Malardalen University Licentiate Thesis
No.107

Exploring Sustainable
Industrial Software System
Development

within the Software Architecture
Environment

Pia Stoll

October 2009

V A
| V 4
MALARDALEN UNIVERSITY

School of Innovation, Design and Engineering
Malardalen University
Vasteras, Sweden

Copyright(© Pia Stoll, 2009

ISSN 1651-9256

ISBN 978-91-86135-36-2

Printed by Méalardalen University, Vasteras, Sweden
Distribution: Malardalen University Press

Abstract

This thesis describes how sustainable development defisittan be trans-
posed to the software architecture environment for thestréal software sys-
tem domain. In a case study, sustainable development ceé@m three
companies are investigated for their influence on the dilnaes®f sustainable
development: economical, environmental, and social swtdity. Classify-
ing the case study’s concerns, in the thesis’s Softwarerieeging taxonomy,
shows that the software development concerns are in magorit the software
architecture concerns surprisingly few. The economicstiEsnability concerns
dominate followed by social sustainability concerns, uidlihg both concerns
successfully met and concerns to be met.

Sustainable industrial software system development isdrthiesis defined
as: “Sustainable industrial software system developmestsncurrent stake-
holders’ needs without compromising the software develkapirarganization’s
ability to meet the needs of future stakeholders”. Undeditay current and
future stakeholders concerns is necessary for the forioolaf sustainabil-
ity goals and metrics. Clarifying the interrelationshipeang stakeholders’
concerns’ impact on business goals and software qualitigbe thesis’s In-
fluencing Factors method, proves to help stakeholders atadet their future
needs.

Trust is found to be critical for sustainable developmentr the estab-
lishing of trust between system and system users, the itgahiklity is vital.
To implement usability support in the architecture in theyedesign phase,
reusable architectural responsibilities are created. réhsable architectural
responsibilities are integrated into an experience fgaod used by the prod-
uct line system architects, resulting in a return of invesitof 25:2.

Swedish Summary - Svensk
Sammanfattning

Avhandlingen beskriver hur definitioner av hallbar utvénglkan Gversattas
till mjukvaruarkitekturens omgivning fér industriella oivarusystem. Syste-
mintressen, avseende hallbar utveckling, samlas in i emjjustudie och re-
lateras till dimensionerna: ekonomisk héllbarhet, socélbarhet, och miljo-
massig hallbarhet. En taxonomi av arkitekturbeskrivnisggapas, som inforli-
var bade “Enterprise Architecture” och “Software Engiriegtbeskrivningar.
Klassificerade intressen visar pa stort fokus pa verksasabpekter och dver-
raskande lite fokus pa mjukvaruarkitektur. En naturligdfdr att ekonomisk
hallbarhet star i centrum, féljd av social hallbarhet.

Hallbar utveckling av industriella mjukvarusystem defiaii avhandling-
en som: “Hallbar utveckling av industriella mjukvarusystéligodoser syste-
mets nuvarande intressenters behov utan att aventyraisagianens mojlig-
heter att tillgodose framtida intressenters behov”. Kiaagde av inbordes for-
héallanden mellan intressen och deras paverkan pa affaschamnjukvaruk-
valitet hjélper organisationen att inférliva intresseateehov med strategin for
hallbar utveckling. Den i avhandlingen konstruerade “lefling Factors” me-
toden tydliggor relationerna mellan systemintressen adiattidie, vilket visar
sig hjalpa studiens intressenter forsta sina framtidaaeho

Tillit &r en viktig del i hallbar utveckling. For att skapadlitimellan syste-
met och dess omgivning, ar anvandbarheten viktig. Arkitedta moénster med
anvandbarhetsstddjande instruktioner tillampas i aviageh. Fyra systemre-
laterade generella funktioner identifieras, med arkitedtta instruktioner for
att garantera funktionernas anvandbarhet. Kunskaperitigésnglig for studi-
ens produktlinjearkitekteri en “erfarenhetsfabrik”. Rikatet &r en rapporterad
kostnadsbesparing av 25:2.

To Alex, Simon, and Sofie

Preface

The challenges have been many during the writing of thisigheasd I'm for-
ever grateful to many of you out there who have served as air&®n and
guidance.

I would especially like to thank my supervisors, Christerrtiom and
Anders Wall, for structuring my contributions and for trgito understand my
reasoning during these years even if the topic have beehntlgligff the one
of the department’s regular thesis. Someone who has sgghorany of my
ideas is my present group manager, Magnus Larsson. Anatbep gnanager
of mine, Fredrik Ekdahl was also a great support and enablemfy PhD
studies.

The project, where the ideas of the Usability Supportingecture Pat-
tern were tested, included two persons at ABB Force Measememho have
been very supporting throughout the USAP project and tbesefontributed
to the USAP project’s success leading to some major cotitwitisito my the-
sis. Thank you Fredrik Norlund and Jan Hasselgren. In theeganoject, |
would like to direct a thanks to Bonnie E. John, Len Bass, dafdth Golden.
We have had a handful of very intense and stimulating discnssand | have
always left them revived and full of new ideas. | also wishhartk the BESS
group at MDH for all of the interesting discussions aroundibess and soft-
ware engineering. For uplifting discussions around ewéngt but software
engineering: thank you Sara, Shiva, Helena, Ambra and Asa.

My beloved family: my husband Alex and my children Simon amdi&§
my mother, my brothers Patrik and Niclas with families andfnisnd Hanna
Hagmark Cooper; thank you for being there!

Pia Stoll
Vasteras, September 15. 2009

vii

List of iIncluded Publications

The content of this thesis has been published in the follgwiapers. Refer-
ences to the papers will be made using the alphabetic atisnaidithe papers.

A. Guiding Architectural Decisions with the Influencing Fast Method,
Pia Stoll, Anders Wall, Christer Norstrom, Working IEEBMfFCon-
ference on Software Architecture (WICSA), Vancouver, B@nh&da,
February, 2008

B. Achieving Sustainable Business for Industrial Softwayst&ms, Pia
Stoll, Anders Wall, Business Sustainability Conferencéy, ®ortugal,
June, 2008

C. Preparing Usability Supporting Architectural Pattermsihdustrial Use,
Pia Stoll, Len Bass, Bonnie E. John, Elspeth Golden, Inteynal Work-
shop on the Interplay between Usability Evaluation andgafé De-
velopment, I-USED, CEUR Workshop proceedings series, |36N3-
0073, Pisa, Italy, September, 2008

D. Supporting Usability in Product Line Architectures, Ptalf Len Bass,
Bonnie E. John, Elspeth Golden, Software Product Lines €ente,
SPLC, San Francisco, USA, August, 2009.

E. Software Engineering featuring the Zachman FramewoekS®ill, An-
ders Wall, Christer Norstrém, Technical Report, ISSN 13041 ISRN
MDH-MRTC-240/2009-1-SE, School of Innovation, Design dfyi-
neering (IDT), Malardalen University, Sweden, 2009.

F. Applying the Software Engineering Taxonomy, Pia Stoll.dérs Wall,
Christer Norstrom, Technical Report, ISSN 1404-3041 ISRDHAMRTC-
241/2009-1-SE, School of Innovation, Design and Engimee(iDT),
Malardalen University, Sweden, 2009.

Additional Publications

A Responsibility-Based Pattern Language for UsabilitypSarting Ar-
chitectural Patterns, Bonnie E. John, Len Bass, ElspetlilebolPia
Stoll, ACM SIGCHI Symposium on Engineering Interactive Gmuting
Systems, EICS, Pittsburgh, USA, June, 2009

e Usability Supporting Architecture Pattern for Industrig Btoll, Fredrik
Alfredsson, Sara Lovemark, Industrial Experience Repdwtdic Com-
puter Human Interaction Conference, NordiCHI, Lund, Swe@908

e Reconstructing the Architecture Model for a Sustainablftvi&oe Sys-
tem, Pia Stoll, Industrial Experience Report, SEI Architiee Technol-
ogy User Network, SATURN, Pittsburgh, USA, 2008

¢ |dentifying Sustainable Systems Architecture’s Primaoyn€erns, Roland
Weiss, Pia Stoll, Industrial Experience Report, SEI Aretiitire Tech-
nology User Network, SATURN, Pittsburgh, USA, 2008

e Integrating Usability Supporting Architectural Pattenma Product Line
System’s Architecture, Pia Stoll, Len Bass, Bonnie E. JdEispeth
Golden, Industrial Experience Report, SEI Architecturelifelogy User
Network, SATURN, Pittsburgh, USA, 2009

Xi

Contents

Thesis

Introduction

11
1.2
13

Research Rationale
ResearchQuestions
ThesisOutline

Related Work

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

Sustainable Development and Software Engineering
Software Engineering
Software Architecture
Software Architecture with an Enterprise Perspective. .. .
Software Architecture Environmental Influences
Software DevelopmentMeasures
Software Architecture Quality Attributes

Software Architecture’s Interplay with Usability
Architecture Patterns

Research Design

3.1
3.2

Case StudyDesign
Field StudyDesign

Research Contribution

4.1
4.2
4.3
4.4
4.5

Influencing Factors Method

Sustainable Industrial Software Systems
Usability-Supporting Architecture Patterns
Software Engineering Taxonomy
Applied Software Engineering Taxonomy

Xiii

xiv Contents

5 Future Work 61
5.1 Sustainable Industrial Software Systems 61
5.2 Usability Supporting Architecture Patterns 63

Bibliography 65

I Included Papers 77

A Paper A:

Guiding Architectural Decisions with the Influencing Factors Method 79
A.l Introduction 81
A.2 Business goals and software quality attributes 83
A.3 Enterprise, System and Software Architecture84
A4 ThelFmethod. 85
A.4.1 Identifyinfluencingfactors 86
A.4.2 Prioritize influencing factors 87
A.4.3 Analyze prioritized influencing factors 87
A5 Casestudyl. 88
A.5.1 Identify influencingfactors 88
A.5.2 Prioritize influencing factors 90
A.5.3 Analyze prioritized influencing factors 90
A.5.4 Conclusions: Case Study1 91
A6 Casestudy2. 92
A.6.1 Identify influencingfactors 92
A.6.2 Prioritize influencingfactors 92
A.6.3 Conclusions: Case Study 2 93
A7 Conclusions 95
A8 Futurework 95
Bibliography 96
B PaperB:
Achieving Sustainable Business for Industrial Software Sstems 99
B.1 Introduction 101
B.2 RelatedResearch 102
B.3 Issues for Sustainable Business 104
B.3.1 Technology 104
B.3.2 Organization 106

