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Abstract 
 

Power consumption and thermal problems limit a 
further increase of speed in single-core processors. 
Processor architects are therefore moving toward multi-
core processors. However, a shift to multi-core processors 
is a big challenge for developers of embedded real-time 
systems, especially considering existing “legacy” systems 
which have been developed with single-core processor 
assumptions. These systems have been developed and 
maintained by many developers over many years, and 
cannot easily be replaced due to the huge development 
investments they represent. In this paper we investigate 
challenges of migrating complex legacy real-time systems 
to multi-core architectures. We propose a partitioning 
algorithm to prepare the migration. Partitioning groups 
task and maps them to the different cores on the multi-
core processor, increasing system performance while 
ensuring correctness. We have run experiments that 
compare outputs of the algorithm to the outputs of an 
exhaustive search. Based on a cost function, the algorithm 
produces systems very close to optimal partitioning with 
respect to the cost function.    
 
 
1. Introduction 
 

Traditionally, computing performance has been 
improved through increasing clock frequency of 
processors. However, higher clock frequency results in 
higher power consumption [16]. Due to the problems with 
power consumption and related thermal problems, 
processor architects are moving toward multi-core 
designs. Multi-core is today the dominating technology 
for desktop computing. 

The performance achieved by multi-core 
architectures was previously only provided by High 
Performance Computing (HPC) systems. The HPC 
programmers are required to have a deep understanding of 
the hardware architecture in order to adjust the program 
explicitly for that hardware. This is not a suitable 
approach in embedded systems development, due to 
requirements on productivity, portability, maintainability, 
and short time to market.  

The performance improvements of using multi-
core processors depend on the nature of the applications 
as well as the implementation of the software. To take 
advantage of the concurrency offered by a multi-core 

architecture, appropriate algorithms have to be used to 
divide the software into tasks (threads) and distribute 
tasks fairly on cores to increase the performance. Real-
time systems can highly benefit from the multi-core 
processors, as critical functionality can have dedicated 
cores and independent tasks can run concurrently to 
improve performance and thereby enable new 
functionality. Moreover, since the cores are located on the 
same chip and typically have shared memory, 
communication between cores is very fast. Since 
embedded real-time systems are typically multi threaded, 
they are easier to adapt to multi-core than single-threaded, 
sequential programs, which need to be parallelized into 
multiple threads to benefit from multi-core. If the tasks 
are independent, it is simply a matter of deciding on 
which core each task should execute. For embedded real-
time systems, a static and manual assignment of cores is 
often preferred for predictability reasons. However, many 
of today’s existing “legacy” real-time systems are very 
large and complex, typically consisting of millions of 
lines of code which have been developed and maintained 
for many years. Due to the huge development 
investments, it is normally not an option to throw them 
away and to develop a new system from scratch. However 
introducing new functionalities into the legacy systems 
may require more powerful processors, therefore, to 
benefit from multi-core processors, they need to be 
migrated from single-core architectures to multi-core 
architectures. The migration should maximize the 
performance without compromising correctness and 
quality attributes such as maintainability, and portability. 
A significant challenge when migrating legacy real-time 
systems to multi-core processors is that they have been 
developed for single-core processors where the execution 
model is actually sequential. This assumption may 
introduce complications in a migration to multi-core [6]. 
Thus the software may need adjustments where 
assumptions of single-core have impact, e.g., non-
preemptive execution may not be sufficient to protect 
shared resources.  

Multithreading and multi-core architecture 
concepts are discussed in [16]. The author discusses 
parallelism, its software impacts and tuning performance 
on multi-core platforms. Migrating legacy systems to 
multi-core processors is discussed in [8]. Advantages and 
disadvantages of different target architectures of multi-
core processors are compared. 

For real-time systems, correctness does not only 
depend on functional correctness, but also on temporal 



 

correctness. The temporal behavior of a real-time system, 
e.g., worst-case response time, generally depends on the 
underlying hardware. Thus, in order to migrate a legacy 
system, a higher level of abstraction as well as 
environmental (platform dependent) properties of the 
system should be provided. This means that two 
perspectives of the system should be considered, a 
platform independent view, which focuses on design 
entities (functional behavior), and a platform dependent 
view, which provides a mapping between design entities 
and processor cores, which allows developers to best 
utilize the target platform.  

