
* This work was partially supported by the Swedish Foundation for Strategic Research (SSF) via the strategic research centre (PROGRESS) at Mälardalen

University.

Efficiently Migrating Real-Time Systems to Multi-Cores*

Farhang Nemati, Moris Behnam and Thomas Nolte

Mälardalen Real-Time Research Centre
Mälardalen University, Box 883, 72123, Sweden

{farhang.nemati, moris.behnam, thomas.nolte}@mdh.se

Abstract

Power consumption and thermal problems limit a
further increase of speed in single-core processors. Multi-
core architectures have therefore received significant
interest. However, a shift to multi-core processors is a big
challenge for developers of embedded real-time systems,
especially considering existing “legacy” systems which
have been developed with uniprocessor assumptions.
These systems have been developed and maintained by
many developers over many years, and cannot easily be
replaced due to the huge development investments they
represent. An important issue while migrating to multi-
cores is how to distribute tasks among cores to increase
performance offered by the multi-core platform. In this
paper we propose a partitioning algorithm to efficiently
distribute legacy system tasks along with newly developed
ones onto different cores. The target of the partitioning is
increasing system performance while ensuring
correctness.

1. Introduction

Due to the problems with power consumption and
related thermal problems, multi-core platforms seem to be
the way towards increasing performance of processors.
Multi-core is today the dominating technology for desktop
computing.

The performance improvements of using multi-core
processors depend on the nature of the applications as
well as the implementation of the software. To take
advantage of the concurrency offered by a multi-core
architecture, appropriate algorithms have to be used to
divide the software into tasks (threads) and distribute
tasks fairly on cores to increase the performance. Real-
time systems can highly benefit from the multi-core
processors, as critical functionality can have dedicated
cores and independent tasks can run concurrently to
improve performance and thereby enable new
functionality. Moreover, since the cores are located on the
same chip and typically have shared memory,
communication between cores is very fast. Since
embedded real-time systems are typically multi threaded,
they are easier to adapt to multi-core than single-threaded,

sequential programs, which need to be parallelized into
multiple threads to benefit from multi-core. If the tasks
are independent, it is simply a matter of deciding on
which core each task should execute. For embedded real-
time systems, a static and manual assignment of cores is
often preferred for predictability reasons. However, many
of today’s existing “legacy” real-time systems are very
large and complex, typically consisting of millions of
lines of code which have been developed and maintained
for many years. Due to the huge development
investments, it is normally not an option to throw them
away and to develop a new system from scratch. However
introducing new functionalities into the legacy systems
may require more powerful processors, therefore, to
benefit from multi-core processors, they need to be
migrated from single-core architectures to multi-core
architectures.

A significant challenge when migrating legacy real-
time systems to multi-core processors is that they have
been developed for single-core processors where the
execution model is actually sequential. This assumption
may introduce complications in a migration to multi-core
[6]. Thus the software may need adjustments where
assumptions of single-core have impact, e.g., non-
preemptive execution may not be sufficient to protect
shared resources.

Migrating legacy systems to multi-core processors is
discussed in [9]. Advantages and disadvantages of
different target architectures of multi-core processors are
compared.

In this paper we present an algorithm for migration
based on a heuristic partitioning which allocates tasks to
the cores. Tasks can be both legacy tasks extracted from
the legacy system as well as newly developed ones. The
algorithm identifies task constraints, e.g., dependencies
between tasks, timing attributes, and resource sharing,
which impact multi-core migration. The algorithm tries to
increase the performance by reducing the overheads (e.g.,
blocking times and cache miss overheads) by assigning
tasks to appropriate partitions. Partitioning is a bin-
packing problem which is known to be a NP-hard problem
in the strong sense; therefore finding an optimal solution
in polynomial time is not realistic in the general case.
Heuristic functions have been considered to find near-
optimal solutions. In this paper we extend a bin-packing
algorithm with task constraints which considers

performance as well as schedulability of partitions
assigned to the cores.

1.1. Related Work

An approach for migration to multi-core is presented

by Lindhult in [10]. The author presents the parallelization
of sequential programs as a way to achieve performance
on multi-core processors. The targeted language is PLEX,
Ericsson’s in-house developed event-driven real-time
programming language used for Ericsson’s telephone
exchange system.

A work related to ours is presented in [15] where a
scheduling framework for multi-core processors is
presented. The framework tries to balance between the
abstraction level of the system and the performance of the
underlying hardware. The framework groups dependant
tasks, which for example share data, to improve the
performance. The paper presents Related Thread ID
(RTID) as a mechanism to help the programmers to
identify groups of tasks. However the framework targets
new development systems and does not mention migration
of existing legacy systems with single-core assumptions.

