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Abstract 
 

Power consumption and thermal problems limit a 
further increase of speed in single-core processors. Multi-
core architectures have therefore received significant 
interest. However, a shift to multi-core processors is a big 
challenge for developers of embedded real-time systems, 
especially considering existing “legacy” systems which 
have been developed with uniprocessor assumptions. 
These systems have been developed and maintained by 
many developers over many years, and cannot easily be 
replaced due to the huge development investments they 
represent. An important issue while migrating to multi-
cores is how to distribute tasks among cores to increase 
performance offered by the multi-core platform. In this 
paper we propose a partitioning algorithm to efficiently 
distribute legacy system tasks along with newly developed 
ones onto different cores. The target of the partitioning is 
increasing system performance while ensuring 
correctness. 
 
 
1. Introduction 
 

Due to the problems with power consumption and 
related thermal problems, multi-core platforms seem to be 
the way towards increasing performance of processors. 
Multi-core is today the dominating technology for desktop 
computing. 

The performance improvements of using multi-core 
processors depend on the nature of the applications as 
well as the implementation of the software. To take 
advantage of the concurrency offered by a multi-core 
architecture, appropriate algorithms have to be used to 
divide the software into tasks (threads) and distribute 
tasks fairly on cores to increase the performance. Real-
time systems can highly benefit from the multi-core 
processors, as critical functionality can have dedicated 
cores and independent tasks can run concurrently to 
improve performance and thereby enable new 
functionality. Moreover, since the cores are located on the 
same chip and typically have shared memory, 
communication between cores is very fast. Since 
embedded real-time systems are typically multi threaded, 
they are easier to adapt to multi-core than single-threaded, 

sequential programs, which need to be parallelized into 
multiple threads to benefit from multi-core. If the tasks 
are independent, it is simply a matter of deciding on 
which core each task should execute. For embedded real-
time systems, a static and manual assignment of cores is 
often preferred for predictability reasons. However, many 
of today’s existing “legacy” real-time systems are very 
large and complex, typically consisting of millions of 
lines of code which have been developed and maintained 
for many years. Due to the huge development 
investments, it is normally not an option to throw them 
away and to develop a new system from scratch. However 
introducing new functionalities into the legacy systems 
may require more powerful processors, therefore, to 
benefit from multi-core processors, they need to be 
migrated from single-core architectures to multi-core 
architectures.  

A significant challenge when migrating legacy real-
time systems to multi-core processors is that they have 
been developed for single-core processors where the 
execution model is actually sequential. This assumption 
may introduce complications in a migration to multi-core 
[6]. Thus the software may need adjustments where 
assumptions of single-core have impact, e.g., non-
preemptive execution may not be sufficient to protect 
shared resources.  

Migrating legacy systems to multi-core processors is 
discussed in [9]. Advantages and disadvantages of 
different target architectures of multi-core processors are 
compared. 

In this paper we present an algorithm for migration 
based on a heuristic partitioning which allocates tasks to 
the cores. Tasks can be both legacy tasks extracted from 
the legacy system as well as newly developed ones. The 
algorithm identifies task constraints, e.g., dependencies 
between tasks, timing attributes, and resource sharing, 
which impact multi-core migration. The algorithm tries to 
increase the performance by reducing the overheads (e.g., 
blocking times and cache miss overheads) by assigning 
tasks to appropriate partitions. Partitioning is a bin-
packing problem which is known to be a NP-hard problem 
in the strong sense; therefore finding an optimal solution 
in polynomial time is not realistic in the general case. 
Heuristic functions have been considered to find near-
optimal solutions. In this paper we extend a bin-packing 
algorithm with task constraints which considers 



 

performance as well as schedulability of partitions 
assigned to the cores.    

 
1.1. Related Work  

 
An approach for migration to multi-core is presented 

by Lindhult in [10]. The author presents the parallelization 
of sequential programs as a way to achieve performance 
on multi-core processors. The targeted language is PLEX, 
Ericsson’s in-house developed event-driven real-time 
programming language used for Ericsson’s telephone 
exchange system.  

A work related to ours is presented in [15] where a 
scheduling framework for multi-core processors is 
presented. The framework tries to balance between the 
abstraction level of the system and the performance of the 
underlying hardware. The framework groups dependant 
tasks, which for example share data, to improve the 
performance. The paper presents Related Thread ID 
(RTID) as a mechanism to help the programmers to 
identify groups of tasks. However the framework targets 
new development systems and does not mention migration 
of existing legacy systems with single-core assumptions.  

