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Abstract 
 

In the multi-core and multiprocessor domain, there has 
been considerable work done on scheduling techniques 
assuming that real-time tasks are independent. In practice a 
typical real-time system usually share logical resources 
among tasks. However, synchronization in the 
multiprocessor area has not received enough attention. 

In this paper we investigate the possibilities of extending 
multiprocessor hierarchical scheduling to support an 
existing synchronization protocol (FMLP) in multiprocessor 
systems. We discuss problems regarding implementation of 
the synchronization protocol under the multiprocessor 
hierarchical scheduling.  

 
 
1. Introduction 
 

Multi-core and multiprocessor architectures are receiving 
more interest due the performance they offer as improving 
performance in single-core architectures is limited due to the 
problems with power consumption and related thermal 
problems.   

To take advantage of the performance offered by a multi-
core/multiprocessor architecture, appropriate scheduling 
algorithms and synchronization protocols are required. 
However, in the research community, scheduling has 
received much more attention than synchronization [7].  

There are two main approaches for scheduling sporadic 
and periodic task systems on multiprocessor architectures [2, 
3, 12, 16]; partitioned and global scheduling. Under 
partitioned scheduling tasks are statically assigned to 
processors and tasks within each processor are scheduled by 
uniprocessor scheduling such as FPS (Fixed Priority 
Scheduling) or EDF (Earliest Deadline First). Under global 
scheduling, e.g., G-EDF (Global Earliest Deadline First), 
tasks are scheduled by a single scheduler and each task can 
be executed on any core. A combination of global and 
partitioned scheduling called the two-level hybrid scheduling 
[11] is used for systems in which some tasks cannot migrate 
between cores while other tasks can migrate.  

A more general approach which is a generalization of 
partitioned and global scheduling is called cluster-based 
scheduling [20]. In this approach tasks are statically assigned 
to clusters and tasks within each cluster are globally 
scheduled. In turn, clusters are transformed into tasks and 
scheduled on multiprocessor architectures. Cluster-based 

scheduling seems to be the way to improve utilization 
bounds on the multiprocessor platform. However the existing 
approaches for cluster-based scheduling do not consider 
synchronization and assume that tasks are independent.      

The contribution of this paper is to investigate the 
implementation problems when extending the hierarchical 
scheduling framework for multiprocessor virtual clustering 
presented in [20], to support lock-based synchronization. We 
will spend more time explaining the framework later. We 
have specifically discussed problems regarding 
implementing an existing protocol for synchronization in 
multiprocessors [7] under the hierarchical scheduling 
framework.  
Related work. In the context of uniprocessor hierarchical 
scheduling, there have been studies on allowing for sharing 
of mutually exclusive resources within components [1, 17] 
and across components [5, 10, 13]. 

For multiprocessor systems, Rajkumar present MPCP 
(Multiprocessor Priority Ceiling Protocol) [19], which 
extends PCP to multiprocessors hence allowing for 
synchronization of tasks sharing mutually exclusive 
resources using partitioned FPS. Gai et al. [14, 15] present 
MSRP (Multiprocessor SRP), which is a P-EDF (Partitioned 
EDF) based synchronization protocol for multiprocessors. 
The shared resources are classified as either (i) local 
resources that are shared among tasks assigned to the same 
processor, or (ii) global resources that are shared by tasks 
assigned to different processors. In MSRP, tasks synchronize 
local resources using SRP, and access to global resources is 
guaranteed a bounded blocking time. Lopez et al. [18] 
present an implementation of SRP under P-EDF. Devi et al. 
[11] present a synchronization technique under G-EDF. The 
work is restricted to synchronization of non-nested accesses 
to short, simple objects, e.g., stacks, linked lists, and queues. 
In addition, the main focus of the method is on soft real-time 
systems.  

Block et al. [7] present FMLP (Flexible Multiprocessor 
Locking Protocol), which is the first synchronization 
protocol for multiprocessors that can be applied to both 
partitioned and global scheduling algorithms, i.e., P-EDF and 
G-EDF. An implementation of FMLP has been described in 
[8]. Our goal is to implement this protocol for 
synchronization under the hierarchical scheduling for 
multiprocessor virtual clustering; hence we will spend more 
time on details of this protocol in Section 3. However 
extending the multiprocessor hierarchical scheduling to 
support FMLP is not trivial. Firstly some assumptions of the 
scheduling framework for the schedulability analysis should 



 

be changed and new schedulability test should be derived 
which considers blocking times. Secondly implementing 
FMLP under the scheduling protocol introduces problems 
(Section 4). This requires considerable effort to successfully 
implement FMLP under the multiprocessor hierarchical 
scheduling protocol. In this paper we focus on the second 
part which deals with implementation problems.   
 