Liu et al [11] present a heuristic algorithm for
allocating tasks in multi-core based massively parallel
systems. Their algorithm has two rounds; in the first
round processes (groups of threads - partitions in this
paper) are assigned to processing nodes, the second round
allocates tasks in a process to the cores of a processor.

The grey-box modeling approach for designing real-
time embedded systems [14] is of relevance to our work.
In the grey-box task model the focus is on task-level
abstraction and it targets performance of the processors as
well as timing constraints of the system. In this approach
the design problems that are targeted at task-level are (1)
task concurrency extraction from the system
specifications, (2) automatic scheduling algorithm
selection, (3) allocation and assignment of processors, and
(4) resource estimators, high level timing estimators and
interface refinement. However, in our approach, except
specifications of the new tasks, the legacy system is used
as the main source of task concurrency and resource
sharing information.

A study of bin-packing algorithms for designing
distributed real-time systems is presented in [13]. The
method partitions software into modules to be allocated
on hardware nodes. In their approach they use two graphs;
a graph which models software modules and a graph that
represents the hardware architecture. The authors extend
the bin-packing algorithm with heuristics to minimize the
number of bins (processors) needed and the bandwidth
required for the communication between nodes.

Baruah and Fisher have presented a bin-packing
partitioning algorithm (First Fit Decreasing algorithm) in
[4] for a set of sporadic tasks on multiprocessors. The
tasks are indexed in non-decreasing order based on their
relative deadlines and the algorithm assigns the tasks to
the processors in first-fit order. The algorithm assigns
each task ߬௜ to the first processor, ௞ܲ for which both of

following conditions, under the Earliest Deadline First
(EDF) scheduling hold:

 D୧ െ ∑ DBFכ൫τ୨, D୧൯தౠ א Pౡ ൒ C୧
and 1 െ ∑ u୨தౠ א Pౡ ൒ u୧

where C୧, D୧and T୧ specify worst-case execution time
(WCET), deadline and period of task τ୧ respectively, u୧ = C౟T౟, and DBFכሺτ୧, tሻ = ൜0, ݂݅ ݐ ൏ D୧ C୧ ൅ u୧ ൈ ሺt െ D୧ሻ, otherwise

The algorithm, however, assumes that tasks are

independent while in practice tasks share resources and
therefore blocking time overheads must be considered
while schedulability of tasks assigned to the a core is
checked. Our algorithm not only considers resource
sharing when distributing tasks but it tries to reduce
blocking times along with other costs. On the other hand
their algorithm works under the EDF scheduling protocol
while most of legacy real-time systems use fixed priority
scheduling policies. Our proposed algorithm works under
fixed priority scheduling protocols as well as other
policies.

1.2. Multi-Core Platforms

A multi-core processor is a combination of two or
more independent cores on a single chip. They are
connected to a single shared memory via a shared bus.
The cores typically have independent L1 caches and share
an on-chip L2 cache. Figure 1 depicts an example of the
architecture.

There are two approaches for scheduling sporadic and
periodic task systems on multi-core systems [2, 4, 5, 7]
which are inherited from multiprocessor systems; global
and partitioned scheduling.

Under global scheduling, e.g., Global Earliest
Deadline First (G-EDF), tasks are scheduled by a single
scheduler based on their priorities and each task can be
executed on any core. A single global queue is used for
storing jobs. A task as well as a job can be preempted on a
core and resumed on another core (migration of tasks
among cores is permitted).

Under partitioned scheduling tasks are statically
assigned to cores and tasks within each core are scheduled
by uniprocessor scheduling protocols, e.g., Rate
Monotonic (RM) and EDF. Each core is associated with a
separate ready queue for scheduling task jobs.

However there are systems in which some tasks cannot
migrate among cores while other tasks can migrate. For
such systems neither of global or partitioned scheduling
methods can be used. A two-level hybrid scheduling [7]
which is a mix of global and partitioned scheduling
methods is used for those systems.

Partitioned scheduling protocols have been used more
often, as they are more predictable. However, finding an
optimal partitioning of tasks on the cores is known to be

NP-hard. Thus heuristic approaches and sufficient
feasibility tests for bin-packing algorithms have been
studied to find a near-optimal partitioning [2, 5].

While in practice tasks share resources, many of
scheduling protocols for multiprocessors (multi-cores)
assume independent tasks. However, synchronization
which is not less important than scheduling has received
less attention.

