
* This work was partially supported by the Swedish Foundation for Strategic Research (SSF) via the strategic research centre (PROGRESS) at Mälardalen

University.

Investigation of Implementing a Synchronization Protocol under Multiprocessors
Hierarchical Scheduling*

Farhang Nemati¹, Moris Behnam¹, Thomas Nolte¹ and Reinder J. Bril ²

¹Mälardalen Real-Time Research Centre, Mälardalen University, Sweden
² Eindhoven University of Technology (TU/e), The Netherlands

Abstract

In the multi-core and multiprocessor domain, there has
been considerable work done on scheduling techniques
assuming that real-time tasks are independent. In practice a
typical real-time system usually share logical resources
among tasks. However, synchronization in the
multiprocessor area has not received enough attention.

In this paper we investigate the possibilities of extending
multiprocessor hierarchical scheduling to support an
existing synchronization protocol (FMLP) in multiprocessor
systems. We discuss problems regarding implementation of
the synchronization protocol under the multiprocessor
hierarchical scheduling.

1. Introduction

Multi-core and multiprocessor architectures are receiving
more interest due the performance they offer as improving
performance in single-core architectures is limited due to the
problems with power consumption and related thermal
problems.

To take advantage of the performance offered by a multi-
core/multiprocessor architecture, appropriate scheduling
algorithms and synchronization protocols are required.
However, in the research community, scheduling has
received much more attention than synchronization [7].

There are two main approaches for scheduling sporadic
and periodic task systems on multiprocessor architectures [2,
3, 12, 16]; partitioned and global scheduling. Under
partitioned scheduling tasks are statically assigned to
processors and tasks within each processor are scheduled by
uniprocessor scheduling such as FPS (Fixed Priority
Scheduling) or EDF (Earliest Deadline First). Under global
scheduling, e.g., G-EDF (Global Earliest Deadline First),
tasks are scheduled by a single scheduler and each task can
be executed on any core. A combination of global and
partitioned scheduling called the two-level hybrid scheduling
[11] is used for systems in which some tasks cannot migrate
between cores while other tasks can migrate.

A more general approach which is a generalization of
partitioned and global scheduling is called cluster-based
scheduling [20]. In this approach tasks are statically assigned
to clusters and tasks within each cluster are globally
scheduled. In turn, clusters are transformed into tasks and
scheduled on multiprocessor architectures. Cluster-based

scheduling seems to be the way to improve utilization
bounds on the multiprocessor platform. However the existing
approaches for cluster-based scheduling do not consider
synchronization and assume that tasks are independent.

The contribution of this paper is to investigate the
implementation problems when extending the hierarchical
scheduling framework for multiprocessor virtual clustering
presented in [20], to support lock-based synchronization. We
will spend more time explaining the framework later. We
have specifically discussed problems regarding
implementing an existing protocol for synchronization in
multiprocessors [7] under the hierarchical scheduling
framework.
Related work. In the context of uniprocessor hierarchical
scheduling, there have been studies on allowing for sharing
of mutually exclusive resources within components [1, 17]
and across components [5, 10, 13].

For multiprocessor systems, Rajkumar present MPCP
(Multiprocessor Priority Ceiling Protocol) [19], which
extends PCP to multiprocessors hence allowing for
synchronization of tasks sharing mutually exclusive
resources using partitioned FPS. Gai et al. [14, 15] present
MSRP (Multiprocessor SRP), which is a P-EDF (Partitioned
EDF) based synchronization protocol for multiprocessors.
The shared resources are classified as either (i) local
resources that are shared among tasks assigned to the same
processor, or (ii) global resources that are shared by tasks
assigned to different processors. In MSRP, tasks synchronize
local resources using SRP, and access to global resources is
guaranteed a bounded blocking time. Lopez et al. [18]
present an implementation of SRP under P-EDF. Devi et al.
[11] present a synchronization technique under G-EDF. The
work is restricted to synchronization of non-nested accesses
to short, simple objects, e.g., stacks, linked lists, and queues.
In addition, the main focus of the method is on soft real-time
systems.