In this paper we present a migration framework 
based on a heuristic partitioning which allocates tasks to 
the cores. Tasks can be both legacy tasks extracted from 
the legacy system as well as newly developed ones. The 
constraints of the new tasks/functionalities are added to 
the constraints of tasks extracted from a legacy system. 
The framework identifies task constraints, e.g., 
dependencies between tasks, timing attributes, and 
resource sharing, which impact multi-core migration. 
Partitioning is a bin-packing problem which is known to 
be a NP-hard problem in the strong sense; therefore 
finding an optimal solution in polynomial time is not 
realistic in the general case. Heuristic functions have been 
considered to find near-optimal solutions. In this paper we 
extend a bin-packing algorithm with task constraints 
which considers performance as well as schedulability of 
partitions assigned to the cores.    

 
1.1. Related Work  

 
An approach for migration to multi-core is 

presented by Lindhult in [9]. The author presents the 
parallelization of sequential programs as a way to achieve 
performance on multi-core processors. The targeted 
language is PLEX, Ericsson’s in-house developed event-
driven real-time programming language used for 
Ericsson’s telephone exchange system. The author 
presents an operational semantics of core PLEX for both 
single-processor architecture as well as multi-threaded 
shared-memory architecture. 

A related work to ours is presented in [14] where a 
scheduling framework for multi-core processors is 
presented. The framework tries to balance between the 
abstraction level of the system and the performance of the 
underlying hardware. The framework groups dependant 
tasks, which for example share data, to improve the 
performance. The paper presents Related Thread ID 
(RTID) as a mechanism to help the programmers to 
identify groups of tasks. However the framework targets 
new development and does not mention migration of 
existing legacy systems with single-core assumptions.  

Another approach similar to partitioning is 
presented by Gerber et al in [7] for task slicing as a 
compiler optimization technique to enhance the 
schedulability of tasks. The authors present a static 
method that uses an annotation language and task slicing. 
This work however targets single-core processors. 

Liu et al [10] present a heuristic algorithm for 
allocating tasks in multi-core based massively parallel 
systems. Their algorithm has two rounds; in the first 
round processes (groups of threads - partitions in this 
paper) are assigned to processing nodes, the second round 
allocates tasks in a process to the cores of a processor. 

The grey-box modeling approach for designing 
real-time embedded systems [13] is of relevance to our 
work. In the grey-box task model the focus is on task-
level abstraction and it targets performance of the 
processors as well as timing constraints of the system. In 
this approach the design problems that are targeted at 
task-level are (1) task concurrency extraction from the 
system specifications, (2) automatic scheduling algorithm 
selection, (3) allocation and assignment of processors, and 
(4) resource estimators, high level timing estimators and 
interface refinement. However, in our approach, except 
specifications of the new tasks, the legacy system is used 
as the main source of task concurrency and resource 
sharing information.  

A study of bin-packing algorithms for designing 
distributed real-time systems is presented in [12]. The 
method partitions software into modules to be allocated 
on hardware nodes. In their approach they use two graphs; 
a graph which models software modules and a graph that 
represents the hardware architecture. The authors extend 
the bin-packing algorithm with heuristics to minimize the 
number of bins (processors) needed and the bandwidth 
required for the communication between nodes. 

Baruah and Fisher in [4] have presented a bin-
packing partitioning algorithm (First Fit Decreasing 
algorithm) for a set of sporadic tasks on multiprocessors. 
The tasks are indexed in non-decreasing order based on 
their relative deadlines and the algorithm assigns the tasks 
to the processors in first-fit order. The algorithm assigns 
each task ߬௜ to the first processor, ௞ܲ for which both of 
following conditions (under EDF scheduling) hold:     

 
d୧ െ ∑ DBFכ൫τ୨, d୧൯தౠ א Pౡ  ൒  e୧   

and, 
1 െ ∑ u୨தౠ א Pౡ   ൒  u୧ 

 
where  u୧ = ୣ౟

T౟
, and 

DBFכሺτ୧, tሻ = ൜
ݐ ݂݅                                      ,0 ൏  d୧ 
e୧  ൅  u୧  ൈ ሺt െ d୧ሻ,   otherwise 

 
The algorithm, however, assumes that tasks are 
independent. For tasks that share resource locks, research 
is needed to extend the schedulability conditions to 
include maximum blocking time for tasks.    
 