Figure1: Multi-core architecture

Most legacy systems use Fixed Priority Scheduling
(FP) protocols. To our knowledge the only
synchronization protocol under fixed priority scheduling,
for multiprocessor platforms is Multiprocessor Priority
Ceiling Protocol (MPCP) which was proposed by
Rajkumar in [16]. Thus the protocol is suitable for legacy
systems when migrating to multi-cores. Our algorithm
assumes that MPCP is used for lock-based
synchronization. Hence, we will discuss this protocol in
more details in Section 3.

The rest of the paper is as follows: we present the task
and platform model in Section 2, describe the MPCP in
Section 3. We present the migration framework and the
partitioning algorithm in Sections 4 and 5 respectively. In
Section 6 we use our algorithm to reduce blocking time
overheads under MPCP.

2. Task and Platform Model

We will assume a task set (tasks extracted from legacy

system along with new tasks) that consists of n sporadic
tasks, ߬௜ሺ ௜ܶ, ,௜ܥ ,௜ߩ ሼܿ௜,௣,௤ሽሻ where ௜ܶ is the minimum inter-
arrival time between two successive jobs of task ߬௜ with
worst-case execution time ܥ௜ and ߩ௜ as its priority. The
tasks share a set of resources, ܴ which are protected using
semaphores. The set of critical sections in which task ߬௜
requests resources in ܴ is denoted by ሼܿ௜,௣,௤ሽ, where ܿ௜,௣,௤
indicates the maximum execution time of the ݌௧௛ critical
section of task ߬௜ in which the task locks any resource ܴ௤ א ܴ. Critical sections of tasks can be sequential or
properly nested. The deadline of each job is equal to ௜ܶ. A
job of task ߬௜, is specified by ܬ௜ .The utilization factor of
task ߬௜ is denoted by ݑ௜ where ݑ௜ ൌ ௜ܥ ௜ܶ⁄ .

We will also assume that the multi-core platform is
composed of m identical, unit-capacity processors (cores).
The task set is partitioned into m partitions ሼ ଵܲ, … , ௠ܲሽ,
and each partition is allocated on one core.

3. The MPCP-multiprocessor priority ceiling
protocol

3.1. Definition

The MPCP was proposed by Rajkumar in [16] for
synchronizing a set of tasks sharing lock-based resources
under partitioned FP scheduling, i.e., RM.

Under MPCP, resources are divided into local and
global resources. Local resources are shared only among
tasks from the same processor and global resources are
shared by tasks assigned to different processors. The local
resources are protected using a uniprocessor
synchronization protocol, i.e., priority ceiling protocol
(PCP) [17]. A task blocked on a global resource suspends
and makes the processor available for the local tasks. A
critical section in which a task performs a request for a
global resource is called global critical sections (gcs).
Similarly a critical section where a task requests for local
resource is local critical sections (lcs)

The blocking time of a task in addition to local
blocking, needs to include remote blocking where a task is
blocked by tasks (with any priority) executing on other
processors (cores). However, the maximum remote
blocking time of a job is bounded and is a function of the
duration of critical sections of other jobs. This is a
consequence of assigning any gcs a ceiling greater than
priority of any other task, hence a gcs can only be blocked
by another gcs and not by any non-critical section. If ߩு is
the highest priority among all tasks, the ceiling of any
global resource ܴ௞ will be ߩு ൅ 1 ൅ max ሼߩ௜|߬௜ ݏݐݏ݁ݑݍ݁ݎ ܴ௞ሽ. The priority of a job
executing within a gcs is the ceiling of the global resource
it requests in the gcs.

Global critical sections cannot be nested in local
critical sections and vice versa. Global resources
potentially lead to high blocking times, thus tasks sharing
the same resources are preferred to be assigned to the
same processor as far as possible. In Section 6, our
proposed algorithm attempts to reduce the blocking times
by assigning tasks to appropriate processors.

To determine the schedulability of each processor
under RM scheduling the following test is performed:
1 ݇׊ ൑ ݅ ൑ ݊, ∑ ௞ܥ ௞ܶ⁄௜௞ୀଵ ൅ ௜ܤ ௜ܶ⁄ ൑ ݅൫2ଵ ௜⁄ െ 1൯ (1)

where ݊ is the number of tasks assigned to the processor,
and ܤ௜ is the maximum blocking time of task ߬௜ which
includes remote blocking factors as well as local blocking
time.

However this condition is sufficient but not necessary.
Thus for schedulability test of tasks the response time
analysis may be used to test if the condition (1) is not true
for some tasks.

3.2. Blocking times of tasks

Before explaining the blocking factors of blocking

time of a job, we have to explain the following
terminology:

• ݊௜ீ : The Number of global critical sections of task ߬௜.

• NL୧,୰: The number of jobs with priority lower than

the priority of ܬ௜ executing on processor ௥ܲ.

