
Hierarchical Scheduling of Complex Embedded Real-Time Systems∗

Thomas Nolte, Moris Behnam, MikaelÅsberg
MRTC/Mälardalen University

P.O. Box 883, SE-721 23, Västerås, Sweden

Reinder J. Bril
Technische Universiteit Eindhoven (TU/e)

Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands

Insik Shin
KAIST

Daejeon, South Korea 305-701

Abstract

For most of today’s embedded software systems, correct
operation requires not only correct function, they must addi-
tionally satisfy specific extra-functional properties, inpar-
ticular related to timing. System development (including
software development) is substantially facilitated if thesys-
tem parts can be developed and verified in isolation, and
if the correctness of the system can be inferred from the
correctness of its parts. Such modular and compositional
design of software system has for a long time been consid-
ered the holy-grail of system design, and is unfortunately
only possible in selected scenarios. This paper deals with
one such scenario: using hierarchical scheduling to pro-
vide predictable timing and temporal isolation of embedded
software. During the past years we have worked on various
issues on hierarchical scheduling, and this paper presents
an overview of selected research results, focusing on issues
related to synchronization among software modules.

1 Introduction

Component based software engineering is promoted as
a key approach in providing structured software design and
reuse for embedded (and other) software systems [3, 12].
Advanced operating system mechanisms such as hierar-
chical scheduling frameworks provide temporal and spa-
tial isolation through virtual platforms, thereby providing
means for extending component based software engineer-
ing towards component based systems engineering. A com-
plex system can be divided into several modules, here de-
noted subsystems, each performing a specific well defined
function. Development and verification of subsystems can
ideally be performed independently (and concurrently) and
their seamless and effortless integration results in a cor-

∗The work in this paper is supported by the Swedish Foundationfor
Strategic Research (SSF), via the research programme PROGRESS.

rectly functioning final product both from a functional as
well as extra-functional point of view. This paper presents
the hierarchical scheduling framework; a step towards con-
current development and reuse of complex embedded soft-
ware systems with extra-functional requirements on timing
and resource usage.

1.1 Background

The hierarchical scheduling framework is a modular ap-
proach for scheduling embedded real-time systems. A sys-
tem is hierarchically divided into a number of subsystems
that are scheduled by a global (system-level) scheduler.
Each subsystem contains a set of tasks that are scheduled by
a local (subsystem-level) scheduler. The division of a sys-
tem into a number of subsystems naturally promotesreuse
of subsystems from one system to another. Also, the hi-
erarchical scheduling framework allows for a subsystem to
be developed and analysed in isolation, with its own local
scheduler, and then at a later stage, using an arbitrary global
scheduler, integrated with other subsystems without violat-
ing the results of the analyses performed on the subsystem
in isolation. The integration involves a system-level schedu-
lability test, verifying that all extra-functional requirements
are met. Hence, hierarchical scheduling frameworks natu-
rally supportconcurrent developmentof subsystems.

The key enabler in allowing for concurrent development
and reuse of subsystems is the subsysteminterface. Subsys-
tems are periodically scheduled in the hierarchical schedul-
ing framework, and the subsystem interface contains infor-
mation on the fraction of the CPU required by a subsys-
tem in each subsystem period. As long as this fraction of
CPU is always provided to the subsystem, it is guaranteed
that the subsystem will function according to its specifica-
tions, e.g., that the extra-functional temporal requirements
of the subsystem are met. Hence, an interface contains in-
formation representing the capacityQ to be provided to the
subsystem each subsystem periodP . If the hierarchical
scheduling framework supports sharing of logical resources

among subsystems, the interface must also contain informa-
tion on the length of the longest critical section in the sub-
system [8]. Hence, interfaces for subsystems sharing logi-
cal resources contain, apart fromQ andP , also the length
of the longest critical sectionX .

During the past years, we have developed a hierarchi-
cal scheduling framework providing predictable timing. In
particular, we have focused on the development of synchro-
nization protocols for hierarchical scheduling together with
associated analysis techniques. Our overall goal is to de-
velop a cost efficient framework applicable for a wide range
of applications, and this paper covers some of our recent
work in hierarchical scheduling, synchronization, adapta-
tion and implementation.

1.2 Outline

This paper presents a hierarchical scheduling framework
based on the periodic resource model [34]. In Section 2,
the paper covers related work in the area of hierarchical
scheduling, and the related issue of synchronization among
tasks executing in a hierarchical framework. The hierar-
chical scheduling framework is presented in detail in Sec-
tion 3, along with its associated timing analysis in Section4.
Following, the paper covers synchronization techniques for
hierarchical scheduling in Section 5, comparing several ap-
proaches, and going into detail into one of these approaches
in Section 6; the approach of the Subsystem Integration and
Resource Allocation Policy (SIRAP) [8]. The paper con-
tinues with discussing the role of a hierarchical scheduling
framework in dynamic systems in Section 7, allowing for
the system to change its configuration during runtime. Fi-
nally, Section 8 discusses implementation issues and expe-
riences taken from an implementation of the hierarchical
scheduling framework in the VxWorks operating system,
and Section 9 concludes.

2 Related work

Before going into details describing our hierarchical
scheduling framework, this section outlines related work in
the area of hierarchical scheduling and protocols for syn-
chronization when systems are scheduled hierarchically.

2.1 Hierarchical scheduling

Hierarchical real-time scheduling, originating in open
systems [15] in the late 1990’s, has been receiving an in-
creasing research attention [2, 13, 15, 17, 20, 22, 23, 26,
30, 34, 35]. Since Deng and Liu [15] introduced a two-
level hierarchical scheduling framework, its schedulabil-
ity has been analyzed under fixed-priority global schedul-
ing [20] and under EDF-based global scheduling [22, 25].
Mok et al.[27] proposed the bounded-delay resource model

so as to achieve a clean separation in a multi-level hier-
archical scheduling framework, and schedulability analy-
sis techniques [17, 35] have been introduced for this re-
source model. In addition, Shin and Lee [34] introduced
another so-called periodic resource model (to characterize
the periodic resource allocation behaviour), and many stud-
ies have been proposed on schedulability analysis with this
resource model under fixed-priority scheduling [13, 23, 31]
and under EDF scheduling [34]. More recently, Easwaran
et al. [16] introduced Explicit Deadline Periodic (EDP) re-
source model. However, a common assumption shared by
all the studies in this paragraph is that tasks are required to
be independent, i.e., no sharing of logical resources is al-
lowed.

2.2 Synchronization

In many real systems, tasks are required to interact with
each other through mutually exclusive resource sharing.
Many protocols have been introduced to address the prior-
ity inversion problem for tasks sharing logical resources,
including the Priority Inheritance Protocol (PIP) [32], the
Priority Ceiling Protocol (PCP) [29], and Stack Resource
Policy (SRP) [4]. Recently, Fisheret al. addressed the
problem of minimizing the resource holding time [19] un-
der SRP. There have been studies on extending SRP in a
hierarchical scheduling framework, for sharing of logical
resources within a subsystem [2, 20] and across subsys-
tems [8, 14, 18]. Davis and Burns [14] proposed the Hi-
erarchical Stack Resource Policy (HSRP) supporting shar-
ing of logical resources on the basis of an overrun mecha-
nism. Behnamet al.[8] proposed the Subsystem Integration
and Resource Allocation Policy (SIRAP) protocol that sup-
ports subsystem integration in the presence of shared log-
ical resources, on the basis of skipping. Fisheret al. [18]
proposed the BROE server that extends the Constant Band-
width Server (CBS) [1] in order to handle sharing of logi-
cal resources in a hierarchical scheduling framework. The
work in this paper focuses on HSRP and SIRAP, targeting
systems based on FPS schedulers. Note that FPS is the de-
facto standard used (for local scheduling) in industry.

