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Abstract—In this paper, we present an approach towards
guiding the probabilistic simulation of the model by using a
meta-heuristic algorithm in order to find extreme response times
more efficiently than by traditional simulation. The proposed
approach should scale to industrial-size complex systems and
should be regarded as complementary to testing, since it does
not guarantee that the true worst case response time will be
identified.

I. INTRODUCTION

Most existing embedded real-time software systems today

have been developed in a traditional code-oriented manner.

When such systems grow over time, due to new features and

other changes, they become large and complex. We refer to

such systems as legacy systems.

The existing timing analysis proposed so far can be broadly

divided into two main classes of analytic techniques and sim-

ulation based methods [1]. Classical response time analysis,

for instance Fixed-Priority Analysis (FPA [2]), often gives

too pessimistic results for many real industrial systems. The

temporal model grounded on task level abstraction assumed

by the method cannot capture the complex dependencies

between tasks that exist in many legacy systems. Moreover,

FPA assumes a single WCET per task. Whereas a task may

have different WCETs in different situations (different states).

On top of this, although more optimistic (but not safe) WCET

of tasks can be obtained for instance by using hybrid WCET

analysis in [3], the exact WCET of tasks is often practically

impossible to find due to high complexity. Similar problems

arise for compositional analysis, e.g. Sym TA/S [4] and Real-

Time Calculus [5].

To use a more detailed system model is another approach,

where the model describes the tasks’ behavior with respect to

inter-process communication, usage of CPU time and usage of

logical resources. Further, abstractions are necessary since not

all the aspects of the system can be taken into account. The

relevant work about extracting such model from the industrial

system, is proceeding in our parallel research, and will be

briefly introduced in Section II.

Without a very carefully chosen level of abstraction, the

state space of such models are too large for practical ex-

haustive analysis, e.g. UPPAAL [6], a timed automata (TA)

based analysis. Another approach is simulation based analysis,

for example probabilistic discrete event simulation. Simulation

based analysis methods have large modeling scope and are

widely used in industry. Moreover, they are less dependent on

the size of the system state space since only a subset of the

state space is explored.

The obvious pitfall of simulation based analysis is insuf-

ficient test case coverage, which makes it impossible to give

any guarantees regarding the behavior of the simulated model,

e.g. the WCRT of a particular task. Several frameworks exist

for probabilistic simulation of real-time system models, e.g.

the commercial tool VirtualTime [3] and the academic tool

ARTISST [7].

Our previous work [8] presented a promising meta-heuristic

approach called MABERA, where a probabilistic discrete

event simulator is guided by a meta-heuristic search algo-

rithm in order to find extreme response times. We showed

in [8] that MABERA can find large response times in a

more efficient manner compared to traditional probabilistic

simulation. However, MABERA is far from optimal, as not

only it did not find the true WCRT of the task in focus,

but also it obtained very unstable results and required many

replications, large number of simulations and long run time

to achieve the best results. The reason for this is a too

abstract representation of simulation state in the simulation

optimization algorithm. We therefore propose a new approach

which addresses this issue and present preliminary results

from a prototype implementation in this paper. In addition,

we intend to compare the results of our new approach with

classical response time analysis for Fixed-Priority Preemptive

Scheduling (FPPS), Monte Carlo simulation and the earlier

MABERA approach [8] with respect to a model of a real

industrial legacy system, a control system for industrial robots

developed by our industrial partner ABB.

II. SIMULATION MODEL EXTRACTION

Approximate timing analysis based on timing-accurate sim-

ulation requires an analyzable model of the system that de-

scribes both functional and temporal behavior of the individual

tasks on a proper level of abstraction. The model should focus

on task behavior which has a significant impact on the task

scheduling, communication or allocation of limited logical

resources.

The extracted simulation model targets our system level

simulator, RTSSim. The core of RTSSim is a C library,
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which allows C programs (the task models) to be executed

in an isolated “sandbox”, where time is represented in a

discrete manner, using a simulation clock (an integer counter)

which is only advanced explicitly. RTSSim provides typical

RTOS services to the task models, such as task scheduling

(e.g. FPPS), inter-process communication and synchronization

(semaphores), all with respect to where time-related events

(such as timeouts) are driven by simulation clock. Thus, the

simulation result is not affected by other programs running

on the same PC. RTSSim provides two modeling primitives

which are not found in typical operating systems:

• The execute function, which advances the simulation clock

and thereby models the consumption of CPU time.