B.3.3 Market 108

Contents xv

B.4 Conclusions 110
BS5 FutureWork 110
Bibliography 110
Paper C:
Preparing Usability Supporting Architectural Patterns for Indus-
trial Use 113
C.1 Introduction 115
C.2 Background 115
C.3 APatternLanguageforUSAPs 116
C.4 Delivering a single USAP to Software Architects 119
C.5 Delivering multiple USAPs to software architects 122
C.6 Currentstatus and futurework 123
C.7 Acknowledgments 125
Bibliography 125
Paper D:
Supporting Usability in Product Line Architectures 129
D.1 Introduction 131
D.2 Background 132
D.3 Priorwork 134
D.4 Stakeholder choice of scenarios. 135
D.5 USAPPatterns 137
D.6 Deliverytool 138
D.7 Results of using the USAP deliverytool 141
D.8 Conclusionsand FutureWork 144
D.9 Acknowledgments 145
Bibliography 145
Paper E:
Software Engineering featuring the Zachman Taxonomy 149
E.1 Introduction 151
E.2 ZachmanFramework 153
E.3 Software Engineering Taxonomy 157
E.3.1 Shared Perspectives. 157
E.3.2 Software Engineering Descriptions 159
E.3.3 Apple and Google Process Composite Models 162
E.3.4 Scrum Composite Process Model 163

E.4 Conclusionsand FutureWork. 165

xvi Contents

Bibliography 166
F PaperF:

Applying the Software Engineering Taxonomy 171

F.1 Introduction 173

F.2 Software Engineering Taxonomy 173

F.3 Software Engineering Taxonomy and System Sustaitabili 179
F.3.1 Sustainable Industrial Software System Developmeh80

F.3.2 Case Study Questions and Propositions 182
F.3.3 Classification of Case Study Data 184
F.3.4 Analysis of Classified Case Study Data 184
F35 Summary 201
F.4 Software Engineering Taxonomy and the IF method | 04 2
F.4.1 Classification of Influencing Factors 205
F.4.2 Analysis of Classified Influencing Factors 205
F4.3 Summary 206
F.5 Software Engineering Taxonomy and the USAP study . . . 08 2
F.5.1 USAP Artifact Identification 209
F.5.2 Classification of USAP artifacts 216
F.5.3 USAP Information Description-Selection Process . 217
F5.4 Summary 221
F.6 Conclusionsand FutureWork 222

Bibliography 225

Thesis

Chapter 1

Introduction

Industrial software systems are in this thesis the synomradmplex control
and supervision systems used in power and automatioriagibind plants of
various art. Not long ago these systems used a rather smalirgtraf software.
But this has changed and today the systems have a relatigtydegree of
software and are almost autonomous. The role of the operats shifted
from having to use their expertise to set the correct contilnles manually to a
role of supervision and fault finding. One system can nowadawntrol a plant
without any operator interaction and the system interfagiéls a multitude
of external systems. Software complexity has grown in tieespace as the
system’s amount of software has increased. When the fedt@meonce were
performed by hardware now are replaced by software, thevaodtparts can
interact with each other in a way the hardware parts could Tt is used to
create additional value. Industrial software systems atténg more and more
sophisticated. Customers are offered more and more feature

As the offering increases, yesterday’s advanced featusetuaning into
commodity. To get a return of investment for both customadsdevelopment
organization, the system has to be maintained and staytapeakfor decades,
i.e. the system has to become sustainable.

Pollan has defined an unsustainable system simpha @sactice or pro-
cess that can’t go on indefinitely because it is destroyimgviery conditions

on which it depends[1]. Unruh has argued that numerous barriers to sustain-

ability arise because today'’s technological systems wesegded and built for
permanence and reliability, not change [2].
“A global agenda for change” - was what Gro Harem Brundtlaasithe

4 Introduction

chairman of the World Commission on Environment and Develept, was
asked to formulate in 1987 [3]. As a result, the Brundtlanthoassion defined
sustainable development as:

Sustainable development is development that meets the néed
the present without compromising the ability of future gatiens

to meet their own needs. It contains within it two key coreept
the concept of “needs”, in particular the essential needshef
world’s poor, to which overriding priority should be giveand
the idea of limitations imposed by the state of technologl/san
cial organization on the environment'’s ability to meet @meisand
future needs.

In [4], Dyllick and Hockerts transpose the definition to thesimess level:

Corporate sustainability is meeting the needs of a firm'sdiand
indirect stakeholders (such as shareholders, employdients,
pressure groups, communities etc), without compromissahiil-
ity to meet the needs of future stakeholders as well.

Following the reasoning of the Brundtland commission [3] &yllick and
Hockerts [4], sustainable industrial software developmenuld be defined as:

Sustainable industrial software development meets thdset
the software development organization’s direct and inttistake-
holders (such as shareholders, employees, customers)esngi
etc), without compromising the organization’s ability t@et its
future stakeholders’ needs as well.

In this thesis, the term “Corporate Sustainability” is usdten the work
referred to uses the term. Otherwise the term “Sustainadleldpment” is
used.

Three dimensions of corporate sustainability are outlipgdyllick and
Hockerts: Environmental sustainability, Economic sumsihility, and Social
sustainability, the “triple-bottom-line” in Figure 1. Didk and Hockerts con-
clude that a single-minded focus on economic sustaingbiih succeed in the
short-run; however, in the long-run sustainability regaiall three dimensions
to be satisfied simultaneously.

Sustainable development of industrial software systeradrige challenge
due to changes in concerns originating from: new technology stakeholder

Economic
Sustainability

Environmental Social
Sustainability Sustainability

Figure 1: Three dimensions of corporate sustainability

needs, new organizations, and new business goals durirglelec It's chal-

lenging since it has not been researched for industrialvsoét systems and
the domain need an understanding of the success-criticalecns related to
the achievement of sustainable development of systemseasothplexity of

organizations, processes, and architectures increase.

Organizational complexity involves many success-ciistakeholders, of-
ten located all over the world, who have to reach a consensusid the most
important business goals for the system now and in the naxtfuSustainable
systems has built-in legacy heritage to consider as weltesept software ar-
chitecture and design when introducing new business gié#fee organization
in the past predicted today’s stakeholders’ needs and ed#pt past develop-
ment to today’s predicted needs, the incorporation of t@dayncerns in the
system should be fairly straightforward. In the same fashioday’s organi-
zation needs to predict future stakeholders’ needs andtghkemost valuable
concerns to address. To do this, the architects need anstadding of how
the stakeholders’ concerns affect business goals andectimal qualities. For
example, industrial software systems are often affecteddmypany mergers
and acquisitions, where two or more systems have to be ddasad into one
system or the systems have to share a core part. The effeatlofdecision
on software quality is hard to overlook. Sustainabilityherefore related not
only to software structures and their interactions but tdshe system’s envi-
ronment in terms of the enterprise aspects as organizatisiness, tactics and
scope. Enterprise aspects have not been put in relatioritteese architecture
and implementation for industrial software systems in goliek way earlier.
As organizational complexity grows, the impact of the entise aspects on

6 Introduction

the software system is significant.

Systems not being usable will not be sustainable in the dutiReleas-
ing a system with usability problems is decreasing the tresveen users and
system, thereby decreasing the economical sustainadiiustrial software
systems must find a way of implementing usability suppottyearthe devel-
opment phase since the development phase of an industfiaiase system
is likely two years or more. Redoing two years of architegkulesign and
implementation due to usability problems is not an optioat Baditional us-
ability engineering suggests usability tests with workfogctionality when
a prototype is at hand which is late in the design phase. Fhamusability
tests, list of usability flaws go back to the developers. Rmois related to the
user interface’s design can often be fixed but problems reguarchitectural
refactoring are too expensive to correct. Correcting tiehitecture related
problems would also cause an unacceptable delay in theseetiste. This is
especially critical when developing product line systefAsoduct line devel-
opment typically develops the core architecture and itsémgntation first.
Then each product’s specialization is developed and fitet dfiat has been
done, the product’s usability can be fully tested.

1.1 Research Rationale

Sustainable development is defined in terms of meeting oustakeholders’
needs without compromising the software development dzxgtion’s ability
to meet the needs of future stakeholders. For software dewednt, the def-
inition raises the question: how can stakeholders be eagedrto contribute
with their concerns and how can their concerns’ impact orstffevare devel-
opment be clarified? If the stakeholders concerns are nargtabd, they can
hardly be met. But at the same time the system’s environrseggtting more
and more complex and the number of stakeholders increasessy3tem can
hardly meet all concerns. The concerns can not be priadifiaean increase in
sustainability if their impact is not known. Stakeholdertj@pation is a social
sustainability criteria according to Labuschagne et a]. [B software engi-
neering, methods like the Quality Attribute Workshop [6age stakeholders
to participate and voice current concerns. The Architectuade-Off Analysis
method [7][8] is another method that stimulates succeisisalrstakeholders
to voice concerns regarding the system development. hgvgiakeholders to
workshops as the Quality Attribute Workshop [6] and the Atextture Trade-
Off Analysis Method [7] are two ways, but may need a completdee to the

Research Rationale 7

scalability issue. The number of stakeholders and theirbrarmof locations
increase as the distribution of development and manageimeneiases. The
chance of gathering a large set of distributed stakehofdesone-day QAW
or a five day ATAM workshop on a continuous basis is very snrathie do-
main of industrial software systems where no standardsgaiagons enforce
these kinds of workshops. Stakeholders’ concerns chaegeéntly and the
analysis of the concerns must be updated just as often ndstan important
concern that need to be met in order to maintain sustainavielapbment. An-
other aspect, highly relevant for sustainable developmegnihe needs of the
future stakeholders. The QAW and the ATAM gather currerkedtalders and
extract their needs by analyzing their voiced concernseEgpces from three
Quality Attribute Workshops show that stakeholders haverg strong urge to
voice concerns related to their own working environmentfzendlly ever voice
a concern not related to themselves. To achieve sustaidalktopment, the
company must predict future stakeholders’ needs by amajythie future stake-
holders’ concerns. Aon/off-line, light-weight stakeholder concern collectjo
prediction and analysis methasitherefore needed that could include concerns
from future stakeholders.

Context will be very important when defining what sustaieadbvelop-
ment means to the stakeholders. Following the conclusibReed [9], Salz-
mann et al. [10], and Sing et al. [11], each community or denskiould:
interpret corporate sustainability, argue its business éar corporate sustain-
ability, and establish their own corporate sustainabgisgessment. For the
domain of industrial software systems, this translates aneed of aase
study that explores the industrial software system domait@keholders’ sus-
tainable development concerimsorder to find the most important sustainable
development goals. Finally, metrics should be establisheakssess the pro-
cesses of achieving the goals. Very little research haoexglthe industrial
software system domain to find the scope, business case anidsier sus-
tainable development.

