
Save-IDE – A Tool for Design, Analysis and Implementation of
Component-Based Embedded Systems

Séverine Sentilles, Anders Pettersson, Dag Nyström,
Thomas Nolte, Paul Pettersson, Ivica Crnkovic

Mälardalen Real-Time Research Center, Mälardalen University, Västerås Sweden
{severine.sentilles, anders.pettersson, dag.nystrom,

thomas.nolte, paul.pettersson, ivica.crnkovic}@mdh.se

Abstract
The paper presents Save-IDE, an Integrated Develop-

ment Environment for the development of component-based
embedded systems. Save-IDE supports efficient develop-
ment of dependable embedded systems by providing tools
for design of embedded software systems using a dedicated
component model, formal specification and analysis of com-
ponent and system behaviors already in early development
phases, and a fully automated transformation of the system
of components into an executable image.

1. Introduction

Certain domains such as dependable embedded systems
require having a high-confidence in the quality of products
being developed. For this, a fundamental desiderata is to
have the ability to deal with requirements such as depend-
ability (e.g. reliability, availability, safety), timing (such
as release and response time, execution time, deadline),
and resource utilization (including memory, CPU, message
channels, power consumption). This demands a strong em-
phasis on the analyzability and automation of the develop-
ment process to ensure the necessary quality of the final
products with respect to these requirements.

At the same time the growing complexity of embedded
systems requires methods that increase the abstraction level,
improve reusability, and enable concurrency in the develop-
ment process. An approach to achieve this is Component-
based software engineering (CBSE). Both types of require-
ments (development efficiency, and dependability) can be
achieved using the component-based development approach
based upon formally analyzable component-models and
complemented with adequate analysis tools. However, most
component-based technologies today lack the formal anal-
ysis tools needed to ensure dependability.

In this paper we present the Save Integrated Develop-
ment Environment (Save-IDE) which gathers tools and tech-
niques needed in the development process of dependable

embedded systems and integrates them with component-
based development. It includes development support based
on a component model SaveCCM [1] that is designed to en-
able efficient design of embedded systems and behavioral,
temporal analysis of the model. Compared to the majority
of existing IDEs which focus mainly on the programming
aspect, the Save-IDE applies a novel approach which inte-
grates the following activities: (i) design, (ii) analysis, (iii)
transformations, (iv) verification and (v) synthesis. The pa-
per briefly describes these development phases and the tools
integrated into Save-IDE.

The rest of the paper is organized as follows. Section 2
gives an overview of the development process and Save-
IDE. Sections 3, 4 and 5 describe the particular develop-
ment phases and the supporting tool, namely component-
based design, component and system analysis, and synthe-
sis. Section 6 concludes the paper.

2. Software Development Process

The development process (designated SaveCCT - Save-
Comp Component technology) is designed as a top-down
approach with an emphasis on reusability. It includes three
mayor phases: Design, Analysis and Realization, as illus-
trated on Figure 1.

The process begins with the system design phase in
which the system is broken down into subsystems and
components compliant with the SaveCCM Component
Model [2]. If components (partially) matching the require-
ments already exist, the select and adapt activity is taken.
Otherwise, new component(s) need to be developed (i.e.
the component development activity is taken). Correspond-
ingly, the components are first analyzed and verified indi-
vidually towards the requirements (formal component ver-
ification). In a following phase, after having reconstructed
the system (or parts of the system) out of individual com-
ponents and their assemblies (system composition), the ob-
tained compositions also need to be analyzed and verified



Software 
System Design

ExecutionSimulation

Synthesis

Formal System 
Verification

System 
Composition

Formal 
Component 
Verification

Software 
Component 

Development

Select
and 

Adapt

ok

ok

D
es

ig
n

A
n

al
ys

is
R

ea
liz

at
io

n

Processes done in 
several iterations

Workflow

not ok

Start

not ok

Figure 1. The SaveCCT development process

(formal system verification). The system and component
design and verification procedure is being repeated until the
results are acceptable from the analysis point of view. The
phase that follows, the realization phase, consists of syn-
thesis and execution or simulation activities. The system is
synthesized automatically based on the input from the sys-
tem design, on the implementations of the components and,
on static algorithms for the resource usage and timing con-
straints. All the necessary glue code for the run-time sys-
tem is produced. The resulted image can then be tested on
a simulator or downloaded into the target platform.

The development process is semi-automatic, with several
automated activities. A first automated activity is the pro-
duction of the skeleton of the implementation files (C files
and their corresponding header files) based on the specifica-
tion of the component. Another one is the generation of the
interchange file used as communication medium between
tools [2]. The third one occurs during the synthesis which
includes transformation of components into the executable
real-time units, tasks, glue code generation, inclusion of a
particular scheduling algorithm, compilation and linking all
elements in the executable image.