Block et al. [7] present FMLP (Flexible Multiprocessor
Locking Protocol), which is the first synchronization
protocol for multiprocessors that can be applied to both
partitioned and global scheduling algorithms, i.e., P-EDF and
G-EDF. An implementation of FMLP has been described in
[8]. Our goal is to implement this protocol for
synchronization under the hierarchical scheduling for
multiprocessor virtual clustering; hence we will spend more
time on details of this protocol in Section 3. However
extending the multiprocessor hierarchical scheduling to
support FMLP is not trivial. Firstly some assumptions of the
scheduling framework for the schedulability analysis should

be changed and new schedulability test should be derived
which considers blocking times. Secondly implementing
FMLP under the scheduling protocol introduces problems
(Section 4). This requires considerable effort to successfully
implement FMLP under the multiprocessor hierarchical
scheduling protocol. In this paper we focus on the second
part which deals with implementation problems.

2. Task and system model

We assume a sporadic task model [4] in which a sporadic
task τ୧ is specified by its minimum inter arrival time T୧, its
worst-case execution time C୧, and its relative deadline D୧.
We refer to the ݆௧ job (each being an instance of a task) of
task τ୧ as τ

.
A request R issued by a job for exclusive access to a

resource l is satisfied as soon as the job holds the resource. A
request which is not contained within any other request is
called an outermost.

We assume a multiprocessor system consisting m
identical, unit-capacity processors each of which has a
scheduling utilization of one. We also assume that migration
of a job is allowed, i.e., a job can be preempted on one
processor and be resumed on another processor. Preemption
and migration overheads are assumed to be negligible.

3. FMLP

Under the FMLP, resources are categorized into short
and long resources which is user defined. There is no
limitation on nesting resource accesses, except that requests
for long resources cannot be nested in requests for short
resources.

In FMLP, deadlock is prevented by grouping resources.
A group includes either global or local resources, and two
resources are in the same group if a request for one may be
nested in a request for the other one. A group lock is
assigned to each group and only one task at any time can
hold the lock.

The jobs that are blocked on short resources perform
busy-wait and are added to a FIFO queue. Jobs that access
short resources hold the group lock and execute non-
preemptively. A job accessing a long resource under G-EDF
holds the group lock and executes preemptively using
priority inheritance, i.e., it inherits the maximum priority of
any higher priority job blocked on any resource within the
same group. Tasks blocked on a long resource are added to a
FIFO queue.

Actually FMLP works under a variant of G-EDF for
suspendable and preemptable jobs (GSN-EDF) [7] which
guarantees that a job τ

 can only be blocked (with a
constraint duration) by another non-preemptable job when
job τ

 is released or resumed.

3.1. Blocking under GSN-EDF and FMLP

Busy-wait blocking of task τ is the maximum duration of
time that any job of the task can busy-wait on a short
resource.
Non-preemptive blocking occurs when a preemptable job
τ

 is one of the m highest priority jobs but it is not scheduled

because a lower priority job is non-preemptively executing
instead. Non-preemptive blocking of task τ is the maximum
duration time that any job of task τ is non-preemptively
blocked.
Direct blocking occurs when job τ

 is one of the m highest
priority jobs but it is suspended because it issues a request
for an outermost long resource from group G but another job
holds a resource from the same group (holds the group’s
lock). Direct blocking of task τ is the maximum duration of
time that any job of the task can be direct blocked.

4. Hierarchical scheduling for multiprocessor
virtual clustering

Under cluster-based scheduling tasks are statically
assigned to clusters and scheduled globally among
themselves (intra-cluster scheduling). A cluster is a set of ݉ᇱ
processors where ݉ᇱ ݉. A cluster with its tasks and
scheduler is denoted as a component. The clusters are in turn
globally scheduled on the multiprocessor (inter-cluster
scheduling). The cluster-based scheduling is a generalization
of partitioned and global scheduling, i.e., it is equivalent to
partitioned scheduling if tasks are assigned to ݉ clusters
where ݉ᇱ ൌ 1 for each cluster, and it is equivalent to global
scheduling if all tasks are assigned to a single cluster where
݉ᇱ ൌ ݉.

Cluster-based scheduling can be physical or virtual. In
physical cluster-based scheduling each of cluster’s ݉ᇱ
processors are statically mapped to one of ݉ processors of
the multiprocessor [9]. In the virtual cluster-based scheduling
the ݉ᇱ processors of each cluster are dynamically mapped
(one-to-many) onto ݉ processors of the multiprocessor.
Virtual clustering is more general and less sensitive to task-
cluster mapping compared to physical clustering.

