
* This work was partially supported by the Swedish Foundation for Strategic Research (SSF) via the strategic research centre (PROGRESS) at Mälardalen

University.

An Investigation of Synchronization under Multiprocessors Hierarchical Scheduling*

Farhang Nemati, Moris Behnam and Thomas Nolte
Mälardalen Real-Time Research Centre

Mälardalen University, Box 883, 72123, Sweden
{farhang.nemati, moris.behnam, thomas.nolte}@mdh.se

Abstract

In the multi-core and multiprocessor research
community, considerable work has been done on real-time
multiprocessor scheduling algorithms where it is assumed
the tasks are independent. However in practice a typical
real-time system includes tasks that share resources. On the
other hand, synchronization in the multiprocessor context
has not received enough attention.

In this paper we propose an extension to multiprocessor
hierarchical scheduling to support resource sharing. We
extend the scheduling framework with an existing
synchronization protocol for global scheduling in multi-core
systems.

1. Introduction

Multi-core and multiprocessor architectures are receiving
more interest due the performance they offer as improving
performance in single-core architectures is limited due to the
problems with power consumption and related thermal
problems.

To take advantage of the performance offered by a multi-
core/multiprocessor architecture, appropriate scheduling
algorithms and synchronization protocols are required.
However, in the research community, scheduling has
received much more attention than synchronization [7].

There are two main approaches for scheduling sporadic
and periodic task systems on multiprocessor architectures [2,
3, 11, 15]; partitioned and global scheduling. Under
partitioned scheduling tasks are statically assigned to
processors and tasks within each processor are scheduled by
uniprocessor scheduling such as FPS (Fixed Priority
Scheduling) or EDF (Earliest Deadline First). Under global
scheduling, e.g., G-EDF (Global Earliest Deadline First),
tasks are scheduled by a single scheduler and each task can
be executed on any core. A combination of global and
partitioned scheduling called the two-level hybrid scheduling
[10] is used for systems in which some tasks cannot migrate
between cores while other tasks can migrate.

A more general approach which is a generalization of
partitioned and global scheduling is called cluster-based
scheduling [19]. In this approach tasks are statically assigned
to clusters and tasks within each cluster are globally
scheduled. In turn, clusters are transformed into tasks and
scheduled on multiprocessor architectures. Cluster-based
scheduling seems to be the way to improve utilization
bounds on the multiprocessor platform. However the existing

approaches for cluster-based scheduling do not consider
synchronization and assume that tasks are independent.

The contribution of this paper is an extension to the
hierarchical scheduling framework for multiprocessor virtual
clustering presented in [19], to consider lock-based
synchronization. We will explain this framework later in
more detail. We have extended the scheduling condition for
each cluster to consider blocking times. Some assumptions
of the scheduling framework also need to be changed. We
have used a technique similar to an existing protocol for
synchronization under global scheduling proposed in [7].

Related work. In the context of uniprocessor hierarchical
scheduling, there have been studies on allowing for sharing
of mutually exclusive resources within components [1, 16]
and across components [5, 9, 12].

For multiprocessor systems, Rajkumar present MPCP
(Multiprocessor Priority Ceiling Protocol) [18], which
extends PCP to multiprocessors hence allowing for
synchronization of tasks sharing mutually exclusive
resources using partitioned FPS. Gai et al. [13, 14] present
MSRP (Multiprocessor SRP), which is a P-EDF (Partitioned
EDF) based synchronization protocol for multiprocessors.
The shared resources are classified as either (i) local
resources that are shared among tasks assigned to the same
processor, or (ii) global resources that are shared by tasks
assigned to different processors. In MSRP, tasks synchronize
local resources using SRP, and access to global resources is
guaranteed a bounded blocking time. Lopez et al. [17]
present an implementation of SRP under P-EDF. Devi et al.
[10] present a synchronization technique under G-EDF. The
work is restricted to synchronization of non-nested accesses
to short, simple objects, e.g., stacks, linked lists, and queues.
In addition, the main focus of the method is on soft real-time
systems.

