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ABSTRACT 
One of the challenges in development of embedded systems is to 
cope both with hardware and software components. Often is their 
integration cumbersome due to their incompatibilities, different 
specifications and different approaches in their development. In 
this paper we present a component-based technology we have 
developed for building distributed systems consisting of both 
embedded hardware devices and software written in high-level 
programming languages. To obtain a uniform view on hardware 
and software we use Universal Plug and Play (UPnP) technology 
for the communication between these parts of the system. Our 
technology consists of a component model that allows us to treat 
UPnP devices as components, and a run-time framework that 
supports this component model when the system is deployed. To 
evaluate the principles we have developed a prototype tool that 
implements the technology and demonstrated a feasibility of the 
approach. 

Categories and Subject Descriptors 
D.2.2 [Software Engineering]: Design Tools and Techniques 

General Terms 
Design, Languages 
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1. INTRODUCTION 
With the continuous advancement of embedded computers their 
usage grows rapidly. Examples of that can be seen in 
environmental and industrial monitoring and control, 
telecommunication, smart houses, and many other domains. 
Standard development models have difficulties keeping up with 
such complex systems, and as a result the development becomes 
too costly and time consuming, or the produced systems suffer 
from poor reliability and predictability. In search for a better 
development process, component-based development (CBD) 

emerges as a possible solution. It encourages reuse of once 
developed software or hardware components, and allows some 
properties of the system to be predicted in the early stages of 
development, based on the properties of the components it 
consists of. The use of such approach could greatly reduce 
development time and make the final product more robust, 
reliable and efficient. 
On the other hand, the increase of available resources makes it 
possible for embedded devices to implement advanced 
middleware to communicate with other elements of the system. 
Although the usage of such middleware may take up more 
resources than the actual core functionality, in many cases the 
benefits it provides to the development process outweigh the cost 
of more powerful hardware. One technology that can be used as 
middleware is Universal Plug and Play (UPnP). 
In this paper we propose a solution for building distributed 
systems consisting of both hardware and software in a 
component-based manner using UPnP technology. For this 
purpose a new component model called UComp has been 
developed, along with tools for developing and deploying systems 
built on that model. 
The rest of the paper is organised as follows: In Section 2 we 
introduce UPnP protocol and CBD approach. Section 3 describes 
our solution for combining hardware- and software components. 
In Section 4 we present the UComp component model, and 
Section 5 describes the UComp run-time framework. In Section 6 
we describe the tool for visual development UComp systems. In 
Section 7 we discuss some of the characteristics of our component 
technology and provide an overview of related work. Section 8 
concludes the paper and states the possibilities for future work. 

2. BACKGROUND 
Before presenting the proposed component model, we give an 
overview of the UPnP protocol and a short introduction to CBD. 

2.1 Universal Plug and Play 
UPnP is open standard that provides means for discovery, 
description and cooperation of different devices using standard 
TCP/IP network protocols [15]. Its name is derived from Plug-
and-Play (PnP), a technology that allows seamless connecting of 
peripheral devices to a personal computer. UPnP takes that 
concept and applies it to any device connected to a computer 
network. To do this, it leverages well established protocols and 
technologies like IP, TCP, UDP, XML and SOAP. 
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The two main types of entities that the UPnP architecture defines 
are devices and control points. Devices are entities of a UPnP 