Research in the area of sustainable development for s&ftsyestems will
be extra challenging since it involves aspects from: enigg@rchitecture, eco-
nomical theory, organization theory, software enginegend cognitive psy-
chology. There exists no framework where views describlhthase aspects
can be investigated for their interrelationships. The etspare part of different
research disciplines. However, enterprise architectndesaftware engineer-
ing are closely related. In traditional software architeef a component may
be a procedure, a process or an object-oriented objectl32]T he enterprise
software system is a “system of systems” in the sense thatdimponents of

8 Introduction

the enterprise system are normally considered as systethe ideveloper-
oriented) traditional software architecture [14]. Zaclnhas set up a frame-
work for describing system information of a complex objernfi different
usage perspectives, and from the journalistic contextratigbns: “What”,
“How”, “Where”, “Who”, “When”, and “Why” [15][16][17][18]. Initially, he
described the framework by collecting data from the buigdémgineering do-
main, applied the framework to the data from the aircraftieeeying domain
and finally applied the framework to the enterprise systeamsain. Software
engineering has also been inspired in much of its reseaoch the building
engineering domain. Especially the software engineerattepn community
[19][20][21][22] has used concepts from the pattern lamgutheory of the
building architecture researcher Alexander [23][24]. fEheould be a benefit
of classifying software engineering concepts into the Zaah framework to
find out if the framework can accommodate all the conceptd ifeso, to find
out how software engineering relates to the enterprises/fewthe system’s
operational and development environment. The result woeklderivative of
the Zachman framework for software engineerihgt could classify sustain-
able software system development concerns related to #tersis environ-
ment in term of scope, business, system, software, and coamps

A crucial ingredient in social sustainability is trust. $tlamong employ-
ees is the prerequisite for social capital enforcementetwaorking, knowl-
edge sharing, commitment etc. Trust in the relation betweestomers and
the software system development company is achieved byysters having
a certain set of qualities. Hoffmann et al. describes a el that goes
beyond security [25]. The trust model includes: reliapjlgafety, security,
availability, privacy, user expectations, and usabillgman trust in automa-
tion is translated into trust as the expectation that a semwill be provided or
a commitment will be fulfilled.

Trust in the relation between customers, as external stédtets, and the
system increases economic sustainability. Usability isngportant factor in
the trust between system customers and the systemudiility support in
a system’s software architecturas been shown to be very superficially de-
scribed, mostly as a separation of concerns between usefaioe logic and
the rest of the system’s logic [26][27][28][29][30][31].9ability problems are
usually discovered after the product’s release when theitaature no longer
can accommodate the problems’ solutions. If usability supip the architec-
ture could be built in early, the economic sustainabilityNgbincrease also in
terms of potential financial profit, by speculating in an eased sales by of-
fering more usable systems. The reputation of the systenidvadso increase,

Research Questions 9

which increases the economic sustainability. The resdarétolmer [28][29]
deals with evaluation of architecture for usability sugpofhe research by
Juristo et al. [30][31][32] describes usability issueshnatpossible impact on
software design as usability patterns, but does not sugggstay of designing
the architecture to support the usability issues. The wbBags et al. [26][27]
does suggest a way of designing architecture to supporésgaritical usage
scenarios in the form of Usability-Supporting Architeeifatterns.

1.2 Research Questions

Considering the lack of usability tactics to apply in softevarchitecture to
avoid unsolvable usability problems and to reinforce thettveen system and
system users, the following research question is formdiate

RQ1 “How can support for usability be built into software ard@dture of in-
dustrial software system in the early design phase?”

To be able to understand the success-critical concernegdubst value to
the goal of sustainable development, the following resequestion is formu-
lated

RQ2 “What are the concerns affecting the sustainable develapofean in-
dustrial software system?”

Sustainable development is depending on the knowledge roérduand
future stakeholders’ needs in order to meet those needssid&ing the im-
portance of the explicit knowledge of current stakeholdeegds and future
stakeholders’ needs and the impact of these needs on baigioals and soft-
ware qualities, the following research question is forrteda

RQ3 “How can current and future stakeholder concerns be celtbahd an-
alyzed for their impact on business goals and quality aiteib in the
domain of industrial software systems?”

Sustainable industrial software system development cosaeeill have as-
pects concerning the economical sustainability, socistiesnability, and envi-
ronmental sustainability. The aspects will relate to: gprise architecture,
economical theory, organization theory, software engingeand cognitive
psychology. To find out how software engineering relatesh dnterprise
views for the system’s operational and development enwiiemt, the follow-
ing research question is formulated:

10 Introduction

RQ4 “How can industrial software system stakeholders’ consbmdescribed
by views in an enterprise framework, that incorporatesvai¢ engi-
neering artifacts descriptions?”

1.3 Thesis Outline

Chapter 2 describes the work relating sustainable indulstaftware system
development and: software engineering, software ardhitecenterprise ar-
chitecture, usability, software development measures saftware quality at-
tributes. In chapter 3, the research design of this thesitessribed. The
contributions of this thesis are described in chapter 4allinfuture work is

presented in chapter 5.

Chapter 2

Related Work

The following sections describe the software architecaiméronment and its
relation to the economical, social, and environmentalasnability dimen-
sions.

2.1 Sustainable Development and Software Engi-
neering

Corporate sustainability implies a much broader integiret of the concept
of capital than is used normally by either economists oragists. Economic,
natural, and social capital each have different propeaimsthus require dif-
ferent approaches.

Economic sustainability requires firms to manage threesyffeconomic
capital:

1. Financial capital, i.e. equity and debt
2. Tangible capital, i.e. machinery, land and stocks

3. Intangible capital, i.e. intellectual property, intatisystems, methods,
tools, external customer loyalty and brand

The examples of intangible capital are from Sveiby’s frameufor cate-
gorizing and measuring the intangible assets [33].

12 Related Work

The third line of Dyllick’s three corporate sustainabildimensions is the
environmental sustainability, Figure 1. Ayres argues thtte industrial or-
ganism consumes more energy and materials than can be vepydor if
it emits more emissions than can be absorbed through nainied, the in-
dustrial system becomes ecologically unsustainable [B#]lick’s definition
of environmental sustainable systems says that such syslenrmot engage
in activity that degrades eco-system services (i.e. cbnsédbilization, water
purification, soil remediation, reproduction of plants ardmals) [4]. Sys-
tems that enable utility and industry customers to impriwegrtperformance
while lowering environmental impact should therefore citmite to natural re-
sources being consumed in a lower pace, even if the systensséives do
not increase natural resources. If the systems are conguesa natural re-
sources in their development and operation than they hiipastand industry
customers to save, then the systems should be contribotihg environmen-
tal sustainability according to the definitions by Ayres][ad Dyllick [4].
Environmental sustainability is impacted by the softwarstem’s structures
and inter-operations. Google develops software that goasthuge amounts
of natural energy resources. Every time someone taps a &eegtch button,
thousands of servers are activated. One of Google’s sel@stspcan be ex-
pected to demand the same amount of energy that could pow@@Romes
[35]. As a response to this issue, Google invests tens ofamdldollar in
research and developmentin renewable energy.

Corporations are the fundamental cells of modern econdfeiad¢cording
to Dunphy, Griffiths and Benn [36]. They state that “Corpamainot sustain-
ing will not be sustainable”. Also software systems consemergy and if they
don’t sustain by building or retaining natural capital,tivéll not be sustain-
able.

Social sustainability is defined in relation to human cdjaitel society cap-
ital. Human capital is represented by e.g. skills, motaatiand loyalty of
employees and business partners. Society capital is eaiitygof public ser-
vices. Coleman introduced a conceptual tool which he cédHedial capital”
in 1988 [37]. Social capital, according to Coleman, is iased by social net-
works where trustworthiness is an important factor. Colestaares the view
on human capital with Dyllick and Hockers [4] and describasan capital
as being created by changes in persons that bring abouwt ahill capabilities
that make them able to act in new ways. Human capital amondogess is
strengthened if the managers take an interest in strengtteénown human
capital in order to support the employees in their education

Information channels are an important form of social capitzording to

Sustainable Development and Software Engineering 13

Dyllick [4]. Technology interested employees who on theimdnitiative find
out current technology trends and discuss these with masnage coworkers,
save the company the time of paying an employee to do techpalmouting.
A different value to the social capital arise when there &g &mpetencesin
an organization to whom others turn for help. The key-compet, helping
a coworker, trusts the coworker to return the favor in thereit which estab-
lishes an obligation on the part of the coworker. Shiftingelepment from
an organization, that relies on key-competences, to a mst-country in or-
der to save development cost translates into a shift betaeeaal capital and
economic capital. The coworkers in the remotely locate@woization have no
direct access to the social capital of the key-competen€as. value of the
social capital of the key-competences decreases since inaeasily be ac-
cessed, but the economic capital is strengthened by thegsaiwi employees’
salaries.

Figure 2 shows the concept of corporate sustainability fteerperspective
of added stakeholder value. If the company ignores one diroerof the sus-
tainability, e.g. environmental sustainability, in ordemaximize added value
to the current stakeholders, then the added value to theefstakeholders
likely will be reduced. The car industry is one example o$tlor long times
the car industry ignored the future stakeholders’ need @adthy environment
and produced cars consuming too much of the nature’s enespurces. If
the industry would continue to produce cars this way, theirdumstry would
not have sustainable development. Current stakeholderantts for less en-
ergy consuming cars has contributed to the car industrifgnieing making
it increase its environmental sustainability. Currenttooeers get an added
value by taking on the responsibility of preserving addeldedo the future
customers. Additionally to the customers taking on thipoasibility, envi-
ronmental regulations are forced upon the car industry byftiitical sphere.

O’Connor discusses the interfaces between the three diomenef cor-
porate sustainability [38]. A new concept of “spheres” igdisreplacing the
sustainability dimensions. A forth sphere is added, thétipal sphere, that
should regulate the economic sphere’s relation to the cipleeres. The forth
sphere takes on the responsibility of ensuring added valtiget future stake-
holders.

Motivating sustainable development, i.e. creating a lassrcase for sus-
tainable development, is not obvious considering all disi@ms of sustainabil-
ity. Reed examines the business case for corporate sustainstrategies and
does an attempt to quantify it financially [9]. Sharehold&ue is in focus and
the financial case is made at company level in the contextaifabmpany’s

14 Related Work

Economic
Sustainability

Future Stakeholder(Corporate Current Stakeholder
Value (F.S.V.) Sustainability Value (C.S.V.)
Environmental Social
Sustainability Sustainability
Economic
Sustainability
Non-Corporate
Sustainability CS.v
Environmental
Sustainability
Social

Sustainability

Figure 2: Top figure The company’s corporate sustainability is balancing
added value to its current stakeholders with added valus fature stakehold-
ers.Bottom figure The company’s non-corporate sustainability is maxinmgzin
added value to its current stakeholders, by ignoring envirental sustainabil-
ity, thereby reducing the added value to the future stakksgresl

Sustainable Development and Software Engineering 15

strategy within their industry. Sustainable developmentffie industrial soft-
ware system domain will, following Reed’s reasoning, hawether business
case than e.g. the chemical engineering domain. One of Reedtlusion is
that:

...itis up to those companies that believe they are creataige
through sustainability strategies to clearly articulateat value to
investors and financial analysts.

Salzmann, loenescu-Somers and Steger identify insuffioieserstanding
of managers’ key arguments for corporate sustainabili®}.[TThey attribute
this primarily to lack of descriptive research in the arelatiow business cases
are built; and how effective they are and what barriers theg f Salzmann con-
cludes that research must identify managers’ key econorgimaents used to
drive corporate sustainability internally in the compang ¢he success-factors
of these arguments. Most likely the business case is oftegrban the enforced
regulations by the “forth sphere”, the political sphere tloa firm. If the firm
does not conform to the regulations it will not be allowedét gs products or
face legal consequences. However, most companies useftireeghregula-
tions to market themselves as environmentally friendigreby increasing the
economical sustainability by increasing the environmlentatainability.