Liu et al [11] present a heuristic algorithm for 
allocating tasks in multi-core based massively parallel 
systems. Their algorithm has two rounds; in the first 
round processes (groups of threads - partitions in this 
paper) are assigned to processing nodes, the second round 
allocates tasks in a process to the cores of a processor. 

The grey-box modeling approach for designing real-
time embedded systems [14] is of relevance to our work. 
In the grey-box task model the focus is on task-level 
abstraction and it targets performance of the processors as 
well as timing constraints of the system. In this approach 
the design problems that are targeted at task-level are (1) 
task concurrency extraction from the system 
specifications, (2) automatic scheduling algorithm 
selection, (3) allocation and assignment of processors, and 
(4) resource estimators, high level timing estimators and 
interface refinement. However, in our approach, except 
specifications of the new tasks, the legacy system is used 
as the main source of task concurrency and resource 
sharing information.  

A study of bin-packing algorithms for designing 
distributed real-time systems is presented in [13]. The 
method partitions software into modules to be allocated 
on hardware nodes. In their approach they use two graphs; 
a graph which models software modules and a graph that 
represents the hardware architecture. The authors extend 
the bin-packing algorithm with heuristics to minimize the 
number of bins (processors) needed and the bandwidth 
required for the communication between nodes. 

Baruah and Fisher have presented a bin-packing 
partitioning algorithm (First Fit Decreasing algorithm) in 
[4] for a set of sporadic tasks on multiprocessors. The 
tasks are indexed in non-decreasing order based on their 
relative deadlines and the algorithm assigns the tasks to 
the processors in first-fit order. The algorithm assigns 
each task ߬௜ to the first processor, ௞ܲ for which both of 

following conditions, under the Earliest Deadline First 
(EDF) scheduling hold:     

 D୧ െ ∑ DBFכ൫τ୨, D୧൯தౠ א Pౡ  ൒  C୧   
and 1 െ ∑ u୨தౠ א Pౡ   ൒  u୧ 

 
where C୧, D୧and T୧ specify worst-case execution time 
(WCET), deadline and period of task τ୧ respectively,  u୧ = C౟T౟, and DBFכሺτ୧, tሻ = ൜0,                                      ݂݅ ݐ ൏  D୧ C୧  ൅ u୧  ൈ ሺt െ D୧ሻ,   otherwise 

 
The algorithm, however, assumes that tasks are 

independent while in practice tasks share resources and 
therefore blocking time overheads must be considered 
while schedulability of tasks assigned to the a core is 
checked. Our algorithm not only considers resource 
sharing when distributing tasks but it tries to reduce 
blocking times along with other costs.  On the other hand 
their algorithm works under the EDF scheduling protocol 
while most of legacy real-time systems use fixed priority 
scheduling policies. Our proposed algorithm works under 
fixed priority scheduling protocols as well as other 
policies.    
 
1.2. Multi-Core Platforms 
 

A multi-core processor is a combination of two or 
more independent cores on a single chip. They are 
connected to a single shared memory via a shared bus. 
The cores typically have independent L1 caches and share 
an on-chip L2 cache.  Figure 1 depicts an example of the 
architecture. 

There are two approaches for scheduling sporadic and 
periodic task systems on multi-core systems [2, 4, 5, 7] 
which are inherited from multiprocessor systems; global 
and partitioned scheduling.  

Under global scheduling, e.g., Global Earliest 
Deadline First (G-EDF), tasks are scheduled by a single 
scheduler based on their priorities and each task can be 
executed on any core. A single global queue is used for 
storing jobs. A task as well as a job can be preempted on a 
core and resumed on another core (migration of tasks 
among cores is permitted).  

Under partitioned scheduling tasks are statically 
assigned to cores and tasks within each core are scheduled 
by uniprocessor scheduling protocols, e.g., Rate 
Monotonic (RM) and EDF. Each core is associated with a 
separate ready queue for scheduling task jobs.  

However there are systems in which some tasks cannot 
migrate among cores while other tasks can migrate. For 
such systems neither of global or partitioned scheduling 
methods can be used. A two-level hybrid scheduling [7] 
which is a mix of global and partitioned scheduling 
methods is used for those systems.   

