
Validating the Design Model of an Autonomous Truck
System

Jagadish Suryadevara
∗

Mälardalen Real-Time
Research Centre
Västerås, Sweden

Paul Pettersson
†

Mälardalen Real-Time
Research Centre
Västerås, Sweden

Cristina Seceleanu
‡

Mälardalen Real-Time
Research Centre
Västerås, Sweden

ABSTRACT
Model driven approaches have become effective solutions for
the development of embedded systems. In particular, mod-
els across various abstraction layers, e.g., application, de-
sign, and implementation, provide the opportunity for ap-
plying different analysis techniques appropriate at various
phases of system development. In this paper, we informally
show how to validate the design model of an Autonomous
Truck embedded system, by comparing its trajectories with
the trajectories of the corresponding application model. In
the comparison, we also correlate the corresponding time
scales of the two different models. The autonomous truck
system is designed in the integrated modeling environment
of SaveIDE. The system’s functional and timing require-
ments verification is carried out on the truck’s design model.
Our work can be regarded as a preliminary step towards de-
veloping a general solution to the problem of bridging the
gap between application and design models of embedded
systems.

1. INTRODUCTION
To achieve predictability throughout the development of

embedded systems (ES), the designer needs to employ a de-
sign framework equipped with analysis methods and tools
that can be applied at various levels of abstraction. Usu-
ally, embedded system designers deal with different kinds of
requirements. Functional requirements specify the expected
services, functionality, and features, independent of the im-
plementation. Timing requirements translate into meeting
deadlines at run-time. Hence, in the presence of the exter-
nal environment, the verification of functional correctness
alone is not sufficient for ES. The development processes for
ES need to integrate the timing aspects and related analysis

∗Email:jagadish.suryadevara@mdh.se
†Email:paul.pettersson@mdh.se
‡Email:cristina.seceleanu@mdh.se

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

techniques through all development phases, starting as early
as possible.

Model-driven approaches such as UML/MARTE [8] are
intended for the specification, design, and verification / val-
idation stages of the ES development. The MARTE pro-
file adds capabilities to UML for schedulability, performance
and timing analysis of models. Although such capabilities
are invaluable to obtaining a mature ES development process
for predictability, they often need to be related to higher-
level ES models that use a different specification paradigm,
e.g., a continuous representation of time rather than an im-
plicit or discrete one. For example, the timing aspects of
higher level system artifacts, e.g., requirements and specifi-
cation, may be represented in a dense-time domain, whereas
those of design, implementation phases may involve a dis-
crete time representation, deemed more suitable and closer
to the actual platform. Consequently, techniques for relat-
ing various modeling paradigms and associated time scales
are needed. The goal of employing such techniques would be
to ensure the correctness of the design model with respect to
the application model, despite the different paradigms used
for representing their behaviors.

In this paper, we show how to validate the design model of
an Autonomous Truck example system against its applica-
tion model, by comparing the runs/trajectories of both mod-
els. To accomplish this, we describe both application and
design models first, and informally present their underlying
semantics, respectively. Next, we exemplify a “run” for each
model, respectively, by outlining corresponding sets of rep-
resentative trajectories (sequences of observable states and
associated transitions) of the application and design models.
The timing aspects of both runs are also apparent in the re-
spective trajectories. For creating the truck’s design model,
we use the development environment of SaveIDE [9], an in-
tegrated design environment for ES. SaveIDE is developed
as part of the PROGRESS project [1] for component-based
development of predictable ES for the vehicular domain.

The remainder of the paper is organized as follows. In Sec-
tion 2, we present the case study details including the high
level application behavior and timing requirements. This
section also includes an overview of the design framework
used for the case study. In Section 3, we describe the appli-
cation and design models and their behavior, respectively.
We show how to carry out the validation of the truck’s de-
sign model against its application model, in Section 4. Here,
we also include the verification of timing requirements. Se-
lected related work is presented in Section 5, whereas Section
6 concludes the paper.

