
Behavioral Modeling and Refinement of Services

Aida Čaušević Cristina Seceleanu Paul Pettersson

Mälardalen Real-Time Research Centre (MRTC)
Mälardalen University,

Väster̊as, Sweden
{aida.delic, cristina.seceleanu, paul.pettersson}@mdh.se

Service-oriented systems (SOS) have recently emerged as context-independent compo-
nent-based systems (CBS). The SOS architecture assumes the service as the smallest func-
tional unit, with capabilities of being published, invoked, composed and destroyed at run-
time. Services are more loosely coupled if compared to components in CBS, and enjoy
higher level of independence from implementation specific attributes. They are exposed in
order to be discovered, and since they are invoked and composed at run-time by the service
user, the quality-od-service (QoS) issues are emphasized.

As mentioned above, services can be perceived as independent and distributed functional
units, which can be composed to form new services. The service as a composition of smaller
services is called an orchestration. The orchestration can be defined as a composition of
requested and provided services, that is, each service is defined from a user and/or provider
perspective. Modeling service orchestration might require successive refinements of the
service models. A refinement between services is a relation that establishes the fact that
the new, more concrete model defines additional properties of the service, while preserving
the properties of the initial model, which has been refined.

In order to understand the ways in which services can evolve, a service behavioral de-
scription is required. A service behavioral description includes not only the interface de-
scription, but also representation of functionality, enabled actions, resource annotations,
and possible interactions within the service. Such behavior is in general hidden from the
service user, but may be useful to the service developer that needs to ensure that adding
more function or improving a service with respect to some QoS attribute does not alter
the correctness of the existing behavior. Most of the SOS frameworks treat service behav-
ioral description either in close connection to the underlying programming language [3, 4],
or the behavioral description is given at a higher level of abstraction than programming
languages, but lack a corresponding formal description [5, 6].

Many approaches have tried to model services in new and dedicated SOS frameworks. In
this work, we assume that the SOS’s architecture is modeled in the real-time component-
based framework called ProCom (A Component Model for Distributed Embedded Sys-
tems) [9]. The ProCom component model defines the CBS as a collection of hierarchical,
structured and interconnected ProCom components, be they active or passive, with well
defined input and output interfaces. The data and control flow are modeled separately in
ProCom, respectively: data can be read and written through the data ports, whereas trigger
ports ensure the component’s activation.

Modeling the behavior of ProCom components is realized in Remes (REsource Model
for Embedded Systems) [8]. Remes provides a meaningful basis for modeling and analyzing
the resource-constrained behavior of embedded systems. Moreover, the modeling of both
continuous (i.e., energy) and discrete resources (i.e., memory access to external devices) is
accounted for, a resource being a built-in type in the model. Remes is a state-machine-
based behavioral language that supports hierarchical modeling, continuous time, and has



notions of explicit entry and exit points that make it suitable for component-based system
modeling. The formal semantics of Remes models is given in terms of timed automata
(TA) [1] or priced timed automata (PTA) [2], which sets the ground for formally analyzing
such models. Transforming Remes models into a TA or PTA network depends on the type
of the analysis needed (i.e., timing analysis, resource consumption analysis, etc.). Here,
we show how services can be (internally) described by employing an extended version of
the behavioral language Remes, and to present an accompanying formal definition of a
resource-wise simulation relation between services, as a sufficient condition for proving
refinement of services.

Behavioral Modeling of Services and their Semantics. In Remes, a service is
represented by an atomic or a composite mode. The atomic mode does not contain any
submodes, whereas a composite one may contain one or more atomic submodes. In order
for a service to be published and later discovered, a list of attributes should be exposed at
the interface of a Remes mode. Such attributes are as follows:

• service type - defines whether the given service is a web service (i.e., weather report,
currency exchange, etc.) or a database service (i.e., ATM services);

• service capacity - describes the service’s ability to handle a given number of messages
per time unit. It can represent the maximum frequency of a given service;

• time-to-serve - defines the worst-case time needed for a service to respond and serve
a given request.

Given the Remes service Mode, when publishing Mode, the above mentioned informa-
tion will be given as follows:

Mode.Type = < web service, database >
Mode.Capacity = < number of messages per time unit >
Mode.T imeToServe = < number of time units >

Such properties are also used for discovering the service Mode: the attributes are spec-
ified by an interested party and, based on the specification, the service is retrieved or
not.

Let X be a finite set of clocks and B(X) the set of formulas obtained as conjunctions
of atomic constraints of the form x ./ n, where x ∈ X, n ∈ N, and ./ ∈ {<,≤,=,≥, >}.
The elements of B(X) are called clock constraints over X. We denote by Act the set of
actions that assign values to clocks and other variables. Then, the formal definition of
a Remes service is a PTA in which we deliberately replace the function that assigns costs
to locations and edges with a function that assigns resource usage values to modes and
edges in Remes:

Definition 1 A Remes service over clocks X is a tuple is a tuple (M,m0, E, I, Res), where
M is a finite set of modes m, m0 is the initial mode, E ⊆M ×B(X)×Act×2X×M is the
set of edges, I : M → B(X) assigns invariants to modes, and Res : (M ∪ E)→ N assigns
resource-usage values to both modes and edges.

The semantics of a Remes service is given as a labeled timed transition system with re-
sources (LTTS), with discrete transitions that result in changing the current state, and delay



transitions that do not change the state but result in time progress. A run of a Remes ser-

vice is a path in the underlying transition system. Given a run ξ = s0
r0→ s1

r1→ . . .
rn−1→ sn,

where s0, . . . , sn are states, and r0, . . . , rn−1 are the corresponding resource usage values
per transition, respectively, its ith accumulated resource-usage value is Resi(ξ) =

∑n−1
j=0 r

j
i .

