
* This work was partially supported by the Swedish Foundation for Strategic Research (SSF) via the strategic research centre (PROGRESS)

at Mälardalen University.

A Framework for Real-Time Systems Migration to Multi-Cores*

Farhang Nemati, Johan Kraft and Thomas Nolte
Mälardalen Real-Time Research Centre

Mälardalen University, Box 883, 72123, Sweden
{farhang.nemati, johan.kraft, thomas.nolte}@mdh.se

Abstract

Power consumption and thermal problems limit a
further increase of speed in single-core processors.
Processor architects are therefore moving toward multi-
core processors. However, a shift to multi-core processors
is a big challenge for developers of embedded real-time
systems, especially considering existing “legacy” systems
which have been developed with single-core processor
assumptions. These systems have been developed and
maintained by many developers over many years, and
cannot easily be replaced due to the huge development
investments they represent. In this paper we investigate
challenges of migrating complex legacy real-time systems
to multi-core architectures. We propose a partitioning
algorithm to prepare the migration. Partitioning groups
task and maps them to the different cores on the multi-
core processor, increasing system performance while
ensuring correctness. We have run experiments that
compare outputs of the algorithm to the outputs of an
exhaustive search. Based on a cost function, the algorithm
produces systems very close to optimal partitioning with
respect to the cost function.

1. Introduction

Traditionally, computing performance has been
improved through increasing clock frequency of
processors. However, higher clock frequency results in
higher power consumption [16]. Due to the problems with
power consumption and related thermal problems,
processor architects are moving toward multi-core
designs. Multi-core is today the dominating technology
for desktop computing.

The performance achieved by multi-core
architectures was previously only provided by High
Performance Computing (HPC) systems. The HPC
programmers are required to have a deep understanding of
the hardware architecture in order to adjust the program
explicitly for that hardware. This is not a suitable
approach in embedded systems development, due to
requirements on productivity, portability, maintainability,
and short time to market.

The performance improvements of using multi-
core processors depend on the nature of the applications
as well as the implementation of the software. To take
advantage of the concurrency offered by a multi-core

architecture, appropriate algorithms have to be used to
divide the software into tasks (threads) and distribute
tasks fairly on cores to increase the performance. Real-
time systems can highly benefit from the multi-core
processors, as critical functionality can have dedicated
cores and independent tasks can run concurrently to
improve performance and thereby enable new
functionality. Moreover, since the cores are located on the
same chip and typically have shared memory,
communication between cores is very fast. Since
embedded real-time systems are typically multi threaded,
they are easier to adapt to multi-core than single-threaded,
sequential programs, which need to be parallelized into
multiple threads to benefit from multi-core. If the tasks
are independent, it is simply a matter of deciding on
which core each task should execute. For embedded real-
time systems, a static and manual assignment of cores is
often preferred for predictability reasons. However, many
of today’s existing “legacy” real-time systems are very
large and complex, typically consisting of millions of
lines of code which have been developed and maintained
for many years. Due to the huge development
investments, it is normally not an option to throw them
away and to develop a new system from scratch. However
introducing new functionalities into the legacy systems
may require more powerful processors, therefore, to
benefit from multi-core processors, they need to be
migrated from single-core architectures to multi-core
architectures. The migration should maximize the
performance without compromising correctness and
quality attributes such as maintainability, and portability.
A significant challenge when migrating legacy real-time
systems to multi-core processors is that they have been
developed for single-core processors where the execution
model is actually sequential. This assumption may
introduce complications in a migration to multi-core [6].
Thus the software may need adjustments where
assumptions of single-core have impact, e.g., non-
preemptive execution may not be sufficient to protect
shared resources.

Multithreading and multi-core architecture
concepts are discussed in [16]. The author discusses
parallelism, its software impacts and tuning performance
on multi-core platforms. Migrating legacy systems to
multi-core processors is discussed in [8]. Advantages and
disadvantages of different target architectures of multi-
core processors are compared.