Physical clustering only needs the intra-cluster
scheduling because the clusters do not share processors. On
the other hand, virtual clustering requires a hierarchical
scheduling which includes intra-cluster and inter-cluster
scheduling. Under hierarchical scheduling processors of the
multiprocessor are dynamically assigned to virtual clusters
(inter-cluster scheduling) and processor resources assigned to
each virtual cluster are used by that cluster to schedule its
tasks (intra-cluster scheduling).

4.1. Multiprocessors resource model

The notion of component interface is used to specify the
required processor resources to schedule the tasks within the
component [21]. A multiprocessor resource model specifies
the characteristics of resource provided to a cluster by the
multiprocessor platform. As a component interface, a
multiprocessor resource model specifies the resource
requirement for the component.

A multiprocessor periodic resource (MPR) model
denoted by Γ ൌ ,Πۃ θ, mᇱۄ specifies that the multiprocessor
collectively provides θ units of processor resource in every Π
time units to a cluster consisting mᇱ processors. A feasible
MPR model has to satisfy θ Π⁄ mԢ.

The lower bound of amount of resource supply that a
resource model Γ in time interval t provides is specified by
supply bound function ܾݏ ௰݂ሺݐሻ. In schedulability conditions,
 .is used to generate MPR based component interfaces ݂ܾݏ

There is no technique for scheduling clusters according to
their interfaces, hence for scheduling of clusters on a
multiprocessor platform each cluster is transformed into
periodic tasks, i.e., each cluster of size ݉ᇱ is transformed into
݉ᇱ periodic tasks. The obtained task set is scheduled on the
multiprocessor platform using an existing global scheduling
protocol, e.g., G-EDF.

5. Implementing FMLP under Multiprocessor
Hierarchical Scheduling

Resource sharing under FMLP is performed in different
ways for short and long resources (Section 3); for a long
resource the job holding the resource executes preemptively
and blocked jobs are suspended while for a short resource the
job holding the resource executes non-preemptively and
blocked jobs perform busy-wait (non-preemptively).

Non-preemptively execution of jobs may not cause any
problems in physical clustering when implementing FMLP,
as each cluster of size ݉ᇱ receives ݉ᇱ dedicated processors
and intra-cluster scheduling remains as a usual global
scheduling problem. However, in the virtual clustering,
supplied processors for each cluster may differ at different
time instants, i.e., a virtual cluster of size ݉ᇱ may receive ݇
processors (0 ݇ ݉ᇱ) at any time instant. For example,
consider the processor supply for a virtual cluster, ܥ, where
݉ᇱ ൌ 4 depicted in Figure 1. In this example, processor
supply differs from 0 processors (intervals ሾݐଷ, ,ସሻݐ ሾݐହ, ,ሻݐ
and ሾݐ, ሻ) to maximum processors (݉ᇱ଼ݐ ൌ 4) at time instant
 .ସݐ

Figure 1: Processor supply and utilization

Jobs executing non-preemptively or performing busy-
wait within a cluster should not affect other clusters and
these jobs should be non-preemptive only within their
cluster. The problem of non-preemptively execution and
performing busy-wait under virtual clustering occurs when
the processor supply for a cluster is less than the number of
all jobs executing non-preemptively or performing busy-
wait. This will cause contention among tasks executing non-
preemptively or performing busy-wait to get supplied
processors.

The example in Figure 2 illustrates this problem. In this
example, at time instant ݐସ (where four processors are
available), tasks τଵ, τଷ, τସ hold short resources from

different resource groups, and thus execute non-
preemptively, and τହ is blocked by τସ on a short resource
and performs busy-wait. At time instant ݐ only two
processors are supplied to the cluster and hence only two
jobs can continue executing. Which two jobs should execute
at time instant ݐ is a problem which should be solved when
implementing FMLP.

Figure 2: Resource contest of non-preemptive tasks

The idea behind non-preemptively and busy-wait

execution is to keep the blocking time of jobs on short
resources as short as possible and also to reduce the total
number of jobs blocked on short resources (at most ݉ െ 1
jobs can be blocked under global scheduling on ݉
processors). Thus in the case that a non-preemptive task
compete with a higher priority task to receive a supplied
processor, the non-preemptive task should execute.