3 The Hierarchical Scheduling Framework

This paper focuses on scheduling of a single node, where
each node is modeled as a systemS consisting of one or
more subsystemsSs ∈ S. The system is scheduled by
a two-level Hierarchical Scheduling Framework (HSF) as
shown in Figure 1. During runtime, the system level sched-
uler (global scheduler) selects, at all times, which subsys-
tem that will access the common (shared) CPU resource.
The synchronization protocols, SRP mediates access to lo-
cal shared logical resources, and HSRP and SIRAP will me-
diate access to global shared logical resources.

��������� � ��������� 	 ���������
������� �����������
����������

 !"#$! %�� �&'()*!(+,-./012345-6 07-819:1.4;851. ������� �����������,-./012345-6 07-819:1.4;851. ������� �����������,-./012345-6 07-819:1.4;851.
<=>

?@ABC@DECFGH IGJAKFLGJ
Sy
ste

m

Figure 1. HSF with resource sharing.

3.1 Subsystem model

A subsystemSs consists of a setTs of ns tasks and a
local scheduler. Once a subsystem is assigned the proces-
sor (CPU), its scheduler will select which of its tasks will
be executed. With each subsystemSs, a subsystem timing
interfaceSs(Ps, Qs, Xs) is associated, whereQs is the sub-
system budget that the subsystemSs will receive every sub-
system periodPs, andXs is the maximum time that a sub-
system internal task may lock a globally shared resource.
Finally, both the local scheduler of a subsystemSs as well
as the global scheduler of the systemS is assumed to im-
plement the FPS scheduling policy. LetRs be the set of
global shared resources accessed bySs, and letms be the
cardinality ofRs.

3.2 Task model

The task model considered in this paper is the
deadline-constrained sporadic hard real-time task model
τi(Ti, Ci, Di, {ci,j}), whereTi is a minimum separation
time between arrival of successive jobs ofτi, Ci is their
worst-case execution-time, andDi is an arrival-relative
deadline (0 < Ci ≤ Di ≤ Ti) before which the execu-
tion of a job must be completed. Each task is allowed to
access one or more shared logical resources, and each ele-
mentci,j ∈ {ci,j} is a critical section execution timethat
represents a worst-case execution-time requirement within a
critical section of a global shared resourceRj . It is assumed
that all tasks belonging to the same subsystem are assigned

unique static priorities and are sorted according to their pri-
orities in the order of increasing priority. Without loss of
generality, it is assumed that the priority of a task is equal
to the task ID number after sorting, and the greater a task
ID number is, the higher its priority is. The same assump-
tion is made for the subsystems. The set of shared resources
accessed byτi is denoted{Ri}. Let hp(i) return the set of
tasks with priorities higher than that ofτi andlp(i) return
the set of tasks with priorities lower than that of taskτi. For
each subsystem, we assume that the subsystem period is se-
lected such that2Ps ≤ Tmin, whereτmin is the task with
the shortest period. The motivation for this assumption is
that higherPs will require more CPU resources [36]. In
addition, this assumption simplifies the presentation of the
paper (evaluatingXs).

3.3 Shared resources

The presented HSF allows for sharing of logical re-
sources between arbitrary tasks, located in arbitrary subsys-
tems, in a mutually exclusive manner. To access a resource
Rj , a task must first lock the resource, and when the task
no longer needs the resource it is unlocked. The time dur-
ing which a task holds a lock is called a critical section. A
resource that is used by tasks in more than one subsystem is
denoted aglobal shared resource.

To be able to use SRP in a HSF for synchronizing global
shared resources, its associated terms resource, system and
subsystem ceilings are extended as follows:

• Resource ceiling: Each global shared resourceRj is
associated with two types of resource ceilings; an
internal resource ceiling (rcj) for local scheduling
and anexternal resource ceiling (RXj) for global
scheduling. Lower bounds forrcj andRXj are de-
fined asrcLWB

j = max{i|τi ∈ Ts accessesRj} and
RXLWB

j = max{s|Ss accessesRj}, respectively.

• System/subsystem ceiling: The system/subsystem ceil-
ings (SC/scs) are dynamic parameters that change
during execution. The system/subsystem ceiling
is equal to the highest external/internal resource
ceiling of a currently locked resource in the sys-
tem/subsystem.

Under SRP, a taskτk can preempt the currently execut-
ing taskτi (even inside a critical section) within the same
subsystem, only if the priority ofτk is greater than its cor-
responding subsystem ceiling. The same reasoning applies
for subsystems from a global scheduling point of view. An
attractive property of SRP is that it allows tasks within a
subsystem to share a common stack.

4 HSF schedulability analysis

This section presents the schedulability analysis of the
HSF, starting with local schedulability analysis needed to
calculate subsystem interfaces, and finally, global schedula-
bility analysis. However, before jumping into the detailed
analysis, the periodic processor model is presented, being
instrumental in the following analyses.

4.1 The periodic processor model

The notion of real-time virtual processor (resource)
model was first introduced by Moket al.[27] to characterize
the CPU allocations that a parent node provides to a child
node in a hierarchical scheduling framework. TheCPU
supplyof a virtual processor model refers to the amount
of CPU allocations that the virtual processor model can
provide. Thesupply bound functionof a virtual processor
model calculates the minimum possible CPU supply of the
virtual processor model for a time interval lengtht.

Shin and Lee [34] proposed the periodic virtual proces-
sor modelΓ(P, Q), whereP is a period (P > 0) andQ is
a periodic allocation time (0 < Q ≤ P). The periodic vir-
tual processor modelΓ(P, Q) is defined to characterize the
following property:

supplyΓ

(

kP, (k + 1)P
)

= Q, wherek = 0, 1, 2, . . . ,
(1)

where the supply functionsupplyΓ(t1, t2) computes the
amount of CPU allocations that the virtual processor model
Γ provides during the interval[t1, t2).

For the periodic modelΓ(P, Q), its supply bound func-
tion sbfΓ(t) is defined to compute the minimum possible
CPU supply for every interval lengtht as follows:

sbfΓ(t) =

t − (k + 1)(P − Q) if t ∈ [(k + 1)P − 2Q,
(k + 1)P − Q],

(k − 1)Q otherwise,
(2)

where k = max
(

⌈(

t − (P − Q)
)

/P
⌉

, 1
)

. Here, we

first note that an interval of lengtht may not begin syn-
chronously with the beginning of periodP . That is, as
shown in Figure 2, the interval of lengtht can start in the
middle of the period of a periodic modelΓ(P, Q). We also
note that the intuition ofk in Eq. (2) basically indicates how
many periods of a periodic model can overlap the interval
of lengtht, more precisely speaking, the interval of length
t− (P −Q). Figure 2 illustrates the intuition ofk and how
the supply bound functionsbfΓ(t) is defined fork = 3.