network that provide services. Each service can define an 
arbitrary number of actions that are used to control the device, 
and one or more state variables which model the state of the 
device. Control points are clients to the services that the devices 
define in that they invoke actions defined by the services and/or 
monitor the values of their state variables. 
UPnP networking is divided in six steps: addressing, discovery, 
description, control, eventing and presentation. 
Through addressing, a UPnP device acquires a valid network 
address. Both managed and unmanaged networks are supported 
by the standard. If a DHCP server is present on the network it 
assigns an IP address to the device, otherwise the device uses the 
Auto-IP protocol to obtain a unique and valid address. 
A device that has acquired a network address proceeds with the 
next step: discovery. In this step the device advertises its presence 
to control points that are connected to the network, using 
multicast UDP messages in which it states its name, type and 
location on the network. To acknowledge its presence on the 
network, a UPnP device repeats this step periodically. Apart from 
passively collecting advertisement messages from the devices, 
control points can search the network for available devices, a 
certain type of devices or services, or a specific device using its 
unique ID. 
Once the control point discovers a device of interest on the 
network it can initiate the description step to gain information 
about it. It does this by requesting the XML description contained 
within the device. The description contains detailed information 
about the device and a list of the services it implements, together 
with the location of the service description XML for each service. 
A service description lists all state variables and actions, and 
defines input and output arguments for each action. 
With the information about devices, the control point can start 
invoking those actions in the control step. Actions are invoked by 
sending SOAP messages containing action name and input 
arguments to the device. The device then responds with either a 
message containing output arguments or an error message that 
contains the code and description of the error. 
Parallel to the control, eventing step can take place. Eventing 
enables the devices to notify control points when a state variable 
of one of its service changes value. To receive such notifications 
the control point has to subscribe to the events of the service. 
The last step that the UPnP device architecture defines is 
presentation. It enables devices to present their functionality 
through a web page, but this step is not relevant to this paper and 
will not be described further. 

2.2 Component-based development (CBD) 
In CBD, systems are built from well-defined components. At run-
time they are deployed to a component framework which supports 
them and manages their resources. To assure that the components 
can be deployed they need to conform to a specific component 
model. Component models define how a component interacts with 
the component framework and with other components in the 
system. 
Components are self-sufficient functional units that communicate 
with their environment only through well-defined interfaces, 
which makes them very suitable for reuse. Explicit connections, 
the result of limiting components to interact only through their 

interfaces, make system built using CBD easier to analyze and 
maintain. 
Reuse of existing components can further be facilitated by 
creating component repositories. Once a new component is 
developed it should be put in such a repository. The repository 
would then provide means for system developers to browse 
available components and use them in the development of a 
system. 
General purpose component models like COM [11], JavaBeans 
[14], .NET [6], EJB [7] and CORBA [3] are already widely used 
in development of desktop-, web- and distributed applications. 
The success of such models motivated research in applying the 
component-based approach in development of embedded systems. 
However, the resource restrictions faced by most embedded 
devices make general purpose component models unsuitable for 
such systems. On the other hand, those restrictions also make the 
analyzability and predictability that CBD provides even more 
beneficial. Because of that, new component models are being 
developed to satisfy both the needs and the constraints of 
embedded systems. Examples of such models are SaveCCM [1], 
Koala [16] and Rubus [2]. 

3. COMBINING HARDWARE- AND 
SOFTWARE COMPONENTS 
While the general purpose component-based technologies provide 
solutions for high level applications (for example desktop or web 
applications), component technologies for embedded systems are 
mostly limited to the resource-constrained systems. A problem 
arises when trying to connect the two in complex systems 
consisting of both high level software components and low level 
embedded components that are closely connected to the hardware. 
In such systems there is a need for a uniform way of handling 
both high (software) and low level (hardware) components. 
As an example we will take a simple greenhouse temperature 
monitoring system. It consists of a sensor that monitors the 
temperature inside a greenhouse, a display showing the current 
temperature, an alarm that should sound if the temperature 
exceeds 35°C, and a button that is used to acknowledge an alarm 
and reset it. The display and reset button is realised as a Java 
application running on a personal computer.  

 
Figure 1: Example system, monitoring the temperature of a 

greenhouse. 



An overview of the system is given in Figure 1. Embedded 
hardware devices are shown as gray rectangles, while the 
software applications are shown as white rectangles. In addition, 
the UComp application that will support the system is shown. 
Dashed lines separate different physical nodes. 
Although this simple system would be easy to implement without 
using CBD principles, the effort needed for development and 
maintenance would rise drastically with the increase of system 
complexity. UComp, the component-based technology that we 
propose in this paper, addresses that need. Using UPnP to connect 
and describe the components, we created a component model in 
which there is no distinction between software and hardware 
components. At the same time the footprint of the middleware 
layer is kept at a level which is acceptable for resource-limited 
embedded devices. UComp also allows for a simple way of 
creating component repositories. 
To support the development we have created a tool for visual 
development of UComp systems (UComp Developer) and a tool 
for deploying them (UComp Deployer) to any Java-enabled 
platform. 
Our solution consists of an application that uses a UPnP control 
point to communicate with UPnP devices connected to the 
network. For each of the devices it generates a set of one or more 
components that are bound to the device and represent its actions 
and state variables. These components are then presented to the 
developer who can use them for building a system. We also 
enable use of components that are not bound to any UPnP device. 
Instead, the functionality of those components is completely 
defined by software. The temperature sensor, alarm, display and 
the alarm acknowledgement button shown in Figure 1 are realised 
as UPnP devices. The UComp application shown in the figure 
treats those devices as components and provides the desired 
functionality of the system. 
By having the components available at run-time, systems built in 
this way can be extremely flexible because any modification of 
the system can be done while the system is running and the 
embedded devices are deployed. 