2. CASE STUDY: AUTONOMOUS TRUCK
The case study is part of a demonstrator project that

serves for show-casing the research results of the PROGRESS
project, and also for the validation of the related integrated
development environment, SaveIDE. The case study consists
of an autonomous truck that moves along a specified path
(Figure 1), according to a well-specified application behav-
ior.

2.1 Application
In a nutshell, the truck application has three operational

modes:

• FOLLOW : the truck simply follows the straight path
(the black thick line in Figure 1) using its light sensors.
When the end of the path is detected, it changes to
Turn mode.

• TURN : the truck turns right, until the specified amount
of time expires, after which it changes to Find mode.

• FIND : the truck searches for the original path. When
the path is detected, the truck returns to the Follow
mode again.

Figure 1: Path of the Truck movement

2.2 Timing Requirements
In addition to the general application requirements (e.g.,

functional), one can specify some timing requirements to be
verified on the design model. Due to the difference in the
time scales of the application (associated with dense time)
and design models (associated with discrete time), a certain
latency in the design (or implementation) should be allowed.
For example, event detection and mode change may occur
instantaneously in the application model. However, in the
corresponding design model, there is usually some latency
in the event detection and associated mode change.

The timing requirements of the truck application are spec-
ified in Table 1 below:

Timing Requirement Constraint
Latency: event detection : e 0 l ≤10 t.u.
Latency: event detection : line detected ≤10 t.u.
Latency: mode change ≤10 t.u.
End-to-end timing ≤5 t.u.

Table 1: Timing requirements of the Autonomous
Truck application model.

For simplicity, we assume the same time scale in both
application and design models, measured in time units t.u.

(e.g., ms). In order to guarantee the timing correctness, one
needs to verify that the corresponding design model satisfies
the application requirements.

2.3 Design Framework
The design model of the autonomous truck has been cre-

ated in the ProCom framework [4], a component-based de-
sign environment for ES (in particular vehicular domain).
The component model ProCom, a successor of SaveCCM
(SaveComp Component Model [2]), is a two-layer modeling
entity. ProCom is developed to address the particularities of
the ES domain, including resource limitations and require-
ments on safety and timing. In order to meet the different
concerns that exist at different levels of granularity, span-
ning the overall architecture of a distributed embedded sys-
tem up to the details of low-level control functionality, Pro-
Com is organized in two distinct, but related, layers: ProSys
and ProSave. Besides the difference in granularity, the lay-
ers differ in terms of architectural style and communication
paradigm. In the top layer ProSys, a system is modeled
as a collection of communicating subsystems that execute
concurrently, and communicate by asynchronous messages
sent and received at typed output and input message ports.
Contrasting this, the lower lever, ProSave, consists of pas-
sive units, and it is based on a pipe-and-filter architectural
style, with an explicit separation between data and control
flows. The former is captured by data ports, where data of a
given type can be written or read, and the latter by trigger
ports that control the activation of components.

In our case study, we use a subset of ProSave that is com-
mon to SaveCCM too. Consequently, the design can be de-
veloped by using SaveIDE, an available integrated environ-
ment for SaveCCM designs. Figure 2 shows the autonomous
truck design, in the SaveIDE development environment. We
skip the formal behavior modeling of the components, as a
network of timed automata [3] models (available through
the UPPAAL [6] tool plug-in in SaveIDE). The schematic
view of the design is presented in figure 4.

3. APPLICATION AND DESIGN MODELS
OF THE AUTONOMOUS TRUCK

In this section, we define the application and design mod-
els of the Autonomous Truck system. The syntax and the
informal semantics of these models are also described.