Block et al. [7] present FMLP (Flexible Multiprocessor
Locking Protocol), which is the first synchronization
protocol for multiprocessors that can be applied to both
partitioned and global scheduling algorithms, i.e., P-EDF and
G-EDF. We will use this protocol for synchronization under
the hierarchical scheduling for multiprocessor virtual
clustering; hence we will spend more time on details of this
protocol in Section 3.

2. Task and system model

We assume a sporadic task model [4] in which a sporadic
task τ୧ is specified by its minimum inter arrival time T୧, its

worst-case execution time C୧, and its relative deadline D୧.
We refer to ݆௧ job (each being an instance of a task) of task
τ୧ as τ

.
A request R issued by a job for exclusive access to a

resource l is satisfied as soon as the job holds the resource. A
request which is not contained within any other request is
called an outermost.

We assume a multiprocessor system consisting m
identical, unit-capacity processors each of which has a
scheduling utilization of one. We also assume that migration
of job is allowed, i.e., a job can be preempted on one
processor and be resumed on another processor. Preemption
and migration overheads are assumed to be negligible.

3. FMLP

In the FMLP, resources are categorized into short and
long resources which is user defined. There is no limitation
on nesting resource accesses, except that requests for long
resources cannot be nested in requests for short resources.

In FMLP, deadlock is prevented by grouping resources.
A group includes either global or local resources, and two
resources are in the same group if a request for one may be
nested in a request for the other one. A group lock is
assigned to each group and only one task at any time can
hold the lock.

Under FMLP, the jobs that are blocked on short resources
perform busy-wait and are added to a FIFO queue. Jobs that
access short resources hold the group lock and execute non-
preemptively. A job accessing a long resource under G-EDF
holds the group lock and executes preemptively using
priority inheritance, i.e., it inherits the maximum priority of
any higher priority job blocked on any resource within the
same group. Tasks blocked on a long resource are added to a
FIFO queue.

Actually FMLP works under a variant of G-EDF for
suspendable and preemptable jobs (GSN-EDF) [7] which
guarantees that a job τ

 can only be blocked (with a
constraint duration) by another non-preemptable job when
job τ

 is released or resumed.

3.1. Blocking under GSN-EDF and FMLP

Busy-wait blocking of task τ specified by ܤ ܹ is the
maximum duration of time that any job of the task can busy-
wait on a short resource.
Non-preemptive blocking occurs when a preemptable job
τ

 is one of the m highest priority jobs but it is not scheduled
because a lower priority job is non-preemptively executing
instead. Non-preemptive blocking of task τ denoted by
 is the maximum duration time that any job of task τ isܤܲܰ
non-preemptively blocked.
Direct blocking occurs when job τ

 is one of the m highest
priority jobs but it is suspended because it issues a request
for an outermost long resource from group G but another job
holds a resource from the same group (holds the group’s
lock). Direct blocking of task τ specified by ܤܦ is the
maximum duration of time that any job of the task can be
direct blocked.

4. Hierarchical scheduling for multiprocessor
virtual clustering

Under Cluster-based scheduling tasks are statically
assigned to clusters and scheduled globally among
themselves (intra-cluster scheduling). A cluster is a set of ݉ᇱ
processors where ݉ᇱ ݉. A cluster with its tasks and
scheduler is denoted as a component. The clusters are in turn
globally scheduled on the multiprocessor (inter-cluster
scheduling). The cluster-based scheduling is a generalization
of partitioned and global scheduling

Cluster-based scheduling can be physical or virtual. In
physical cluster-based scheduling each of cluster’s ݉ᇱ
processors are statically mapped to one of ݉ processors of
the multiprocessor [8]. In the virtual cluster-based scheduling
the ݉ᇱ processors of each cluster are dynamically mapped on
݉ out of ݉ processors of the multiprocessor. Virtual
clustering is more general and less sensitive to task-cluster
mapping compared to physical clustering.