When the dimensions and the motivation of sustainable dpwetnt and
their applicability to a specific company have been understthe company’s
interest will be in establishing sustainability criterlaabuschagne et al. pro-
pose a comprehensive framework of sustainability critéréd can be used to
assess the sustainability of projects, technologies, dsas¢he overall com-
pany sustainability [5]. The sustainability criteria framork considers the
dimensions: environmental sustainability, economicaunability, and social
sustainability. Economic sustainability is, besides canraccepted criteria
such as Net Present Value (NPV) and Return Of Investment)(RO¢ggested
to be measured by the criteria: potential financial benefits.

In the “Framework for sustainability assessment toolsthr{39], Ness et
al. categorizes sustainability assessment tools in theaergl areas: indices/
indicators; product-related assessment tools; and ategrassessment. Life
cycle management is an assessment tool in the productdelasessment tool
area. Risk analysis and uncertainty analysis are part ohtbgrated assess-
ment tool area. Sing et al. have made an comprehensive eveofisustain-
ability assessment methodologies [11]. Their conclussathat various inter-
national efforts on measuring sustainability exist, buydew of them have
an integral approach taking into account environmentanemic and social

16 Related Work

aspects. As sustainable development is about the inteagmof the three as-
pects, trying to use the efforts supplementary will be migghe point of sus-
tainable development. Finally, Sing et al. state that suskdity assessment
techniques should be selected and negotiated by the ajgtepommunities
in interest.

Following the conclusions of Reed [9], Salzmann et al. [28H Sing et al.
[11], each community or domain should: interpret sustdmalevelopment,
argue its business case for sustainable development, tatuligls their own
sustainable development assessment.

Possible criteria for the software engineering domain fitethe descrip-
tions of sustainable development by [4][37][5] are listad-igure 3. If these
are actually criteria used or criteria that should be usddduastrial software
system development organizations is an open issue thas figrtider research.
It's not known how the business processes of the softwareldpment orga-
nization relate to the sustainability criteria.

+ Reputation, software quality related Economic

+ Cost/benefit heuristics for using Sustainability + Executable software
architecture patterns + Architecture views

+ Risk analysis related to software + Architecture patterns
architectural issues + Software development staff

+ Software innovations + Software development tools
+ Software development + Software licenses

processes Corporate + Software storages
+ Software development Sustainability + Financial equity, debt
methods
+ Software design principles
Environmental Social
Sustainability Sustainability

+ Information sharing networks

+ Human capital carried and shared by key
competences

+ Personal human capital

+ Software development staff’s loyalties

+ Software development organization's partnerships
with external organizations

+ Trust among software development staff

+ Software development staff’s motivation

+ Stakeholders’ participation

+ Software Development Organization Patterns

+ Software system’s contribution
to natural resources savings

+ Software system’s usage of
natural resources in development
and operation

Figure 3: Three dimensions of corporate sustainabilithwibssible criteria
from the software engineering domain and the software gactuire’s environ-
ment

Another open issue is how the software quality concernserétasustain-

Software Engineering 17

ability criteria. Ozkaya et al. make the case that softwachitectural patterns
carry economic value in the form of real options, providimgidners with the
right, but not the obligation, to take subsequent desigioastin the future
in the face of uncertainty [40]. Their method could be one whyneasuring
potential financial benefits for a software development wizgion as a part
of measuring economic sustainability. The stakeholderevtiat is connected
to sustainability criteria, i.e. which stakeholder willrpeive an added-value
when the criteria is reached, should be explored.

Basili, Cladiera, and Rombach describe the Goal Questioaesidlap-
proach [41]. By understanding specific aspects of a concetated to the
system development, the goal can be set and metrics to adhie\goal con-
structed. For sustainable development this would tramsit collecting stake-
holders’ concerns regarding the system and its developamehtisage. Then
the aspects of those concerns related to sustainable geveta have to be
understood and goals and metrics defined.

Jain and Boehm describe an initial theory of value-basetivaoé engi-
neering [42]. The value-based software engineering (VBB&)ry addresses
the questions of “which values are important?” and “how iscess assured?”
for a given software engineering enterprise. Their theonjd be used to find
out, what values are important to achieve success in formmsiégable devel-
opment. Assigning a sustainable development value to eaelothe current
and future stakeholders’ concerns, can aid in the elioitadif concerns impor-
tant to address for the achievement of sustainable develnpm

2.2 Software Engineering

The term software engineering first appeared in the 1968 N8dfbware En-
gineering Conferendend was meant to provoke thought regarding the current
“software crisis” at the time.

In the article “Will There Ever Be Software Engineering” [43ackson
claims that:

...there will never be software engineering. As these gfieat
tions flourish (e.g. compiler engineering, operating systdau-
thor’s remark]) they leave software engineering behindA pro-
fessor of software engineering must, by definition, be agggiir
of unsolved problems.

Lhttp://homepages.cs.ncl.ac.uk/brian.randell/NATOM@®Reports/index.html

18 Related Work

Ziv and Richardson state the uncertainty principle of safenengineering
(UPSE) [44] as:

Uncertainty is inherent and inevitable in software develemt
processes and products.

They describe the software development as a complex huntarpese
carried out in problem domains and under circumstancesatieabften uncer-
tain, vague or otherwise incomplete.

Basili and Musa discuss the management perspective ofaa®ngineer-
ing [45]. To understand where the time and effort in softwdereelopment are
going, Basili and Musa suggest that:

...we must isolate and categorize the components of theaveft
engineering discipline, define notations for representirem and
specify the interrelationships among them as they are manip
lated.

They point to a set of areas that they believe will play an irtgrd role in
deepening the understanding and attainment of softwaréygughese areas
are:

e Formal methods

e Design methods, e.g. object oriented design

e Measurement approaches

e Usage and reduced-operation software

e Reuse

e Cognitive psychology, e.g. problem solving research

e Software sociology, e.g. group dynamics, communicatidwoeks, and
organizational politics

Where Jackson sees the application domain of software eewitg as cru-
cial for the science of software engineering, Basili and &sse the software
developmentrelated activities, applicable to any donssnhe areas important
for the discipline of software engineering.

The topic of the engineering in software engineering is thiéware ar-
chitecture, the construction of software according to tifensare architecture

Software Architecture 19

and the life cycle maintenance of the software structurédsdmcording to the
architecture. That the engineering depend upon what sadtisabeing con-
structed, is similar to the building engineering where thidding of office
building and domestic buildings requires different spieagions of the engi-
neering skills. But the basic architecture and engineeriaiging is still the
same.

2.3 Software Architecture

The study of software architecture is in large part a studgodifivare structure
that began in 1968, the same year as the term Software Emigigeeas in-
troduced when Dijkstra presented the work with the THE-ptdgramming
system [46]. Dijkstra presented a layered software stradhat supported the
testability quality of the system, thereby connecting thivgare development
test process to software architecture structures.

Twenty years later, Shaw described different styles [4fig Brites:

...important decisions are concerned with the kinds of nexiu

and subsystems to use and the way these modules and sulgsystem
are organized. This level of organization, the softwareh#ec-

ture level, requires new kinds of abstractions that capasgential
properties of major subsystems and the ways they interact.

The software architecture styles Shaw describes are commpsof solv-
ing specific problems or the invention to solve one specifabfam, e.g. the
“Blackboard” architecture style as the solution to the speenderstanding
problem [48].

In the book “Software Architecture: Perspectives on an kjnerDisci-
pline”, published 1996, Shaw and Garlan describe softweritecture con-
cepts such as: components, connectors, and styles [12].

One of the frequent used definitions of Software Architeetgrthe defi-
nition from the book “Software Architecture in Practice’lpished 2003 (1st
edition published 1997) written by Bass, Clements, and Karfi3]. They
define software architecture as:

The software architecture of a program or computing system i
the structure or structures of the system, which comprifigvace
elements, the externally visible properties of those etgsnand
the relationships among them.

20 Related Work

According to Gacek, Abd-Allah, Clark, and Boehm [49], a a@fte system
architecture comprises:

e A collection of software and system components, connestiand con-
straints.

e A collection of system stakeholders’ need statements.

e A rationale which demonstrates that the components, caiomsg and
constraints define a system that if implemented, would fyatie col-
lection of system stakeholders’ need statements.

Gacek et al. implicitly connect the definition of sustaireadevelopment
to software architecture with the third item in their list.their system stake-
holders’ need statements would include the needs of futakekolders and
if the needs would include economical, social and enviramaleneeds then
their definition of software architecture would actuallyibdine with what is
required by a software architecture for a system with snatdée development.

The standard “IEEE 1471: ANSI/IEEE 1471-2000: Recommeriied-
tice for Architecture Description of Software-Intensivgsg&ms” is the first
formal standard in the area of system architecture, and dagted in 2007
by ISO as ISO/IEC 42010:2007 [50]. In ISO/IEC 42010:2007re@ystem is
considered in the context of its environment: the total sdralloinfluences
determining the setting and circumstances of developrmetetzhnological,
business, operational, organizational, political, ratpry, social and any other
influences upon a system. The ISO/IEC 42010:2007 definitf@aystem ar-
chitecture is:

The fundamental organization of a system embodied in its com
ponents, their relationships to each other, and to the emvirent,
and the principles guiding its design and evolution.

This is a definition not so much in line with sustainable depetent as is
the definition of Gacek et al [49]. “Principles” is a very vagierm but could
be interpreted to be principles in line with meeting curtakeholders’ needs
without compromising the organization’s ability to meetute stakeholders’
needs.

Johnson has in his PhD thesis [14], published 2002, invatstifthe defini-
tions of software architecture to find a general consensusgrie definitions
but resorts to conclude that:

Software Architecture with an Enterprise Perspective 21

It is not generally agreed upon what a component or entitytis,
is not generally agreed upon what a structure is, or evenif io
be called structure, and it is not generally agreed upon wéis¢
comprises software architecture.

Considering Johnson’s conclusion, the question is, howdifferences in
agreement affect a not risk-willing industry’s adaptatairsoftware architec-
ture’s concepts. When each industry or application areaddsfine its own
understanding of the meaning of software architecturejghiriead to tradi-
tionally software-intensive domains taking a lead in thagédtion of software
architecture concepts and the not traditionally softwatensive domains hav-
ing a long way to go to reach the same software quality matulfisoftware
quality maturity affects the sustainability of the softe@aystem, this is a se-
rious issue without an obvious solution. Each software iapfibn domain
can hardly define its own software engineering researcliptiise as Jackson
discusses [43].

Gacek et al. [49] and the ISO 42010 standard [50] have extetidecon-
cept of software architecture from components and thegraations to include
the software architecture environment in terms of stalddrs! needs and in-
fluences like: developmental, technological, businessrainal, organiza-
tional, political, regulatory, social and any other inflaea upon a system.
These influences requires an enterprise perspective todeekd and related
to the software components and their interactions.