Partitioned scheduling protocols have been used more 
often, as they are more predictable. However, finding an 
optimal partitioning of tasks on the cores is known to be 



 

NP-hard. Thus heuristic approaches and sufficient 
feasibility tests for bin-packing algorithms have been 
studied to find a near-optimal partitioning [2, 5].      

While in practice tasks share resources, many of 
scheduling protocols for multiprocessors (multi-cores) 
assume independent tasks. However, synchronization 
which is not less important than scheduling has received 
less attention.  

 

 
 
Figure1: Multi-core architecture 
 

Most legacy systems use Fixed Priority Scheduling 
(FP) protocols. To our knowledge the only 
synchronization protocol under fixed priority scheduling, 
for multiprocessor platforms is Multiprocessor Priority 
Ceiling Protocol (MPCP) which was proposed by 
Rajkumar in [16]. Thus the protocol is suitable for legacy 
systems when migrating to multi-cores. Our algorithm 
assumes that MPCP is used for lock-based 
synchronization. Hence, we will discuss this protocol in 
more details in Section 3.  

The rest of the paper is as follows: we present the task 
and platform model in Section 2, describe the MPCP in 
Section 3. We present the migration framework and the 
partitioning algorithm in Sections 4 and 5 respectively. In 
Section 6 we use our algorithm to reduce blocking time 
overheads under MPCP.  
 
2. Task and Platform Model  

 
We will assume a task set (tasks extracted from legacy 

system along with new tasks) that consists of n sporadic 
tasks, ߬௜ሺ ௜ܶ, ,௜ܥ ,௜ߩ ሼܿ௜,௣,௤ሽሻ where ௜ܶ is the minimum inter-
arrival time between two successive jobs of task ߬௜ with 
worst-case execution time ܥ௜ and ߩ௜ as its priority. The 
tasks share a set of resources, ܴ which are protected using 
semaphores. The set of critical sections in which task ߬௜ 
requests resources in ܴ is denoted by ሼܿ௜,௣,௤ሽ, where ܿ௜,௣,௤ 
indicates the maximum execution time of the ݌௧௛ critical 
section of task ߬௜ in which the task locks any resource ܴ௤ א ܴ. Critical sections of tasks can be sequential or 
properly nested. The deadline of each job is equal to ௜ܶ. A 
job of task ߬௜, is specified by ܬ௜ .The utilization factor of 
task ߬௜ is denoted by ݑ௜ where ݑ௜ ൌ ௜ܥ ௜ܶ⁄ . 

We will also assume that the multi-core platform is 
composed of m identical, unit-capacity processors (cores). 
The task set is partitioned into m partitions ሼ ଵܲ, … , ௠ܲሽ, 
and each partition is allocated on one core.   
 

3. The MPCP-multiprocessor priority ceiling 
protocol 
 
3.1. Definition 
 

The MPCP was proposed by Rajkumar in [16] for 
synchronizing a set of tasks sharing lock-based resources 
under partitioned FP scheduling, i.e., RM.    

Under MPCP, resources are divided into local and 
global resources. Local resources are shared only among 
tasks from the same processor and global resources are 
shared by tasks assigned to different processors. The local 
resources are protected using a uniprocessor 
synchronization protocol, i.e., priority ceiling protocol 
(PCP) [17]. A task blocked on a global resource suspends 
and makes the processor available for the local tasks. A 
critical section in which a task performs a request for a 
global resource is called global critical sections (gcs). 
Similarly a critical section where a task requests for local 
resource is local critical sections (lcs)  

The blocking time of a task in addition to local 
blocking, needs to include remote blocking where a task is 
blocked by tasks (with any priority) executing on other 
processors (cores). However, the maximum remote 
blocking time of a job is bounded and is a function of the 
duration of critical sections of other jobs. This is a 
consequence of assigning any gcs a ceiling greater than 
priority of any other task, hence a gcs can only be blocked 
by another gcs and not by any non-critical section. If ߩு is 
the highest priority among all tasks, the ceiling of any 
global resource ܴ௞ will be ߩு ൅ 1 ൅ max ሼߩ௜|߬௜ ݏݐݏ݁ݑݍ݁ݎ ܴ௞ሽ. The priority of a job 
executing within a gcs is the ceiling of the global resource 
it requests in the gcs.  