This process is supported by a set of tools integrated into
an Integrated Development Environment, Save-IDE 1. The
Save-IDE is designed as a platform with an extensible set of
tools providing integrated support to achieve the SaveCCT
approach as presented in [1, 8]. Save-IDE is developed as
a set of plugins for the Eclipse framework and it comprises
three key activities in the development process: (i) system
and component development that includes modeling and de-
sign of the components, the architectural design of the sys-
tem and specification and implementation of components,
(ii) time analysis of the system and the components, and
(iii) the synthesis that includes transformation from compo-
nents to tasks, setup of execution parameters like priorities
and periodicity of execution, glue code generation and com-
pilation. Save-IDE enables interactive and automatic use of

1The Save-IDE is available for download from the web page
http://sourceforge.net/projects/save-ide/

Save-IDE

Synthesis

Component-Based 
Design Analysis

.save .TA

Component 
Development 

Editor

Behaviour 
Model Merger

Synthesis
Tool

UPPAAL-Port 
Simulator

Timed Automata 
Editor

Architecture 
Editor

.C

.save

Compiler

SaveOS
Task
Set

Glue

Tem-
plate

Figure 2. Overview of the Save-IDE tool-chain

these tools and combines the entire development chain into
a common environment.

In Figure 2, the organization of the Save-IDE tool-chain
is shown. The development part consists of an Architecture
Editor where system and component models can be created.
Individual components can be implemented from generated
c-template files in the C environment tool (CDT Eclipse
plugin). In addition to the specification of functional inter-
face, the Architecture Editor makes it possible to assign dif-
ferent attributes to the components, such as execution time,
or behavioral model; for the latter the UPPAAL tool [6] and
its front-end tool UPPAAL PORT 2 is used. Finally, systems
can be synthesized using the synthesis tool. This process
is done automatically. Synthesis is performed towards the
SaveOS (Save Operating System), which is an abstraction
layer that allows Save-based systems to be easily ported to
different operating systems and hardware platforms. The
final step in the chain is to compile and download the ap-
plication to the target. Furthermore, using an external tool,
CC-Simtech [4], systems can be simulated on a standard
desktop computer.

3. Component-Based Design

As depicted in Figure 1, the design of a system in
SaveCCT distinguishes between two independent activities:
software system design and software component develop-
ment. Software system design consists of designing a sys-
tem out of independent and possibly already implemented
components, i.e. components being produced through the
component development activity.

2UPPAAL PORT is available for download from the web page
http://www.uppaal.org/port



Figure 3. Architecture Editor

The Architecture Editor enables designing a system fol-
lowing the semantics prescribed by the SaveCCM com-
ponent model. To achieve tractable analysis of the sys-
tem being developed (Section 4), the specification capabil-
ity of this component model has been restricted. It con-
sists of a minimum set of architectural elements (compo-
nent, assembly, composite, clock, delay and switch) con-
nected through “pipe-and-filter” ports distinguishing be-
tween control- and data-flows. Also the execution seman-
tics of the components and composites (compound com-
ponents) have been restricted to “read-execute-write” se-
quences performing computation (i.e. being active) when
they are triggered by control ports. Otherwise, the compo-
nents are in a passive state. More details about the compo-
nent model can be found in [1] and [2].

For each composite architectural element two views co-
exist in the Architecture Editor (see Figure 3): the external
view and the internal view. The external view describes the
name and type of the element, the ports, and the models an-
notated to the element (such as time behavior represent by a
timed automata), whereas the internal view handles the in-
ner elements and their connections. This view can be hierar-
chical since SaveCCM allows hierarchical compositions of
components and assemblies. The internal view presents the
component implementation using the Component Develop-
ment Editor provided by the Eclipse C/C++ Development
Tooling (CDT). Skeletons for the C and header files con-
taining mapping from ports to variables, function headers
are generated by the Architecture Editor.

4. Analysis

The Analysis part in the Save-IDE consists of a Timed
Automata Editor (TAE), a simulator, and a model-checker.
The TAE provides the developer with a graphical user inter-
face for creating a formal model of the internal behavior of
a SaveCCM element. The behavior is described as a timed
automaton [3] but with a distinct end location. The model

Figure 4. Behavioral Editor

of timed automata (TA) and its cost extended version priced
timed automata is suitable for modeling functional and tim-
ing properties, and well as extra functional properties such
as e.g., resource consumption.

Informally, the TA is assumed to start in its initial lo-
cation when the element is triggered. The element then be-
haves as specified by the TA until it reaches its end location.
At this point values are written to the output ports and the
output trigger of the element is activated. Using a semiauto-
matic mapping process the user associates the external ports
of a SaveCCM element with variables of the internal TA. In
this way, it becomes possible to create formal models of in-
dividual elements composed into composite components or
whole architectural descriptions.

The output of the TAE and the associated mapping can
be compiled (by Save-IDE) into an XML-format accepted
by the tool UPPAAL PORT which features a graphical sim-
ulator and a formal verifier. Using the simulator — which is
graphically fully integrated into the Save-IDE — it is possi-
ble explore the dynamic behavior of a complete SaveCCM
design in the early development phases of a project, prior
to implementation. In this way, the designer can validate
the design and gain increased confidence in the design. Us-
ing the verification interface, it is possible to establish by
model-checking whether a SaveCCM model satisfies for-
mal requirements specified as formulas in a subset of the
logic Timed CTL. In this way, it is possible to achieve fur-
ther increased confidence in the component-based design,
w.r.t., e.g., functionality and timing.