3.1 Benefits of using UPnP 
Defining architecture and protocols, but not their implementation, 
makes UPnP platform, language and media independent. To a 
control point there is no difference between a Java or .NET 
application acting as a UPnP device and a micro-controller using 
UPnP device stack. 
The use of standard protocols allows UPnP to be used in existing 
computer networks with little or no modifications. Also, the 
possibility to use the Internet to connect devices and control 
points allows the developer to build systems containing devices 
distributed over large geographical distances in an inexpensive 
way. 
Another benefit of using standards as HTTP and XML is that 
UPnP is easily extendable. A device vendor can add new 
information to the device description or control and eventing 
messages without breaking the UPnP standard. 

4. THE UCOMP COMPONENT MODEL 
To enable smooth deployment and interaction of distributed 
components in a system, a new component model was defined. In 

it, two different component types were defined: UPnP 
components and software components. UPnP components wrap 
around UPnP devices and present their functionalities in a 
component-based manner. Software components are not 
associated with any UPnP device. Instead, their functionality is 
fully implemented in Java code. 
Component interfaces consist of input and output ports. Ports can 
be viewed as access points to the component, through which 
components exchange data and control (triggering) signals. 
System execution follows the pipes and filter pattern. Data and 
triggering signals from an output port of one component can be 
directed to input ports of one or more components. 
The UComp component model is loosely based on SaveCCM. 
Although there are some differences that arise from the different 
domains and purposes of the two models, while developing the 
UComp model we wanted to allow for UComp systems to be 
easily transformed into SaveCCM, and vice versa. Such 
transformation would give users the ability to use tools developed 
for SaveCCM to verify and analyze UComp systems, and UComp 
could provide a way to implement and deploy systems designed 
in SaveCCM. 

4.1 UPnP components 
UPnP components represent actions and events of UPnP devices. 
In respect to that, there are two types of UPnP components: UPnP 
action components (or just action components) and UPnP event 
components (event components from now on). A single UPnP 
device corresponds to a set of UPnP components: one event 
component for each service that the device provides, and one 
action component for each action defined by a service. 
The input- and output ports of UPnP components are generated 
according to the arguments of the device's actions (for action 
components) or the state variables of its services (for event 
components). In addition to these ports, every UPnP component 
has a Boolean output port named connected. This port is set to 
true if the device is connected to the network (accessible by the 
control point) and event subscriptions are accepted in case of 
event components. This information can be very useful in 
distributed systems where a connection between the distributed 
components is not reliable. In the case that one or more 
components are temporarily unavailable, a warning can be 
signalled, and their functionality can be rerouted to a backup 
system. 

4.1.1 Action components 
Action components represent actions of UPnP devices. Every 
action component is bound to a specific device by its Unique 
Device Name (UDN), a specific service of that device by the 
service ID, and in the end to a specific action of that service by 
the action name. 
The ports of action components are generated according to the 
arguments of the action. For every input argument of the action an 
input port is added to the component and for every output 
argument of the action an output port is added, taking into 
account the data types of each argument. The names of the ports 
are equal to the names of the arguments. Action components also 
have an additional input port named trigger that accepts any data 
type. This port can be used for additional triggering, as well as 
triggering of components whose actions don't have any input 
arguments. 