3.1 Application Model: Syntax & Semantics
Figure 3 presents the application model of the Autonomous

Truck system. The location Turn is associated with a time
out duration of n time units. We define the application
model as the tuple 〈L, Init, A,E,M〉, where

• L is the set of locations: {Init, Follow, Turn, F ind};
• A is the set of events:

{start, end of line (e o l), line detected, tm},
where tm is a timer event;

• E ⊆ L×A× L is the set of edges between locations;

• M : L→ {⊥}∪N is a function that associates timeouts
to locations, where ⊥ is a special symbol indicating
that no timeout is associated with the location.

Figure 2: The design of the Autonomous Truck in SaveIDE.

The runs, that is, the trajectories of the application model
are defined over the semantic representation of the applica-
tion model, the underlying transition system, consisting of
states and transitions between states. A state in the transi-
tion system is given by the application model’s current lo-
cation and current value of the timeout duration, if defined.
A run of the application model in Figure 3 begins in the Init
location. When the start event is detected, the location Fol-
low is entered. This location is exited and consequently Turn
is entered, when end of line (e o l) is detected. At location
Turn, n time units, called ticks, are consumed before the
timer event tm occurs. When tm occurs, the location Turn
is exited and Find is entered after taking the corresponding
edge. Next, the location Find is exited, and Follow entered,
as a result of the event line detected occuring. Once in lo-
cation Follow again, the trajectory continues as described
above.

Init Follow

Find

Turn
n

start end-of-line

tm

line-detected

Figure 3: The Truck application model.

3.2 Design Model: Syntax & Semantics
We define the design model of the Autonomous Truck as

a tuple 〈C,→, δ〉, where

• C is the set of components: { SystemClock, Sensor,
Controller, Follow, Turn, Find, Actuator } (Figure 4);

– I is the boolean expression over input variables,
which triggers the component execution;

– β ∈ N is the execution time of a component;

• → denotes component connections (i.e., dataflow be-
tween components). Ci → Cj implies that an output
variable of component Ci is mapped to an input vari-
able of component Cj . If i = j, the output of the com-
ponent is mapped to one of its own input variables,
meaning that the component can trigger itself.

• δ ∈ N is the discrete time unit (i.e., the increment
of time used for sampling the continuous time) in the
model. If the periodicity of a clock component is ‘p’,
then δ � p and p ≤ nδ, for some n ∈ N.

Let FBfo, FBtu, and FBfi denote the feedback, through
data ports, from components Follow, Turn, and Find, re-
spectively, to the Controller component. These values indi-
cate the completion of the Follow, Turn, and Find modes,
respectively, in the execution of the design model.

SystemClock
(sc)

Sensor
(se)

Follow
 (fo)

Turn
(tu)

Find
(fi)

Controller
(co)

Actuator
(ac)

Figure 4: Schematic view of the ProSave design
model of the Autonomous Truck.

The runs, or trajectories, of the design model are defined
over the underlying transition system. For the design model,
a state in the transition system is characterized by the set
of currently executing (active) components, and the current
valuations of their variables and their remaining execution
times. A component that is not active may be either inac-
tive, or ready to begin its execution. In Figure 4, a run of

the design model begins in the initial state where only the
clock components are ready. The executions of all active
components progress simultaneously, in discrete steps of δ
time units. When the execution time of a component ex-
pires, the latter immediately sends its output and triggers
other components that are inactive, but connected to the
component, after which it becomes inactive. This step is re-
peated for all active components whose execution time has
expired. Then, the newly triggered components, that is, the
ready components, if any, begin their execution. The time
in the design model progresses discretely only when there
exists no active component and no ready component.

An intuitive view of the underlying transition system is
given in Figure 5. The abstract states of the transition sys-
tem are TimePassing (TP), CompDone(CD), and Comp-
Starts(CS). The transition labels idling, comp finishi, and
comp readyi are associated to the the i th component, as
follows: idling in case nothing else happens with the compo-
nent, but the time progresses in discrete steps, comp finishi
in case the component’s execution time has expired, and
comp readyi in case it is ready to begin execution.