For real-time systems, correctness does not only
depend on functional correctness, but also on temporal

correctness. The temporal behavior of a real-time system,
e.g., worst-case response time, generally depends on the
underlying hardware. Thus, in order to migrate a legacy
system, a higher level of abstraction as well as
environmental (platform dependent) properties of the
system should be provided. This means that two
perspectives of the system should be considered, a
platform independent view, which focuses on design
entities (functional behavior), and a platform dependent
view, which provides a mapping between design entities
and processor cores, which allows developers to best
utilize the target platform.

In this paper we present a migration framework
based on a heuristic partitioning which allocates tasks to
the cores. Tasks can be both legacy tasks extracted from
the legacy system as well as newly developed ones. The
constraints of the new tasks/functionalities are added to
the constraints of tasks extracted from a legacy system.
The framework identifies task constraints, e.g.,
dependencies between tasks, timing attributes, and
resource sharing, which impact multi-core migration.
Partitioning is a bin-packing problem which is known to
be a NP-hard problem in the strong sense; therefore
finding an optimal solution in polynomial time is not
realistic in the general case. Heuristic functions have been
considered to find near-optimal solutions. In this paper we
extend a bin-packing algorithm with task constraints
which considers performance as well as schedulability of
partitions assigned to the cores.

1.1. Related Work

An approach for migration to multi-core is

presented by Lindhult in [9]. The author presents the
parallelization of sequential programs as a way to achieve
performance on multi-core processors. The targeted
language is PLEX, Ericsson’s in-house developed event-
driven real-time programming language used for
Ericsson’s telephone exchange system. The author
presents an operational semantics of core PLEX for both
single-processor architecture as well as multi-threaded
shared-memory architecture.

A related work to ours is presented in [14] where a
scheduling framework for multi-core processors is
presented. The framework tries to balance between the
abstraction level of the system and the performance of the
underlying hardware. The framework groups dependant
tasks, which for example share data, to improve the
performance. The paper presents Related Thread ID
(RTID) as a mechanism to help the programmers to
identify groups of tasks. However the framework targets
new development and does not mention migration of
existing legacy systems with single-core assumptions.

Another approach similar to partitioning is
presented by Gerber et al in [7] for task slicing as a
compiler optimization technique to enhance the
schedulability of tasks. The authors present a static
method that uses an annotation language and task slicing.
This work however targets single-core processors.

Liu et al [10] present a heuristic algorithm for
allocating tasks in multi-core based massively parallel
systems. Their algorithm has two rounds; in the first
round processes (groups of threads - partitions in this
paper) are assigned to processing nodes, the second round
allocates tasks in a process to the cores of a processor.

The grey-box modeling approach for designing
real-time embedded systems [13] is of relevance to our
work. In the grey-box task model the focus is on task-
level abstraction and it targets performance of the
processors as well as timing constraints of the system. In
this approach the design problems that are targeted at
task-level are (1) task concurrency extraction from the
system specifications, (2) automatic scheduling algorithm
selection, (3) allocation and assignment of processors, and
(4) resource estimators, high level timing estimators and
interface refinement. However, in our approach, except
specifications of the new tasks, the legacy system is used
as the main source of task concurrency and resource
sharing information.

A study of bin-packing algorithms for designing
distributed real-time systems is presented in [12]. The
method partitions software into modules to be allocated
on hardware nodes. In their approach they use two graphs;
a graph which models software modules and a graph that
represents the hardware architecture. The authors extend
the bin-packing algorithm with heuristics to minimize the
number of bins (processors) needed and the bandwidth
required for the communication between nodes.