2. Multi-Core Architectures 
 

A multi-core processor is a combination of two or 
more independent cores on a single chip. They are 
connected to a single shared memory via a shared bus. 
The cores typically have independent L1 caches and share 
an on-chip L2 cache.  Figure 1 depicts an example of the 
architecture. 



 

There are two approaches for scheduling sporadic 
and periodic task systems on multi-core systems [4, 5] 
which are inherited from multiprocessor systems; global 
and partitioned scheduling. In global scheduling tasks are 
scheduled by a single scheduler based on their priorities 
and each task can be executed on any core. A task can be 
preempted on a core and resumed on another core, i.e., 
migration of tasks among cores is permitted. Under 
partitioned scheduling tasks are statically assigned to 
cores and tasks within each core are scheduled by 
uniprocessor scheduling protocols. Partitioned scheduling 
protocols have been used more, as they are more 
predictable. However, finding an optimal partitioning of 
tasks on the cores is known to be NP-hard. Thus heuristic 
approaches and sufficient feasibility tests for bin-packing 
algorithms have been studied to find a near-optimal 
partitioning [2, 5].      

 

 
 
Figure1: Multi-core architecture 

 
3. Migration Framework 
 

A successful migration of a real-time system to a 
multi-core architecture should, besides correctness of the 
system functionality and timing behavior, take advantage 
of the performance offered by the multi-core architecture. 
We propose an algorithm that groups tasks into partitions 
and allocates each partition to a core. At each step when 
the algorithm assigns a task to a partition the following 
requirements should be satisfied: 

1. Schedulability of the partition is guaranteed. 
2. The cost of assigning the task to the partition is 

minimized.  
 

            
            (a)                                           (b) 
 

Figure 2: Task preferences and resource sharing 
constraints  

 
The cost function calculates the cost value based 

on a set of task constraints and preferences which should 
be extracted from the system as well as those offered by 

the system experts (Figure 3). Three types of task 
constraints and preferences are defined as follows: 

 
1. Resource sharing constraints:  

The tasks that share resource locks, in the case that 
only single-core resource sharing protocols have to be 
used, should belong to the same partition. Figure 2.b 
depicts resources that are locked by tasks. A value (in 
milliseconds) shows the maximum time that a task blocks 
a resource.   

 
2. Task constraints:  

Timing attributes, e.g. deadline, worst-case 
execution time (WCET). 

 
3. Task preferences:  

A preference category for the task set is 
represented as a matrix (Figure 2.a). A cost given to a pair 
of tasks, ߬௜ and ௝߬ is denoted by  ݒ௜௝  indicates the cost 
when they are assigned to the same partition, i.e., if two 
tasks are completely independent and can execute in 
parallel the cost is set to a very small value, and for two 
tasks that are highly recommended to belong to the same 
partition the cost is the highest value. Each matrix, ܯ௞, 
represents an aspect of preferences (e.g. communication 
costs) and has a coefficient ܧ௞ which represents the 
importance of the preference category. Coefficients values 
depend on the partitioning strategies (Section 3.1).   

Extracting preference matrices is not easy and for 
complex systems it may require a lot of engineering skills 
and system knowledge. Hence, the extraction complexity 
may differ for different matrices.  

 
Example 1: Suppose in a system, tasks share large 
amounts of data, hence increasing cache hits is important. 
The values in the related matrix could be a function of 
amount of shared data between task pairs. 
 
Example 2: Let assume that the Priority Ceiling Protocol 
(PCP) for uniproccessors [15] has been used for 
synchronization of tasks sharing resources. Suppose ௫ܲ 
and ௬ܲ are respectively the highest and the lowest 
priorities of tasks sharing a resource guarded by 
semaphore ௜ܵ. Any task, ߬௜ with priority higher than ௬ܲ 
and less than ௫ܲ may be blocked by lower priority tasks 
even if it does not share the resource. In this case it is 
better that ߬௜ is assigned to a different processor to 
decrease the blocking times. Thus in a preference matrix 
(for reducing blocking times) the cost values between ߬௜ 
and each of those tasks should be a high value. The cost 
value will be increased as the priority of ߬௜ gets closer to 

௫ܲ.  
 