4.2 Local schedulability analysis

Let dbfEDF(i, t) denote the demand bound function of a
taskτi under EDF scheduling [5], i.e.,

0 1 2 3 4 5 6 7 8 9 10
t

sb
f(

t)

P

Q

P P P

Q QQ

(k-1)P
BD =
2P-2Q

Figure 2. Supply bound function of a periodic
virtual processor model Γ(P, Q) for k = 3.

dbfEDF(i, t) =
⌊ t + Ti − Di

Ti

⌋

· Ci. (3)

The local schedulability condition under EDF scheduling is
then ([34])

∀t > 0
∑

τi∈Γ

dbfEDF(i, t) ≤ sbfΓ(t), (4)

Let dbfFP(i, t) denote the demand bound function of a
taskτi under FPS [21], i.e.,

dbfFP(i, t) = Ci +
∑

τk∈hp(i)

⌈ t

Tk

⌉

· Ck. (5)

The local schedulability analysis under FPS can then
easily be extended from the results of [4, 34] as follows:

∀τi, 0 < ∃t ≤ Di dbfFP(i, t) ≤ sbfΓ(t). (6)

4.3 Global schedulability analysis

The global scheduler schedules subsystems in a similar
way as scheduling simple real-time periodic tasks. The rea-
son is that we are using the periodic resource model to ab-
stract the collective timing temporal requirements of sub-
systems, so the subsystem can be modeled as a simple pe-
riodic task where the subsystem period is equivalent to the
task period and the subsystem budget is equivalent to the
task execution time. Depending on the global scheduler (if
it is EDF, RM or DM), it is possible to use the schedulabil-
ity analysis methods used for scheduling periodic tasks in
order to check the global schedulability.

4.4 Subsystem interface calculation

Using HSF, a subsystemSs is assigned a fraction of
CPU-resources which equals toQs/Ps. It is required to
decrease the required CPU-resources fraction for each sub-
system as much as possible without affecting the schedula-
bility of its internal tasks. By decreasing the required CPU-
resources for all subsystems, the overall CPU demand re-
quired to schedule the entire system (system load) will be
decreased, and by doing this, more applications can be in-
tegrated in a single processor.

To evaluate the minimum CPU-resources frac-
tion required for a subsystemSs and given Ps, let
calculateBudget(Ss, Ps) denote a function that calculates
the smallest subsystem budgetQs that satisfies Eq. (4)
and Eq. (6). Hence,Qs = calculateBudget(Ss, Ps). The
function is a searching function similar to the one presented
in [34] and the resulting subsystem timing interface is
(Ps, Qs).

5 Hierarchical scheduling with resource
sharing

In this section we take a closer look into the problem of
allowing for sharing of logical resources in a HSF, and we
discuss and compare a number of possible solutions.

5.1 Detailing the problem

When a task accesses a shared logical resource, all other
tasks that want to access the same resource will be blocked
until the task that is currently accessing the resource re-
leases it. To achieve a predictable real-time behavior, the
waiting time of other tasks that want to access a locked
shared resource should be bounded. The traditional syn-
chronization protocols such as SRP and PCP, protocols
that are often used with non-hierarchical scheduling, cannot
without modification handle the problem of sharing global
resources in a HSF. To explain the reason, suppose a taskτj

that belongs to a subsystemSI is holding a logical resource
R1, the execution of the taskτj can be preempted whileτj

is executing inside the critical section of the resourceR1

(see Figure 3) due to the following reasons:

1. Intra subsystem preemption; a higher priority taskτk

within the same subsystem preempts the taskτj .

2. Inter subsystem preemption; a ready taskτc that belong
to a subsystemSP preemptsτj when the priority of
subsystemSP is higher than the priority of subsystem
SI .

3. Budget expiry inside a critical section; if the budget of
the subsystemSI expires, the taskτj will not be al-
lowed to execute until the budget of its subsystem will

be replenished at the beginning of the next subsystem
periodPI .

The SRP and PCP protocols can only solve the problem
caused by task preemption within a subsystem (case num-
ber1) since there is a direct relationship between the prior-
ities of tasks within the same subsystem. However, if tasks
are from different subsystems (inter subsystem preemption)
then priorities of tasks belonging to different subsystems
are independent of each other, which make these protocols
not suitable to be used directly to solve the problem of syn-
chronization in a HSF. One way to solve this problem is us-
ing the protocols SRP and PCP between subsystems such
that if a task that belongs to a subsystem locks a global
resource, then this subsystem blocks all other subsystems
where their internal tasks want to access the same global
shared resource.

Another problem of directly applying the SRP and PCP
protocols in a HSF is that of budget expiry inside a crit-
ical section. The subsystem budgetQI is said toexpire
at the point when one or more internal (to the subsystem)
tasks have executed a total ofQI time units within the cur-
rent subsystem periodPI . Once the budget is expired, no
new tasks within the same subsystem can initiate execution
until the subsystem’s budget is replenished. This replenish-
ment takes place in the beginning of each subsystem period,
where the budget is replenished to a value ofQI .

Budget expiration can cause a problem, if it happens
while a taskτj of a subsystemSI is executing within the
critical section of a global shared resourceR1. If another
taskτm, belonging to another subsystem, is waiting for the
same resourceR1, this task must wait untilSI is replen-
ished soτj can continue to execute and finally release the
lock on resourceR1. This waiting time exposed toτm can
be potentially very long, causingτm to miss its deadline.

5.2 Supporting sharing of logical re-
sources

Several protocols have been proposed to enable sharing
of logical resources in a HSF. These protocols use differ-
ent methods to handle the problem of bounding the waiting
time of other tasks that are waiting for a shared resource.
Most of them rely on the SRP protocol to synchronize ac-
cess to a shared resource within a subsystem to solve the
problem of intra subsystem preemption, and they also use
SRP among subsystems to solve the problem of inter sub-
system preemption. Note that the effect of using SRP with
both local and global scheduling should be considered dur-
ing the schedulability analysis.

In general, solving the problem of budget expiry inside a
critical section is based on one of, or a combination of, the
two approaches of

• adding extra resources to the budget of each subsystem

��� �� ���� �	

����������� ��������� �� ����

����
���� �	 � � !" �	
������#�$�%$ ��������� ���� �	&'(�()* �(��
������+�,-.�/, ��������� �0

12 34356789: 8:;8<3 =>1? 34356789: 8:;8<3 =>

Figure 3. Task preemption while running inside a critical section.

to prevent the budget expiration inside a critical section
(applied by HSRP [14]), and/or,

• preventing a task from locking a shared resource if its
subsystem does not have enough remaining budget at
the time when the task tries to lock the resource (ap-
plied by BROE [18] and SIRAP [8]).

The following sections explain details of these two ap-
proaches as they are applied in the HSRP, BROE and SIRAP
protocols, respectively.

5.2.1 HSRP

The Hierarchical Stack Resource Policy (HSRP) [14] ex-
tends the SRP protocol to be appropriate for hierarchical
scheduling frameworks with tasks that access global shared
resources. HSRP is based on anoverrunmechanism work-
ing as follows: when the budget of a subsystem expires
and the subsystem has a jobJi that is still locking a global
shared resource, the jobJi continues its execution until it
releases the locked resource. When a job accesses a global
shared resource its priority is increased to the highest lo-
cal priority, preventing any preemption during the access of
a shared resource from other tasks that belong to the same
subsystem. SRP is used at the global level to synchronize
the execution of subsystems that have tasks accessing global
shared resources. Each global shared resource has a ceiling
equal to the maximum priority of subsystems that have a
task accessing that resource. Two versions of overrun mech-
anisms have been presented; 1)with payback, which works
as follows: whenever overrun happens in a subsystemSs,
the budget of the subsystem will, in its next execution in-
stant, be decreased by the amount of the overrun time. 2)
without payback, no further actions will be taken after the

event of an overrun. Selecting which of these two mech-
anisms that gives better results in terms of task response
times in the general case is not stated, as it depends on the
particular system parameters.