Baruah and Fisher in [4] have presented a bin-
packing partitioning algorithm (First Fit Decreasing
algorithm) for a set of sporadic tasks on multiprocessors.
The tasks are indexed in non-decreasing order based on
their relative deadlines and the algorithm assigns the tasks
to the processors in first-fit order. The algorithm assigns
each task ߬௜ to the first processor, ௞ܲ for which both of
following conditions (under EDF scheduling) hold:

d୧ െ ∑ DBFכ൫τ୨, d୧൯தౠ א Pౡ ൒ e୧

and,
1 െ ∑ u୨தౠ א Pౡ ൒ u୧

where u୧ = ୣ౟

T౟
, and

DBFכሺτ୧, tሻ = ൜
ݐ ݂݅ ,0 ൏ d୧
e୧ ൅ u୧ ൈ ሺt െ d୧ሻ, otherwise

The algorithm, however, assumes that tasks are
independent. For tasks that share resource locks, research
is needed to extend the schedulability conditions to
include maximum blocking time for tasks.

2. Multi-Core Architectures

A multi-core processor is a combination of two or
more independent cores on a single chip. They are
connected to a single shared memory via a shared bus.
The cores typically have independent L1 caches and share
an on-chip L2 cache. Figure 1 depicts an example of the
architecture.

There are two approaches for scheduling sporadic
and periodic task systems on multi-core systems [4, 5]
which are inherited from multiprocessor systems; global
and partitioned scheduling. In global scheduling tasks are
scheduled by a single scheduler based on their priorities
and each task can be executed on any core. A task can be
preempted on a core and resumed on another core, i.e.,
migration of tasks among cores is permitted. Under
partitioned scheduling tasks are statically assigned to
cores and tasks within each core are scheduled by
uniprocessor scheduling protocols. Partitioned scheduling
protocols have been used more, as they are more
predictable. However, finding an optimal partitioning of
tasks on the cores is known to be NP-hard. Thus heuristic
approaches and sufficient feasibility tests for bin-packing
algorithms have been studied to find a near-optimal
partitioning [2, 5].

Figure1: Multi-core architecture

3. Migration Framework

A successful migration of a real-time system to a
multi-core architecture should, besides correctness of the
system functionality and timing behavior, take advantage
of the performance offered by the multi-core architecture.
We propose an algorithm that groups tasks into partitions
and allocates each partition to a core. At each step when
the algorithm assigns a task to a partition the following
requirements should be satisfied:

1. Schedulability of the partition is guaranteed.
2. The cost of assigning the task to the partition is

minimized.

 (a) (b)

Figure 2: Task preferences and resource sharing
constraints

The cost function calculates the cost value based

on a set of task constraints and preferences which should
be extracted from the system as well as those offered by

the system experts (Figure 3). Three types of task
constraints and preferences are defined as follows:

1. Resource sharing constraints:

The tasks that share resource locks, in the case that
only single-core resource sharing protocols have to be
used, should belong to the same partition. Figure 2.b
depicts resources that are locked by tasks. A value (in
milliseconds) shows the maximum time that a task blocks
a resource.

2. Task constraints:

Timing attributes, e.g. deadline, worst-case
execution time (WCET).

3. Task preferences:

A preference category for the task set is
represented as a matrix (Figure 2.a). A cost given to a pair
of tasks, ߬௜ and ௝߬ is denoted by ݒ௜௝ indicates the cost
when they are assigned to the same partition, i.e., if two
tasks are completely independent and can execute in
parallel the cost is set to a very small value, and for two
tasks that are highly recommended to belong to the same
partition the cost is the highest value. Each matrix, ܯ௞,
represents an aspect of preferences (e.g. communication
costs) and has a coefficient ܧ௞ which represents the
importance of the preference category. Coefficients values
depend on the partitioning strategies (Section 3.1).

Extracting preference matrices is not easy and for
complex systems it may require a lot of engineering skills
and system knowledge. Hence, the extraction complexity
may differ for different matrices.

Example 1: Suppose in a system, tasks share large
amounts of data, hence increasing cache hits is important.
The values in the related matrix could be a function of
amount of shared data between task pairs.