3.1. Partitioning Strategies 

 
Depending on the nature of a system the strategy of 

partitioning may differ and result in different partitioning. 
A strategy indicates how tasks are grouped together and 
based on that the coefficient parameters are given to 
different preference matrices. For example in a system 



 

that processes large amounts of data it is important that 
the tasks that share data heavily are assigned to the same 
partition to increase cache hits. On the other hand for a 
system in which tasks share small amounts of data or are 
independent, it is important that the tasks are assigned to 
different partitions to increase parallelism.     

   

 
 

Figure 3: A framework for partitioning 
 

3.2. Task and Platform Model  
 
We will assume a task set (tasks extracted from 

legacy system as well as new tasks) that consists of n 
sporadic tasks ሼ߬ଵ, … , ߬௡ሽ, characterized by worst-case 
execution times ሼܥଵ, … , ,ଵܤ௡ሽ, blocking times ሼܥ … ,  ,௡ሽܤ
and minimum inter-arrival times ሼ ଵܶ, … , ௡ܶሽ that are 

equal to their deadlines. The utilization of task ࣎௜ is 
defined as ݑ௜ ൌ ௜ܥ ௜ܶ⁄ . 

We will also assume that the multi-core platform is 
composed of m identical cores. The task set is partitioned 
into m partitions ሼ ଵܲ, … , ௠ܲሽ, and each partition is 
allocated on one core.   
 
3.3. Cost Function 

 
Considering q task preference matrices, the cost 

function for a partition is formulated based on the task 
preferences and utilizations. Let  M୪ሺv୧୨ሻ denote the cost 
of task ߬௜ and ௝߬ being assigned to the same partition in 
preference matrix ܯ௟ with coefficient value ܧ௟ (where 1 ൑ 
l ൑ q). For any partition ௞ܲ (where 1 ൑ k ൑ m and m is the 
total number of partitions/cores), ܿݐݏ݋ሺ ௞ܲሻ denotes the 
total cost of the partition: 

 

ሺݐݏ݋ܿ ௞ܲሻ ൌ ௞ݑ
ఈೠሺ∑ ቆܧ௟ ∑  ெ೗ሺ௩೔ೕሻ

ଶఛ೔ א  ௉ೖ
 ఛೕ א  ௉ೖ 

ቇ௤
௟ୀଵ ሻఉ   (1)  

 
where, ݑ௞ ൌ ሺ∑ ௉ೖ ൅  א ௜ఛ೔ݑ ௉ೖ א ఛ೔ݔܽ݉  ሺܤ௜ ௜ܶ⁄ ሻሻ,   
 is the preference ߚ ௨ is the utilization parameter, andߙ 
parameter.  
 

The utilization parameter, ߙ௨ where 0 ൑   ௨ߙ
indicates the importance of task utilizations in the cost 
function, and ߚ indicates the importance of preference 
matrices in the cost function. By setting the utilization 
parameter to 0 (ߙ௨ ൌ 0), the cost function will only 
depend on the preference matrices. By setting the 
preference parameter to 0 (ߚ ൌ 0) the cost function will 
only depend on utilization factor which will help the cores 
be evenly utilized.  

 
 

 
 

Figure 4: Partitioning algorithm 
  



 

4. Partitioning Algorithm 
     
In this section we present an extension to the First-

Fit bin-packing algorithm for partitioning sporadic task 
systems, similar to the algorithm presented in [4]. The 
major goal of bin-packing algorithms is minimizing the 
number of needed bins (cores). However our aim is to 
increase performance while guaranteeing correctness. 
Thus, we extend the bin-packing algorithm with task 
preferences (cost function) as well as resource sharing 
constraints. Figure 4 depicts pseudo-code for the 
partitioning algorithm.  