5.2.2 BROE

The Bounded-delay Resource Open Environment (BROE)
server [18] extends the Constant Bandwidth Server
(CBS) [1] in order to handle the sharing of logical re-
sources in a HSF. The BROE server is suitable for open en-
vironments since it allows for each application to be devel-
oped and validated independently. For each application, the
maximum CPU resource demand is characterized by server
speed, delay tolerance (using the bounded-delay resource
partition [27]) and resource holding time [10, 19]. These
parameters will be used as an interface between the appli-
cation and the system scheduler so that the system scheduler
will schedule all servers according to their interface param-
eters. The interface parameters will also be used during the
admission control of new applications to check if there are
enough CPU resources to run this new application on the
processor. The BROE server uses the SRP protocol to arbi-
trate access to global shared resources and in order to pre-
vent the budget expiration inside critical section problem.
The application performs a budget check before accessing
a global shared resource. If the application has sufficient
remaining budget then it allows its task to lock the global
resource; otherwise it postpones its current deadline and re-
plenishes its budget (according to certain rules that guaran-
tee the correctness of the execution of CBS servers) to be
able to lock and release the global resource safely.

5.2.3 SIRAP

The Subsystem Integration and Resource Allocation Policy
(SIRAP) [8] protocol supports subsystem integration in the
presence of globally shared logical resources, and SIRAP
can as BROE be used in open environment systems. It uses
a periodic resource model to abstract the timing require-
ments of each subsystem. Each subsystem is characterized
by its period, budget and resource holding time, and it is
implemented as a periodic server. SIRAP uses the SRP pro-
tocol to synchronize the access to global shared resources in
both local and global scheduling. SIRAP applies askipping
approach to prevent the budget expiration inside critical sec-
tion problem. The mechanism works as follows; when a job
wants to enter a critical section, it enters the critical section
at the earliest instant such that it can complete the critical
section before the subsystem budget expires. This can be
achieved by checking the remaining budget before granting
the access to the global shared resources; if there is suffi-
cient remaining budget then the job enters the critical sec-
tion, and if there is insufficient remaining budget, the local
scheduler delays the critical section entering of the job un-
til the next subsystem budget replenishment (i.e., the task
that wants to enter the critical section will be blocked inter-
nally inside its subsystem until the next subsystem budget
replenishment).

5.3 Comparing the protocols

This section compares HSRP, BROE, and SIRAP, look-
ing at independency, universality, abstraction, efficiency,
and implementation complexity, respectively.

• Independency; the local schedulability analysis can
be performed independently and therefore the HSF is
suitable for use in open environment systems, where
applications may be developed and validated indepen-
dently in different environments.

• Universality; means that the scheduling algorithms
should not be specific to (a) certain algorithm(s), i.e., it
should be possible to employ any scheduling algorithm
in the HSF.

• Timing abstraction; each subsystem specifies the
amount of CPU demand required to schedule all inter-
nal tasks through their respective timing interface. The
global scheduler schedules all subsystems according to
their timing interfaces. Hence, it is required to evalu-
ate the minimum collective CPU demand requirement,
which will appear in the subsystem interface, guaran-
teeing feasibility of the local schedulers of a subsys-
tem.

• Efficiency; looking at CPU resource usage, the HSF
should use the CPU-resource efficiently by minimiz-
ing the collective CPU requirement (i.e., system load)

necessary to guarantee the schedulability of an entire
framework. By minimizing the system load, more sub-
systems can be integrated in a single processor, which
makes the framework cost-efficient and applicable for
a wide domain of applications, e.g., automotive, au-
tomation, aerospace and consumer electronics.

• Implementation complexity; the implementation of the
protocols is a very important issue that should be care-
fully dealt with, as many protocols lose their effi-
ciency when they are implemented, i.e., the overhead
of implementing a protocol may be higher than the re-
sources that the protocol can save.

5.3.1 Independency

The schedulability analysis associated with both SIRAP
and BROE support independent development of subsys-
tems, i.e., the schedulability of a subsystem can be an-
alyzed independently, making both protocols suitable for
open environments. However, HSRP does not support this
feature in the sense that information about other subsys-
tems is needed in order to apply the schedulability analysis
for tasks. In [9, 33], we presented schedulability analysis
that enables independent development of subsystems using
HSRP, by assuming that each subsystem will be supplied
with the minimum amount of CPU resources (i.e., consid-
ering a worst-case scenario) from the global scheduler.

5.3.2 Universality

The schedulability analysis presented for HSRP in [14] is
based on Fixed Priority Scheduling (FPS) for both local and
global schedulers, and in [9], Earliest Deadline First (EDF)
scheduling is used for both local and global scheduling.
For SIRAP the local scheduler is FPS (with some modifica-
tions the local scheduler can be EDF as well) and the global
scheduler can be either EDF or FPS. The BROE server uses
EDF both locally and globally. Note that BROE uses CBS
globally, which means that the global scheduler is restricted
to EDF.

5.3.3 Timing abstraction

For comparison purposes, for HSRP, we use the local
schedulability analysis presented in [9, 33] as the work pre-
sented in [14] did not show how to evaluate a subsystem’s
corresponding subsystem interface; it assumes that the tim-
ing interface is given. To specify the subsystem timing in-
terface for both HSRP and SIRAP we use the periodic re-
source modelΓs(Ps, Qs) [34], wherePs and Qs are the
subsystem period and budget respectively. Since all proto-
cols use SRP locally1 then the effect of this should be in-
cluded in the local schedulability analysis, which can be

1The HSRP version presented in [14] did not use SRP locally butit
prevents any preemption while a task is accessing a global shared resource.

considered as a blocking time that a task may block other
tasks while accessing global shared resources. In addition,
SIRAP includes the effect of self blocking, thereby solving
the problem of budget expiry inside a critical section, in the
local schedulability analysis.

A final remark concerning subsystem interfaces is the
level of timing abstraction achieved. For all presented pro-
tocols (HSRP, SIRAP and BROE) the values of resource
holding times [19], which is the maximum time that a sub-
system may lock a resource, should be included in the sub-
system interface, to be used in the global schedulability
analysis. However, during runtime only SIRAP and BROE
require the explicit values of resource holding times in order
to check if there is enough remaining budget before locking
global shared resources; this is not necessary for HSRP.

5.3.4 Efficiency (in terms of CPU resource usage)

When the SRP protocol is used globally, its effect should
be included in the global schedulability. Similar to local
schedulability analysis, its effect in the global analysiswill
be visible as blocking times that a subsystem may block
each other subsystem. Note that, the maximum blocking
time that a subsystem may block other subsystems will be
equal to its maximum resource holding time. For HSRP
the effect of allowing a subsystem to overrun, in case of
budget expiration inside a critical section, is also added to
the global schedulability analysis.