The tool UPPAAL PORT is based on the timed automata
model-checker UPPAAL [6], but extended with partial order
reduction techniques which exploits the structure and se-
mantics of SaveCCM model to improve the model-checking
performance [5]. The technique and tool have been proven
efficient for benchmark examples [5] and for an industrial
control system [10].



5. Synthesis
As part of the Save-IDE tool chain, the synthesis in-

cludes a set of automated generation tools which transform
and compile a SaveCCM-model allowing the developer to
follow the SaveCCT work-flow in a more intuitive way.
Via the graphical user interface the developer can invoke
the tool chain by a simple mouse-click which invokes a se-
quence of tools.

There are three steps in the automated generation tool
chain: generation, synthesis and run-time environment com-
pilation.

The first step, generation, is a transformation of the
model into auxiliary files in XML-format conforming to
the SaveCMM-Language [2]. During the generation step
the user creates template source files for each component in
which the behavior of the component can be implemented.

The second step in the automated generation tool chain
is the synthesis part, where the application is transformed
from the component model into the execution model. The
synthesis takes the SaveCCM model and constructs a set of
trees based on the applications triggers. These trees are then
used to generate the software code realized into the tasks,
i.e., the function calls to the software components as well
as glue code needed for passing data between the compo-
nents. Each tree is mapped to one real-time task, and the
configuration of the task is done with respect to the param-
eters of the trigger, e.g., setting of periods and priorities.

Finally, once the synthesis is performed, the run-time en-
vironment compilation and linking can be performed, and
finally the executable can be downloaded on the hardware
target or executed by a simulator.

The synthesis is independent of the run-time environ-
ment by the use of SaveOS, an abstraction layer between
the actual run-time environment and the application. The
applications do not call any native operating system services
directly, but indirectly calling services using SaveOS appli-
cation programming interface. SaveOS is designed and im-
plemented in a way that it requires minimal computing and
memory resources and provides a neglecting overhead. By
using the SaveOS the configuration of the run-time environ-
ment can be changed without having to change the model or
the implemented behavior of the components.

6. Conclusion

We have presented the Save-IDE, an integrated devel-
opment environment that provides support in the develop-
ment of predictable component-based embedded systems
following the approach which emphasizes on formal behav-
ior modeling and automated generation of the executable.
As future work we plan to extend the modeling language to
a richer component model, called ProCom [9], and a new
language, called REMES [7], for modeling of internal and
external component behaviors and embedded resources.

References

[1] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson,
J. Håkansson, A. Möller, P. Pettersson, and M. Tivoli.
The SAVE Approach to Component-Based Development
of Vehicular Systems. Journal of Systems and Software,
80(5):655–667, May 2007.

[2] M. Åkerholm, J. Carlson, J. Håkansson, H. Hansson, M. No-
lin, T. Nolte, and P. Pettersson. The SaveCCM Language
Reference Manual. Technical Report ISSN 1404-3041 ISRN
MDH-MRTC-207/2007-1-SE, Mälardalen University, Jan-
uary 2007.

[3] R. Alur and D. L. Dill. A Theory of Timed Automata. The-
oretical Computer Science, 126:183–235, 1994.

[4] CC Systems AB. CCSimTech. http://www.cc-systems.com/.
[5] J. Håkansson and P. Pettersson. Partial Order Reduction for

Verification of Real-Time Components. In J.-F. Raskin and
P. Thiagarajan, editors, Proceedings of the 5th International
Conference on Formal Modelling and Analysis of Timed Sys-
tems, Lecture Notes in Computer Science 4763, pages 211–
226. Springer Verlag, October 2007.

[6] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nut-
shell. Int. Journal on Software Tools for Technology Trans-
fer, 1:134–152, 1997.

[7] C. Seceleanu, A. Vulgarakis, and P. Pettersson. REMES:
A Resource Model for Embedded Systems. Technical Re-
port ISSN 1404-3041 ISRN MDH-MRTC-232/2008-1-SE,
Mälardalen University, October 2008.

[8] S. Sentilles, J. Håkansson, P. Pettersson, and I. Crnkovic.
Save-IDE – An Integrated Development Environment for
Building Predictable Component-Based Embedded Sys-
tems. In Proceedings of the 23rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE
2008), September 2008.

[9] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and
I. Crnkovic. A Component Model for Control-Intensive
Distributed Embedded Systems. In M. R. Chaudron and
C. Szyperski, editors, Proceedings of the 11th Interna-
tional Symposium on Component Based Software Engineer-
ing (CBSE2008), pages 310–317. Springer Berlin, October
2008.

[10] D. Slutej, J. Håkansson, J. Suryadevara, C. Seceleanu, and
P. Pettersson. Analyzing a Pattern-Based Model of a Real-
Time Turntable System. In 6th International Workshop on
Formal Engineering approaches to Software Components
and Architectures(FESCA), ETAPS 2009, York, UK. Elec-
tronic Notes in Theoretical Computer Science (ENTCS), El-
sevier, March 2009.