Most legacy systems use Fixed Priority Scheduling 
(FPS). Thus, we assume that the uniprocessor scheduling 
and resource sharing protocols used in the system are FPS 
with Rate Monotonic (RM) priority assignment and PCP 

respectively. Thus the following schedulability test from 
[15] is used for schedulability analysis of any partition, 
 ௞ܲ: 

 
∑ ௉ೖ ൅  א ௜ఛ೔ݑ ௉ೖ א ఛ೔ݔܽ݉ ሺܤ௜ ௜ܶ⁄ ሻ ൑ ݊ሺ2ଵ ௡⁄ െ 1ሻ     (2) 

  
However the algorithm is not limited to FPS and 

PCP, and the schedulability test can be extended to other 
scheduling and resource sharing protocols, e.g., for 
Earliest Deadline First (EDF) using Stack Resource 
Protocol (SRP) [3], the following schedulability test from 
[3] can be used:  

 
∑ ௜ݑ ൅ max࣎೔ ሺܤ௜ ௜ܶ⁄ ሻ  ൑ 1                  (3)  

 

 

  
(a) Task set 1  (b) Task set 2 
 

  
(c) Task set 3  (d) Task set 4 

 

  
(e) Task set 5  (f) Task set 6 

Figure 5: Results of the partitioning algorithm for 100 different preference matrices 



 

 
In order to satisfy resource sharing constraints 

(Section 3), the tasks should be replaced by tasks called 
macrotasks [11]. A macrotask is a set of tasks that directly 
or indirectly share resource locks, e.g., in Figure 2.b tasks 
߬ଷ and ߬ହ share a resource (ܴଵ), ߬ଷ shares another resource 
(ܴଶ) with ߬ଵ, these tasks (߬௟, ߬ଷ, ߬ହ) make a macro task. A 
task that does not share any resource with other tasks 
make a macrotask too. The tasks ሼ࣎ଵ, … ,  ௡ሽ are࣎
transformed into macrotasks ሼߛଵ, … ,   .௭ሽ where z ൑ nߛ

Preference matrices with tasks (Section 3) are 
transformed into preference matrices with macrotasks. 
The cost for any pair of macrotasks, ߛ௣ and ߛ௤, when they 
are allocated to the same partition, is denoted by  ݒො௣௤  and 
is calculated by Equation (5): 

 
ො௜௝ݒ  ൌ   ∑ ఊ೛ א ௜௝ఛ೔ݒ

ఛೕ א ఊ೜

                      (4) 

 
The cost function of any partition in (1) is 

transformed into cost function (5): 
 

ሺݐݏ݋ܿ ௞ܲሻ ൌ ݇ݑ 
ఈೠሺ∑ ቆܧ௟ ∑  ெ෡೗ሺ௩ො೔ೕሻ

ଶఊ೔ א  ௉ೖ
ఊೕ א  ௉ೖ 

ቇ௤
௟ୀଵ ሻఉ          (5) 

 
where, ݑ௞ ൌ ∑ ௉ೖ ൅  א ௜ఛ೔ݑ ௉ೖ א ఛ೔ݔܽ݉  ሺܤ௜ ௜ܶ⁄ ሻ and ܯ෡௟ 
denotes the transformed matrix of  ܯ௟ preference matrix 
and  ܯ෡௟ሺݒො௜௝ሻ denotes the cost of macrotasks ߛ௜ and ߛ௝ 
being assigned to the same partition in transformed 
preference matrix ܯ෡௟. 
 
5. Experiments 

     
In this section we present an evaluation of our 

algorithm. In the implementation of the algorithm we 
investigate two aspects. Firstly we compare the outputs 
with the results of an exhaustive search for all feasible 
allocations (schedulable system). Secondly we investigate 
the effect of the utilization parameter on evenly 
distribution of tasks in partitions.   

In our experiments, to decrease the time of 
performing an exhaustive search, the number of tasks in 
each task set is restricted to 12 and the number of 
partitions (cores) is set to 3. The experiment is run for 10 
different task sets that were generated randomly. For each 
task set the macrotasks were extracted from the tasks and 
transformation of preference matrices was performed. The 
experiment runs 100 times for each task set, each time 
with two randomly generated preference matrices. The 
coefficient of the preference matrix is set to 1 (ܧ ൌ 1). To 
investigate the effect of the utilization parameter ߙ௨ on 
partitioning, four different parameters were tested, i.e., 

௨ߙ ൌ ௨ߙ ,1 ൌ ௨ߙ  ,2 ൌ 4, and ߙ௨ ൌ 6.  The preference 
parameter ߚ, is set to 1 (1 = ߚ) for all experiments.  