When a UPnP action component is triggered, values of its input 
ports (with exception of the "trigger" port) are stored and 
transformed into input arguments for the UPnP action. Then, a 
control message is sent to the device to invoke the action. In the 
end, output arguments are parsed from the result message and 
their values used to set the values of the output ports. 
The action components in our greenhouse temperature monitoring 
systems are the temperature display and the alarm. To display the 
temperature we will use the SetLine action of the display UPnP 
device. The action has one input argument named text and no 
output arguments. Thus, the corresponding action component 
(shown in Figure 2) will have two input ports, text and trigger, 
and the connected output port. 

 
Figure 2: Action component generated for the SetLine action 

of the display UPnP device. 
Event components handle the event notifications generated by 
UPnP devices. Every event component is bound to a specific 
device by its UDN and the service ID. When the system is started 
event component instructs the UPnP control point to subscribe to 
events of the service they are bound to. Components confirm that 
subscription in regular intervals, and in the case of loss of 
subscription, send re-subscription requests. 
Ports of event components are generated using the state variable 
tables defined by the UPnP services. For each evented state 
variable of the service, an output port is created with the same 
name as the state variable. 
When the control point receives event notification from the 
service, the new values of state variables are used to set the values 
of output ports of the component. 
In the temperature monitoring example we use event components 
to obtain the temperature from the temperature sensor and to 
monitor the state of the alarm acknowledgment button. The event 
component that would correspond to the tempSensor service 
provided by the sensor UPnP device is shown in Figure 3. It has 
no input ports, and two output ports: temperature, matching the 
temperature state variable of the service, and the connected port 
that signals if the device is available on the network. 

 
Figure 3: Event component representing state variables of the 
tempSensor service of the temperature sensor UPnP device. 

4.2 Software components 
Software components are not associated with any UPnP device; 
instead their functionality is fully implemented in Java. Some of 
the roles of software components are to process the data received 
from, or sent to, UPnP components, manipulate the execution of 

components (e.g., generation of periodical triggers), data flow 
control (using switches) and definition of constants. Their 
function can vary from very simple (for example addition of two 
numbers, logical operations, extraction of a substring from string) 
to complex data processing. Having simple functions available as 
components (together with use of simple data types in component 
interfaces) makes it unnecessary to write any glue-code when 
connecting the components and thus enabling easier development. 
In our example this types of components are used to compare the 
temperature read by the sensor components to the temperature 
limit, and to control the alarm state. 
Software components are stored as Java class files. This makes 
the creation of a component repository fairly simple. For a new 
component to be available for development and deployment, it 
only needs to be copied to adequate directory of the file system. 

4.3 Ports 
Ports are the access points of a component, through which it sends 
and receives data and triggering signals. They are defined by their 
names and data types. The names of all input ports and names of 
all output ports of a component must be unique (although an input 
port can have the same name as an output port). 

4.3.1 Connections between ports 
One output port can be connected to multiple input ports, but an 
input port can be connected to only one output port. Whenever a 
component sets new data to one of its output ports, the port 
automatically sends the data and triggering signals to all input 
ports connected to it. Data is also transferred from an output port 
to an input port when a connection between the two is made, thus 
providing better behaviour of the system during run-time 
modification. The data is always transferred by value, and not by 
reference. Both input and output ports buffer the last data that was 
set to them. Ports can also be reset, making the port signal that 
there is no data available.  

4.3.2 Data types 
Every port defines a data type for the data it handles. In addition, 
input ports can define other data types they can accept and cast 
into their base data type. Although ports could use any Java class 
for their data type, only five types are currently implemented: 
Boolean, Integer, Double and String. These types are chosen to 
cover data types defined for UPnP arguments and state variables. 
A port can also be configured to handle no data, in which case it 
is used for triggering purposes only. 

4.3.3 Triggering of components 
When an input port receives a signal from the output port it is 
connected to, it becomes active. 
Every input port has an attribute called trigger type. This attribute 
defines how the state of the port affects the triggering of 
component execution. Although all components define default 
trigger types for their input ports, the developer of the system can 
change that type at any time to achieve the desired system 
behaviour. There are three types of triggers for input ports: 

• Trigger. A component is triggered if all trigger input 
ports are active. 

• Priority trigger. A component is triggered if any of its 
priority trigger input port is active. 



• Data. If port's trigger type is set to data, it is only used 
to receive data, and does not affect the triggering of the 
component. 