Example 2: Let assume that the Priority Ceiling Protocol
(PCP) for uniproccessors [15] has been used for
synchronization of tasks sharing resources. Suppose ௫ܲ
and ௬ܲ are respectively the highest and the lowest
priorities of tasks sharing a resource guarded by
semaphore ௜ܵ. Any task, ߬௜ with priority higher than ௬ܲ
and less than ௫ܲ may be blocked by lower priority tasks
even if it does not share the resource. In this case it is
better that ߬௜ is assigned to a different processor to
decrease the blocking times. Thus in a preference matrix
(for reducing blocking times) the cost values between ߬௜
and each of those tasks should be a high value. The cost
value will be increased as the priority of ߬௜ gets closer to

௫ܲ.

3.1. Partitioning Strategies

Depending on the nature of a system the strategy of

partitioning may differ and result in different partitioning.
A strategy indicates how tasks are grouped together and
based on that the coefficient parameters are given to
different preference matrices. For example in a system

that processes large amounts of data it is important that
the tasks that share data heavily are assigned to the same
partition to increase cache hits. On the other hand for a
system in which tasks share small amounts of data or are
independent, it is important that the tasks are assigned to
different partitions to increase parallelism.

Figure 3: A framework for partitioning

3.2. Task and Platform Model

We will assume a task set (tasks extracted from

legacy system as well as new tasks) that consists of n
sporadic tasks ሼ߬ଵ, … , ߬௡ሽ, characterized by worst-case
execution times ሼܥଵ, … , ,ଵܤ௡ሽ, blocking times ሼܥ … , ,௡ሽܤ
and minimum inter-arrival times ሼ ଵܶ, … , ௡ܶሽ that are

equal to their deadlines. The utilization of task ࣎௜ is
defined as ݑ௜ ൌ ௜ܥ ௜ܶ⁄ .

We will also assume that the multi-core platform is
composed of m identical cores. The task set is partitioned
into m partitions ሼ ଵܲ, … , ௠ܲሽ, and each partition is
allocated on one core.

3.3. Cost Function

Considering q task preference matrices, the cost

function for a partition is formulated based on the task
preferences and utilizations. Let M୪ሺv୧୨ሻ denote the cost
of task ߬௜ and ௝߬ being assigned to the same partition in
preference matrix ܯ௟ with coefficient value ܧ௟ (where 1 ൑
l ൑ q). For any partition ௞ܲ (where 1 ൑ k ൑ m and m is the
total number of partitions/cores), ܿݐݏ݋ሺ ௞ܲሻ denotes the
total cost of the partition:

ሺݐݏ݋ܿ ௞ܲሻ ൌ ௞ݑ
ఈೠሺ∑ ቆܧ௟ ∑ ெ೗ሺ௩೔ೕሻ

ଶఛ೔ א ௉ೖ
 ఛೕ א ௉ೖ

ቇ௤
௟ୀଵ ሻఉ (1)

where, ݑ௞ ൌ ሺ∑ ௉ೖ ൅ א ௜ఛ೔ݑ ௉ೖ א ఛ೔ݔܽ݉ ሺܤ௜ ௜ܶ⁄ ሻሻ,
 is the preference ߚ ௨ is the utilization parameter, andߙ
parameter.

The utilization parameter, ߙ௨ where 0 ൑ ௨ߙ
indicates the importance of task utilizations in the cost
function, and ߚ indicates the importance of preference
matrices in the cost function. By setting the utilization
parameter to 0 (ߙ௨ ൌ 0), the cost function will only
depend on the preference matrices. By setting the
preference parameter to 0 (ߚ ൌ 0) the cost function will
only depend on utilization factor which will help the cores
be evenly utilized.

Figure 4: Partitioning algorithm

4. Partitioning Algorithm

In this section we present an extension to the First-

Fit bin-packing algorithm for partitioning sporadic task
systems, similar to the algorithm presented in [4]. The
major goal of bin-packing algorithms is minimizing the
number of needed bins (cores). However our aim is to
increase performance while guaranteeing correctness.
Thus, we extend the bin-packing algorithm with task
preferences (cost function) as well as resource sharing
constraints. Figure 4 depicts pseudo-code for the
partitioning algorithm.