Physical clustering only needs the intra-cluster
scheduling because the clusters do not share processors, On
the other hand, virtual clustering requires a hierarchical
scheduling which includes intra-cluster and inter-cluster
scheduling. Under hierarchical scheduling processors of the
multiprocessor are dynamically assigned to virtual clusters
(inter-cluster scheduling) and processor resources assigned to
a virtual cluster are used by that cluster to schedule its tasks
(intra-cluster scheduling).

4.1. Multiprocessors resource model

The notion of component interface is used to specify the
required processor resources to schedule the tasks within the
component [20]. A multiprocessor resource model specifies
the characteristics of resource provided to a cluster by the
multiprocessor platform. As a component interface, a
multiprocessor resource model specifies the resource
requirement for the component.

A multiprocessor periodic resource (MPR) model
denoted by Γ ൌ ,Πۃ θ, mᇱۄ specifies that the multiprocessor
collectively provides θ units of processor resource in every Π
time units to a cluster consisting mᇱ processors. A feasible
MPR model has to satisfy θ Π⁄ mԢ.

The lower bound of amount of resource supply that a
resource model Γ in time interval t provides is specified by
supply bound function ܾݏ ௰݂ሺݐሻ. In schedulability conditions,
 .is used to generate MPR based component interfaces ݂ܾݏ
The ݂ܾݏ for MPR model Γ ൌ ,Πۃ θ, mᇱۄ is presented as
follows [19]:

ܾݏ ௰݂ሺݐሻ ൌ ቊ݇θ maxሼ0, ሺI െ kΠሻmᇱ θሽ, ݐ Π െ ቒ
୫ᇲቓ

݁ݏ݅ݓݎ݄݁ݐ , 0
 (1)

where ݇ ൌ
௧ିሺஈିቒ ಐ

ౣᇲቓሻ

ஈ
 and I ൌ t െ 2Π ቒ

୫ᇲቓ

4.2. Component processor demand

The workload of a task τ in an interval ሾܽ, ܾሿ is total
duration of all intervals that any job of task τ is executing.
The task workload consists of (i) the carry-in demand which
is generated by a job of task τ released before ܽ but did not

complete its execution until ܽ (ii) the summation of demands
of all jobs of task τ with their both release time and deadline
within the interval ሾܽ, ܾሿ (iii) the carry-out demand is
generated by a job of task τ with release time in the interval
ሾܽ, ܾሻ but did not complete its execution until ܾ.

An upper bound for workload of task τ under G-EDF in
an interval ሾܽ, ܾሿ has been obtained [6] under two
assumptions; some job τ

 has a deadline at ܾ and τ
 misses

its deadline. This upper bound workload of task τ is
specified by ܹሺݐሻ in interval ሾܽ, ܾሿ with length ݐ ൌ ܾ െ ܽ.

4.3. Schedulability condition

The schedulability condition of a component,

 using the ,(compromising a cluster and its scheduler) ܥ
MPR model Γ ൌ ,Πۃ θ, mᇱۄ, is obtained under assumption
that some job of task τ (denoted as τ,) has deadline at ܾ
and it misses its deadline. Then to check the schedulability
of the task τ all different values for ܽ should be considered
such that (i) at least one of the mᇱ processors is idle at ܽ
(such a time instant is denoted as ݐௗ), (ii) ܽ is ݎ where ,ݎ
the release time of job ݐ,, (iii) there is no ݐௗ in the
interval ሺܽ, .ሿ. Figure 1 depicts one such instantݎ

Figure 1 [19]