• ሼJᇱ୧,୰ሽ: The set of jobs on processor ௥ܲ (other than ܬ௜’s processor) with global critical sections having
higher priority than global critical sections of jobs
that can directly block ܬ௜.

• NH୧,୰,୩: The number of global critical sections of

job ܬ௞ א ሼJᇱ୧,୰ሽ having higher priority than a global
critical section on processor P୰ that can directly
block J୧.

• ሼGR୧,୩}: The set of global resources that will be

locked by both J୧ and J୩.

• NC୧,୩: The number of global critical sections of J୩

in which it request a global resource in ሼGR୧,୩}.

 ௜௟௢௖௔௟: The longest local critical section amongߚ •
jobs with a priority lower than job J୧ executing on
the same processor as J୧ which can block J୧.

௜,௞ܮߚ • ௚௟௢௕௔௟: The longest global critical section of

job ܬ௞ with a priority lower than job J୧ executing on
a different processor than J୧’s processor in which J୩
requests a resource in ሼGR୧,୩}.

௜,௞ܪߚ • ௚௟௢௕௔௟: The longest global critical section of

job ܬ௞ with a priority higher than job J୧ executing
on a different processor than J୧’s processor. In this
global critical section, J୩ requests a resource in ሼGR୧,୩}.

ᇱ௜,௞ߚ • ௚௟௢௕௔௟: The longest global critical section of

job ܬ௞ א ሼJᇱ୧,୰ሽ having higher priority than a global
critical section on processor P୰ that can directly
block J୧.

 ௜,௞௟௚: The longest global critical section of a lowerߚ •

priority job ܬ௞ on the ܬ௜’s host processor.

The maximum blocking time ܤ௜ of task ߬௜ is a
summation of five blocking factors:

௜ܤ ൌ ௜,ଵܤ ൅ ௜,ଶܤ ൅ ௜,ଷܤ ൅ ௜,ସܤ ൅ ௜,ହܤ
where:

௜,ଵܤ .1 ൌ ݊௜ீ ௜௟௢௖௔௟ each time job J୧ is blocked on aߚ
global resource and suspends the local lower
priority jobs may execute and lock local resources
and block J୧ when it resumes.

௜,ଶܤ .2 ൌ ݊௜ீ ௜,௞ܮߚ ௚௟௢௕௔௟ when a job ܬ௜ is blocked on a
global resource which is locked by a lower priority
job executing on another processor.

௜,ଷܤ .3 ൌ∑ NC୧,୩ڿ ௜ܶ ௞ܶ⁄ ௜,௞ܪߚۀ ௚௟௢௕௔௟ఘ೔ஸఘೖ ௔௡ௗ௃ೖ௜௦ ௡௢௧ ௢௡ ௃೔ᇱ௦ ௣௥௢௖௘௦௦௢௥

when higher priority jobs on processors other than ܬ௜’s processor block ܬ௜.

௜,ସܤ .4 ൌ ∑ NH୧,୰,୩ڿ ௜ܶ ௞ܶ⁄ ሼJᇲ౟,౨ሽ ௔௡ௗ௉ೝ ஷ௃೔ᇱ௦ ௣௥௢௖௘௦௦௢௥א௃ೖۀ ᇱ௜,௞ߚ ௚௟௢௕௔௟
when the gcs’s of lower priority jobs on processor P୰ (different from J୧’s processor) are preempted by
higher priority gcs’s of ܬ௞ א ሼJᇱ୧,୰ሽ.

௜,ହܤ .5 ൌ ∑ min ሺ݊௜ீ ൅ 1, ݊௞ீ ሻఘೖஸఘ೔ ௔௡ௗ௃ೖ ௢௡ ௃೔ᇱ௦ ௣௥௢௖௘௦௦௢௥ ௜,௞௟௚ߚ

when ܬ௜ is blocked on global resources and
suspends a local job ܬ௞ can execute and enter a
global section which can preempt ܬ௜ when it
executes in non-gcs sections.

4. Migration Framework

We propose an algorithm that groups tasks into
partitions and allocates each partition to a core. At each
step when the algorithm assigns a task to a partition the
following requirements should be satisfied:

1. Schedulability of the partition is guaranteed.

2. The cost of assigning the task to the partition is

minimized.

Figure 2: Task preferences constraints

We derive a cost function that calculates the cost value
based on a set of task constraints and preferences which
should be extracted from the system as well as those
offered by the system experts (Figure 3). Task constraints
and preferences are defined in next Section.