For comparison purposes, let us definesystem loadas a
quantitative measure to represent the minimum amount of
CPU allocations necessary to guarantee the schedulability
of the systemS. Eq. (13) in [9] shows how to evaluate the
system load when the global scheduler is EDF, and Eq. (9)
in [33] yields the same information for an FPS global sched-
uler. An efficient protocol is a protocol that produces the
lowest system load once used. Comparing between SIRAP
and HSRP, it is not possible to prove that one of the pro-
tocols is more efficient than the other [6], as such a state-
ment depends on the subsystem parameters as well as on
the parameters of the shared resources (even between the
two types of overrun mechanisms presented in [14] is not
easy to find which of them that requires less system load).
BROE seems to be more efficient than the other two, how-
ever it is not easy to prove such a property as in [18] the
authors did not explain how to evaluate the resource hold-
ing times when using a BROE server (the authors left this
issue to a future submission), and these values have great
effect on the system load (since they are used in the global
schedulability analysis as a blocking times).

5.3.5 Implementation complexity

Both SIRAP and HSRP rely on using the periodic server2 to
implement each subsystem that is allowed to execute budget
Qs every periodPs. Implementing the BROE server is done
relying on a EDF global scheduler together with a modified
version of CBS. Comparing the two types of servers, the
implementation of the periodic server is easier than the im-
plementation of the CBS server (CBS has more states and
the server change its state when it passes certain instances
in time). One more thing in the comparison is that the CBS
server should update its parameters (deadline, virtual time
and reactivation time etc.) and it continuously changes the
state of the server (contending, non-contending, suspended,
inactive, blocked). On the other hand, using periodic server,
the global scheduler can update the server parameters (re-
maining budget) and change the state of the server (ready,
non-ready, blocked).

Comparing SIRAP and HSRP using the periodic server,
the SIRAP protocol provides better isolation between the
local and the global scheduler. The reason for this is that
when using HSRP, (1) the local scheduler should inform
the global scheduler about events such as overrun, in order
to keep the server executing even when its budget is con-
sumed, and (2) the local scheduler should inform the global
scheduler when its task release a global resource in order to
remove the server from the execution when executing out of
budget. While for SIRAP, no such communication between
the global and local schedulers is required since the prob-
lem of the budget expiration inside the critical section of a
global shared resource is solved locally.

6 Detailed analysis of SIRAP

This section present a detailed analysis of the SIRAP
protocol, starting with the local schedulability analysis, fol-
lowed by how to derive various parameters, and finishing
with the global schedulability analysis.

6.1 Local schedulability analysis

The local schedulability analysis under FPS is as fol-
lows [4, 34]:

∀τi ∃t : 0 < t ≤ Di, rbfFP(i, t) ≤ sbfs(t), (7)

wheresbfs(t) is the supply bound functionbased on the
periodic resource model presented in [34] that computes
the minimum possible CPU supply toSs for every inter-
val lengtht (see Section 4 for details), andrbfFP(i, t) de-
notes therequest bound functionof a taskτi. Note that, for

2A periodic server is a server that works/behaves similar as aperiodic
task.

Eq. (7), t can be selected within a finite set of scheduling
points [24].

The request bound functionrbfFP(i, t) of a taskτi is
given by:

rbfFP(i, t) = Ci + IS(i) + IH(i, t) + IL(i), (8)

IS(i) =
∑

Rk∈{Ri}

Xi,k, (9)

IH(i, t) =
∑

τj∈hp(i)

⌈ t

Tj

⌉

(Cj +
∑

Rk∈{Rj}

Xj,k), (10)

IL(i) = max
τf∈lp(i)

(2 · max
∀Rj |rcj≥i

(Xf,j)), (11)

whereIS(i) is the self blocking of taskτi, IH(i, t) is the
interference from tasks with priority higher than that ofτi,
andIL(i) is the interference from tasks, with priority lower
than that ofτi, that access shared resources.

6.2 Calculating Xs

Given a subsystemSs, its critical section execution time
Xs represents a worst-case CPU demand that internal tasks
of Ss may collectively request while executing inside any
critical section. Note that any taskτi accessing a resource
Rj can be preempted by tasks with priority higher thanrcj .
Note that SIRAP prevents subsystem budget expiration in-
side a critical section of a global shared resource. When
a task experiences self-blocking during a subsystem budget
period it is guaranteed access to the resource during the next
period. A sufficient condition to provide this guarantee is

Qs ≥ Xs. (12)

We now deriveXs ≤ Qs < Ps and since we assume
that2Ps ≤ Tmin then all tasks that are allowed to preempt
while τi accessesRj will be activated at most one time from
the time that self blocking happens until the end of the next
subsystem period. ThenXi,j can be computed as follows,

Xi,j = ci,j +

ns
∑

k=rcj+1

Ck. (13)

Let Xj = max{Xi,j| for all τi ∈ Ts accessingRj},
thenXs = max{Xj| for all Rj ∈ Rs}.

6.3 Internal resource ceiling

Looking at Eq. (13), assigning internal resource ceilings
according to SRP may make the value ofXs very high
which causes the subsystem to require more CPU resources.

One way to handle this problem is by preventing the pre-
emption inside the subsystem when a task is accessing a
shared resource as proposed in [14] soXi,j = ci,j . It
can be implemented using SRP by assigning the resource
ceiling of all resources equal to the maximum task priority
rcj = ns wherens is the task ID number of the highest
priority task. However, Bertognaet al. [10] showed that
preventing preemption while accessing a global shared re-
source may violate the local schedulability of the subsystem
and proposed an algorithm based on increasing the ceiling
of all resources in steps as much as possible without violat-
ing the local schedulability. Finally, Shinet al.[33] showed
that there is a tradeoff between decreasing the value ofXs

and the minimum subsystem budget required to guarantee
the schedulability of the subsystem.

The result of this paper does not depend on any of the
discussed methods to set the internal resource ceiling. So
we assume that the internal ceiling of resourceRj can be
selected within the following rangens ≥ rcj ≥ rcLWB

j .

6.4 Global schedulability analysis

The general condition for global schedulability is

∀Ss ∃t : 0 < t ≤ Ps, RBFs(t) + Bs ≤ t (14)

whereBs is the maximum blocking imposed to a subsystem
Ss, when it is blocked by lower-priority subsystems (sup-
pose thatSj imposes the maximum blocking onSs then
Bs = Xj). Eq. (15) is used to evaluateRBFs(t) for the
SIRAP protocol:

RBFs(t) = Qs +
∑

Sk∈HP(s)

⌈ t

Pk

⌉

· Qk (15)

whereHP(s) is the set of subsystems with priority higher
than than of subsystemSs. Note that the way of calculating
RBFs(t) depends on the synchronization protocol.

7 Adaptive and reconfigurable systems

The HSF is very useful when it comes to the implemen-
tation of operating system support for adaptability and re-
configurability needed in dynamic open systems, where ap-
plications (one or more subsystems) may be allowed to join
and/or leave the system during runtime. In allowing such
functionality, a properadmission control(AC) must be pro-
vided. Also, the HSF allows for a convenient implementa-
tion of quality of service management policies, allowing for
a dynamic allocation of resources to subsystems.

The admission control (AC) applies one or more algo-
rithms to determine if a new application (consisting of one
or multiple subsystems) can be allowed to join the system
and start execution (admission) without violating the re-
quirements of the already existing applications (or the re-
quirements of the whole system). The decision of the AC

depends on the state of the system resources and the re-
sources required by the new application asking for admis-
sion. If there are enough resources available in the system,
the application will be admitted; otherwise the application
will be rejected.

In general, since the AC uses online algorithms the
complexity and overhead of implementing these algorithms
should be very low for several reasons, such as maintaining
scalability of the AC and minimizing its interference on the
system. Hence, one objective in designing the AC concerns
keeping the input to these algorithms as simple as possi-
ble, e.g., the resource requirement for each individual task
could be abstracted to the subsystem level. Another objec-
tive concerns minimizing interference between the AC and
the system online, making it desirable to perform as much
work as possible offline.