Global critical sections cannot be nested in local 
critical sections and vice versa. Global resources 
potentially lead to high blocking times, thus tasks sharing 
the same resources are preferred to be assigned to the 
same processor as far as possible. In Section 6, our 
proposed algorithm attempts to reduce the blocking times 
by assigning tasks to appropriate processors.  

To determine the schedulability of each processor 
under RM scheduling the following test is performed: 
1 ݇׊  ൑ ݅ ൑ ݊, ∑ ௞ܥ ௞ܶ⁄௜௞ୀଵ ൅ ௜ܤ ௜ܶ⁄ ൑ ݅൫2ଵ ௜⁄ െ 1൯    (1) 
 
where ݊ is the number of tasks assigned to the processor, 
and ܤ௜ is the maximum blocking time of task ߬௜ which 
includes remote blocking factors as well as local blocking 
time. 

However this condition is sufficient but not necessary. 
Thus for schedulability test of tasks the response time 
analysis may be used to test if the condition (1) is not true 
for some tasks.  
  
3.2. Blocking times of tasks 

 
Before explaining the blocking factors of blocking 

time of a job, we have to explain the following 
terminology: 



 

 
• ݊௜ீ : The Number of global critical sections of task ߬௜. 

 
• NL୧,୰: The number of jobs with priority lower than 

the priority of ܬ௜ executing on processor ௥ܲ. 
 

• ሼJᇱ୧,୰ሽ: The set of jobs on processor ௥ܲ (other than ܬ௜’s processor) with global critical sections having 
higher priority than global critical sections of jobs 
that can directly block ܬ௜. 

 
• NH୧,୰,୩: The number of global critical sections of 

job ܬ௞ א ሼJᇱ୧,୰ሽ having higher priority than a global 
critical section on processor P୰ that can directly 
block J୧.  

 
• ሼGR୧,୩}: The set of global resources that will be 

locked by both J୧ and J୩. 
 
• NC୧,୩: The number of global critical sections of J୩ 

in which it request a global resource in ሼGR୧,୩}. 
 

 ௜௟௢௖௔௟: The longest local critical section amongߚ •
jobs with a priority lower than job J୧ executing on 
the same processor as J୧ which can block J୧. 

 
௜,௞ܮߚ • ௚௟௢௕௔௟: The longest global critical section of 

job ܬ௞ with a priority lower than job J୧ executing on 
a different processor than J୧’s processor in which J୩ 
requests a resource in ሼGR୧,୩}. 

 
௜,௞ܪߚ • ௚௟௢௕௔௟: The longest global critical section of 

job ܬ௞ with a priority higher than job J୧ executing 
on a different processor than J୧’s processor. In this 
global critical section, J୩ requests a resource in ሼGR୧,୩}. 

 
ᇱ௜,௞ߚ • ௚௟௢௕௔௟: The longest global critical section of 

job ܬ௞ א ሼJᇱ୧,୰ሽ having higher priority than a global 
critical section on processor P୰ that can directly 
block J୧.  

 
 ௜,௞௟௚: The longest global critical section of a lowerߚ •

priority job ܬ௞ on the ܬ௜’s host processor.  
 

The maximum blocking time ܤ௜ of task ߬௜ is a 
summation of five blocking factors: 

௜ܤ  ൌ ௜,ଵܤ ൅ ௜,ଶܤ ൅ ௜,ଷܤ ൅ ௜,ସܤ ൅  ௜,ହܤ
where:  

௜,ଵܤ .1 ൌ ݊௜ீ  ௜௟௢௖௔௟ each time job J୧ is blocked on aߚ
global resource and suspends the local lower 
priority jobs may execute and lock local resources 
and block J୧ when it resumes. 
 

௜,ଶܤ .2 ൌ ݊௜ீ ௜,௞ܮߚ ௚௟௢௕௔௟ when a job ܬ௜ is blocked on a 
global resource which is locked by a lower priority 
job executing on another processor. 

 
௜,ଷܤ .3 ൌ∑ NC୧,୩ڿ ௜ܶ ௞ܶ⁄ ௜,௞ܪߚۀ ௚௟௢௕௔௟ఘ೔ஸఘೖ ௔௡ௗ௃ೖ௜௦ ௡௢௧ ௢௡ ௃೔ᇱ௦ ௣௥௢௖௘௦௦௢௥  

when higher priority jobs on processors other than ܬ௜’s processor block ܬ௜. 
 