Time Passing (TP)
Component
Done (CD)

Component
Starts (CS)

comp_finishi

comp_finishi

(for all j, NOT comp_finishj)
AND comp_readyi

comp_readyi

idling

idling

idling

Figure 5: An intuitive view of the underlying state
transition system of the design model.

4. DESIGN MODEL VALIDATION
Here, we show how to validate the ProSave-based design

model of the truck case study, presented in Figure 2. Al-
though a component in our design model can trigger itself,
the ProSave components used in the case study are not al-
lowed any self-triggering. However, the more liberal defini-
tion of a design model component element lets us describe
the clock components of the ProSave model, too, since the
clocks actually trigger themselves (see Figure 4).

To validate the ProSave design model against the applica-
tion model of Figure 3, we resort to comparing the generated
trajectories of the two models. First, we consider the set of
trajectories of the application model. For simplicity, this set
is exemplified by a representative trajectory given below:

〈Init,⊥〉 start−−−→ 〈Follow,⊥〉 end−of−line−−−−−−−−−→ 〈Turn, n〉
(n−1)ticks−−−−−−−→ 〈Turn, 1〉 tm&tick−−−−−→ 〈Find,⊥〉
line−detected−−−−−−−−−→ 〈Follow,⊥〉 · · ·

Now, we consider the set of trajectories that characterize
the design model of Figure 4. Again for simplicity, this set is
exemplified by the following trajectory, in its simplest form,
obtained by hiding all the internal transitions, as they are
not externally observable:

S0 : 〈{}, I1,−〉 −→
S1 : 〈{sc},−, βsc = 4〉 5∗TP−−−→
S2 : 〈{sc, fo},−, βsc = 2, βfo = 1〉 TP−−→
S3 : 〈{sc, ac},−, βsc = 1, βac = 1〉 3∗TP−−−→
S4 : 〈{sc, fo},−, βsc = 2, βfo = 1〉 TP−−→
S5 : 〈{sc}, I7, FBfo = true, βsc = 1〉 3∗TP−−−→
S6 : 〈{sc, tu},−, βsc = 2, βtu = 1〉 TP−−→
S7 : 〈{sc, ac},−, βsc = 1, βac = 1〉 3∗TP−−−→
S8 : 〈{sc, tu},−, βsc = 2, βtu = 1〉 TP−−→
S9 : 〈{sc}, I7, FBtu = true, β1 = 1〉 3∗TP−−−→
S10 : 〈{sc, fi},−, βsc = 2, βfi = 1〉 TP−−→
S11 : 〈{sc, ac},−, βsc = 1, βac = 1〉 3∗TP−−−→
S12 : 〈{sc, fi},−, βsc = 2, βfi = 1〉 TP−−→
S13 : 〈{sc}, I7, FBfi = true, βsc = 1〉 3∗TP−−−→
S14 : 〈{sc, fo},−, βsc = 2, βfo = 1〉 TP−−→ · · ·

By comparing the above application and design trajecto-
ries, it can be shown that the specified functionality of the
application model is satisfied by the corresponding design
model (note that the conditions FBfo == true, FBtu ==
true, FBfi == true indicate the completion of the opera-
tional modes Follow, Turn, Find, respectively). From the
design trajectory, we can derive the following timing infor-
mation:

Timing aspect Time units (t.u.)
Event detection: e 0 l Max: 6 t.u., Min: 3 t.u.
Event detection: line detected Max: 6 t.u., Min: 3 t.u.
Mode (location) change 4 t.u.
End-to-end timing ≤5 t.u.

Table 2: Timing aspects in the Truck design model.

By inspecting Table 1 and Table 2, it follows that the
design model satisfies the timing requirements specified on
the application model.