2.4 Software Architecture with an Enterprise Per-
spective

Enterprisé architecture, defined by the Federal Architecture Workimgup
(FAWG) [51], is: a strategic information asset base and less the mission
(i.e. the business), the information and the technologéeessary to perform
the mission, and the transitional processes for implemgmtéw technologies
in response to changing mission needs. An enterprise iesliderdependent
resources (people, organizations, and technology) whd ocagsdinate their
functions and share information in support of a common roissArchitecture

2Enterprise - an organization supporting a defined busiressesand mission

22 Related Work

includes a baseline architectdréarget architectufeand a sequencing plan

According to Martin [52], enterprise architecture dealgwmiGetting to the
Future” and has drivers and outcomes. The enterprise acthit is according
to Martin a means for transforming enterprise objectivés lrusiness plans
and mission needs.

In the mid 1990s the Department of Defense (DOD) determinaicet com-
mon approach was needed for describing its architectuwéisasDOD systems
could efficiently communicate and inter-operate duringtaind multinational
operations, resulting in the DOD Architecture Frameworlo@AF) [53]. The
interoperability aspects of the DODAF is reflected in itshétectural views
which are focused on describing what’s being communicatedreow in the
Operational View (OV) of the DODAF. The Systems View (SV) oODAF
identifies the systems that support the OVs and the Techvieal (TV) de-
scribes the criteria for each required system that wils§athe interoperability
requirements. DODAF is as such not an architecture devedopmethod or
a classification framework, it's an architecture desaniptievelopment frame-
work focused on describing interoperability aspects ofesys of systems.

TOGAPF is developed and maintained by members of The Open Group,
working within the Architecture Forum. The original devetoent of TOGAF
Version 1 in 1995 was based on the Technical ArchitecturenBveork for
Information Management (TAFIM), developed by the US Depaitt of De-
fense (DOD) [54]. The DOD gave The Open Group explicit pesiis and
encouragement to create TOGAF by building on the TAFIM, \uhiself was
the result of many years of development effort and many omliof dollars of
US Government investment.

TOGAF is more ambitious in scope than its defense countedp@DAF.
TOGAF organizes architectures into four domain levels:iBess architecture
- defines business strategy, governance, organizationkeyndusiness pro-
cesses; Application architecture - specifies individugdligation systems to
be deployed; Data architecture - defines structure of amargtion’s logical
and physical data assets and associated data managementessand Tech-
nology architecture - specifies software infrastructuterided to support the
deployment of core, mission-critical applications.

3Baseline architecture - the architecture as it is today, eddled as-is architecture

4Target architecture - the (planned) future architectulsn aalled to-be architecture or goal
architecture

5Sequencing plan - the strategy for changing the baselitétecture to the target architecture,
also called the transition plan

Shttp://www.opengroup.org/architecture/togaf9-doctdiaccessed 12. August 2009]

Software Architecture with an Enterprise Perspective 23

Enterprise architecture descriptions have been widelptedidy the DOD
but the discipline of enterprise architecture is commordpsidered to have
its birth in an academic article by Zachman published 198Thieyresearch
oriented IBM Systems Journal [15]. Zachman saw the groworgplexity of
information software system that extended in scope and ity to cover
an entire enterprise. He stated that decentralizationsiery resources with-
out structure results in chaos and argued for the need ofmiraftion system
architecture. Zachman searched for an objective indepebase upon which
to build a framework for information system architecturel aesolved to be
inspired by classical architecture.

In ajoint article, published 1992, Sowa and Zachman expkaihthe Zach-
man framework links the concrete things in the world (eesitiprocesses, lo-
cations, people, times and purposes) to the abstract biteicomputer [18]
. The Zachman framework is not a replacement of programnualgt tech-
niques, or methodologies but instead, it provides a way @kirig the system
from many different perspectives and how they are all relatée framework
logic can be used for describing virtually anything consiutg its history of
development. The logic was initially perceived by obsegvihe design and
construction of buildings. Later it was validated by obsegwthe engineering
and manufacture of airplanes. Subsequently, it was apfiedterprises dur-
ing which the initial material on the framework was publidH&5][16][17].
Sowa and Zachman write:

Most programming tools and techniques focus on one aspext or
few related aspects of a system. The details of the aspgcséhe
lect are shown in utmost clarity, but other details may becolbsd

or forgotten. By concentrating on one aspect, each tectelioges
sight of the overall information system and how it relateshie
enterprise and its surrounding environment. The purposthef
Information System Architecture framework is to show hosnev
thing fits together. It is a taxonomy with 30 boxes or cellsaerg
nized into six columns and five rows. Instead of replacingioth
techniques, it shows how they fit in the overall scheme.

According to Zachman, “Architecture” is the set of desadviptrepresen-
tations relevant for describing a complex object, such thatinstance of the
object can be created and such that the descriptive repatissis serve as the
baseline for changing an object instance.

The columns of the framework represent different abswastfrom or dif-
ferent ways to describe information of the complex objeche Teason for

24 Related Work

Abstraction INVENTORY PROCESS NETWORK | ORGANIZATION TIMING MOTIVATION
SETS TRANSFORMATIONS NODES GROUPS PERIODS REASONS

Perspective (WHAT) (HOW) (WHERE) (WHO) (WHEN) (WHY)
SCOPE e.g. Inventory |e.g. Process Types e.g. Networje.g. Organization|e.g. Timing |e.g. Motivation
CONTEXTS Types Types Types Types Types
(Strategists)
BUSINESS e.g. Business |e.g. Business e.g. Business|e.g. Business e.g. Business|e.g. Business
CONCEPTS Entities & Transform & Input Locations & [Role & Work Cycle & End & Means
(Executive Relationships Connections Moment
Leaders)
SYSTEM e.g. System |e.g. System e.g. System [e.g. System e.g. System |e.g. System
LoGIC Entities & [Transform & Input ~ |Locations & |Role & Work Cycle & End & Means
(Architects) Relationships Connections Moment
TECHNOLOGY [Je.g. e.g. Technology e.g. e.g. Technology |e.g. e.g. Technolog
PHYSICS Technology | Transform & Input Technology |Role & Work Technology |End & Means
(Engineers) Entities & Locations & Cycle &

Relationships Connections Moment
COMPONENT e.g. e.g. Component e.g. e.g. Component |e.g. e.g. Componen
ASSEMBLIES ~ JComponent | Transform & Input ~ [Component |Role & Work Component |End & Means
(Technicians) Entities & Locations & Cycle &

Relationships Connections Moment

Figure 4: The Zachman Framework

isolating one variable (abstraction) while suppressingtiers is to contain
the complexity of the design problem. Abstractions clg@sif the description
focus are:

Inventory Sets - Describes “what” information is used

Process Transformations- Describes “How” the information is used
Network Nodes - Describes “Where” the information is used
Organization Groups - Describes “Who” is using the information
Timing Periods - Describes “When” the information is used

Motivation Reasons - Describes “Why” the information is used

The rows of the framework represent “Perspectives” clasgif the de-
scription usage:

Software Architecture with an Enterprise Perspective 25

Scope Contexts- perspective descriptions corresponds to an executive sum
mary for a planner or investor who wants an estimate of thpesobthe
system, what it would cost, and how it would perform.

Business Concepts perspective is the perspective of the owner, who will
have to live with the constructed object (system) in theydedlutines
of business. This perspective descriptions corresponidet@iterprise
(business) model, which constitutes the design of the kgsiand shows
the business entities and processes and how they interact.

System Logic - perspective descriptions is the designer’s perspectgerip-
tions. These correspond to the system model designed byensyan-
alyst who must determine the data elements and functiohsdpeesent
business entities and processes.

Technology Physics- perspective descriptions correspond to the technology
model, which must adapt the system model to the details qirbgram-
ming languages, 1/0O devices, or other technology. Thisdprspective
where the four views of the “4+1” model by Kruchten [55] canused
to describe software architecture.

Component Assemblies- perspective descriptions correspond to the detailed
specifications that are given to programmers who code iddalimod-
ules without being concerned with the overall context arctire of the
system.

The relevant descriptive representations would necég$eve to include
all the intersections between the Abstractions and thepRetises (Figure. 4).
“Architecture” would be the total set of descriptive regetations (models)
relevant for describing the complex object and requirecttoesas a baseline
for changing the complex object once it is described. Zactisneomplex
object is the enterprise, but principally he states thatctimaplex object can
be any object.

The Zachman framework is a structure, not a methodology feating
the implementation of the object. The Zachman Frameworls chae imply
anything about how architecture is done (top-down, bottgametc). The level
of detail is a function of a cell not a function of a column. Tibeel of detalil
needed to describe the Technology Physics perspective enagthrally high
but it does not imply that the level of detail of the Scope @aitd descriptions
should be lower or the opposite.

26 Related Work

The framework is normalized, that is adding another row durom to
the framework would introduce redundancies or discortii@sli Composite
models and process composites are needed for implement#tioomposite
model is a model that is comprised of elements from more tharframework
model. For architected implementations, composite moaheist be created
from primitive models and diagonal composites from horiadly and verti-
cally integrated primitives. The structural reason forleging diagonal rela-
tionships is that the cellular relationships are transit@hanging a model may
impact the model above and below in the same column and anglrothe
same row.

The rules of the framework are [16]:

Rule 1: Do not add rows or columns to the framework

Rule 2: Each column has a simple generic model

Rule 3: Each cell model specializes its column’s genericehod
Rule 3 Corollary: Level of detail is a function of a cell, notalumn
Rule 4: No meta concept can be classified into more than ohe cel
Rule 5: Do not create diagonal relationships between cells

Rule 6: Do not change the names of the rows or columns

Rule 7: The logic is generic, recursive

For manufacturing, a process composite would be necesBhaeyprocess
composite describes the working process of creating theeham$criptions of
the composite model, typically ending with the descripsiohthe components
in the Component Assemblies perspective, e.g. a serviaamefvork.

A third dimension of the framework, called science, has meposed by
O’Rourke et al. [56]. This extension is known as the Zachma\@Depth
iNtegrating Architecture). In addition to the perspectiamd aspects the z-axis
is used for classifying the practices and activities usegrfoducing all the cell
representations.

An example of an information system classifying informat&tandards
in the Zachman framework is the Zachman ISA Framework forltHeare
Informatics Standard [57], see Figure 5.

The model, i.e. the view, in the Zachman framework can benatigwith
the ISO/IEC 42010:2007 viewpoints [50]:

Software Architecture with an Enterprise Perspective 27

An organization desiring to produce an architecture frarneéefor
a particular domain can do so by specifying a set of viewpoint
and making the selection of those viewpoints normative fgr a
Architectural Description claiming conformance to the dom
specific architectural framework. Itis hoped that existamghitec-
tural frameworks, such as the 1ISO Reference Model for Open Di
tributed Processing (RM-ODP) [58], the Enterprise Arcloiigre
Framework of Zachman [15], and the approach of Bass, Clement
and Kazman [13] can be aligned with the standard in this mainne

Zachman's framework does not describe what language toutiesf model
descriptions or how to do the actual modeling for each celier&fore each
view of the Zachman’s framework is free to use the viewpoatested by the
responsible of the description. It should therefore be iptesto use the view-
points from the ISO/IEC 42010:2007 to describe a model,a.giew, within
the framework.