Most legacy systems use Fixed Priority Scheduling
(FPS). Thus, we assume that the uniprocessor scheduling
and resource sharing protocols used in the system are FPS
with Rate Monotonic (RM) priority assignment and PCP

respectively. Thus the following schedulability test from
[15] is used for schedulability analysis of any partition,
 ௞ܲ:

∑ ௉ೖ ൅ א ௜ఛ೔ݑ ௉ೖ א ఛ೔ݔܽ݉ ሺܤ௜ ௜ܶ⁄ ሻ ൑ ݊ሺ2ଵ ௡⁄ െ 1ሻ (2)

However the algorithm is not limited to FPS and

PCP, and the schedulability test can be extended to other
scheduling and resource sharing protocols, e.g., for
Earliest Deadline First (EDF) using Stack Resource
Protocol (SRP) [3], the following schedulability test from
[3] can be used:

∑ ௜ݑ ൅ max࣎೔ ሺܤ௜ ௜ܶ⁄ ሻ ൑ 1 (3)

(a) Task set 1 (b) Task set 2

(c) Task set 3 (d) Task set 4

(e) Task set 5 (f) Task set 6

Figure 5: Results of the partitioning algorithm for 100 different preference matrices

In order to satisfy resource sharing constraints

(Section 3), the tasks should be replaced by tasks called
macrotasks [11]. A macrotask is a set of tasks that directly
or indirectly share resource locks, e.g., in Figure 2.b tasks
߬ଷ and ߬ହ share a resource (ܴଵ), ߬ଷ shares another resource
(ܴଶ) with ߬ଵ, these tasks (߬௟, ߬ଷ, ߬ହ) make a macro task. A
task that does not share any resource with other tasks
make a macrotask too. The tasks ሼ࣎ଵ, … , ௡ሽ are࣎
transformed into macrotasks ሼߛଵ, … , .௭ሽ where z ൑ nߛ

Preference matrices with tasks (Section 3) are
transformed into preference matrices with macrotasks.
The cost for any pair of macrotasks, ߛ௣ and ߛ௤, when they
are allocated to the same partition, is denoted by ݒො௣௤ and
is calculated by Equation (5):

ො௜௝ݒ ൌ ∑ ఊ೛ א ௜௝ఛ೔ݒ

ఛೕ א ఊ೜

 (4)

The cost function of any partition in (1) is

transformed into cost function (5):

ሺݐݏ݋ܿ ௞ܲሻ ൌ ݇ݑ
ఈೠሺ∑ ቆܧ௟ ∑ ெ෡೗ሺ௩ො೔ೕሻ

ଶఊ೔ א ௉ೖ
ఊೕ א ௉ೖ

ቇ௤
௟ୀଵ ሻఉ (5)

where, ݑ௞ ൌ ∑ ௉ೖ ൅ א ௜ఛ೔ݑ ௉ೖ א ఛ೔ݔܽ݉ ሺܤ௜ ௜ܶ⁄ ሻ and ܯ෡௟
denotes the transformed matrix of ܯ௟ preference matrix
and ܯ෡௟ሺݒො௜௝ሻ denotes the cost of macrotasks ߛ௜ and ߛ௝
being assigned to the same partition in transformed
preference matrix ܯ෡௟.

5. Experiments

In this section we present an evaluation of our

algorithm. In the implementation of the algorithm we
investigate two aspects. Firstly we compare the outputs
with the results of an exhaustive search for all feasible
allocations (schedulable system). Secondly we investigate
the effect of the utilization parameter on evenly
distribution of tasks in partitions.

In our experiments, to decrease the time of
performing an exhaustive search, the number of tasks in
each task set is restricted to 12 and the number of
partitions (cores) is set to 3. The experiment is run for 10
different task sets that were generated randomly. For each
task set the macrotasks were extracted from the tasks and
transformation of preference matrices was performed. The
experiment runs 100 times for each task set, each time
with two randomly generated preference matrices. The
coefficient of the preference matrix is set to 1 (ܧ ൌ 1). To
investigate the effect of the utilization parameter ߙ௨ on
partitioning, four different parameters were tested, i.e.,

௨ߙ ൌ ௨ߙ ,1 ൌ ௨ߙ ,2 ൌ 4, and ߙ௨ ൌ 6. The preference
parameter ߚ, is set to 1 (1 = ߚ) for all experiments.