4.1. Constraints and preferences

The partitioning algorithm uses the cost function to

efficiently distribute tasks among partitions. The cost
function is based on following constraints and
preferences:

1. Resource sharing constraints:

These constraints indicate the critical sections of, and
the resources accessed by each task.

2. Task constraints:

Specify timing attributes, e.g., deadline, worst-case
execution time (WCET). Those constraints together with
resource sharing constraints are used to check the
schedulability of each partition.

3. Task preferences:

A preference category for the task set is represented as
a matrix. Figure 2 shows an example of such constraints.
A cost given to a pair of tasks, ߬௜ and ௝߬ is denoted by ݒ௜௝
and indicates the cost when they are assigned to the same
partition, i.e., if two tasks are completely independent and
can execute in parallel the cost is set to a large value, and
for two tasks that are highly recommended to belong to
the same partition the cost is set to a very small value.
Each matrix, ܯ௞, represents an aspect of preferences (e.g.
communication costs) and has a coefficient ܧ௞ which
represents the importance of the preference category.
Coefficient values depend on the partitioning strategies
(Section 4.2).

Extracting preference matrices is not easy and for
complex systems it may require a lot of engineering skills
and system knowledge. Hence, the extraction complexity
may differ for different matrices. For example Suppose in
a system, tasks share large amounts of data, hence
increasing cache hits is important. The values in the
related matrix could be a function of amount of shared
data between task pairs.

Figure 3: A framework for partitioning

4.2. Partitioning Strategies

Depending on the nature of a system the strategy of

partitioning may differ and result in different partitions. A

strategy indicates how tasks are grouped together and
based on that the coefficient parameters are given to
different preference matrices. For example in a system
that processes large amounts of data it is important that
the tasks that share data heavily are assigned to the same
partition to increase cache hits. On the other hand for a
system in which tasks share small amounts of data or are
independent, it is important that the tasks are assigned to
different partitions to increase parallelism.

The partitioning strategy in Section 6 represents
extracting a matrix from resource sharing constraints
which is used by partitioning algorithm. The partitioning
strategy in Section 6 is to reduce blocking times under
MPCP.

4.3. Cost Function

Considering z task preference matrices, the cost

function for a partition is formulated based on the task
preferences. Let M୪ሺv୧୨ሻ denote the cost of task ߬௜ and ௝߬
being assigned to the same partition in preference matrix ܯ௟ with coefficient value ܧ௟. For any partition ௞ܲ (where
1 ൑ k ൑ m and m is the total number of partitions/cores), ܿݐݏ݋ሺ ௞ܲሻ denotes the total cost of the partition:

ሺݐݏ݋ܿ ௞ܲሻ ൌ ௞ఈݑ ∑ ൭ܧ௟ ∑ ெ೗ሺ௩೔ೕሻଶఛ೔ א ௉ೖ ఛೕ א ௉ೖ ൱௭௟ୀଵ (2)

where, ݑ௞ ൌ ∑ is the utilization ߙ ௉ೖ , and א ௜ఛ೔ݑ
parameter.

The utilization parameter, ߙ, where ߙ ൌ ߙ ݎ݋ 0 ൌ 1,
indicates the importance of task utilizations in the cost
function. By setting the utilization parameter to 0 (ߙ ൌ 0),
the cost function will only depend on the preference
matrices. On the other hand by setting ߙ ൌ 1 the cost
function will also depend on utilization factor of the
partition which will increase evenly distribution of tasks
among partitions. The total cost of the system is the
summation of costs of all partitions.

5. Partitioning Algorithm

Now we present an extension to the First-Fit bin-

packing algorithm for partitioning sporadic task systems,
similar to the algorithm presented in [4]. The major goal
of bin-packing algorithms is minimizing the number of
needed bins (cores). However our aim is to increase
performance while guaranteeing correctness. Thus, we
extend the bin-packing algorithm with task preferences
(cost function) as well as resource sharing constraints.

The algorithm assumes that tasks are ordered non-
increasingly based on their weights. The weight of a task ߬௜, denoted by ݓ௜ indicates the importance of the task
according to the partitioning strategy. For example in the
partitioning strategy for reducing inter-core
communication, the weight of a task may be the total
number of messages it sends or receives during its
execution time. Figure 4 depicts the pseudo-code for the
partitioning algorithm.

Figure 4: Partitioning algorithm

The schedulability test (1) (Section 3) is used for

schedulability analysis of any partition, ௞ܲ. At each step
that the algorithm assigns a task to a partition, ௞ܲ, the
schedulability test should be performed for all other
partitions as well, since the remote blocking term of any
task in any partition may be affected.