The Business Concepts perspective of Zachman’s framevgoplerihaps
the most interesting to investigate for a possible intégmnawith system archi-
tecture descriptions related to sustainable developnfeintastrial software
systems. Morris, Schindehutte, and Allen have researdtetusiness model
concept regarding the definition, nature, structure, amfugion of business
models [59]. According to the authors:

A business model is a concise representation of how an @terr
lated set of decision variables in the areas of venture st
architecture, and economics are addressed to create susibd
competitive advantage in defined markets.

The physical, tangible and intangible capital ensuringieoaical sustain-
ability can be described within the Zachman framework. Hbesénterprise
ensures that it minimizes the natural resource consumptionbe described
in a life-cycle management process described in the Pracessformations
column in the Zachman framework. Subsystems’ interacitansbe described
in the System Logic perspective in the Zachman frameworkraladed to the
business processes they support, described in the Bushoesept perspec-
tive. Measures of each business process’ energy consungatiotherefore be
related to the system’s software features supporting tsabss process. So-
cial capital, as networks of employees communicating witt usting each
other, may be more difficult to capture. Enterprise visioigsion and princi-
ples stating a risk-willing, open, and communicative cudtcan be described in

28 Related Work

Abstraction -> INVENTORY PROCESS NETWORK ORGANIZATION TIMING MOTIVATION
SETS TRANSFORM. NODES GROUPS PERIODS REASONS
Perspective 4: (WHAT) (HOW) (WHERE) (WHO) (WHEN) (WHY)
SCOPE Description of Important Identification Essential Identification |Personal and
CONTEXTS important health |health care and |and description [health service of public health
service and care |care delivery ~ [of organizations and |significant impact, and
delivery services organization and | their functions health care
information. individual care and care | delivery
locations delivery business
events case
BUSINESS Semantic Conceptual Structure and Healthcare Sequence and|Personal health
CONCEPTS description of | activity model |interrelationship |information timelines of | benefit and care]
health care of of system workflow | health delivery
processes health care health care care services [business
delivery facilities objectives
SYSTEM Logical data Application Connectivity Health care Health care System
LOGIC model for health |architecture and distributed | information event phases |functional
care information |With system system human- and requirements
function and architecture system process
user interface components
views architecture
TECHNOLOGY [Physical data System Health system | Health care Health care | System
PHYSICS model for health |design, information information information | operational
care information |language network detailed |system human- system controlf requirements
specification, | architecture system structures
and interface
structure charts description
COMPONENT JHealth care Code Physical date Systen Health care Technical
ASSEMBLIES information statements, network security information | requirements
metadata, and control blocks, |components, architecture and | system
| DBMS scripts DBMS stored |addresses and | operations component
procedures, etc | communication timing
protocols descriptions

Figure 5: The Zachman ISA Framework for Healthcare Infoiosetandard

the Scope Context's Motivation Reason column. But muchestbcial capital
is social, since it can not be explicitly captured and traredl as economical
capital in a document.

2.5 Software Architecture Environmental Influences

Shaw and Garlan suggest a software design level model tiogsi$ machine
code andarchitecture[12]. The machine level represents the binary software
that is part of the operating system and commercial prodhetiscannot be
modified by the application developer. The code represéetptogram that

is the domain of application development, and the thirdlles¢éhe architec-
ture, which provides a model of how the system is partitioard how the

Software Architecture Environmental Influences 29

connections between the partitions communicate.

According to Malveau and Mowray [60] this software desigvelenodel
is insufficient since it does not represent any significapasation of concerns
and important properties such as interoperability betvegstems are not con-
sidered.

Malveau and Mowray suggest a Software Design-Level ModeL(8):

The Software Design-Level Model (SDLM) builds upon thetéac
model. This model has two major categories of scélddicro-
Design and Macro-Design. The Micro-Design levels incluuke t
more finely grained design issues from application (sulesypt
level down to the design of objects and classes. The MacsigDe
levels include system-level architecture, enterprisehidecture,
and global systems (denoting multiple enterprises and rier-
net). The Micro-Design levels are those most familiar toeliep-
ers. At Micro-Design levels, the key concerns are the piowief
functionality and the optimization of performance. At thadvb-
Design levels, the chief concerns lean more toward manageme
of complexity and change. These design forces are preséneat
grains, but are not nearly of the same importance as they are a
the Macro-Design levels.

Micro-Design level descriptions typically describe saite@ components
and connectors, e.g. the “4+1” view by Kruchten [55] or tharfeiews by
Soni, Nord and Hofmeister [61]. The Macro-Design level uds system-
level architecture, enterprise architecture, and gloystesns described by e.g.
the DODAF [53], TOGAF [54] or the Zachman Framework [15][f1&]].

Sustainable development is about both the Micro-Desigal lesncerns
and the Macro-Design level concerns as management of caityded change.
For instance, organizational issues as an out-sourcingeéldpment affect
economical capital and social capital of the sustainableldpment.

The importance of technical, business, and social influgecesoftware
architecture is also discussed by Bass et al. [13]. Theloaktiip among the
technical, business, and social environments that suksdguinfluence future
architecture is called the architecture business cycle@ABhe ABC focuses
on the creation of software architecture and the maintemafihe architecture
and conformance of the system to the architecture.

An attempt to address sustainable development concerngecéound in
the work of Kazman et al. [62] where the integration of esthigld engineer-
ing methods with a development organization’s life cycleliscussed. Here

30 Related Work

the Attribute Driven Design (ADD) method by Woijcik et al. [6and the Cost
Benefit Analyze Method (CBAM)by Kazman and Ozkaya [40][6&2]e sug-
gested as means for the architect to design and chose agpeanchitectural
responses to the new challenges during the software dewelagife cycle.
The methods are preferably used in the development phasthamdchitec-
ture Trade-off Analysis Method (ATAM), described by Cleneeeat al [7], used
after the system is released and the stakeholders wantiveéisrisks and sen-
sitivity points in the architecture related to businesslggohe ATAM can be
used to discover risks related to environmental sustdihaboals if they can
be expressed as quality attribute concerns, e.g. if thggieensumption of the
software due to a specific architectural design can be fatadlas a quality at-
tribute concern. Usually ATAM’s are concerned with econcahsustainability
concerns, e.g. how to make the architecture support motiifyaperformance
or usability in order to maintain or expand the target mavkigt a reasonable
effort [8]. The development organization’s maintainakitoncern often im-
plies long-term efforts, in order to improve economicaltausbility, e.g. the
introduction of reusable components [64] or product linstegn architectures
[65].

The non-balance of short-term gains and long-term gainswbting busi-
ness goals has been described by Dyllick and Hockerts indhigile on Cor-
porate Sustainability [4] as:

In recent years, driven by the stock market, firms have tetwled
overemphasize short-term gains by concentrating more an-qu
terly results than the foundation for long-term successchSan
obsession with short-term profits is contrary to the spifitsos-
tainability, which requires a balance between long-terrd ahort-
term needs, so as to ensure the ability of the firm to meet thésne
of its stakeholders in the future as well as today.

For the change requests entering the system after its eglisstakehold-
ers have to take a decision if they are worth implementingobr @onsidering
Dyllick and Hockerts view of the importance of a balance kewlong-term
gains and short-term gains, the change request should botteaspects. In
an article from Boehm [66], it is argued that software engmseshould look
at proposed changes to software systems as investmenbifibesiand cal-
culate on the value of investing in those changes with metisidilar to the
methods in the investment economics, e.g. option theomedially the value
of the success-critical stakeholders concerns should bsidered important.
For sustainable development this would mean that the sodtergineers must

Software Architecture Environmental Influences 31

identify the success-critical stakeholders and calculesustainable develop-
mentrelated value of addressing their concerns. Ozkaya@igose a similar
approach of using option theory when selecting architeclternatives [40].

The implementation of change requests also have be supdnyténe de-
velopment process. The process has to support unprediatabhge requests
as well as support their fast realization. The Scrum devek process has
gained a lot of supporters as it’s a light-weight procesh wistrong connection
to agile development methods as described by Schwaber $&flim consid-
ers the software development process to be a chaotic erlgiriccess which
requires close watching and control, with frequent intatian. A Scrum soft-
ware project is controlled by establishing, maintainingd anonitoring key
control parameters. The key control parameters are bagkkges, risk, prob-
lems and changes. Scrum identifies the most important stédexis and these
success critical stakeholder’'s concerns are implemertéidsta This is simi-
lar to Ruhe and Saliu [68] who describe the release plannipgoach based
on the features’ internal dependencies, the resourceraimstand the stake-
holders’ importance. Scrum ignores future stakeholdegg'thif they are not
expressed by the current stakeholders involved in the Scogeps steps. In
order for Scrum to be a good alternative for a company aimirgystainable
development, there must be a representative for futurelkstdéters’ needs that
has as much influence-weight as the current stakeholdeis.nTight be dif-
ficult since there is no immediate pay-off for considering fhture in terms
of environmental and social capital. An additional diffigufior the Scum pro-
cess to incorporate future stakeholders’ needs is that uldvbe difficult to
iterate today’s system’s development around changes urdgtakeholders’
concerns.

Curtis, Krasner, and Iscoe employed field research methualacteristic
of sociology and anthropology in a field study called “A fietddy of the soft-
ware design process for large systems” [69][70]. They sithoth successful
projects as well as failed projects for businesses suchaspgter manufac-
turing, telecommunications, consumer electronics, anospace. Exceptional
designers were shown to possess superior application kdgeland commu-
nicated well with both clients and the development team yweild translate
user requirements into technology, identify unstated irequents, and men-
tally simulate software and interactions between partssyfstem. One of the
most significant findings in the study is that:

In particular, they (exceptional designers) envisionedtibe de-
sign would generate the system behavior customers expeve

32 Related Work

under exceptional circumstances. Yet exceptional desigrfeen
admitted that they were not good programmers, indicatiry thid
not write optimized code, if they wrote code at all.

The finding implies that exceptional software architectsuth have a solid
understanding of architectural issues and customershbsasiprocesses, the
application domain. The exceptional software architectsdase the social
capital of the company in terms of their implicit applicatidomain knowledge.

Curtis et al. write:

For instance, software design is often described as a proble
solving activity. Nevertheless, few software developmeatels
include process components identified in empirical redeanc
design problem-solving. Even worse, software tools andtras
conceived to aid individual activities often do not provizEnefits
that scale up on large projects to overcome the impact of taadn
organizational factors that affect the design process.

The findings related to management issues in Curtis’s sthdwed that
an implicit component of the managers’ job was to close thelggween the
technical challenges of the system and their staff’s cdipafdr solving them.
Problem-solving capacity and knowledge communicatiogpgcally a part of
the social sustainability researched in e.g. the educdti@search domain
[71].

The progress of problem-solving in the software develogroeganization
can only be controlled if its being measured. Adaptationthé&organization
can be made if the desired sustainable development statevsrkand if the
current state of the processes involved in achieving thé igdanown. Con-
sidering the complexity in the software architecture emvinent, reaching the
goal of sustainable development requires careful elioitatf measures to use
in software development process improvement.