2. Task and system model 
 

We assume a sporadic task model [4] in which a sporadic 
task τ୧ is specified by its minimum inter arrival time T୧, its 
worst-case execution time C୧, and its relative deadline D୧. 
We refer to the ݆௧ job (each being an instance of a task) of 
task τ୧ as τ

. 
A request R issued by a job for exclusive access to a 

resource l is satisfied as soon as the job holds the resource. A 
request which is not contained within any other request is 
called an outermost. 

We assume a multiprocessor system consisting m 
identical, unit-capacity processors each of which has a 
scheduling utilization of one. We also assume that migration 
of a job is allowed, i.e., a job can be preempted on one 
processor and be resumed on another processor. Preemption 
and migration overheads are assumed to be negligible. 
 
3. FMLP 
 

Under the FMLP, resources are categorized into short 
and long resources which is user defined. There is no 
limitation on nesting resource accesses, except that requests 
for long resources cannot be nested in requests for short 
resources.  

In FMLP, deadlock is prevented by grouping resources. 
A group includes either global or local resources, and two 
resources are in the same group if a request for one may be 
nested in a request for the other one. A group lock is 
assigned to each group and only one task at any time can 
hold the lock. 

The jobs that are blocked on short resources perform 
busy-wait and are added to a FIFO queue. Jobs that access 
short resources hold the group lock and execute non-
preemptively. A job accessing a long resource under G-EDF 
holds the group lock and executes preemptively using 
priority inheritance, i.e., it inherits the maximum priority of 
any higher priority job blocked on any resource within the 
same group. Tasks blocked on a long resource are added to a 
FIFO queue.  

Actually FMLP works under a variant of G-EDF for 
suspendable and preemptable jobs (GSN-EDF) [7] which 
guarantees that a job τ

 can only be blocked (with a 
constraint duration) by another non-preemptable job when 
job τ

 is released or resumed.  
  
3.1. Blocking under GSN-EDF and FMLP 
 
Busy-wait blocking of task τ is the maximum duration of 
time that any job of the task can busy-wait on a short 
resource. 
Non-preemptive blocking occurs when a preemptable job 
τ

 is one of the m highest priority jobs but it is not scheduled 

because a lower priority job is non-preemptively executing 
instead. Non-preemptive blocking of task τ is the maximum 
duration time that any job of task τ is non-preemptively 
blocked. 
Direct blocking occurs when job τ

 is one of the m highest 
priority jobs but it is suspended because it issues a request 
for an outermost long resource from group G but another job 
holds a resource from the same group (holds the group’s 
lock). Direct blocking of task τ is the maximum duration of 
time that any job of the task can be direct blocked. 

 
4. Hierarchical scheduling for multiprocessor 
virtual clustering  
 

Under cluster-based scheduling tasks are statically 
assigned to clusters and scheduled globally among 
themselves (intra-cluster scheduling). A cluster is a set of ݉ᇱ 
processors where ݉ᇱ   ݉. A cluster with its tasks and 
scheduler is denoted as a component. The clusters are in turn 
globally scheduled on the multiprocessor (inter-cluster 
scheduling). The cluster-based scheduling is a generalization 
of partitioned and global scheduling, i.e., it is equivalent to 
partitioned scheduling if tasks are assigned to ݉ clusters 
where ݉ᇱ ൌ 1 for each cluster, and it is equivalent to global 
scheduling if all tasks are assigned to a single cluster where 
݉ᇱ ൌ ݉. 

Cluster-based scheduling can be physical or virtual. In 
physical cluster-based scheduling each of cluster’s ݉ᇱ 
processors are statically mapped to one of ݉ processors of 
the multiprocessor [9]. In the virtual cluster-based scheduling 
the ݉ᇱ processors of each cluster are dynamically mapped 
(one-to-many) onto ݉ processors of the multiprocessor.  
Virtual clustering is more general and less sensitive to task-
cluster mapping compared to physical clustering.  