By combining these three trigger types, complex triggering 
patterns or feedback-loops can be achieved. 
The graphical representation of output ports and all input port 
types can be seen in Figure 4. The figure shows an instance of 
Component A having input ports a (data port), b (trigger port) and 
c (priority trigger port), and an output port out. 

 
Figure 4: Graphical representation of a component and its 

ports. 

4.4 Component execution 
Initially, all components in the system are in an idle state waiting 
to be activated for execution. Activation can be caused either by 
the triggering signals received at the input ports of the component, 
or by its internal events. Once activated the component starts its 
read-execute-write sequence: First, the component reads all 
values from its input ports and stores them internally, and then it 
executes its functionality. Finally, the component updates the 
values of its output ports. 
By looking at the way they are executed, two types of 
components can be distinguished: passive and active components. 
Action components and most software components are passive, 
meaning that they execute only when they are triggered by signals 
received from other components, while event components and 
some software components are active and thus may start their 

execution by an internal event. 
Execution of passive components is done by a part of the 
framework called the Executor. The Executor manages a queue of 
components that need to be executed and runs a thread that does 
the actual execution of these components. When a component is 
triggered, it adds itself to the queue of the Executor object. The 
execution thread waits until there is at least one component 
waiting to be executed. Then, it takes a component from the 
queue and calls its execute method. At the end of a component’s 
execute method all input triggers are reset.  
The execution of active components starts by an internal event. In 
the case of event components, it starts when a UPnP event 
notification is received by the component. Although the source of 
this event is in fact external to the system, it is viewed as internal 
to the component because it was not generated by any interaction 
with other components. Active components are executed in a 
separate thread than the passive components, defined by either the 
UPnP control point (in case of event components) or the 
components themselves (in case of active software components). 

4.5 Example 
Figure 5 shows the graphical representation of the greenhouse 
temperature monitoring system developed using UComp. The 
system consists of tempSensor (temperature sensor UPnP device) 
and ButtonPanel (acknowledgment button UPnP device) event 
components, SetLine (display UPnP device) and SetAlarmState 
(alarm UPnP device) action components and constant 35, 
Comparator and SR software components. The temperature value 
from the tempSensor is outputted directly to the display and to the 
Comparator, where it is compared with the constant 35.0. If the 
temperature is greater than 35.0, the comparator activates the s 
(set) port of SR (set/reset flip-flop) that stores the alarm state. The 
acknowledgment button is connected to the r (reset) port of SR. 
The output of SR is then connected to the input of the 
SetAlarmState action component. 

Figure 5: Graphical representation of the temperature monitoring system developed using UComp. The image is a 
screen-shot of the development panel in the UComp Developer tool. 



5. THE UCOMP RUN-TIME 
FRAMEWORK 
The UComp architecture (shown in Figure 6) is conceived as a 
Java application that controls UPnP devices available on the 
network, processes their data, and relays data between them. The 
application communicates with the devices through a single UPnP 
control point implemented by the CyberLink UPnP stack [4]. The 
functionality of the system is defined by the components it uses 
and the connections between those components. This centralized 
architecture has a number of benefits: 

• Data received from a device can be processed by the 
application before it is forwarded to other devices, 
making the systems much more flexible and eliminating 
the need to change the code of the devices to adapt them 
to the needs of the developed system. 

• Embedded devices do not need to implement UPnP 
control points. These devices have limited memory 
capacity and processing capabilities. Having to 
implement the control point stack would significantly 
decrease their performance. 

• Run-time modification of systems is much easier. 
System's behaviour can be modified by simple changes 
in the interconnection of components (or by changing 
the components themselves) in the central application. 
No change in the behaviour of the devices is needed. If 
devices were to communicate directly to one another, 
means for changing their configuration at run-time 
would have to be devised. Such functionality would 
mean that standard UPnP devices could not be used. 
Also, it would take up a portion of device's resources. 

UComp application

Component ComponentComponent ...

Executor UPnP control point

Network

UPnP device UPnP deviceUPnP device

 
Figure 6: The UComp architecture. 