The algorithm is not limited to FPS and MPCP, and
the schedulability test can be extended to other scheduling
and resource sharing protocols, e.g., for Partitioned
Earliest Deadline First (P-EDF) using the Multiprocessor
Stack-based Resource sharing Protocol (MSRP) [8], the
following schedulability test from [3] may be used:

 ∑ ௜ܥ ௜ܶ⁄ ൅ max࣎೔ ሺܤ௜ ௜ܶ⁄ ሻ ൑ 1 (3)

6. Reduce blocking times under MPCP

6.1. Partitioning strategy

In this section we present a partitioning strategy that

targets reducing the blocking times under MPCP. We will
use our algorithm to assign tasks to partitions according to
the partitioning strategy.

Considering the blocking factors of tasks under
MPCP, tasks with more and longer global critical sections
lead to more blocking times. This is also shown by
experiments presented in [8]. The goal is to (i) decrease
the global critical sections by assigning the tasks sharing
resources to the same partition as far as possible, (ii)
decrease the ratio and time of holding global resources by
assigning the tasks that request the resources more often
and hold them longer to the same partition as long as
possible.

The algorithm (Section 5) assumes that the tasks are
ordered according to their weights. Since the partitioning
strategy is to reduce blocking times, the tasks that may
cause higher blocking times should get higher weights.

Thus the weight of task ߬௜ should be a function of the
number of its critical sections as well as the length of its
largest critical sections:

௜ݓ ൌ ∑ ሺ݊׊ ௖௦೛൛ܿ௜,௣,௤ൟ ൈ ௖௦೛൛ܿ௜,௣,௤ൟ|ோ|௤ୀଵ ׊݉ ሻ/ ௜ܶ (4)

where ݊ሼܿ௜,௣,௤ሽ is the number of critical sections in which ߬௜ requests resource ܴ௤, ݉ሼܿ௜,௣,௤ሽ denotes the largest
critical section of ߬௜ requesting ܴ௤, and |ܴ| is the total
number of resources in ܴ.

The tasks will be ordered based on their weights and
each time the algorithm attempts to assign a task to a
partition it will pick the first task (with the highest
weight).

Now we will derive a preference matrix which will
contain the pair costs (ݒ௜௝) for each task pair ߬௜ and ௝߬
(Section 4.3). First, for any resource ܴ௤ we derive an
individual matrix in which the cost of pair ߬௜ and ௝߬
denoted as ݒ௜௝,௤ will be a function of the number of critical
sections as well as the length of largest critical sections of
tasks ߬௜ and ௝߬:

௜௝,௤ݒ ൌ െ݊൛ܿ௜,௣,௤ൟ ൈ ݉൛ܿ௜,௣,௤ൟ ൈ ݊൛ ௝ܿ,௞,௤ൟ ൈ ݉൛ ௝ܿ,௞,௤ൟ ൅ 1 (5)

As the number and the maximum length of critical

sections of task pairs increases the cost of assigning them
to the same partition should decrease. This is why that
first term of the cost in (5) has a negative form. If two
tasks do not share resource ܴ௤ the first term of ݒ௜௝,௤ will be
0, hence ݒ௜௝,௤ ൌ 1 which means if they are assigned to the
same partition the cost of the partition should be
increased. This is logical because regarding ܴ௤ they are
independent and are not recommended to be assigned to
the same partition.

Table 1: The task set to be partitioned
Task Period ܥ௜ in non-

critical
sections

݊ሼܿ௜,௣,ଵሽ ݉ሼܿ௜,௣,ଵሽ ݊ሼܿ௜,௣,ଶሽ ݉ሼܿ௜,௣,ଶሽ ݊ሼܿ௜,௣,ଷሽ ݉ሼܿ௜,௣,ଷሽ ݊ሼܿ௜,௣,ସሽ ݉ሼܿ௜,௣,ସሽ ݊ሼܿ௜,௣,ହሽ ݉ ሼܿ௜,௣,ହሽ
߬ଵ 39 4 1 1 0 0 1 1 0 0 0 0 ߬ଶ 41 5 0 0 1 1 1 1 0 0 0 0 ߬ଷ 42 4 0 0 0 0 0 0 1 1 0 0 ߬ସ 48 3 0 0 1 2 0 0 1 1 0 0 ߬ହ 52 5 0 0 0 0 1 2 0 0 1 1 ߬଺ 57 5 0 0 0 0 0 0 1 1 1 1 ߬଻ 58 6 1 1 0 0 0 0 2 1 0 0 ଼߬ 63 8 0 0 0 0 0 0 0 0 0 0

The individual matrices for each resource are then
used to derive the preference matrix in which ݒ௜௝ (the cost
of pair ߬௜ and ௝߬ if they are assigned to the same partition)
will be as follows:

௜௝ݒ ൌ ∑ (6) ܴאݍ௜௝,௤ܴݒ

The partitioning algorithm will use the obtained

preference matrix for assigning the tasks to partitions.