௜,ସܤ .4 ൌ ∑ NH୧,୰,୩ڿ ௜ܶ ௞ܶ⁄ ሼJᇲ౟,౨ሽ ௔௡ௗ௉ೝ ஷ௃೔ᇱ௦ ௣௥௢௖௘௦௦௢௥א௃ೖۀ ᇱ௜,௞ߚ ௚௟௢௕௔௟ 
when the gcs’s of lower priority jobs on processor P୰ (different from J୧’s processor) are preempted by 
higher priority gcs’s of ܬ௞ א ሼJᇱ୧,୰ሽ. 

 
௜,ହܤ .5 ൌ ∑ min ሺ݊௜ீ ൅ 1, ݊௞ீ ሻఘೖஸఘ೔ ௔௡ௗ௃ೖ ௢௡ ௃೔ᇱ௦ ௣௥௢௖௘௦௦௢௥  ௜,௞௟௚ߚ

when ܬ௜ is blocked on global resources and 
suspends a local job ܬ௞ can execute and enter a 
global section which can preempt ܬ௜ when it 
executes in non-gcs sections. 
 

4. Migration Framework 
 

We propose an algorithm that groups tasks into 
partitions and allocates each partition to a core. At each 
step when the algorithm assigns a task to a partition the 
following requirements should be satisfied: 

 
1. Schedulability of the partition is guaranteed. 

 
2. The cost of assigning the task to the partition is 

minimized.  
 

      
 

Figure 2: Task preferences constraints  
 

We derive a cost function that calculates the cost value 
based on a set of task constraints and preferences which 
should be extracted from the system as well as those 
offered by the system experts (Figure 3). Task constraints 
and preferences are defined in next Section. 

 
4.1. Constraints and preferences 

 
The partitioning algorithm uses the cost function to 

efficiently distribute tasks among partitions. The cost 
function is based on following constraints and 
preferences: 



 

 
1. Resource sharing constraints:  

These constraints indicate the critical sections of, and 
the resources accessed by each task.  

 
2. Task constraints:  

Specify timing attributes, e.g., deadline, worst-case 
execution time (WCET). Those constraints together with 
resource sharing constraints are used to check the 
schedulability of each partition. 

 
3. Task preferences:  

A preference category for the task set is represented as 
a matrix. Figure 2 shows an example of such constraints. 
A cost given to a pair of tasks, ߬௜ and ௝߬ is denoted by  ݒ௜௝  
and indicates the cost when they are assigned to the same 
partition, i.e., if two tasks are completely independent and 
can execute in parallel the cost is set to a large value, and 
for two tasks that are highly recommended to belong to 
the same partition the cost is set to a very small value. 
Each matrix, ܯ௞, represents an aspect of preferences (e.g. 
communication costs) and has a coefficient ܧ௞ which 
represents the importance of the preference category. 
Coefficient values depend on the partitioning strategies 
(Section 4.2).   

Extracting preference matrices is not easy and for 
complex systems it may require a lot of engineering skills 
and system knowledge. Hence, the extraction complexity 
may differ for different matrices. For example Suppose in 
a system, tasks share large amounts of data, hence 
increasing cache hits is important. The values in the 
related matrix could be a function of amount of shared 
data between task pairs.  

 

 
 

Figure 3: A framework for partitioning 
 
4.2. Partitioning Strategies 

 
Depending on the nature of a system the strategy of 

partitioning may differ and result in different partitions. A 

strategy indicates how tasks are grouped together and 
based on that the coefficient parameters are given to 
different preference matrices. For example in a system 
that processes large amounts of data it is important that 
the tasks that share data heavily are assigned to the same 
partition to increase cache hits. On the other hand for a 
system in which tasks share small amounts of data or are 
independent, it is important that the tasks are assigned to 
different partitions to increase parallelism.      

The partitioning strategy in Section 6 represents 
extracting a matrix from resource sharing constraints 
which is used by partitioning algorithm. The partitioning 
strategy in Section 6 is to reduce blocking times under 
MPCP. 
 