2.6 Software Development Measures

Software development requires a measurement mechanisfeddback and
evaluation according to Basili et al. [41]. They suggest thatrics and mod-
els in industrial environments to be efficient must be foduse specific goals.
The metrics must be interpreted based on an understanditinge afrganiza-
tional context, environment and on the specified goals. dadlgj their ap-
proach is to: find the stakeholder concerns; understand waiaé it would

Software Development Measures 33

give the organization to solve the concerns; set up goalsblyaing the pur-
pose, issues, viewpoints and objects of the concerns. Hvepaints are the
stakeholders who voiced the concerns. The issue is thegirokérnel of the
concern and the object is the process, resource or prodwtiitt the problem
kernelis related. The purpose is what the stakeholder watd with the issue,
e.g. improve, reduce, strengthen etc. Once the goal islisstath, questions
related to the object’s properties can be asked in orderddffi@ metrics of the
object.

The Goal-Question-Metric (GQM) approach could be useddetanable
development concerns voiced by stakeholders in the industftware sys-
tem’s architecture environment. Goals could be set up tohr@aprovements
on objects extracted out of the concerns.

Jain and Boehm focus on value-based software engineeriB§EY [42].
The theory address considerations involved in the: maiegapects of soft-
ware engineering; personal, cultural, and economic vahvedved in develop-
ing and evolving successful software-intensive systeraie/Based Software
Engineering uses success-critical-stakeholder valusitutate and guide tech-
nical and managerial decisions. Similar to the GQM methlod first task is
to find the stakeholders’ concerns. Where Basili et al. ssiggstructuring of
the aspects of the concerns in order to establish goalsaddiBoehm suggest
an understanding of how the stakeholders want to win andsfiay to win
makes the other stakeholders to winners or losers. The iaigatbetween
stakeholders starts with the stakeholders identifying tvedue propositions.
The VBSE can possibly be used in conjunction with the GQM dentifying
those concerns with the most sustainable development taltee organiza-
tion.

Key Performance Indicators (KPIs) are quantifiable measards, agreed
to beforehand, that reflect the critical success factoraarganization. They
will differ depending on the organization. Key Performahudicators for soft-
ware development could be based on the categories of ightifformation
needs in the development organization suggested by Arjidic Schedule
and Progress; Resources and Cost; Product Size and $tabilitduct Qual-
ity; Process Performance; Technology Effectiveness; @bust Satisfaction.
Key Performance Indicators could also be based on the aothiall complex-
ity measures discussed by: Boehm et al. [73], Halstead [7M]aCabe [75].

According to Burlton [76], the type of the stakeholder, oefta value out
of the process, should decide what measurement indicatesad. This is
similar to the reasoning of Basili et al. [41]. For examplenstructing a
software architecture has a value to the architect rolehifgctural complexity

34 Related Work

could then be used as a Key Performance Indicator, to aidrihétect in not
constructing architectures too complex for its environtmen

The view of the software architecture as a control instangeking cor-
rectly only if the organizational parameters are set cdlyrded Dikel et al.
[77] to reflect on the law developed by Ashby [78], ther of requisite variety
which suggests that a system should be as complex as it®amant:

...in active regulation only variety can destroy variety.ldads
to the somewhat counterintuitive observation that the letgu
must have a sufficiently large variety of actions in ordernsure
a sufficiently small variety of outcomes in the essentialaides
E. This principle has important implications for practicsitua-
tions: since the variety of perturbations a system can gty
be confronted with is unlimited, we should always try mazanits
internal variety (or diversity), so as to be optimally preed for
any foreseeable or unforeseeable contingency.

[79]

If a software architecture becomes more complex than itg@mwent, it
may become too expensive for the organization to suppattielenvironment
would include the organizational environment as well asiiliginess environ-
ment then a business domain model with a measure of the lsgsttzanain
complexity would be required in order to understand on whegll the soft-
ware architecture complexity should be. The business domaidel can be
described by domain analysis according to Coplien [80].

Burlton describes the maturity model of business processtge levels
[76]. Between level two and level three, architectures aRdiskshould be de-
signed. At level four, the performance of the processes a&asnred with the
designed KPIs. At level five, the processes are continudoglyoved. Mea-
suring process improvement for an industrial process, psrgaroduction, is
typically done by measuring the increase in productionipg tinit or in terms
of observable qualities, e.g. percentage of cotton in tipepaveasuring pro-
cess improvement in software development relies on KPIsareay software
development process production and/or quality being éshegal.

Taylor Fitz-Gibbon and Lyons Morris reason around a thdmaged evalu-
ation [71]. According to the reasoning, those variableschigixplain the most
variance in the outcomes of interest should be chosen. posesl to software
development, this would indicate that the stakeholdensteons with the most
impact on sustainable development improvement should dgechas the basis

Software Architecture Quality Attributes 35

for establishing metrics. The theory of sustainable dgwalent would be used
to indicate crucial variables in the concerns. If for e.ge software quality
attribute maintainability is a crucial variable for sustble development of in-
dustrial software systems, then stakeholders’ concertisavimaintainability
object could be the basis for establishing metrics, e.qugusie Goal Question
Metric approach of Basili et. al [41].

2.7 Software Architecture Quality Attributes

In [81], Barbacci et al. discuss software quality attrilsut®ass et al. have
introduced software quality scenarios as a way to descytiteisi-environment
interaction scenarios related to a specific quality-aital§13] .

Maintainability is one software quality attribute impantdor the econom-
ical sustainability researched by e.g. Rombach [82], OrmehHagemeister
[83]. Rombach discusses maintainability at the code lagglevel. Oman and
Hagemeister have constructed a maturity attribute trele tvé attributes: age,
size, reuse, maintenance intensity etc.

Energy dissipation has joined throughput, area, and acg{macision as
an important quality of the system according to Vijaykriahret al. [84]. Vi-
jaykrishnan et al. argue that designers must be concerrtadbath optimizing
and estimating the energy consumption of circuits, archires, and software.
Environmental sustainability can with this reasoning biefoeced by software
architectures designed for low energy consumption.

Bass [13] points out that the software architecture quattyibutes fall
within two broad dimensions: those discerned by obsenhiegystem at run-
time and those not observed by observing the system at rarfti&j. The for-
mer, including attributes as performance and usability,darectly influenced
by the customer’s concerns. The latter, such as developmaintainability
concerns and testability, are influenced by the developorganization’s con-
cerns.

Often the quality concerns trade-off with each other. Thatusable sys-
tem would have no security. Security is about restrictingeas to system
functionality and usability is about giving easy accessykieam functionality.
The prioritization of quality concerns is depending on wihaginess goal they
support. The problem is that it's not always obvious to thetesyn stakehold-
ers what is the impact of their business goals concerns osydtem qualities.
An analysis of 24 Architecture-Tradoff-Analysis-Metho&TAM) [7] work-
shops and their participating stakeholders’ quality ladiie input is described

36 Related Work

by Ozkaya, Bass, and Nord [8]. The ATAM uses the “Utility Trémdescribe

the stakeholders’ quality attribute concerns in the forrqulity attribute sce-
narios. Ozkaya, Bass, and Nord discovered that many of #kelsbtlders’ top
20 guality attributes, i.e. concerns, do not appear in thees@shion in com-
mon quality attribute taxonomies, e.g. the ISO 9126 [85]ftvare quality

attributes suffer of the same problem as software architecthere is no com-
mon accepted semantics. This makes it harder for industfalvare systems
to adopt to the practice of eliciting and representing dqualitribute informa-

tion.

Rozanski and Woods introduce the concept of an “ArchitettBerspec-
tive” as a way to modify and enhance existing views to enswaearchitecture
exhibits the desired quality properties [86]. Their defaritof an architectural
perspective is refined in the book [87]:

An architectural perspective is a collection of activitiesactics,
and guidelines that are used to ensure that a system exhipas-
ticular set of related quality properties that require cateration
across a number of the system’s architectural views.

The security perspective activities are e.g. identify gesresources, de-
fine the security policies, identify threats to the system Etsability perspec-
tive activities are according to Rozanski and Woods: uderface design, par-
ticipatory design, interface evaluation, and prototypihg address the usabil-
ity concern, Rozanksi and Woods only suggest separatingrjplementation
of the user interface from the functional processing in @sttto the security
perspective for which ten architectural tactics are disedghoroughly.

Rozanski and Woods share the common way of describing itgdiol a
software system as something being achieved by isolatiagisier interface
logic from the rest of the system. Studies of software ergging projects
[88][89] show that a large number of usability related charegjuests are made
after its deployment. If usability actually requires moretatectural support
than user interface separation from the rest of the systgio, lithen the system
developmentorganization is in for a late and costly architel redesign when
these change requests hit the system.

Software Architecture’s Interplay with Usability 37

2.8 Software Architecture’s Interplay with Usabil-
ity

Work in usability comes primarily from the field of Human-Cpuater Inter-
action (HCI). One bridge between the HCI field and softwargimgering was
proposed by Jacobson, in 1987, in the form of the use case [96% cases
have been widely used as descriptions of how the systemisroles interact
with the system. Jacobson describes the use case as: “A sisésca special
sequence of transactions, performed by a user and a syseediaiog”.
Constantine and Lockwood [91] write that conventional usses typically
contain too many built-in assumptions about the form of usterface that is
yet to be designed. Instead they suggest the usage of a tiessse case”:

An essential use case is a structured narrative, expresseiei
language of the application domain and of users, compriging
simplified, generalized, abstract, technology-free anglé@mentation-
independent description of one task or interaction thatéamng-

ful, and well defined from the point of view of users in some rol
or roles in relation to a system and that embodies the purpose
intentions underlying the interaction.

The essential use case uses “user intentions” and “systgpomsibilities”
instead of “user action model” and “system response modetiescribed by
Jacobson [90][92] and Wirfs-Brock [93]. By shifting focu®fn actions and
system responses, the essential use case abstracts ttasesme more level
and make it technology independent.

Task analysis and task hierarchies are often used in uyadilgineering.
Breedvelt-Shoutern et al. have demonstrated that segroktatsk hierarchies
can be reused [94]. Mahemoff and Johnston have investightetbpic of
generic tasks [95]. Combining reuse of artifacts relatedetailed software
design and task models led them to the extraction of twantygeneric tasks
from the requirements for fourteen industry-based stugdesjects. They fo-
cused on the tasks which emerged after requirements-gagheather than the
ways in which the software supported the tasks.

Bass, John and Golden have described how practical expesé&mm sys-
tems with usability problems have shown that e.g. the “CHirfoaction is
highly important for the usability of some systems and hygtifficult to im-
plement in a released system [27][26][96]. Their reseaih lbd to the de-
velopment of Usability Supporting Architecture Pattereach addressing a

38 Related Work

usability concern that is not addressed by separating thiersys user inter-
face from the rest of the system’s functionality. In theirryaJohn and Bass
identifies a set of system-environment interaction scesasith requirement
on usability support in the architecture. The architects wse the USAPs in
the early design phase to guide them in designing usableaatsystems.
Juristo et al. suggest an approach of using usability pettehich identify

specific mechanisms that might be incorporated into a soéaechitecture to
improve the usability of the final system [31]:

These mechanisms have been called usability patterns ayd th
address some need specified by a usability property. Noteifha
ability patterns do not provide any specific software solutio be
incorporated into a software architecture, they just sugjggme
abstract mechanism that might be used to improve usabibty (
example, undos, alerts, command aggregations, wizards, et

Juristo et al. use the term pattern in the sense used in tbkedry Perzel
and Kane [97]. Perzel and Kane use the same formal descriptia pattern
as the software engineering domain including: problemtexdnforces, clas-
sification, solution, rationale, resulting context, exden@and related patterns
[22]. The difference is that the Perzel's solution [97] iscdbed as interac-
tions between users and system, not as components anddiagiomship and
behavior as for patterns in the software engineering dof22in

Folmer and Bosch present an architecture-level usab#isgssment tech-
nique [98]. They present a scenario based assessmentgaehnfolmer’s
usability framework [98] consists of usability patternstire sense of [97],
usability properties and usability attributes. Usabifitpperties are e.g. “min-
imize cognitive load” and “guidance”. Usability attribstare e.g. “efficiency”
and “satisfaction”. Software architecture is analyzedit®support of certain
usability patterns. This approach gives no support foritgcts wanting to
create usability-supporting architectures.