6.2. Example

In this section we present an example in which our

algorithm will attempt to reduce blocking times while
partitioning a task set onto different cores of a multi-core
processor. The partitioning is performed based on the
partitioning strategy in Section 6.1.

In this example we set ߙ ൌ 0 in the cost function so
that the cost only depends on blocking time costs. We
attempt to assign a task set consisting of eight tasks (Table
1) into four partitions which will be assigned onto a
processor with four cores. There are five resources, ሼܴଵ, ܴଶ, ܴଷ, ܴସ, ܴହሽ which are shared among tasks and are
protected by semaphores. The tasks in Table 1 are indexed
based on their periods (priority). For each task ߬௜, the table
contains the period, WCET of non-critical sections, the
number of critical sections in which the task request ܴ௤
(݊ሼܿ௜,௣,௤ሽ) and WCET of the largest critical section for
resource ܴ௤ (݉ሼܿ௜,௣,௤ሽ).

Table 2: The task weights

Task Weight ߬ସ 0,063 ߬ହ 0,058 ߬ଵ 0,053 ߬଻ 0,052 ߬ଶ 0,049 ߬଺ 0,035 ߬ଷ 0,024 ଼߬ 0

First, the weights of tasks are calculated based on
formula (4). Table 2 shows the ordered list of tasks based

on the calculated weights. For each resource a matrix was
created which contains the costs for each task pairs
calculated by formula (5). and the final preference matrix
was obtained based on the resource matrices. Table 3
shows the preference matrix which includes the costs for
each pair of tasks. Since we only have one preference
matrix we set the coefficient of the matrix, ܧଵ, to 1
ଵܧ) ൌ 1).

Table 3: The preference matrix

While partitioning the task set using the bin-packing

algorithm without considering the blocking costs does not
result in a schedulable system, our algorithm, based on the
preference matrix, successfully partitions the task set onto
four partitions. Task sets ሼ߬ସ, ߬ଶሽ, ሼ߬ହ, ߬ଷሽ, ሼ߬ଵ, ଼߬ሽ, and ሼ߬଻, ߬଺ሽ are assigned to partitions ଵܲ, ଶܲ, ଷܲ, and ସܲ
respectively. Table 4 shows the five blocking factors and
total blocking time for each task in the obtained system.

Table 4: The blocking times of tasks

Task ܤ௜,ଵ ܤ௜,ଶ ܤ௜,ଷ ܤ௜,ସ ܤ௜,ହ ࢏࡮ ߬ଵ 0 4 0 0 0 4 ߬ଶ 2 2 2 0 1 7 ߬ଷ 0 1 0 4 4 9 ߬ସ 0 1 2 4 0 7 ߬ହ 0 2 4 1 0 7 ߬଺ 0 0 6 10 3 19 ߬଻ 0 0 6 6 0 12 ଼߬ 0 0 0 0 0 0

7. Summary and Future Work

In this paper we have mentioned the major challenges

(targeting performance and correctness) of migrating a
legacy real-time system to multi-core architectures where

 ߬ଵ ߬ଶ ߬ଷ ߬ସ ߬ହ ߬଺ ߬଻ ଼߬߬ଵ - 4 5 5 3 5 4 5 ߬ଶ 4 - 5 3 3 5 5 5 ߬ଷ 5 5 - 4 5 4 3 5 ߬ସ 5 3 4 - 5 4 3 5 ߬ହ 3 3 5 5 - 4 5 5 ߬଺ 5 5 4 4 4 - 3 5 ߬଻ 4 5 3 3 5 3 - 5 ଼߬ 5 5 5 5 5 5 5 -

it will execute along with other systems, e.g., how to take
advantage of performance offered by multi-core platforms
while guaranteeing correctness. We have proposed a
framework for migrating legacy real-time systems to
multi-core processors, which includes a heuristic
algorithm that extends a bin-packing algorithm with a cost
function based on preference matrices. Each obtained
partition will be mapped on one core.

Since most legacy real-time systems use fixed priority
scheduling protocols, we have developed our framework
based on MPCP, the only existing synchronization
protocol for multiprocessors (multi-cores) which works
under fixed priority scheduling. However, this protocol
introduces large amounts of blocking time overheads
especially when the global resources are relatively long
and the access ratio to them is high. As an example we
have presented a partitioning strategy and we have
obtained preference matrices based on critical sections.
The cost function is calculated based on the obtained
preference matrix and finally, the algorithm uses the cost
function to reduce blocking times.