4.3. Cost Function 

 
Considering z task preference matrices, the cost 

function for a partition is formulated based on the task 
preferences. Let  M୪ሺv୧୨ሻ denote the cost of task ߬௜ and ௝߬ 
being assigned to the same partition in preference matrix ܯ௟ with coefficient value ܧ௟. For any partition ௞ܲ (where 
1 ൑  k ൑  m and m is the total number of partitions/cores), ܿݐݏ݋ሺ ௞ܲሻ denotes the total cost of the partition: 

ሺݐݏ݋ܿ  ௞ܲሻ ൌ ௞ఈݑ ∑ ൭ܧ௟ ∑  ெ೗ሺ௩೔ೕሻଶఛ೔ א  ௉ೖ ఛೕ א  ௉ೖ ൱௭௟ୀଵ            (2)  

 
where, ݑ௞ ൌ ∑  is the utilization ߙ ௉ೖ , and  א ௜ఛ೔ݑ
parameter. 

The utilization parameter, ߙ, where ߙ ൌ ߙ ݎ݋ 0 ൌ 1,  
indicates the importance of task utilizations in the cost 
function. By setting the utilization parameter to 0 (ߙ ൌ 0), 
the cost function will only depend on the preference 
matrices. On the other hand by setting ߙ ൌ 1 the cost 
function will also depend on utilization factor of the 
partition which will increase evenly distribution of tasks 
among partitions. The total cost of the system is the 
summation of costs of all partitions. 
 
5. Partitioning Algorithm 

     
Now we present an extension to the First-Fit bin-

packing algorithm for partitioning sporadic task systems, 
similar to the algorithm presented in [4]. The major goal 
of bin-packing algorithms is minimizing the number of 
needed bins (cores). However our aim is to increase 
performance while guaranteeing correctness. Thus, we 
extend the bin-packing algorithm with task preferences 
(cost function) as well as resource sharing constraints.  

The algorithm assumes that tasks are ordered non-
increasingly based on their weights. The weight of a task ߬௜, denoted by ݓ௜ indicates the importance of the task 
according to the partitioning strategy. For example in the 
partitioning strategy for reducing inter-core 
communication, the weight of a task may be the total 
number of messages it sends or receives during its 
execution time. Figure 4 depicts the pseudo-code for the 
partitioning algorithm.  



 

 
Figure 4: Partitioning algorithm 

 
The schedulability test (1) (Section 3) is used for 

schedulability analysis of any partition, ௞ܲ. At each step 
that the algorithm assigns a task to a partition, ௞ܲ, the 
schedulability test should be performed for all other 
partitions as well, since the remote blocking term of any 
task in any partition may be affected. 

The algorithm is not limited to FPS and MPCP, and 
the schedulability test can be extended to other scheduling 
and resource sharing protocols, e.g., for Partitioned 
Earliest Deadline First (P-EDF) using the Multiprocessor 
Stack-based Resource sharing Protocol (MSRP) [8], the 
following schedulability test from [3] may be used:  

 ∑ ௜ܥ ௜ܶ⁄ ൅ max࣎೔ ሺܤ௜ ௜ܶ⁄ ሻ ൑ 1                  (3) 
 
6. Reduce blocking times under MPCP 
 
6.1. Partitioning strategy  

     
In this section we present a partitioning strategy that 

targets reducing the blocking times under MPCP. We will 
use our algorithm to assign tasks to partitions according to 
the partitioning strategy. 

Considering the blocking factors of tasks under 
MPCP, tasks with more and longer global critical sections 
lead to more blocking times. This is also shown by 
experiments presented in [8]. The goal is to (i) decrease 
the global critical sections by assigning the tasks sharing 
resources to the same partition as far as possible, (ii) 
decrease the ratio and time of holding global resources by 
assigning the tasks that request the resources more often 
and hold them longer to the same partition as long as 
possible.   

The algorithm (Section 5) assumes that the tasks are 
ordered according to their weights. Since the partitioning 
strategy is to reduce blocking times, the tasks that may 
cause higher blocking times should get higher weights. 

Thus the weight of task ߬௜ should be a function of the 
number of its critical sections as well as the length of its 
largest critical sections: 

௜ݓ   ൌ ∑ ሺ݊׊ ௖௦೛൛ܿ௜,௣,௤ൟ ൈ ௖௦೛൛ܿ௜,௣,௤ൟ|ோ|௤ୀଵ ׊݉ ሻ/ ௜ܶ    (4) 
  

where ݊ሼܿ௜,௣,௤ሽ is the number of critical sections in which ߬௜ requests resource ܴ௤, ݉ሼܿ௜,௣,௤ሽ  denotes the largest 
critical section of ߬௜ requesting ܴ௤, and |ܴ| is the total 
number of resources in ܴ. 