5. RELATED WORK
Here, we briefly mention some of the related work that

is relevant to our validation problem. Sifakis et.al. present
a methodology for building timed models of real-time sys-
tems by adding time constraints to corresponding applica-
tion software [10]. The timed models of the application
obtained in this manner can be analyzed by using timing
analysis techniques, to check relevant real-time properties.
In comparison, our trajectory comparison technique seems
more restricted by the underlying timing assumptions, yet
simpler. Mallet et al. [7] show the expressiveness of MARTE
for event-triggered and time-triggered communication, which
can be employed for validating models using these paradigms.
Paving the way towards proving correctness of implementa-
tions, Krčál et al. propose an alternative, discretized se-
mantics of timed automata [5], which gives rise to a natural
notion of digitization for timed languages.

6. CONCLUSIONS
In this paper, we have presented a case-study on validating

the design model of an autonomous truck ES, against higher-

level requirements including both functionality and timing
requirements. We validate the design model by comparing
its trajectories to those of the truck application model. The
trajectories of the two models are expressed over the cor-
responding underlying transition systems, respectively. To
achieve our goal, we have first described the syntax and
informal semantics of both models, used to generate the
trajectories, after which we have proceeded to the latter’s
comparison. The timing requirements specified in the ap-
plication model are verified in the design model. Our work
can be seen as a first step towards addressing an impor-
tant gap in the current state-of-art of model-driven engi-
neering for embedded systems: relating implementations to
their specifications for proving the correctness of the former
with respect to the latter. We intend to extend the case-
study driven, informal approach presented in this paper, to
a detailed, general formal technique that would encompass
a larger class of ES models. Further, the application model
can be integrated with the industry-targeted standard ap-
proaches, such as UML/MARTE profile for specification of
timing requirements. Such a step could also facilitate inte-
grating the existing MARTE-based analysis approaches into
our development process.

7. REFERENCES
[1] M. Åkerholm, J. Carlson, J. Fredriksson, H. Hansson,

J. H̊akansson, A. Möller, P. Pettersson, and M. Tivoli.
The SAVE approach to component-based development
of vehicular systems. Journal of Systems and Software,
80(5):655–667, May 2007.

[2] M. Åkerholm, J. Carlson, J. H̊akansson, H. Hansson,
M. Nolin, T. Nolte, and P. Pettersson. The SaveCCM
language reference manual. Technical report, January
2007.

[3] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[4] T. Bures, J. Carlson, I. Crnkovic, S. Sentilles, and
A. Vulgarakis. Procom - the progress component
model reference manual, version 1.0. Technical Report
ISSN 1404-3041 ISRN MDH-MRTC-230/2008-1-SE,
Mälardalen University, June 2008.

[5] P. Krčál, L. Mokrushin, P. Thiagarajan, and W. Yi.
Timed vs time triggered automata. In P. Gardner and
N. Yoshida, editors, Proc. of CONCUR’04., number
3170 in Lecture Notes in Computer Science, pages
340–354. Springer–Verlag, 2004.

[6] K. Larsen, P. Pettersson, and Y. Wang. Uppaal in a
nutshell. Int. J. on Software Tools for Technology
Transfer, 1(1-2):134–152, 1997.

[7] F. Mallet, R. de Simone, and L. Rioux.
Event-triggered vs. time-triggered communications
with UML Marte. pages 154–159.

[8] OMG. Unified modeling language (uml) profile for
modeling and analysis of real-time and embedded
systems (marte). In Document ptc/07-08-04. OMG,
2007.

[9] S. Sentilles, A. Pettersson, D. Nyström, T. Nolte,
P. Pettersson, and I. Crnkovic. Save-ide - a tool for
design, analysis and implementation of
component-based embedded systems. In Proceedings of
the Research Demo Track of the 31st International
Conference on Software Engineering (ICSE 2009),

May 2009.

[10] J. Sifakis, S. Tripakis, A. Member, and S. Yovine.
Building models of real-time systems from application
software. In Proceedings of the IEEE Special issue on
modeling and design of embedded, pages 100–111.
IEEE, 2003.