Our algorithm depends on attributes of tasks, and for
legacy systems some information about tasks should be
extracted from the existing system. In the future we will
study and investigate techniques including reverse
engineering methods such as static and dynamic analysis.
We will use these methods to extract required information
from the legacy system, e.g., information about shared
resources, and timing attributes.

A future work will be evaluation of our framework by
means of simulation and applying it to a real system. We
also plan to study industrial legacy real-time systems and
investigate the challenges and possibility of migrating
these systems to multi-core architectures. Our future work
also includes investigating global and hierarchical
scheduling protocols and appropriate synchronization
protocols.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.

Husbands, K. Keutzer, D. A. Patterson, W L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The Landscape of Parallel Computing Research: A
View from Berkeley. University of California at
Berkeley, Technical Report No. UCB/EECS-2006-
183, December 2006.

[2] T. Baker. A Comparison of Global and Partitioned
EDF Schedulability Test for Multiprocessors.
Technical Report TR-051101, Department of
Computer Science, Florida State University, 2005.

[3] T. Baker. Stack-based Scheduling of Real-time
Processes. J.Real-Time Systems, vol. 3, no. 1, pages
67-99, March, 1991.

[4] S. Baruah, and N. Fisher. The Partitioned
Multiprocessor Scheduling of Sporadic Task
Systems. Proceedings of the 26th IEEE International
Real-Time Systems Symposium (RTSS’05), pages 321
– 329, December 2005.

[5] J. Carpenter, S. Funk, P. Holman, J. Anderson, and S.
Baruah. A Categorization of Real-time
Multiprocessor Scheduling Problems and
Algorithms. In J. Y. Leung, editor, Handbook on
Scheduling Algorithms, Methods, and Models, pages
30.1-30.19. ChapmanHall/CRC, Boca Raton, Florida,
2004.

[6] R. Craig, and P. N. Leroux. Case Study - Making a
Successful Transition to Multi-Core Processors. QNX
Software Systems GmbH & Co. KG, 2006.

[7] U. Devi. Soft Real-Time Scheduling on Multiprocessors.
PhD thesis, October 2006, http://www.cs.unc.edu/
˜anderson/diss/devidiss.pdf.

[8] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and
P. Marceca. A comparison of MPCP and MSRP when
sharing resources in the Janus Multiple Processor on a chip
platform. In Proceedings of the 9th IEEE Real-Time And
Embedded Technology Application Symposium., pages
189-198, May 2003.

[9] P. Leroux, and R. Craig. Migrating Legacy
Applications to Multicore Processors. Military
Embedded Systems http://www.mil-embedded.com
/pdfs/QNX.Sum06.pdf, 2006.

[10] J. Lindhult. Operational Semantics for PLEX A Basis
for Safe Parallelization. Licentiate Thesis, No. 85,
Mälardalen University, May 2008.

[11] Y. Liu, X. Zhang, H. Li, and D. Qian. Allocating
Tasks in Multi-core Processor based Parallel
Systems. Network and Parallel Computing
Workshops, IFIP International Conference, pages
748-753, September 2007.

[12] J. M. López , J. L. Díaz , and D. F. García.
Utilization Bounds for EDF Scheduling on Real-
Time Multiprocessor Systems. Real-Time Systems,
v.28 n.1, pages 39-68, October 2004.

[13] D. de Niz, and R. Rajkumar. Partitioning Bin-
Packing Algorithms for Distributed Real-Time
Systems. International Journal of Embedded
Systems, Vol. 2, No. 3-4, pages 196-208, 2006.

[14] A. Prayati, C. Wong, P. Marchal, F. Catthoor, H. de
Man, N. Cossement, R. Lauwereins, D. Verkest, and
A. Birbas. Task Concurrency Management
Experiment for Power-Efficient Speed-Up of
Embedded MPEG4 IM1 Player. International
Conference on Parallel Processing Workshops
(ICPPW'00), pages 453-460, 2000.

[15] M. Rajagopalan, B. T. Lewis, and T. A. Anderson.
Thread Scheduling for Multi-Core Platforms. In
Proceedings of the 11 th Workshop on Hot Topics in
Operating Systems (HotOS’07), May 2007.

[16] R. Rajkumar. Synchronization in multiple processor
systems. In Synchronization in Real-Time Systems: A
Priority Inheritance Approach. Kluwer Academic
Publishers, 1991.

[17] L. Sha, R. Rajkumar, and J. Lehoczky. Priority
Inheritance Protocols: An Approach to Real-time
System Synchronization. IEEE Transactions on
Computers, 39(9), pages 1175-1185, 1990.

