DC, USA, 2006.
IEEE Computer Society.

[8] J. Carlson, J. Haakansson, and P. Pettersson. SaveCCM:
An analysable component model for real-time systems. In
Z. Liu and L. Barbosa, editors,Proceedings of the 2nd Work-
shop on Formal Aspects of Components Software (FACS
2005), volume 160 ofElectronic Notes in Theoretical Com-
puter Science, pages 127–140. Elsevier, 2006.

[9] V. Grassi, R. Mirandola, and A. Sabetta. From design to
analysis models: a kernel language for performance and re-
liability analysis of component-based systems. InWOSP
’05: Proceedings of the 5th international workshop on Soft-
ware and performance, pages 25–36, New York, NY, USA,
2005. ACM.

[10] H. Hansson, M.Åkerholm, I. Crnkovic, and M. Torngren.
Saveccm - a component model for safety-critical real-time
systems. InEUROMICRO ’04: Proceedings of the 30th EU-
ROMICRO Conference, pages 627–635, Washington, DC,
USA, 2004. IEEE Computer Society.

[11] K. Krogmann. Reengineering of Software Component Mod-
els to Enable Architectural Quality of Service Predictions.
In R. H. Reussner, C. Szyperski, and W. Weck, editors,Pro-
ceedings of the 12th International Workshop on Component
Oriented Programming (WCOP 2007), volume 2007-13 of

Interne Berichte, pages 23–29, Berlin, July31 2007. Univer-
sität Karlsruhe (TH).

[12] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang.
Symbolic model checking for probabilistic timed automata.
Inf. Comput., 205(7):1027–1077, 2007.

[13] K. G. Larsen and J. I. Rasmussen. Optimal reachability for
multi-priced timed automata.Theor. Comput. Sci., 390(2-
3):197–213, 2008.

[14] J. Muskens and M. R. V. Chaudron. Prediction of run-time
resource consumption in multi-task component-based soft-
ware systems. InCBSE, pages 162–177, 2004.

[15] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The koala component model for consumer elec-
tronics software.Computer, 33(3):78–85, 2000.

[16] P. R. Work and J. H. E. (John) Johnson. Risk Management
in Computer-Based Systems Development by Use of Perfor-
mance and Reliability Metrics. InProceedings of the 1995
International Symposium and Workshop on Systems Engi-
neering of Computer Based Systems, pages 367–373. IEEE,
1995.