To check schedulability of component ܥ, for each task τ
of ܥ, all intervals ሾܽ, ܾሿ with assumptions explained above
are considered and the condition that guarantees a deadline
miss for job ݐ, is derived. Let denote ܪሺ߬,ሻ as the set of
jobs of all tasks with priority higher or equal to the priority
of ݐ,. When ݐ, misses its deadline it means that in interval
ሾܽ, ܾሿ the total workload of all jobs in ܪሺ߬,ሻ is greater than
the processor supply for ܥ in the interval:

∑ ܫ

ୀଵ ܾݏ ௰݂ሺܣ ሻ (2)ܦ

where ܫ denotes the total workload in interval ሾܽ, ܾሿ of all
jobs of task τ in ܪሺ߬,ሻ, ܣ denotes the interval ሾܽ, ሿ andݎ
ܣ , shows the length of interval ሾܽܦ ܾሿ (Figure 1).

If it can be shown that for all tasks τ and for all values
of ܣ equation (2) is invalid, then ܥ is schedulable.

To obtain an upper bound for each ܫ, the workload of
task τ in two interval classes; (C1) time intervals within
ሾܽ, ܾሿ where job τ, executes, and (C2) other intervals in
ሾܽ, ܾሿ. These two interval classes are denoted by ܫ,ଵ and ܫ,ଶ
respectively.

The upper bound for total workload of all tasks in the
interval, specified by ݀݁݉ሺܣ ,ܦ ݉ᇱሻ, is obtained in [19].

The component ܥ is schedulable if for all tasks ݐ within ܥ
and all for values ܣ:

݀݁݉ሺܣ ,ܦ ݉ᇱሻ ܣሺ߁݂ܾݏ ሻ (3)ܦ

5. Synchronization under Multiprocessor
Hierarchical Scheduling

The multiprocessor hierarchical scheduling explained in
Section 4 assumes that tasks within components (clusters)
are independent and do not share any resources other than
the processor. We now extend the assumptions of the
framework with that tasks within a component may share
resources and require exclusive access to them.

Since the FMLP protocol (Section 3) works under GSN-
EDF (a variant of G-EDF), we assume that components in
which tasks share resources use this scheduling protocol. The
upper bound workload for each task as well as the
schedulability condition has to be extended to consider the
blocking time overheads generated under GSN-EDF and
FMLP.

As it was shown in Section 3, the total blocking time for
each task τ consists of three terms (ܤ ܹ,). Aܤܦ , andܤܲܰ
job in its busy-wait intervals is executing, although it does
not perform any work, hence its worst-case execution time ܥ
can be increased by ܤ ܹ. The new worst-case execution time
of any job of task τ, denoted by ܥᇱ

 is ܥᇱ
 ൌ ܥ ܤ ܹ. Thus

we replace ܥ by ܥᇱ
 in the upper bound workload of task τ

in [19]:
ܹሺݐሻ ൌ ܰሺݐሻܥᇱ

 ሻ (4)ݐሺܫܥ

where ܰሺݐሻ ൌ ቔ௧ାሺ்ିሻ
்

ቕ and
ሻݐሺܫܥ ൌ ݉݅݊ ሼܥᇱ

, ,ሼ0 ݔܽ݉ ݐ െ ܰሺݐሻ ܶሽሽ.

Schedulability condition. To derive a schedulability
condition:
(a) We have to extend ܫ (the total workload in interval ሾܽ, ܾሿ
of all jobs of task τ in ܪሺ߬,ሻ) to include busy-waits of jobs
in ܪሺ߬,ሻ.