The experiments were implemented under the
uniprocessor RMS scheduling protocol and PCP
synchronization protocol. However, as it was explained in
Section 4, the schedulability test can easily be replaced if
other scheduling protocols, e.g., EDF, or synchronization
protocols, e.g., SRP, are used.

The results of comparing with exhaustive search
for six different task sets are depicted in Figure 5. The
diagrams show the outputs of the algorithm together with
the best and the worst feasible cases. The best and the
worst case results are achieved by exhaustive search based
on the cost function. The results are emphasized in
Table 2 where average of best, algorithm, and worst costs
are shown for each task set. The diagrams in Figure 5 and
average costs in Table 2 show that the outputs of the
algorithm are generally very close to the best feasible
cases with respect to the cost function.

Table 2: Average values of the best, the worst, and

algorithm costs

 Average

Best
Cost

Algorithm
Cost Worst Cost

Task Set 1 330,50 461,40 1 835,36
Task Set 2 338,80 478,90 1 796,43
Task Set 3 365,94 520,32 1 575,06
Task Set 4 457,83 657,55 1 339,41
Task Set 5 406,34 556,49 1 424,45
Task Set 6 342,83 475,38 1 764,15
Task Set 7 350,37 501,23 1 771,85
Task Set 8 347,74 485,20 1 772,53
Task Set 9 367,55 503,33 1 551,46
Task Set 10 389,95 576,40 1 545,87

The results also show that the number of systems

that (according to the cost value) are better than the
algorithm results is very low. Figure 6 compares the total
number of better systems with the total number of feasible
systems from the experiments of the first task set.

For one task set, the results of utilization of the
partitions with four different utilization parameters,
௨ߙ ൌ ௨ߙ ,1 ൌ ௨ߙ ,2 ൌ 4, and ߙ௨ ൌ 6 are depicted in
Figure 7. The diagrams show that increasing the
parameter ߙ௨ leads to a more even distribution of
utilization among partitions (cores). On the other hand, by
increasing ߙ௨, utilization results for each partition are
converged, which means that the effect of preference
matrices on the cost function decreases.

Figure 6: Systems better than algorithm results compared to total feasible systems

(a) ߙ௨ ൌ 1 (b) ߙ௨ ൌ 2

(c) ߙ௨ ൌ 4 (d) ߙ௨ ൌ 6

Figure 7: Utilization of partitions for different ࢛ࢻ values

6. Conclusions and Future Work

In this paper we have discussed major challenges

regarding migrating a legacy real-time system to multi-
core architectures where it will execute along with other
systems, e.g., how to take advantage of performance
offered by multi-core platforms while guaranteeing
correctness. We have proposed a framework for migrating
legacy real-time systems to multi-core processors, which
includes a heuristic algorithm that extends a bin-packing
algorithm with a cost function based on preference
matrices and task utilization values. Partitioning will
result in a set of partitions containing tasks and each
partition will be mapped on one core. We have developed
an experiment where results of our algorithm are
compared to the results from performing an exhaustive
search. Based on a cost function, the algorithm produces
systems very close to optimal.

In the future we will study and investigate more
techniques and the possibility of extending them to our
framework, including reverse engineering techniques such
as static and dynamic analysis. These techniques will be
used to extract required information from the legacy
system, e.g., the use of shared resources, and timing
attributes.

Another plan that we have for the future is to study
industrial legacy real-time systems and investigate the
challenges and possibility of migrating these systems to
multi-core architectures.

In our approach we assign all tasks that share
resource locks to reuse uniprocessor synchronization
protocols. However in the future we will investigate
existing global synchronization protocols and possibly
develop new protocols.