7.1 Admission of resources

The resourcesconsidered by the AC may include, but
are not limited to,CPU resources,memoryresources,net-
work resource andenergyresources. Initially, we have been
focusing on CPU and network resources, and are now also
looking at memory resources.

7.1.1 CPU resources

When using the HSF, traditional schedulability algorithms
can be used in order to check the CPU resources, e.g., by us-
ing the global schedulability test in the HSF [34, 35]. This
algorithm depends on the type of system level scheduler
used, e.g., EDF, FPS, etc. The AC checks the schedulabil-
ity condition of the system including the new subsystem. If
the system is still schedulable, the new subsystem will pass
this test; otherwise the new application will be rejected. In
using this test, it is guaranteed that all hard real time re-
quirements will be met. The input to the algorithm is the
subsystem interface (subsystem budget and period) of each
running subsystem together with the interface of the new
subsystem. Note that these parameters are evaluated and
determined during the development of the subsystem (of-
fline).

7.1.2 Memory resources

When allowing for a new application to enter the system,
the AC should guarantee that there is sufficient memory
space to be used by all subsystems. Otherwise, unexpected
problems may happen during run time. In a similar way as
for CPU resources, the maximum memory space required
by each subsystem is evaluated during its development. In
the AC test, a simple algorithm can be used to check if there
is enough memory space available in the system, by check-
ing if the summation of the maximum memory space for
all subsystems is less than or equal to the memory space

provided by the platform. Such an algorithm is very sim-
ple; however, the accuracy of the result is not high as all
applications will not likely need their specified maximum
memory space at the same time. Higher efficiency can be
achieved by the usage of algorithms such as the approxi-
mated algorithm presented in [11].

7.1.3 Energy resources

Most of the modern processors support changing the fre-
quency and voltage of the CPU during runtime, in control-
ling the CPU’s power consumption. The HSF can use this
feature to select the lowest frequency/voltage that guaran-
tees the hard real time requirements of the system. Decreas-
ing the frequency of a processor will increase the worst-case
execution time (WCET) of its tasks. In doing this, more
CPU resources should be allocated to subsystems in order
to ensure that all hard real time tasks will meet their dead-
lines. Looking at the HSF, if predefined levels of frequen-
cies are used, we can find a subsystem interface for each
frequency level for all subsystems. Then, during runtime,
the AC will make sure that the processor is working with the
lowest frequency keeping the schedulability of the current
set of subsystems. When it is required to add a new sub-
system, the AC will check the schedulability condition with
the current processor frequency; if the system is deemed not
schedulable, then the AC will try with higher frequencies.
When a subsystem is removed from the system, the AC will
try to reduce the frequency of the CPU in order to reduce its
power consumption.

7.1.4 Network resources

This type of resource is important in distributed systems
where there typically exist communications between nodes
in the network. The network resource is different from the
other resources previously described in the sense that the
network resource is shared by all nodes, while the other re-
sources are local to each node. When the AC is faced with a
request for adding a subsystem, it should check if the com-
munications requirements will be met, i.e., check if all im-
portant messages will be delivered in proper time [28]. Se-
lecting an algorithm that checks this resource is more com-
plex as there are many different requirements, communi-
cation protocols, network types, etc. Covering all these as-
pects might not be necessary but as an illustration considera
simple algorithm which relies on the communication band-
width. During the development of each subsystem, their
maximum communication bandwidth requirements should
be evaluated such that the AC can use it in order to check if
the summation of required bandwidth for all subsystems is
less than 100%.

7.2 Approaches to admission control in
distributed systems

Implementing the AC in distributed systems is more
complex than doing so for a single CPU. The main reason
for this is that the information needed by the AC algorithms
must be consistent. For example, when using the network
resources, awareness of all network users must be main-
tained by the AC, and these users are typically located on
many nodes throughout the distributed system. Commonly,
information on the current state is kept at one place, manag-
ing the information needed by the AC. Also, when an appli-
cation consists of more than one subsystem, and these sub-
systems are located at different nodes, all these subsystems
should pass the AC tests before admitting the application.

In designing the AC we have identified 3 different ap-
proaches based on where the AC test will be implemented.

• A specialMaster Node (MA) will implement the AC
tests of all resources in the system. Only the MA
will have information about resources in the system.
Hence, consistency is not a problem, it is easy to de-
termine the order between AC requests, and the AC
does not have to contact multiple nodes in getting the
current system state as only a single AC request to the
MA is needed. On the downside the MA is a single
system level point of failure.

• All Nodes (AN) will implement the AC tests of all re-
sources in the system. Each node should have the con-
sistent information of all resources that are used by the
system. Hence, in this fully distributed approach the
AC test can be performed without having to commu-
nicate with other nodes. Also, the approach is toler-
ant to failures. On the downside, consistency must be
maintained between all nodes, and ordering is more
complex compared with MA. Also, more memory is
needed in maintaining all resource state replicas.

• There will beOne Node (ON)implementing the AC
test of each resource in the system. Each node will
maintain information about the resources that is re-
sponsible for. Hence, there will be no issues with
respect to data consistencies between replicas of the
same information, but a single AC request might have
to communicate with a number of nodes in order to
get a valid system state. Also, ordering among AC re-
quests must be solved, and each resource owner will
be a single resource level point of failure.

The characteristics of the above three approaches are
outlined in Table 1, whereL is the number of resources and
n is the number of nodes.

MA AN ON
No. messages Single None Multiple
Consistency No problem Complex No problem
Ordering Simple Complex Complex
Fault Single point Fault Single point
tolerance of failure tolerant of failure

(system level) (resource level)
Memory L ∗ n L ∗ n ∗ n L ∗ n

Table 1. Properties of the 3 AC strategies.

8 Implementation

In this section we compare and discuss some issues re-
lated to the implementation of both SIRAP and HSRP. The
corresponding implementation is based on our previous im-
plementation of the Hierarchical Scheduling Framework
(HSF) [7] in the VxWorks operating system. In the imple-
mentation presented in [7], we have used periodic servers to
implement subsystems assuming that tasks are independent,
i.e., no sharing of logical resources is allowed.

The implementation of HSF supports both FPS and EDF
at the local and global scheduler levels. To support syn-
chronization between tasks (or subsystems) when access-
ing global shared resources, advances in the implementation
made since [7] include the implementation of the SRP pro-
tocol. Both schedulers (local and global) are activated pe-
riodically according to task/server parameters and we have
used a timer to trigger the schedulers. The schedulers use a
queue to save the time events called theTime Event Queue
(TEQ) (one TEQ to schedule the servers and one for each
subsystem to schedule its internal tasks). The TEQ is a
priority queue that consists of sorted events (period, dead-
line), according to absolute times, which are updated at each
scheduler invocation. At each global/local scheduler activa-
tion, the following is done:

• Handle the scheduling event (period or deadline
event).

• Update the occurred event in the TEQ.

• Fetch the nearest event (from TEQ) and set next sched-
uler expiration to timer.

• Update the SYSTEM TIME.