The tasks will be ordered based on their weights and 
each time the algorithm attempts to assign a task to a 
partition it will pick the first task (with the highest 
weight). 

Now we will derive a preference matrix which will 
contain the pair costs (ݒ௜௝) for each task pair ߬௜ and ௝߬ 
(Section 4.3). First, for any resource ܴ௤ we derive an 
individual matrix in which the cost of pair ߬௜ and ௝߬  
denoted as ݒ௜௝,௤ will be a function of the number of critical 
sections as well as the length of largest critical sections of 
tasks ߬௜ and ௝߬:   

௜௝,௤ݒ  ൌ െ݊൛ܿ௜,௣,௤ൟ ൈ ݉൛ܿ௜,௣,௤ൟ ൈ ݊൛ ௝ܿ,௞,௤ൟ ൈ ݉൛ ௝ܿ,௞,௤ൟ ൅ 1    (5) 
 
As the number and the maximum length of critical 

sections of task pairs increases the cost of assigning them 
to the same partition should decrease. This is why that 
first term of the cost in (5) has a negative form. If two 
tasks do not share resource ܴ௤ the first term of ݒ௜௝,௤ will be 
0, hence ݒ௜௝,௤ ൌ 1 which means if they are assigned to the 
same partition the cost of the partition should be 
increased. This is logical because regarding ܴ௤ they are 
independent and are not recommended to be assigned to 
the same partition.   

 



 

 
 

Table 1: The task set to be partitioned 
Task Period ܥ௜ in non-

critical 
sections  

݊ሼܿ௜,௣,ଵሽ ݉ሼܿ௜,௣,ଵሽ ݊ሼܿ௜,௣,ଶሽ ݉ሼܿ௜,௣,ଶሽ ݊ሼܿ௜,௣,ଷሽ ݉ሼܿ௜,௣,ଷሽ ݊ሼܿ௜,௣,ସሽ ݉ሼܿ௜,௣,ସሽ ݊ሼܿ௜,௣,ହሽ ݉ ሼܿ௜,௣,ହሽ
߬ଵ 39 4 1 1 0 0 1 1 0 0 0 0 ߬ଶ 41 5 0 0 1 1 1 1 0 0 0 0 ߬ଷ 42 4 0 0 0 0 0 0 1 1 0 0 ߬ସ 48 3 0 0 1 2 0 0 1 1 0 0 ߬ହ 52 5 0 0 0 0 1   2 0 0 1 1 ߬଺ 57 5 0 0 0 0 0 0 1 1 1 1 ߬଻ 58 6 1 1 0 0 0 0 2 1 0 0 ଼߬ 63 8 0 0 0 0 0 0 0 0 0 0 

 
 

The individual matrices for each resource are then 
used to derive the preference matrix in which  ݒ௜௝ (the cost 
of pair ߬௜ and ௝߬ if they are assigned to the same partition) 
will be as follows: 

௜௝ݒ  ൌ ∑  (6)                      ܴאݍ௜௝,௤ܴݒ
 
The partitioning algorithm will use the obtained 

preference matrix for assigning the tasks to partitions. 
 
6.2. Example 

 
In this section we present an example in which our 

algorithm will attempt to reduce blocking times while 
partitioning a task set onto different cores of a multi-core 
processor. The partitioning is performed based on the 
partitioning strategy in Section 6.1. 

In this example we set  ߙ ൌ 0 in the cost function so 
that the cost only depends on blocking time costs. We 
attempt to assign a task set consisting of eight tasks (Table 
1) into four partitions which will be assigned onto a 
processor with four cores. There are five resources, ሼܴଵ, ܴଶ, ܴଷ, ܴସ, ܴହሽ which are shared among tasks and are 
protected by semaphores. The tasks in Table 1 are indexed 
based on their periods (priority). For each task ߬௜, the table 
contains the period, WCET of non-critical sections, the 
number of critical sections in which the task request ܴ௤ 
(݊ሼܿ௜,௣,௤ሽ) and WCET of the largest critical section for 
resource ܴ௤ (݉ሼܿ௜,௣,௤ሽ).  