The upper bound for total workload of all tasks in
intervals of type ܫ,ଵ in [19] is extended by busy-wait times as
follows:

 ∑ ,ଵܫ

ୀଵ mᇱܥ

ᇱ

The upper bound for ܫ,ଶ should also be extended in the
same way to include the busy-wait times. Note that
according to (4), ܹሺܣ ܣሺܫܥ ,ሻܦ ܣሻ, ܹሺܦ ሻܦ
and ܫܥሺܣ :ሻ already include busy wait timesܦ

,ଶܫ ܫ ҧ,ଶ ൌ ݉݅݊ሼ ܹሺܣ ,ሻܦ ܣ ܦ െ ܥ

ᇱሽ, ݅ ് ݇

,ଶܫ ܫ ҧ,ଶ ൌ ݉݅݊ሼ ܹሺܣ ሻܦ െ ܥ
ᇱ, ሽ, andܣ

By definition of ݐௗ, at most mᇱ െ 1 jobs can be executing

at time instant ܽ, thus it is only needed to consider mᇱ െ 1
largest carry-in demands (ܫܥ):

መ,ଶܫ ൌ ݉݅݊ሼ ܹሺܣ ሻܦ െ ܣሺܫܥ ,ሻܦ ܣ ܦ െ ܥ

ᇱሽ
݅ ݁ݎ݄݁ݓ ് ݇

መ,ଶܫ ൌ ݉݅݊ሼ ܹሺܣ ሻܦ െ ܥ

ᇱ െ ܣሺܫܥ ,ሻܦ ሽܣ

(b) We have to extend the condition in Section 4.3 under
which the deadline miss for job τ, is guaranteed in interval
ሾܽ, ܾሿ. The condition states that the total workload of all jobs
in ܪሺ߬,ሻ is greater than the processor supply for ܥ in the
interval. In the presence of lock-based resources the
condition must be extended. We denote ܤሺ߬,ሻ as the set of
jobs of all tasks with priority less than the priority of τ,.
The total workload in addition to workload for jobs in
,ሺ߬,ሻ within interval ሾܽܪ ܾሿ must also include:

1. The total non-preemptively execution parts of all jobs in

 ሺ߬,ሻ. An upper bound for this is denoted byܤ
 .ሺτ,ሻܤܲܰ

2. The total busy-waiting of all jobs in ܤሺ߬,ሻ. We denote
the upper bound for the total busy-waiting as ܤܹܤሺτ,ሻ.

3. The total direct blocking of all jobs of all tasks in ܪሺ߬,ሻ
in interval ሾܽ, ܾሿ. An upper bound for the total direct
blocking is specified by ܪܤܦ൫߬,൯.

Considering the three terms, the total workload of jobs in

interval ሾܽ, ܾሿ, specified by ܹܤሺ߬,ሻ, will be:

൫߬,൯ܤܹ ൌ ൫߬,൯ܤܲܰ ൫߬,൯ܤܹܤ ൫߬,൯ (5)ܪܤܦ

Currently we are working on obtaining upper bounds for

these three terms.
Considering (a) and (b) we will have:

݀݁݉ሺܣ ,ܦ ݉ᇱሻ ൌ ,ଶܫ

ୀଵ

 ൫ܫҧ,ଶ െ ,ଶ൯ܫ
ᇲିଵ

௦௧

 ݉ᇱܥ
ᇱ

 ൫߬,൯ܤܹ

Now we can use the condition (3) with the new workload
upper bound as the schedulability condition of component ܥ.

6. Summary

We have discussed a way of generalizing for
multiprocessor hierarchical scheduling framework presented
by [19], through allowing for shared logical resources
between tasks within the same component. We have used a
technique similar to FMLP [7] to synchronize the access of
shared resources by tasks, and we have shown how the
synchronization will affect the schedulability analysis of the
hierarchical framework. Currently, we are working on
deriving upper bounds for different blocking times in
equation (5). After that, we will evaluate this approach by
means of simulation and implementation.

References

 [1] L. Almeida and P. Pedreiras. Scheduling within temporal

partitions: response-time analysis and server design. In 4th ACM
international conference on Embedded software (EMSOFT’04),
Sep. 2004.

 [2] T. Baker. A comparison of global and partitioned EDF
schedulability test for multiprocessors. Technical report,
January 2005.