We have restricted our framework to partitioned
scheduling approach for multi-cores, and we have reused
uniprocessor scheduling. In the future we plan to extend
the migration framework to global scheduling protocols,
e.g., hierarchical scheduling protocols for multi-core
architectures.

Acknowledgments

The authors wish to thank Moris Behnam for

fruitful discussions and comments on the paper.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.

Husbands, K. Keutzer, D. A. Patterson, W L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The Landscape of Parallel Computing Research: A
View from Berkeley. University of California at
Berkeley, Technical Report No. UCB/EECS-2006-
183, December 2006.

[2] T. Baker. A Comparison of Global and Partitioned
EDF Schedulability Test for Multiprocessors.
Technical Report TR-051101, Department of
Computer Science, Florida State University, 2005.

[3] T. Baker. Stack-based Scheduling of Real-time
Processes. J.Real-Time Systems, vol. 3, no. 1, pages
67-99, March, 1991.

[4] S. Baruah, and N. Fisher. The Partitioned
Multiprocessor Scheduling of Sporadic Task
Systems. Proceedings of the 26th IEEE International
Real-Time Systems Symposium (RTSS’05), pages 321
– 329, December 2005.

[5] J. Carpenter, S. Funk, P. Holman, J. Anderson, and S.
Baruah. A Categorization of Real-time
Multiprocessor Scheduling Problems and
Algorithms. In J. Y. Leung, editor, Handbook on
Scheduling Algorithms, Methods, and Models, pages
30.1-30.19. ChapmanHall/CRC, Boca Raton, Florida,
2004.

[6] R. Craig, and P. N. Leroux. Case Study - Making a
Successful Transition to Multi-Core Processors. QNX
Software Systems GmbH & Co. KG, 2006.

[7] R. Gerber, and S. Hong. Slicing Real-Time Programs
for Enhanced Schedulability. ACM Transactions on
Programming Languages and Systems, Vol.19, No.3,
pages 525-555, May 1997.

 [8] P. Leroux, and R. Craig. Migrating Legacy
Applications to Multicore Processors. Military
Embedded Systems http://www.mil-embedded.com
/pdfs/QNX.Sum06.pdf, 2006.

[9] J. Lindhult. Operational Semantics for PLEX A Basis
for Safe Parallelization. Licentiate Thesis, No. 85,
Mälardalen University, May 2008.

[10] Y. Liu, X. Zhang, H. Li, and D. Qian. Allocating
Tasks in Multi-core Processor based Parallel
Systems. Network and Parallel Computing
Workshops, IFIP International Conference, pages
748-753, September 2007.

[11] J. M. López , J. L. Díaz , and D. F. García.
Utilization Bounds for EDF Scheduling on Real-
Time Multiprocessor Systems. Real-Time Systems,
v.28 n.1, pages 39-68, October 2004.

[12] D. de Niz, and R. Rajkumar. Partitioning Bin-
Packing Algorithms for Distributed Real-Time
Systems. International Journal of Embedded
Systems, Vol. 2, No. 3-4, pages 196-208, 2006.

[13] A. Prayati, C. Wong, P. Marchal, F. Catthoor, H. de
Man, N. Cossement, R. Lauwereins, D. Verkest, and
A. Birbas. Task Concurrency Management
Experiment for Power-Efficient Speed-Up of
Embedded MPEG4 IM1 Player. International
Conference on Parallel Processing Workshops
(ICPPW'00), pages 453-460, 2000.

[14] M. Rajagopalan, B. T. Lewis, and T. A. Anderson.
Thread Scheduling for Multi-Core Platforms. In
Proceedings of the 11 th Workshop on Hot Topics in
Operating Systems (HotOS’07), May 2007.

[15] L. Sha, R. Rajkumar, and J. Lehoczky. Priority
Inheritance Protocols: An Approach to Real-time
System Synchronization. IEEE Transactions on
Computers, 39(9), pages 1175-1185, 1990.

[16] C. Szydlowski. Multithreaded Technology &
Multicore Processors. Dr. Dobb’s Journal, May
2005.