 
Table 2: The task weights 

Task Weight ߬ସ 0,063 ߬ହ 0,058 ߬ଵ 0,053 ߬଻ 0,052 ߬ଶ 0,049 ߬଺ 0,035 ߬ଷ 0,024 ଼߬ 0 
 

First, the weights of tasks are calculated based on 
formula (4). Table 2 shows the ordered list of tasks based 

on the calculated weights. For each resource a matrix was 
created which contains the costs for each task pairs 
calculated by formula (5). and the final preference matrix 
was obtained based on the resource matrices. Table 3 
shows the preference matrix which includes the costs for 
each pair of tasks.  Since we only have one preference 
matrix we set the coefficient of the matrix, ܧଵ, to 1 
ଵܧ) ൌ 1).  

 
Table 3: The preference matrix 

 
While partitioning the task set using the bin-packing 

algorithm without considering the blocking costs does not 
result in a schedulable system, our algorithm, based on the 
preference matrix, successfully partitions the task set onto 
four partitions. Task sets ሼ߬ସ, ߬ଶሽ, ሼ߬ହ, ߬ଷሽ, ሼ߬ଵ, ଼߬ሽ, and ሼ߬଻, ߬଺ሽ are assigned to partitions ଵܲ, ଶܲ, ଷܲ, and ସܲ 
respectively. Table 4 shows the five blocking factors and 
total blocking time for each task in the obtained system. 

 
Table 4: The blocking times of tasks 

Task ܤ௜,ଵ ܤ௜,ଶ ܤ௜,ଷ ܤ௜,ସ ܤ௜,ହ ࢏࡮ ߬ଵ 0 4 0 0 0 4 ߬ଶ 2 2 2 0 1 7 ߬ଷ 0 1 0 4 4 9 ߬ସ 0 1 2 4 0 7 ߬ହ 0 2 4 1 0 7 ߬଺ 0 0 6 10 3 19 ߬଻ 0 0 6 6 0 12 ଼߬ 0 0 0 0 0 0 
 
7. Summary and Future Work 

 
In this paper we have mentioned the major challenges 

(targeting performance and correctness) of migrating a 
legacy real-time system to multi-core architectures where 

 ߬ଵ ߬ଶ ߬ଷ ߬ସ ߬ହ ߬଺ ߬଻ ଼߬߬ଵ - 4 5 5 3 5 4 5 ߬ଶ 4 - 5 3 3 5 5 5 ߬ଷ 5 5 - 4 5 4 3 5 ߬ସ 5 3 4 - 5 4 3 5 ߬ହ 3 3 5 5 - 4 5 5 ߬଺ 5 5 4 4 4 - 3 5 ߬଻ 4 5 3 3 5 3 - 5 ଼߬ 5 5 5 5 5 5 5 - 



 

it will execute along with other systems, e.g., how to take 
advantage of performance offered by multi-core platforms 
while guaranteeing correctness. We have proposed a 
framework for migrating legacy real-time systems to 
multi-core processors, which includes a heuristic 
algorithm that extends a bin-packing algorithm with a cost 
function based on preference matrices. Each obtained 
partition will be mapped on one core.  

Since most legacy real-time systems use fixed priority 
scheduling protocols, we have developed our framework 
based on MPCP, the only existing synchronization 
protocol for multiprocessors (multi-cores) which works 
under fixed priority scheduling. However, this protocol 
introduces large amounts of blocking time overheads 
especially when the global resources are relatively long 
and the access ratio to them is high. As an example we 
have presented a partitioning strategy and we have 
obtained preference matrices based on critical sections. 
The cost function is calculated based on the obtained 
preference matrix and finally, the algorithm uses the cost 
function to reduce blocking times. 

Our algorithm depends on attributes of tasks, and for 
legacy systems some information about tasks should be 
extracted from the existing system. In the future we will 
study and investigate techniques including reverse 
engineering methods such as static and dynamic analysis. 
We will use these methods to extract required information 
from the legacy system, e.g., information about shared 
resources, and timing attributes.  

A future work will be evaluation of our framework by 
means of simulation and applying it to a real system. We 
also plan to study industrial legacy real-time systems and 
investigate the challenges and possibility of migrating 
these systems to multi-core architectures. Our future work 
also includes investigating global and hierarchical 
scheduling protocols and appropriate synchronization 
protocols. 
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