The experiments were implemented under the 
uniprocessor RMS scheduling protocol and PCP 
synchronization protocol. However, as it was explained in 
Section 4, the schedulability test can easily be replaced if 
other scheduling protocols, e.g., EDF, or synchronization 
protocols, e.g., SRP, are used.  

The results of comparing with exhaustive search 
for six different task sets are depicted in Figure 5. The 
diagrams show the outputs of the algorithm together with 
the best and the worst feasible cases. The best and the 
worst case results are achieved by exhaustive search based 
on the cost function. The results are emphasized in 
Table 2 where average of best, algorithm, and worst costs 
are shown for each task set. The diagrams in Figure 5 and 
average costs in Table 2 show that the outputs of the 
algorithm are generally very close to the best feasible 
cases with respect to the cost function.  

 
Table 2: Average values of the best, the worst, and 

algorithm costs 
 
 Average 

Best 
Cost 

Algorithm 
Cost Worst Cost 

Task Set 1 330,50 461,40 1 835,36 
Task Set 2 338,80 478,90 1 796,43 
Task Set 3 365,94 520,32 1 575,06 
Task Set 4 457,83 657,55 1 339,41 
Task Set 5 406,34 556,49 1 424,45 
Task Set 6 342,83 475,38 1 764,15 
Task Set 7 350,37 501,23 1 771,85 
Task Set 8 347,74 485,20 1 772,53 
Task Set 9 367,55 503,33 1 551,46 
Task Set 10 389,95 576,40 1 545,87 

 
The results also show that the number of systems 

that (according to the cost value) are better than the 
algorithm results is very low. Figure 6 compares the total 
number of better systems with the total number of feasible 
systems from the experiments of the first task set.  

For one task set, the results of utilization of the 
partitions with four different utilization parameters, 
௨ߙ ൌ ௨ߙ ,1 ൌ ௨ߙ  ,2 ൌ 4, and ߙ௨ ൌ 6 are depicted in 
Figure 7. The diagrams show that increasing the 
parameter ߙ௨ leads to a more even distribution of 
utilization among partitions (cores). On the other hand, by 
increasing ߙ௨, utilization results for each partition are 
converged, which means that the effect of preference 
matrices on the cost function decreases. 

  



 

 
 

Figure 6: Systems better than algorithm results compared to total feasible systems 

 
 

  
 

(a) ߙ௨ ൌ 1  (b) ߙ௨ ൌ 2 
 

  
 

(c) ߙ௨ ൌ 4  (d) ߙ௨ ൌ 6 
 

Figure 7: Utilization of partitions for different ࢛ࢻ values 
 

  



 

6. Conclusions and Future Work 
 
In this paper we have discussed major challenges 

regarding migrating a legacy real-time system to multi-
core architectures where it will execute along with other 
systems, e.g., how to take advantage of performance 
offered by multi-core platforms while guaranteeing 
correctness. We have proposed a framework for migrating 
legacy real-time systems to multi-core processors, which 
includes a heuristic algorithm that extends a bin-packing 
algorithm with a cost function based on preference 
matrices and task utilization values. Partitioning will 
result in a set of partitions containing tasks and each 
partition will be mapped on one core. We have developed 
an experiment where results of our algorithm are 
compared to the results from performing an exhaustive 
search. Based on a cost function, the algorithm produces 
systems very close to optimal.  

In the future we will study and investigate more 
techniques and the possibility of extending them to our 
framework, including reverse engineering techniques such 
as static and dynamic analysis. These techniques will be 
used to extract required information from the legacy 
system, e.g., the use of shared resources, and timing 
attributes.  

Another plan that we have for the future is to study 
industrial legacy real-time systems and investigate the 
challenges and possibility of migrating these systems to 
multi-core architectures. 

In our approach we assign all tasks that share 
resource locks to reuse uniprocessor synchronization 
protocols. However in the future we will investigate 
existing global synchronization protocols and possibly 
develop new protocols.   

We have restricted our framework to partitioned 
scheduling approach for multi-cores, and we have reused 
uniprocessor scheduling. In the future we plan to extend 
the migration framework to global scheduling protocols, 
e.g., hierarchical scheduling protocols for multi-core 
architectures. 
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