 [3] S. Baruah and N. Fisher. The partitioned multiprocessor
scheduling of sporadic task systems. In RTSS ’05: Proceedings
of the 26th IEEE International Real-Time Systems Symposium,

pages 321–329, Washington, DC, USA, 2005. IEEE Computer
Society.

 [4] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In Proceedings
of the 11th IEEE International Real-Time Systems
Symposium(RTSS’90), pages 182–190, Lake Buena Vista,
Florida, USA, December 1990. IEEE Computer Society.

 [5] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: a
synchronization protocol for hierarchical resource sharing in
real-time open systems. In 7th ACM and IEEE Int. Conference
on Embedded Software (EMSOFT’07), Oct. 2007.

 [6] M. Bertogna, M. Cirinei, and G. Lipari. Improved
schedulability analysis of edf on multiprocessor platforms. In
ECRTS, 2005.

 [7] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A
flexible real-time locking protocol for multiprocessors. In
Embedded and Real-Time Computing Systems and
Applications, 2007. RTCSA 2007. 13th IEEE International
Conference on, pages 47–56, Aug. 2007.

 [8] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger. A
hybrid real-time scheduling approach for large-scale multicore
platforms. In ECRTS, 2007.

[9] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed
priority pre-emptive systems. In 27th IEEE Int. Real-Time
Systems Symposium (RTSS’06), Dec. 2006.

[10] U. Devi, H. Leontyev, and J. Anderson. Efficient
synchronization under global edf scheduling on
multiprocessors. In Real-Time Systems, 2006. 18th Euromicro
Conference on, pages 10 pp.–84, 0-0 2006.

[11] U. C. Devi. Soft real-time scheduling on multiprocessors. PhD
thesis, Chapel Hill, NC, USA, 2006. Adviser Anderson, James
H.

[12] N. Fisher, M. Bertogna, and S. Baruah. The design of an EDF-
scheduled resource-sharing open environment. In 28th IEEE
Real-Time Systems Symposium (RTSS’07), Dec. 2007.

[13] P. Gai, G. Lipari, andM. D. Natale. Minimizing memory
utilization of real-time task sets in single and multi-processor
systems-on-a-chip. In RTSS ’01: Proceedings of the 22nd IEEE
Real-Time Systems Symposium, page 73, Washington, DC,
USA, 2001. IEEE Computer Society.

[14] P. Gai, M. D. Natale, G. Lipari, A. Ferrari, C. Gabellini, and P.
Marceca. A comparison of MPCP and MSRP when sharing
resources in the janus multiple-processor on a chip platform. In
RTAS ’03: Proceedings of the The 9th IEEE Real-Time and
Embedded Technology and Applications Symposium, page 189,
Washington, DC, USA, 2003. IEEE Computer Society.

[15] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson,
and S.Baruah. A categorization of real-time multiprocessor
scheduling problems and algorithms. In J. Y. Leung, editor,
Handbook on Scheduling Algorithms, Methods, and Models,
pages 30.1–30.19. ChapmanHall/CRC, Boca Raton, Florida,
2004.

[16] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open
environment for real-time applications. In 20th IEEE
International Real-Time Systems Symposium (RTSS’99), Dec.
1999.

[17] J. M. Lopez, J. L. Dıaz, and D. F. Garcia. Utilization bounds
for edf scheduling on real-time multiprocessor systems. Real-
Time Syst., 28(1):39–68, 2004.

[18] R. Rajkumar. Synchronization in multiple processor systems.
In Synchronization in Real-Time Systems: A Priority
Inheritance Approach. Kluwer Academic Publishers, 1991.

 [19] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling
framework for virtual clustering of multiprocessors. In
Proceedings Of the 20th Euromicro Conf. on Real-Time
Systems, pages 181-190, July 2008.

[20] I. Shin and I. Lee. Periodic resource model for compositional
real-time guarantees. In 24th IEEE International Real-Time
Systems Symposium (RTSS’03), Dec. 2003.