Figure 4 illustrates how the scheduler is triggered. After
the scheduler has taken care of the current scheduling event
(first node in the TEQ), this event is updated and put in the
TEQ. Triggering the scheduler to run at time 200 is done by
setting a timer to the value of the next event’s absolute time
subtracted with the current SYSTEM TIME since the timer
input should be in relative time. The schedulers SYSTEM
TIME are discrete clocks used only by the schedulers (it
has nothing to do with the OS system clock). The SYSTEM
TIME is set to 200 at scheduling event 100, so the SYSTEM

100 time

Scheduler

200 220 290

TEQ

100

SYSTEM TIME

220 290 300

TEQ

200

SYSTEM TIME

200

TEQ.first - SYSTEM TIME

Figure 4. Scheduler execution.

TIME will equal to 200 until next event (at absolute time
200).

As mentioned before, SRP is used by both local and
global schedulers when accessing a global shared resource,
so both HSRP and SIRAP require an SRP implementation.

When a task wants to access a global shared resource,
it first calls the functionlock, and the task releases the
shared resource when it calls the functionunlock. The
lock/unlock function has a similar implementation in
both SIRAP and HSRP. In order to manipulate or read
the VxWorks ready queue, resource queue or task blocking
queue (which are necessary to implement the SRP protocol)
in a safe manner, thelock/unlock must use interrupt
disable, in very short time, during these operations. Lock-
ing out interrupts is done in thelock/unlock function to
create mutual exclusion between the synchronization pro-
tocol and the schedulers (which are the only ones who use
these data structures).

The main difference in the implementations of SIRAP
and HSRP is related to how they avoid budget expiration
inside a critical section. In SIRAP, we postpone the execu-
tion of the critical section to the next server period if there
is not enough remaining budget to execute and release the
critical section before the budget expiration. Implement-
ing this is done by blocking the task that tried to enter the
critical section and set the subsystem ceiling equal to the
internal ceiling of the resources that the task tried to ac-
cess. Then letting the server continue to execute and queue
all the blocked tasks (which are blocked by the use of SRP
protocol) that have release times during the self-blocking
phase (from the time that the task try to lock a resource and
becomes blocked until the time at which the budget of the
subsystem expires). Hence, only the tasks that have prior-
ity higher than the subsystem ceiling are allowed to execute
during the self-blocking phase.

HSRP will prolong the server budget, when the budget
expires inside a critical section, by letting the protocol ma-
nipulate (increase) the remaining budget in the server. The
budget will reset (equals to zero) when the critical section
execution is finished, which means that the global scheduler
must be informed (called) about this from task level in order
to remove the server from the execution. This approach is
not good because of two reasons:

Firstly, the scheduler needs the current absolute time in
order to set a correct next expiration time and the current
SYSTEM TIME is not correct since the activation of the
global scheduler is not in response to time event. Time
stamping must be used to get the correct current absolute
time. The problem is that using timestamp to evaluate the
absolute SYSTEM TIME may add drift depending on the
resolution of this facility. If the timestamp value has a error
margin of 1µs, then the scheduler could set its next expira-
tion 1 µs too early or too late which will have a big impact
on the scheduling and might cause a drift. Normally, the in-
terrupt facility will start the scheduler in the amount of time
equal to the expiration time that was set in the last scheduler
invocation.

Secondly, we break the isolation between the local and
global schedulers by letting the local level directly call the
global entity. Subsystems must not be aware of the global
scheduling if subsystem development should be done in iso-
lation.

To enable the payback approach in HSRP (payback
means that the overrun time will be paid back in the next
execution instant), the overrun time is measured (by using
timestamp) and the global scheduler decrease the budget of
the server by the amount of overrun in the next execution
instant. Note that a server can be preempted during the exe-
cution in overrun phase which should be taken into account
while measuring the overrun time.

9 Summary

In this paper we have presented the Hierarchical
Scheduling Framework (HSF) together with a brief
overview of related approaches. Particular focus have been
put on techniques to allow for synchronization in HSFs,
and a number of synchronization protocols have been com-
pared. We have discussed some considerations regarding
using HSFs in dynamic, adaptable and reconfigurable sys-
tems, highlighting various approaches for implementing ad-
mission control in distributed systems. Finally, we have pre-
sented experiences from our implementation of a HSF in
VxWorks, comparing issues related to the implementation
of several synchronization protocols.

Some pointers to further reading on related topics in-
clude:

• Our original paper on the SIRAP synchronization pro-
tocol allowing for mutually exclusive sharing of log-

ical resources in two-level hierarchically scheduled
real-time systems for single processors [8]. In this pa-
per, we have formally proven key features of the proto-
col, such as bounds on delays for accessing shared log-
ical resources, and we have developed schedulability
analysis for tasks executing in the subsystems; allow-
ing for hard real-time applications to use the protocol.

• Techniques to handle budget expiration in hierarchi-
cal scheduling [9]. One problem that becomes ap-
parent when allowing for synchronization in hierar-
chical scheduling is how potential overruns shall be
coped with. We have analyzed three methods to han-
dle overruns due to mutual exclusive resource sharing
between subsystems. For each one of these three over-
run methods corresponding scheduling algorithms and
associated schedulability analysis have been presented
together with analysis that shows under what circum-
stances one or the other is preferred.

• We have developed algorithms for (1) system-
independent synthesis of timing-interfaces for subsys-
tems and (2) system-level selection of interfaces to
minimize CPU load. We show that the use of shared
mutually exclusive logical resources results in a trade-
off problem, where resource locking times can be
traded for CPU allocation, complicating the problem
of finding the optimal interface configuration subject
to scheduability. We have presented a methodology
where such a tradeoff can be effectively explored [33].
We have implemented a hierarchical scheduling frame-
work in a commercial operating system [7], together
with several synchronization protocols for mutual ex-
clusion of shared logical resources.

Currently we are working on issues related to multipro-
cessors and implementation in Linux.

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia ap-
plications in hard real-time systems. InProceedings of
the 19th IEEE International Real-Time Systems Symposium
(RTSS’98), pages 4–13, Madrid, Spain, December 1998.

[2] L. Almeida and P. Pedreiras. Scheduling within temporal
partitions: response-time analysis and server design. InPro-
ceedings of the 4th ACM international conference on Em-
bedded software (EMSOFT’04), pages 95–103, Pisa, Italy,
September 2004.

[3] D. Andrews, I. Bate, T. Nolte, C. M. O. Pérez, and S. M.
Petters. Impact of embedded systems evolution on RTOS
use and design. In G. Lipari, editor,Proceedings of the
1st International Workshop Operating System Platforms for
Embedded Real-Time Applications (OSPERT’05) in con-
junction with the 17th Euromicro International Conference
on Real-Time Systems (ECRTS’05), pages 13–19, Palma de
Mallorca, Balearic Islands, Spain, July 2005.

[4] T. P. Baker. Stack-based scheduling of realtime processes.
Real-Time Systems, 3(1):67–99, March 1991.

[5] S. Baruah, A. Mok, and L. Rosier. Preemptively schedul-
ing hard-real-time sporadic tasks on one processor. InPro-
ceedings of the 11th IEEE International Real-Time Systems
Symposium (RTSS’90), pages 182–190, Lake Buena Vista,
Florida, USA, December 1990.

[6] M. Behnam, T. Nolte, M.Åsberg, and R. Bril. Over-
run and skipping in hierarchically scheduled real-time sys-
tems. InProceedings of the 15th IEEE International Con-
ference on Real-Time Computing Systems and Applications
(RTCSA’09), Beijing, China, August 2009.

[7] M. Behnam, T. Nolte, I. Shin, M.̊Asberg, and R. J. Bril.
Towards hierarchical scheduling on top of VxWorks. In
Proceedings of the 4th International Workshop on Operat-
ing Systems Platforms for Embedded Real-Time Applica-
tions (OSPERT’08), Prague, Czech Republic, July 2008.