Physical clustering only needs the intra-cluster 
scheduling because the clusters do not share processors. On 
the other hand, virtual clustering requires a hierarchical 
scheduling which includes intra-cluster and inter-cluster 
scheduling. Under hierarchical scheduling processors of the 
multiprocessor are dynamically assigned to virtual clusters 
(inter-cluster scheduling) and processor resources assigned to 
each virtual cluster are used by that cluster to schedule its 
tasks (intra-cluster scheduling). 

 
4.1. Multiprocessors resource model 
 

The notion of component interface is used to specify the 
required processor resources to schedule the tasks within the 
component [21]. A multiprocessor resource model specifies 
the characteristics of resource provided to a cluster by the 
multiprocessor platform. As a component interface, a 
multiprocessor resource model specifies the resource 
requirement for the component.  

A multiprocessor periodic resource (MPR) model 
denoted by Γ ൌ ,Πۃ  θ, mᇱۄ specifies that the multiprocessor 
collectively provides θ units of processor resource in every Π 
time units to a cluster consisting mᇱ processors. A feasible 
MPR model has to satisfy θ Π⁄  mԢ. 

The lower bound of amount of resource supply that a 
resource model Γ in time interval t provides is specified by 
supply bound function ܾݏ ௰݂ሺݐሻ. In schedulability conditions, 
  .is used to generate MPR based component interfaces ݂ܾݏ



 

There is no technique for scheduling clusters according to 
their interfaces, hence for scheduling of clusters on a 
multiprocessor platform each cluster is transformed into 
periodic tasks, i.e., each cluster of size ݉ᇱ is transformed into 
݉ᇱ periodic tasks. The obtained task set is scheduled on the 
multiprocessor platform using an existing global scheduling 
protocol, e.g., G-EDF.  

 
5. Implementing FMLP under Multiprocessor 
Hierarchical Scheduling  
 

Resource sharing under FMLP is performed in different 
ways for short and long resources (Section 3); for a long 
resource the job holding the resource executes preemptively 
and blocked jobs are suspended while for a short resource the 
job holding the resource executes non-preemptively and 
blocked jobs perform busy-wait (non-preemptively).  

Non-preemptively execution of jobs may not cause any 
problems in physical clustering when implementing FMLP, 
as each cluster of size ݉ᇱ receives ݉ᇱ dedicated processors 
and intra-cluster scheduling remains as a usual global 
scheduling problem. However, in the virtual clustering, 
supplied processors for each cluster may differ at different 
time instants, i.e., a virtual cluster of size ݉ᇱ may receive ݇ 
processors (0  ݇  ݉ᇱ) at any time instant. For example, 
consider the processor supply for a virtual cluster, ܥ, where 
݉ᇱ ൌ 4 depicted in Figure 1. In this example, processor 
supply differs from 0 processors (intervals ሾݐଷ, ,ସሻݐ ሾݐହ,  ,ሻݐ
and ሾݐ, ሻ) to maximum processors (݉ᇱ଼ݐ ൌ 4) at time instant 
 .ସݐ

 

 
 

Figure 1:  Processor supply and utilization  
  

Jobs executing non-preemptively or performing busy-
wait within a cluster should not affect other clusters and 
these jobs should be non-preemptive only within their 
cluster. The problem of non-preemptively execution and 
performing busy-wait under virtual clustering occurs when 
the processor supply for a cluster is less than the number of 
all jobs executing non-preemptively or performing busy-
wait.  This will cause contention among tasks executing non-
preemptively or performing busy-wait to get supplied 
processors.  

The example in Figure 2 illustrates this problem. In this 
example, at time instant ݐସ (where four processors are 
available), tasks τଵ, τଷ, τସ hold short resources from 

different resource groups, and thus execute non-
preemptively, and τହ is blocked by τସ on a short resource 
and performs busy-wait. At time instant ݐ only two 
processors are supplied to the cluster and hence only two 
jobs can continue executing. Which two jobs should execute 
at time instant ݐ is a problem which should be solved when 
implementing FMLP.  