• The P function, which is used for probabilistic modeling

of selections.

The data for these modeling primitives, i.e. how much CPU

time to consume and how often to select a certain branch

is obtained from measurements on the runtime system. The

commercial simulator “Virtual Time”, from Rapita Systems

[3], uses a very similar approach.

In [9], we proposed a well-defined, system-level modeling

process which utilizes two complementary methods for the

task modeling; Model Synthesis, a fully automated method

complemented by a novel method which we refer to as hybrid
model extraction. Moreover, in order to support hybrid model

extraction automatically, a tool called MXTC (Model Extrac-

tion Tool for C), is in development. The tool targets large

implementations in C, consisting of millions of lines of code

(LOC). The resulting model includes probabilistic selection of

execution times, interarrival times and behaviors, in order to

represent behavioral variations that would otherwise require

extremely detailed models, also including hardware behavior,

which would slow down simulations by several magnitudes.

More information can be found in [9].

III. APPROXIMATE TIMING ANALYSIS

A. MABERA Framework

MABERA is an implementation of an iterative process,

where each iteration consists of a set of s simulations, which

produce a generation of simulation results. Each simulation

has the length l, i.e. model time when to stop each simu-

lation. The first (initial) generation is produced by running

s independent probabilistic simulations. Each simulation of

a generation is evaluated and assigned a fitness score based

on three properties of the task in focus: the highest observed

response time, execution time and preemption count for any

task instance during the simulation. The fitness scores are

used to select p number of parent simulations for next gen-

eration. Each parent simulation is used to produce s/p child

simulations for the next generation, which are mutations of

the parent simulation. The child simulations explore the state-

space “close” to the parent simulation and are likely to detect

a response time for T higher than the highest response time

for T of the parent simulation, unless the parent simulation

already have discovered the WCRT. The algorithm iterates in

this manner until a termination condition is reached, which

depends on the termination threshold, tt. The value of tt

decides how many “unsuccessful” generations that are allowed

before termination, i.e. generations that failed to discover a

response time higher than the highest response time of the

previous generations.

1) Seed Schedules: In MABERA, each chromosome (i.e.

simulation input parameters) in the genetic algorithm repre-

sents a seed schedule. The seed schedule specifies the random

seed values that are used for generation of pseudo-random

numbers and thereby outcomes of all non-deterministic selec-

tions during the simulation [8], and thereby exactly decides the

simulation result. More formally, a seed schedule is simply a

set of n pairs (si, ti), where si is a seed used to initiate the

random number generator in RTSSim and ti is a simulation

time instant. Each seed-time pair (si, ti) in the set is used to

change the seed from the current one, originating in si−1, to

si, at the specific simulation time instant ti.
A seed corresponds to the specific sequence of random

numbers, which in the context of MABERA is used for many

different purposes; task arrival jitter, execution time of part

of a task, environmental input stimulus etc. In particular, the

specific sequence of random numbers corresponds exactly to

a particular execution of the modeled application.

In MABERA, mutation is done by inserting a new generated

seed at a specific simulation time point, which has the effect

of changing the execution trace completely for the rest of the

simulation. This makes MABERA efficient at finding seed

values early in the chain that maximizes response time, but

also makes it impossible to exchange only some specific

simulation parameters, for example variable input stimulus

values, or specific execution times of a task, that might on

their own severely affect the response time.

This is the reason why the genetic crossover operator,

combining two different individuals (the parents) into two

new individuals (the offspring), was never implemented. Using

seed schedules, it is in practice not meaningful to combine

two “good” chromosomes into a better offspring, since only

the initial part of the seed schedule will keep its properties

when recombined, and the offspring will thus not inherit other

properties than the first part of the seed schedule from their

parents. In essence, crossover would only serve to introduce

more randomness, and can therefore be replaced by mutation.

The randomness caused by mutation diversifies the search in

the large system state space that we are exploring, but we

still need to introduce the randomness in a more systematic

manner, more similar to other evolutionary frameworks [10],

[11].