A job performing busy-wait does not perform any work
but only keeps the processor busy to prevent other jobs from
executing and possibly request for short resources and hence
making the busy-wait queue unlimited. On the other hand
under the multiprocessor hierarchical scheduling for virtual
clustering the busy-wait jobs have to stop executing when
there is not enough processor supply for their containing
cluster and resumed when the cluster receives processor
supply. This unnecessarily stopping and resuming busy-wait
jobs introduces more context switches and consequently
more overhead into the system. Thus it is recommended to
avoid stopping and resuming jobs that perform busy-wait,
but to hold the assumptions correct the processors that would
be assigned to them in the normal case should be either idle
or assigned to non-preemptive tasks. This prevents executing
preemptive jobs on these processors.

To overcome contention among jobs holding short
resources, they have to be located into a queue which we
specify as non-preemptive queue. There are two possible
proposes for a non-preemptive queue as follows:

1. The non-preemptive jobs are located in a FIFO queue:

In this way when a job enters a critical section for a short
resource it is added to the end of the non-preemptive
queue.

2. The non-preemptive jobs are located in a prioritized

queue: In this case, the non-preemptive jobs are
prioritized based on their normal priority (as if they
execute preemptively). A consequence of prioritized non-
preemptive queue is that execution of a non-preemptive
job may be postponed (blocked) by higher priority jobs
busy-waiting on a higher priority non-preemptive job.
This introduces extra blocking times to the lower priority
jobs accessing short resources, but the higher priority
jobs will access the resources faster (less blocking times).

The length of a non-preemptive queue is at most ݉ᇱ for a
cluster of size ݉ᇱ. At any time instant suppose there are ݍ
jobs in the non-preemptive queue, and ݇ processors are
supplied to the cluster, ܾ jobs perform busy-wait, and ݄
highest priority preemptive jobs are ready; an
implementation algorithm should include: (1) ൌ
݉݅݊ ሺݍ, ݇ሻ jobs at the top of the non-preemptive queue will
be assigned to supplied processors, (2) ݖ ൌ ݉݅݊ ሺ݇ െ , ܾሻ
processors are idle, (3) ݉݅݊ ሺ݇ െ െ ,ݖ ݄ሻ highest ready
preemptive jobs are assigned to processors, (4) If any non-
preemptive job releases a short resource the first busy-wait
job (at the top of related busy-wait queue), if any, should be
added to the non-preemptive queue.

In the algorithm (as in the FMLP) each resource group
will have a busy-wait queue in which the jobs performing
busy-wait will be queued in FIFO order. However each
cluster needs a non-preemptive queue in which non-
preemptive jobs accessing the short resources are located.
Currently, we are working on implementing issues and
investigating if there can be more problems regarding
implementation for which we will work on finding
appropriate solutions.

6. Summary

We have discussed a way of extending hierarchical
scheduling framework presented in [20] to support shared
resources between tasks within the same cluster. We have
used FMLP [7] to synchronize the access of shared resources
by tasks. However implementing FMLP under
multiprocessor hierarchical scheduling is a big challenge and
need considerable effort since some of the assumptions of
both the scheduling and the synchronization protocols have
to be changed. By extending the hierarchical scheduling with
FMLP, two important issues should be considered; the
problems of implementing FMLP under multiprocessor
hierarchical scheduling, and schedulability analysis. In this
paper we have focused on the problems regarding the
implementation of FMLP under the hierarchical scheduling
framework. We have mentioned the problems and proposed
possible solutions to overcome those problems. However, we
have not shown how the synchronization will affect the
schedulability analysis of the framework and we are
currently working on deriving upper bounds for blocking
time overheads. In the future, we will evaluate this approach
by means of simulation and implementation.

References

 [1] L. Almeida and P. Pedreiras. Scheduling within temporal

partitions: response-time analysis and server design. In 4th ACM
international conference on Embedded software (EMSOFT’04),
Sep. 2004.

 [2] T. Baker. A comparison of global and partitioned EDF
schedulability test for multiprocessors. Technical report,
January 2005.