Our Remes language needs to be extended with constructs for creating a new service
by connecting two services (Mode1 and Mode2) at run-time, that is, by binding the exit
point of Mode1 to the entry point of Mode2, and also for destroying a service:

build NewMode.Type ≡ connect Mode1.Exit to Mode2.Entry : create a service
destroy NewMode : delete a service

The formal semantics attached to such constructs is subject to future work.

Resource-wise Refinement of Remes Services. In SOS, it is sometimes the case that
the service user needs to replace a particular service with one of better QoS but similar
functionality. In order to ensure that the two services are behaviorally similar, one needs to
verify a refinement relation between services. As known, the existence of a timed simulation
relation is a sufficient condition for proving language inclusion, hence refinement.

Let us assume that the total accumulated value of resource-usage over various resources
R1, . . . , Rn of some system P is given as the following weighted sum: rP =def

∑n
i=1wi ∗ rPi ,

where wi are numbers that encode the relative importance of each resource, respectively,
and rPi are the resource-usage values corresponding to Ri, respectively. Then, we introduce
the definition of the resource-wise simulation relation between two LTTS, as follows:

Definition 2 Given two LTTS, P and Q, P comparable to Q (same set of labels and global
variables), a relation R ⊆ SP ×SQ is a resource-wise simulation relation iff: ∀a ∈ ΣP (ΣP

is the set of synchronization channels, labels of P ), ∀rPi , ∀(p, q) ∈ R, and ∀p′ ∈ SP , we
have:

(p
a,rPi→ p′) =⇒

(∃ q′ ∈ SQ,∃ rQ · rQ =
∑n

i=1wi ∗ rQi ∧
(∃ i · rQi ≤ rPi ∧ (∀ j 6= i · rPj ≤ rQj ≤ mj)) ∧ q a,rQi→ q′ ∧ (p′, q′) ∈ R)

The above definition says that Q simulates P if Q can match every step of P by a step
with the same label, and the accumulated usage value of at least one of the existing resource
variables is decreased, while the resource-usage values of the other resource variables are
at least the same as previously, or increased up to a given upper bound, mj, respectively.
Currently, we investigate how the simulation relation between two Remes services can
be proved non-algorithmically, as there is no decidability result regarding computing a
simulation relation between two PTA.

Discussion and Related Work. One might wonder about the benefit of using Remes in
SOS behavioral descriptions, instead of other already existing approaches. If we take a look
into code-driven approaches, such as WS-CDL [4] or BPEL [3], we notice that either the
service behavioral description is missing, or it involves only externally observable or public
aspects of service behavior. These approaches are valuable when the access to the service
implementation exists, or in cases when the service is tailored to a specific model. Remes of-
fers the possibility for a more abstract service description, including service behavior, suit-
able for early stages of systems development, even when no detailed design description



exists. UML profile MARTE (Modeling and Analysis of Real-Time and Embedded sys-
tems) provides means for specifying, designing, and verifying/validating system models,
but lacks a formal behavioral description, which makes it hard to employ it for detailed
analysis purposes. Rychly [7] describes the service behavior and structure found in service-
oriented architectures (SOA) as CBS with features of dynamic and mobile architectures.
The underlying formalism is based on π − calculus. Comparing to our approach, Rychly’s
work is more related to interface behavior and inner service communication and bindings,
while Remes supports more detailed behavioral characteristics, including describing re-
source usage at modes and on edges, timing constraints (invariants), and discrete/timed
actions.

Since it can be easily transformed into TA/PTA, the Remes language has been appeal-
ing for describing services, and it can been seen as an intermediate layer between higher
levels of abstraction and detailed, formal behavioral models. Moreover, we have found it
interesting to be able to manipulate different types of resources within the same service
model, and carry out various types of analysis (i.e., feasibility analysis, trade-off analysis,
and optimal/worst-case resource analysis), as described in [8], for SOS. Future work in-
cludes continuing the work on mechanizing the proof of the simulation relation between
two PTA, as well as formalizing the notions of service composition and compositional anal-
ysis with Remes.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[2] R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata. Theor.
Comput. Sci., 318(3):297–322, 2004.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. BPEL4WS, Business Process Execu-
tion Language for Web Services Version 1.1. IBM, 2003.

[4] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and C. Barreto. Web services
choreography description language version 1.0. World Wide Web Consortium, Candidate
Recommendation CR-ws-cdl-10-20051109, November 2005.

[5] Object Management Group (OMG). Business Process Modeling Notation (BPMN) version
1.1., January 2008.

[6] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg, A. Polleres, C. Feier,
C. Bussler, and D. Fensel. Web service modeling ontology. Applied Ontology, 1(1):77–106,
2005.

[7] M. Rychly. Behavioural modeling of services: from service-oriented architecture to component-
based system. In Software Engineering Techniques in Progress, pages 13–27. Wroclaw Uni-
versity of Technology, 2008.

[8] C. Seceleanu, A. Vulgarakis, and P. Pettersson. Remes: A resource model for embedded
systems. In In Proc. of the 14th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS 2009). IEEE Computer Society, June 2009.

[9] S. Sentilles, A. Vulgarakis, T. Bureš, J. Carlson, and I. Crnkovic. A component model for
control-intensive distributed embedded systems. In Proceedings of the 11th International
Symposium on Component Based Software Engineering (CBSE2008), pages 310–317. Springer
Berlin, October 2008.