B. A New Solution

Our previous evaluation showed that MABERA is signifi-

cantly more efficient than traditional probabilistic simulation in

finding approximations of the WCRT. Unfortunately, there still

exists cases with even higher response times which MABERA

fails to find. Moreover, the obtained results are unstable,

i.e. almost 50% replications failed in finding higher RT. We

therefore propose a substantially more structured approach

using genetic algorithms (GA) also including crossover, and

where certain key aspects of the system at hand is encoded
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directly as parameters in the genetic algorithm. The new

approach is outlined below.

1) A New Representation of Chromosome: To remedy the

shortcomings of MABERA, we propose a solution centered

around consumers of random values. A random value con-

sumer is a property of the system that affects the outcome

of response time analysis. Examples of such properties are

environmental stimulus variables, runtime jitter results, and

execution time samples. In our new approach, we propose to

represent each random value consumer as either a separate

seed (which when applied yields a sequence of random

values) or in a more explicit representation, i.e. a sequence

of random numbers. This sequence is then used directly to

provide input to simulator. The advantage of this approach

is that there is a direct relationship between genes in the

chromosome and properties in the program to be simulated,

and that different consumers are fully separated from each

other. These properties make it possible to refine specific

aspects of the chromosome by using crossover and local

improvement techniques, in order to improve MABERA. If

the number of random value consumers are substantial, we

plan to partition these into groups of similar random value

consumers sharing a single seed. Partitioning should take care

of scaling issues with only a marginal loss of detail.

2) Representation of parameters: Formally, let Ji be a jitter

value consumer, Xi be an input stimulus value consumer, and

Ci be an execution time consumer. We propose to encode each

chromosome by a string

〈J1, . . . Jn, X1, . . . , Xm, C1, . . . , Cb〉, (1)

where n is the number of tasks which are associated with

jitter, m is the number of input stimulus variables, and b
is the maximum number of execution time samplings in the

model to be simulated. In order to make the new representation

more applicable to the general model whilst decreasing the

calculation complexity, we propose a representation rule, i.e.

the consumers which impact the model behavior most will

be represented in a more explicit way, i.e. real values repre-

sentation. The less impacted consumers will be represented

in a higher level abstraction, i.e. seeds-level representation.

In the simulator, it is now possible to construct a sequence

of random numbers in different representation levels, which

can be used for different purposes depending on the type of

consumer Yi represents, i.e. Yi can represent either J , X or

C in the simulation model.

The new chromosome representation has the advantage of

a tight coupling of representation (as genes) and particular

behavior (as value consumer) in the simulator, which makes

it possible to reuse and recombine good genes in the sense

of high response time. This allows us to use more advanced

genetic operators such as single and multi point crossover. Ar-

tificial randomness can be introduced as separate components

to diversify the search in a more systematic manner and to

generate a sufficient coverage of possible input values.

3) Results: The new solution is applied to the same, de-

scribed model in [8] using our newly developed prototype tool.

In [8], about 50% replications failed in finding higher response

times above 8,000 time units on the particular simulation

model used for this study. The proposed new solution, using

GA, gives very promising and reliable performance, i.e. very

high response time of 8,324 time units, which was found in

about half of earlier MABERA approach runs, is obtained in

100% of the runs of the new prototype tool. Better yet, the

population size necessarily in the new tool is decreased by

almost 80%. The new approach is thereby more stable and

efficient, and has higher scalability of analyzing more complex

industrial-size system in terms of consuming less computation

time and replications.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach based on simulation

optimization analysis, for approximate timing analysis of

complex real-time legacy systems. We proposed a new solution

based on consumers, which form a direct relationship between

genes in the chromosome and properties of the simulation

model, for example simulation input stimulus, task jitter and

execution time variables. This makes it possible to improve

the previous algorithm by using advanced evolutionary mech-

anisms such as crossover, multiple fitness criteria and multiple

population abstractions. As part of the future work, we will

continue with the evaluation by comparing the results of this

new approach with the old one from [8] as well as other

analyses, for instance FPA [2], Monte Carlo simulation etc.

We also plan to use our approach to derive more accurate

execution times of tasks in the model, which can then be used

to improve the results of FPA. We aim to evaluate our analysis

method by using a complex simulation model extracted from

the target legacy system, the ABB IRC5 robot control system.

To analyze other system properties by using our method and

relevant tools, e.g. best case and worst case buffer usage

analysis, is another reasonable application.
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