 [3] S. Baruah and N. Fisher. The partitioned multiprocessor
scheduling of sporadic task systems. In RTSS ’05: Proceedings
of the 26th IEEE International Real-Time Systems Symposium,
pages 321–329, Washington, DC, USA, 2005. IEEE Computer
Society.

 [4] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In Proceedings

of the 11th IEEE International Real-Time Systems
Symposium(RTSS’90), pages 182–190, Lake Buena Vista,
Florida, USA, December 1990. IEEE Computer Society.

 [5] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: a
synchronization protocol for hierarchical resource sharing in
real-time open systems. In 7th ACM and IEEE Int. Conference
on Embedded Software (EMSOFT’07), Oct. 2007.

 [6] M. Bertogna, M. Cirinei, and G. Lipari. Improved
schedulability analysis of edf on multiprocessor platforms. In
ECRTS, 2005.

 [7] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A
flexible real-time locking protocol for multiprocessors. In
Embedded and Real-Time Computing Systems and
Applications, 2007. RTCSA 2007. 13th IEEE International
Conference on, pages 47–56, Aug. 2007.

[8] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J.
Anderson. Synchronization on real-time multiprocessors: To
block or not to block, to suspend or spin? In Proc. of the 14th
IEEE Real-Time and Embedded Technology and Applications
Symposium, pp. 342–353, 2008.

[9] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger. A
hybrid real-time scheduling approach for large-scale multicore
platforms. In ECRTS, 2007.

[10] R. I. Davis and A. Burns. Resource sharing in hierarchical
fixed priority pre-emptive systems. In 27th IEEE Int. Real-Time
Systems Symposium (RTSS’06), Dec. 2006.

[11] U. Devi, H. Leontyev, and J. Anderson. Efficient
synchronization under global edf scheduling on
multiprocessors. In Real-Time Systems, 2006. 18th Euromicro
Conference on, pages 10 pp.–84, 0-0 2006.

[12] U. C. Devi. Soft real-time scheduling on multiprocessors. PhD
thesis, Chapel Hill, NC, USA, 2006. Adviser Anderson, James
H.

[13] N. Fisher, M. Bertogna, and S. Baruah. The design of an EDF-
scheduled resource-sharing open environment. In 28th IEEE
Real-Time Systems Symposium (RTSS’07), Dec. 2007.

[14] P. Gai, G. Lipari, andM. D. Natale. Minimizing memory
utilization of real-time task sets in single and multi-processor
systems-on-a-chip. In RTSS ’01: Proceedings of the 22nd IEEE
Real-Time Systems Symposium, page 73, Washington, DC,
USA, 2001. IEEE Computer Society.

[15] P. Gai, M. D. Natale, G. Lipari, A. Ferrari, C. Gabellini, and P.
Marceca. A comparison of MPCP and MSRP when sharing
resources in the janus multiple-processor on a chip platform. In
RTAS ’03: Proceedings of the The 9th IEEE Real-Time and
Embedded Technology and Applications Symposium, page 189,
Washington, DC, USA, 2003. IEEE Computer Society.

[16] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson,
and S.Baruah. A categorization of real-time multiprocessor
scheduling problems and algorithms. In J. Y. Leung, editor,
Handbook on Scheduling Algorithms, Methods, and Models,
pages 30.1–30.19. ChapmanHall/CRC, Boca Raton, Florida,
2004.

[17] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open
environment for real-time applications. In 20th IEEE
International Real-Time Systems Symposium (RTSS’99), Dec.
1999.

[18] J. M. Lopez, J. L. Dıaz, and D. F. Garcia. Utilization bounds
for edf scheduling on real-time multiprocessor systems. Real-
Time Syst., 28(1):39–68, 2004.

[19] R. Rajkumar. Synchronization in multiple processor systems.
In Synchronization in Real-Time Systems: A Priority
Inheritance Approach. Kluwer Academic Publishers, 1991.

[20] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling
framework for virtual clustering of multiprocessors. In
Proceedings Of the 20th Euromicro Conf. on Real-Time
Systems, pages 181-190, July 2008.

[21] I. Shin and I. Lee. Periodic resource model for compositional
real-time guarantees. In 24th IEEE International Real-Time
Systems Symposium (RTSS’03), Dec. 2003.