[8] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: A
synchronization protocol for hierarchical resource sharing
in real-time open systems. InProceedings of the 7th ACM
and IEEE International Conference on Embedded Software
(EMSOFT’07), pages 279–288, Salzburg, Austria, October
2007.

[9] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Scheduling of
semi-independent real-time components: Overrun methods
and resource holding times. InProceedings of 13th IEEE In-
ternational Conference on Emerging Technologies and Fac-
tory Automation (ETFA’08), Hamburg, Germany, September
2008.

[10] M. Bertogna, N. Fisher, and S. Baruah. Static-priority
scheduling and resource hold times. InProceedings of the
15th International Workshop on Parallel and Distributed
Real-Time Systems (WPDRTS’07), pages 1–8, Long Beach,
CA, USA, March 2007.

[11] M. Bohlin, K. Hänninen, J. Mäki-Turja, J. Carlson, and
M. Nolin. Safe shared stack bounds in systems with offsets
and precedences. Technical Report ISSN 1404-3041 ISRN
MDH-MRTC-221/2008-1-SE, Mälardalen University, Jan-
uary 2008.

[12] B. Bouyssounouse and J. Sifakis, editors.Embedded Sys-
tems Design: The ARTIST Roadmap for Research and De-
velopment, volume LNCS-3436. Springer, 2005.

[13] R. I. Davis and A. Burns. Hierarchical fixed priority pre-
emptive scheduling. InProceedings of the 26th IEEE In-
ternational Real-Time Systems Symposium (RTSS’05), pages
389–398, Miami Beach, FL, USA, December 2005.

[14] R. I. Davis and A. Burns. Resource sharing in hierarchi-
cal fixed priority pre-emptive systems. InProceedings of
the 27th IEEE International Real-Time Systems Symposium
(RTSS’06), pages 389–398, Rio de Janeiro, Brazil, Decem-
ber 2006.

[15] Z. Deng and J.-S. Liu. Scheduling real-time applications in
an open environment. InProceedings of the 18th IEEE In-
ternational Real-Time Systems Symposium (RTSS’97), pages
308–319, San Francisco, CA, USA, December 1997.

[16] A. Easwaran, M. Anand, and I. Lee. Compositional analysis
framework using edp resource models. InProceedings of
the 28th IEEE International Real-Time Systems Symposium
(RTSS’07), pages 129–138, Washington, DC, USA, 2007.

[17] X. Feng and A. Mok. A model of hierarchical real-time
virtual resources. InProceedings of the 23rd IEEE Interna-
tional Real-Time Systems Symposium (RTSS’02), pages 26–
35, Austin, TX, USA, December 2002.

[18] N. Fisher, M. Bertogna, and S. Baruah. The design of
an EDF-scheduled resource-sharing open environment. In
Proceedings of the 28th IEEE International Real-Time Sys-
tems Symposium (RTSS’07), pages 83–92, Washington, DC,
USA, December 2007.

[19] N. Fisher, M. Bertogna, and S. Baruah. Resource-locking
durations in EDF-scheduled systems. InProceedings of the
13th IEEE Real Time and Embedded Technology and Ap-
plications Symposium (RTAS’07), pages 91–100, Bellevue,
WA, USA, 2007.

[20] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open en-
vironment for real-time applications. InProceedings of
the 20th IEEE International Real-Time Systems Symposium
(RTSS’99), pages 256–267, Phoenix, AZ, USA, December
1999.

[21] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: exact characterization and average
case behavior. InProceedings of the 20th IEEE Inter-
national Real-Time Systems Symposium (RTSS’89), pages
166–171, Santa Monica, CA, USA, December 1989.

[22] G. Lipari and S. K. Baruah. Efficient scheduling of real-
time multi-task applications in dynamic systems. InPro-
ceedings of the 6th IEEE Real-Time Technology and Appli-
cations Symposium (RTAS’00), pages 166–175, Washington
DC, USA, May-June 2000.

[23] G. Lipari and E. Bini. Resource partitioning among real-
time applications. InProceedings of the 15th Euromicro
Conference on Real-Time Systems (ECRTS’03), pages 151–
158, Porto, Portugal, July 2003.

[24] G. Lipari and E. Bini. A methodology for designing hierar-
chical scheduling systems.J. Embedded Comput., 1(2):257–
269, 2005.

[25] G. Lipari, J. Carpenter, and S. Baruah. A frame-
work for achieving inter-application isolation in multipro-
grammed hard-real-time environments. InProceedings of
the 21st IEEE International Real-Time Systems Symposium
(RTSS’00), pages 217–226, Orlando, FL, USA, December
2000.

[26] S. Matic and T. A. Henzinger. Trading end-to-end latency
for composability. InProceedings of the 26th IEEE Interna-
tional Real-Time Systems Symposium (RTSS’05), pages 99–
110, Washington, DC, USA, December 2005.

[27] A. Mok, X. Feng, and D. Chen. Resource partition for real-
time systems. InProceedings of IEEE Real-Time Technol-
ogy and Applications Symposium (RTAS’01), pages 75–84,
Taipei, Taiwan ROC, May 2001.

[28] T. Nolte. Share-Driven Scheduling of Embedded Networks.
PhD thesis, Department of Computer and Science and Elec-
tronics, Mälardalen University, Sweden, May 2006.

[29] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time syn-
chronization protocols for multiprocessors. InProceedings
of the 9th IEEE International Real-Time Systems Symposium
(RTSS’88), pages 259–269, Huntsville, AL, USA, Decem-
ber 1988.

[30] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H.
Klein. Analysis of hierarhical fixed-priority scheduling.In

Proceedings of the 14th Euromicro Conference on Real-
Time Systems (ECRTS’02), pages 152–160, Vienna, Austria,
June 2002.

[31] S. Saewong, R. R. Rajkumar, J. P. Lehoczky, and M. H.
Klein. Analysis of hierarhical fixed-priority scheduling.In
Proceedings of the 14th Euromicro Conference on Real-
Time Systems (ECRTS’02), pages 152–160, Vienna, Austria,
June 2002.

[32] L. Sha, J. P. Lehoczky, and R. Rajkumar. Task scheduling
in distributed real-time systems. InProceedings of the In-
ternational Conference on Industrial Electronics, Control,
and Instrumentation IECON87, pages 909–916, Cambridge,
MA, USA, November 1987.

[33] I. Shin, M. Behnam, T. Nolte, and M. Nolin. Synthesis of op-
timal interfaces for hierarchical scheduling with resources.
In Proceedings of the 29th IEEE International Real-Time
Systems Symposium (RTSS’08), Barcelona, Spain, Decem-
ber 2008.

[34] I. Shin and I. Lee. Periodic resource model for composi-
tional real-time guarantees. InProceedings of the 24th IEEE
International Real-Time Systems Symposium (RTSS’03),
pages 2–13, Cancun, Mexico, December 2003.

[35] I. Shin and I. Lee. Compositional real-time scheduling
framework. In Proceedings of the 25th IEEE Interna-
tional Real-Time Systems Symposium (RTSS’04), pages 57–
67, Lisbon, Portugal, December 2004.

[36] I. Shin and I. Lee. Compositional real-time scheduling
framework with periodic model.ACM Transactions on Em-
bedded Computing Systems, 7(3):1–39, 2008.