 

 
 

Figure 2:  Resource contest of non-preemptive tasks  
 
The idea behind non-preemptively and busy-wait 

execution is to keep the blocking time of jobs on short 
resources as short as possible and also to reduce the total 
number of jobs blocked on short resources (at most ݉ െ 1 
jobs can be blocked under global scheduling on ݉ 
processors). Thus in the case that a non-preemptive task 
compete with a higher priority task to receive a supplied 
processor, the non-preemptive task should execute.    

A job performing busy-wait does not perform any work 
but only keeps the processor busy to prevent other jobs from 
executing and possibly request for short resources and hence 
making the busy-wait queue unlimited. On the other hand 
under the multiprocessor hierarchical scheduling for virtual 
clustering the busy-wait jobs have to stop executing when 
there is not enough processor supply for their containing 
cluster and resumed when the cluster receives processor 
supply. This unnecessarily stopping and resuming busy-wait 
jobs introduces more context switches and consequently 
more overhead into the system. Thus it is recommended to 
avoid stopping and resuming jobs that perform busy-wait, 
but to hold the assumptions correct the processors that would 
be assigned to them in the normal case should be either idle 
or assigned to non-preemptive tasks. This prevents executing 
preemptive jobs on these processors.  

To overcome contention among jobs holding short 
resources, they have to be located into a queue which we 
specify as non-preemptive queue. There are two possible 
proposes for a non-preemptive queue as follows: 

 
1. The non-preemptive jobs are located in a FIFO queue:  

In this way when a job enters a critical section for a short 
resource it is added to the end of the non-preemptive 
queue. 

 
2. The non-preemptive jobs are located in a prioritized 

queue: In this case, the non-preemptive jobs are 
prioritized based on their normal priority (as if they 
execute preemptively). A consequence of prioritized non-
preemptive queue is that execution of a non-preemptive 
job may be postponed (blocked) by higher priority jobs 
busy-waiting on a higher priority non-preemptive job.  
This introduces extra blocking times to the lower priority 
jobs accessing short resources, but the higher priority 
jobs will access the resources faster (less blocking times). 
 



 

The length of a non-preemptive queue is at most ݉ᇱ for a 
cluster of size ݉ᇱ. At any time instant suppose there are ݍ 
jobs in the non-preemptive queue, and ݇ processors are 
supplied to the cluster, ܾ jobs perform busy-wait, and ݄ 
highest priority preemptive jobs are ready; an 
implementation algorithm should include: (1)  ൌ
݉݅݊ ሺݍ, ݇ሻ jobs at the top of the non-preemptive queue will 
be assigned to supplied processors, (2) ݖ ൌ ݉݅݊ ሺ݇ െ , ܾሻ 
processors are idle, (3) ݉݅݊ ሺ݇ െ  െ ,ݖ ݄ሻ highest ready 
preemptive jobs are assigned to processors, (4) If any non-
preemptive job releases a short resource the first busy-wait 
job (at the top of related busy-wait queue), if any, should be 
added to the non-preemptive queue. 

In the algorithm (as in the FMLP) each resource group 
will have a busy-wait queue in which the jobs performing 
busy-wait will be queued in FIFO order. However each 
cluster needs a non-preemptive queue in which non-
preemptive jobs accessing the short resources are located. 
Currently, we are working on implementing issues and 
investigating if there can be more problems regarding 
implementation for which we will work on finding 
appropriate solutions. 
 
6. Summary 
 

We have discussed a way of extending hierarchical 
scheduling framework presented in [20] to support shared 
resources between tasks within the same cluster. We have 
used FMLP [7] to synchronize the access of shared resources 
by tasks. However implementing FMLP under 
multiprocessor hierarchical scheduling is a big challenge and 
need considerable effort since some of the assumptions of 
both the scheduling and the synchronization protocols have 
to be changed. By extending the hierarchical scheduling with 
FMLP, two important issues should be considered; the 
problems of implementing FMLP under multiprocessor 
hierarchical scheduling, and schedulability analysis. In this 
paper we have focused on the problems regarding the 
implementation of FMLP under the hierarchical scheduling 
framework. We have mentioned the problems and proposed 
possible solutions to overcome those problems. However, we 
have not shown how the synchronization will affect the 
schedulability analysis of the framework and we are 
currently working on deriving upper bounds for blocking 
time overheads. In the future, we will evaluate this approach 
by means of simulation and implementation. 
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