6. DEVELOPMENT TOOL 
For building UComp systems, we created a visual development 
tool named UComp Developer. It enables browsing available 
components, visual representation of components on a 
development panel, modifying connections between them, setting 
their properties and the properties of their ports, and starting and 
stopping the execution of the developed system. Systems 
developed with this tool can be saved, or restored from, XML 
files. 

The system is developed in the development panel. In it, all 
components that the system consists of are graphically 
represented. The graphical representation also shows all input and 
output ports of the components, together with connections 
between those ports. 
Available UPnP and software components are presented in a tree 
structure. The tree consists of two main sub-trees: one for the 
UPnP components and one for software components. The first one 
is populated by UPnP components representing all devices that 
are currently available on the network. They are further grouped 
by the device and the service they are bound to. To generate the 
software component sub-tree, the application scans the file system 
(more precisely the Java classpath) for all Java classes that extend 
the SoftwareComponent class. Both the UPnP component sub-tree 
and the software component sub-tree can be refreshed while the 
UComp Developer application is running. 

7. DISCUSSION AND RELATED WORK 
While testing the systems built with UComp some false 
disappearance of devices were detected. They were caused by the 
use of unreliable UDP protocol in UPnP advertising. In case too 
many UDP messages were lost on the network, the control point 
concluded that a device is no longer connected to the network. 
This undesired behaviour could be eliminated by modifying 
control points to use UPnP control messages to test for the 
existence of the devices that are about to expire. 
Another problem that arose was long execution time of UPnP 
action invocations. In our experiments with the example 
temperature monitoring system, using Rabbit RCM2200 
microcontrollers with a custom built generic UPnP device stack as 
embedded devices, it varied between 100 and 350ms. The SOAP 
protocol that is used in the invocations is somewhat complex 
when applied on embedded devices. A solution for this would be 
to extend UPnP with an additional control protocol for use with 
the embedded devices. Such protocol could coexist with the 
standard UPnP control protocol and be used when both the device 
and control point supports it. A solution for a better control 
protocol using representational state transfer (REST) approach is 
given in [9]. 
In the process of development, two different types of component 
executors were investigated. The first one started a new Java 
thread for the execution of each component, while the second 
sequentially executed all components in the same thread. As the 
time needed to start a new thread for each execution surpassed the 
time spent on the execution of the code in many simple software 
components, we have decided to use sequential execution for the 
software components. 
Use of CBD in developing embedded systems has been explored 
in component models such as SaveCCM [1], COMDES-II [8], 
Rubus [2] and Koala [16]. However, most of these models do not 
specifically aim to solve the problem of connecting hardware with 
software. In addition, they focus their component-based approach 
on the design-time, loosing the benefits of components at run-
time. 
An alternative standard for connecting embedded devices and 
software used in industry is OPC [10]. It uses Microsoft’s COM 
[11] and DCOM [5] technologies for communication between 
OPC servers (embedded devices) and OPC clients. At the time 



OPC does not provide means for controlling devices in form of 
executing commands. 
UPnP was also explored as a middleware for robot development 
in [12] and [13]. The work describes benefits of using UPnP over 
real-time CORBA (TAO) in such an embedded environment. The 
work also introduces extensions to standard UPnP protocols that 
allow UPnP to better accommodate the needs of a robot SDK. 

8. CONCLUSION AND FUTURE WORK 
In this paper we have proposed a simple component-based 
technology for developing systems containing both embedded 
hardware and high level software applications. This was achieved 
by using UPnP architecture as middleware for discovering 
components, describing them and managing connections between 
them. In our component model we have achieves a uniform way 
of looking at hardware and software components. To further 
improve the development process, we have created a tool that 
enables browsing of available components and visual composition 
of systems. We have demonstrated how this technology could be 
applied on a simple temperature monitoring system. 
As future work, system design could be enhanced by providing a 
UPnP component repository in the development tool. This could 
easily be achieved by storing UPnP device descriptions to files in 
a well-organised directory structure. 
The component model could further be improved by including 
functional and non-functional properties in UPnP device 
description. Attributes specifying the same properties could also 
be added to software components. Using those properties we 
could do a detailed analysis of the system both at the design and 
run time. 
To increase the performance of the system, the UPnP protocols 
could be extended to better fit the needs of embedded devices and 
systems. This would include improving the UPnP discovery and 
defining a light-weight control protocol. 
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