John's, Bass’, Juristo’s, Perzel's, and Kane’s formal dpton of a pattern
is the same formal description as the software engineedngpéh has adapted.
This way of describing patterns originates in the work of¥aeder [24].

2.9 Architecture Patterns

Christopher Alexander is a building architect researcA@xander describes
building architecture patterns as sets of forces in thedvard the relations

Architecture Patterns 39

among them [99]. In the book “The Timeless Way of Building4]2pub-
lished 1979, Alexander describes common, sometimes evieergal patterns
of space, events, and human existence ranging acrossel l&vgranularity.
The book “A Pattern Language” [23] contains 253 patterniestrEach entry
might be seen as an in-the-small handbook on a common, deramehitec-
tural domain. Each entry links a set of forces, a configuratio family of
artifacts, and a process for constructing a particulaizatdn.
According to Alexander:

Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core ofdhe s
tion to that problem, in such a way that you can use this sotuti

a million times over, without ever doing it the same way twice

Alexander is concerned with the life of the designed produhich is part
of the usage process. The user, or customer, should, angdalAlexander,
experience that the thing has a rich and whole life.

The cost of the construction must be in harmony with the peedebenefit
of having “life” and “feeling” and Alexander discusses thsthe compression
of patterns:

Every building, every room, every garden is better, wherthad|
patterns which it needs are compressed as far as it is passibl
for them to be. The building will be cheaper, and the meanings
in it will be deeper ... It is essential then, once you havered

to use the language, that you pay attention to the possilnlit
compressing the many patterns which you have put together, i
the smallest possible space.

(xliii-xliv, [23])

Contrasting to a belief in one optimal building process,xaleder advo-
cates that the structure preserving of the whole of the imgldhould dictate
how the building process evolves naturally. The buildinggesss is important
to Alexander as he refers to D’Arcy Thompson who insistedhan évery form
is basically the end result of a certain growth process [1T08f growth pro-
cess must be a structure preserving transformation acaptaiAlexander and
continues to argue that the centers must be unfolded in@icegquence: “The
generative sequence is the ordering of an unfolding. It &ri@s of statements
that describe the thing to be created”. Alexander exemglifie sequence with
the sequence of the creation of a Japanese teahouse:

40 Related Work

...if I try to locate the waiting bench too early, at a momehtew

| do not yet have the location of the middle barrier, the canhte
for placing it does not yet exist. But more important, it isal
not possible, in this case, for me to use the waiting bench and
its location to preserve the structure of the rest. For thatinvg
bench to preserve the structure of the garden, | have to puatit

a time when the garden has developed. | can make the structure
preserving process work only if things come at the right time
the right order.

Alexander’s advocated building process resembles the agily with fre-
quent iterations and prototyping. Many of the authors be:tie “Agile Mani-
festo” [101] have in fact been inspired by Alexander’s workpatterns: Beck
and Cunningham [19]; Sutherland and Schwaber [102]. Copléscribes the
emerging of the Agile discipline [103] and includes Alexanid ideas as one
of the origins of the Agile discipline.

Beck et al. have described the evolution of software desigtems [104].
They write:

Design patterns had their origin in the late 1980's when Ward
Cunningham and Kent Beck developed a set of patterns for de-
veloping elegant user interfaces in Smalltalk [19]. At amdithe
same time, Jim Coplien was developing a catalog of language-
specific C++ patterns called idioms [20]. Meanwhile, Ericlama
recognized the value of explicitly recording recurring iggsstruc-
tures while working on his doctoral dissertation on objedented
software development [105]. These people and others met and
intensified their discussions on patterns at a series of A@PS
workshops starting in 1991 organized by Bruce Anderson][106]
and by 1993 the first version of a catalog of patterns was irftdra
form (summarized in [108]) which eventually formed the bési

the first book on design patterns [21]. All of these actigtieere
influenced by the works of Christopher Alexander.

In [22], Buschman et al. define an architecture pattern as:

An architectural pattern expresses a fundamental strattorga-
nization or schema for software systems. It provides a sptesf
defined subsystems[components], specifies their resplitiesb
and includes rules and guidelines for organizing the relaships
between them.

Architecture Patterns 41

Buschman et al. classify architectural patterns in:

1. Distributed Systems, e.g. broker

2. Interactive Systems, e.g. model-view-controller

3. Adaptable Systems, e.g. microkernel or reflective

4. Mud to Structure, e.g. layers, pipe and filter and blackthoa

In[12], Shaw and Garlan classified architectural patteynstyles, in com-
mon architectural styles:

Dataflow systems, e.g. batch sequential and pipes and filte

Call-and-return systems, e.g. hierarchical layers

1.
2.
3. Independent components, e.g. event systems
4. Virtual machines, e.g. eule-based systems

5.

Data-centered systems (repositories), e.g. databaddédackboards

Enterprise application patterns differ from telecommatian application
patterns according to Fowler [109]. Differences are to hentbin software-
hardware integration and multi-threading tasks. The cemghta is the focus
of an enterprise application. If the business domain of titerprise applica-
tion gets complicated, then the data gets complicated witarigty of some-
times arbitrary business rules to implement in the entsepapplication sys-
tem. But Fowler’s conclusion that the choice of the systesmthitecture de-
pends on the particular problems of the system is valid asmtiustrial soft-
ware system. Fowler organizes the patterns into: Domaincjogtterns, Data
source architectural patterns, object-relational bedraVipatterns etc. Using
the SDLM of Malvueau [60], the domain logic patterns captgrbusiness
logic would be Macro-Design level patterns while the otheosild be Micro-
Design level patterns.

Fowler [109] starts his description of patterns by refegria the work of
Alexander [23][24] as many have before him. The concept oémegal but
at the same time adaptable solution to recurring problengsdertain envi-
ronment seems to speak to the heart of software engineers.Usability-
Supporting Architecture Pattern by John and Bass [27]g8][s constructed
in the same spirit, as a general but at the same time adatediig¢ectural
solution to recurring usability problems embedded in aaiemisage scenario.

42 Related Work

Actually, the USAP is more in the spirit of Alexander than maither patterns,
since Alexander is concerned with the life of the designeatipct, which is
highly related to usability. The user, or customer, shoadadording to Alexan-
der, experience that the thing has a rich and whole life. Atgattern home-
pagé€ of Alexander et al., the mission is described as:

We seek to help people design things, create things, to rhake t
useful and beautiful, in whatever we are doing, so that we atlay
take part in the daily work of building a living earth.

Alexander discovered, after some failures of people tryingpply the set
of pattern (the pattern language), that tbeative power lay in the generative
structure of the language — and that lay in the sequence iclnthie steps were
to be performed”

Contributing to the success or failure of a software develept organi-
zation are also organization architecture patterns acuptd Coplien [110].
Coplien states that:

... architecture is less an echo of the tools and methodsctkate
it than of the organization that built it. This parallelisra ¢called
Conway'’s law [111].

In the Pasteur research project at Bell Labs [112], Coplieal.e inves-
tigated organizational structures. Coplien’s organarel studies found two
organizational patterns:

e Architecture Follows Organization, a restatement of Coyisdaaw [111].

e Organization Follows Location, no matter what the orgatioreal chart
says.

The second statement relates to Birgi's research showangalial behav-
ior and hierarchies are different in different locationghie world [113]. The
organization pattern, describing communication betweapleyees, follows
the local cultural social behavior and hierarchies, no enathat the organiza-
tional chart says.

Coplien concludes [110]:

"http://www.patternlanguage.com/index.htm [AccessdH:Jline 2009]

Architecture Patterns 43

Organizations have architecture. In fact, that's the imjpot ar-
chitecture of a system. The software architecture is kinshaf
dental. Software architecture is a second-order consitienait’s
the people that are primary. It's critical that this perspiee per-
meate our curricula and management policies more univirsal

Dikel et al. developed organizational principles in an effo predict the
success or failure of software architectures for largectgtemunications sys-
tems [77]. In the reported case study [77], they realizet tha

...technical factors, do not by themselves explain theesscof
a product-line architecture and that only in conjunctiorthwap-
propriate organizational behaviors can software architee ef-
fectively control project complexity.

In [114], Kane et al. describe 30 organizational patterrisamti-patterns
using the principles; Vision, Rhythm, Anticipation, Patimg and Simplifica-
tion (VRAPS).

Chapter 3

Research Design

As an employee at ABB Corporate Research, | daily take pgotojects with
the purpose to aid the software development at the ABB uffitsssome ex-
tent, the work as an employee at ABB Corporate Research ig/dinke of a
consultant and to some extent, it is the work of a researdHes thesis does
not include the projects where | have “only” applied recagdi methods to
specific problems even if these projects have contributechtainderstanding
of the field of software engineering applied to industridtware systems. The
case- and field studies that are part of this thesis are the ayrributing to
added knowledge in the research field of software engingé@mithe domain
of industrial software systems.

3.1 Case Study Design

Yin [115] introduces the case study ‘@ empirical inquiry that investigates
a contemporary phenomenon within its real-life contexpeesally when the
boundaries between phenomenon and context are not cleaderd”. Ex-
ploratory case studies are used as initial investigatibssime phenomena to
derive new hypotheses and build theories, and confirmai@sg studies are
used to test existing theories. A precondition for condugt case study is a
clear research question concerned with how or why certaémg@imena occur.
This is used to derive a study proposition that states pgicighat the study
is intended to show, and to guide the selection of cases angpes of data to
collect [116].

46 Research Design

The case study method is visualized in Figure 6.

Domain Generic Problem
Problem Domain Case Problem

Research Related Work
Questions
‘ Related Work
Theory Built Theor

Case Study External Validit

Design Construct Validit

‘ Domain Documentation
Data Collection

Case Interviews

p

Analysis Framework

Data Analysis
4 Case Reports

«

Domain Feedback

Theory —
Revision Internal Validit

Figure 6: The research design of the System Sustainabite Gtudy

Four tests have been commonly used to establish the quiktyyoempir-
ical social research [115]. The tests are:

Construct Validity:establishing correct operational measures for the coacept
studied. For example, use multiple sources of evidencabkst chain
of evidence, have key informants review draft case studgntep

Internal Validity: (for explanatory or causal case studies only) establishing
causal relationship, whereby certain conditions are showead to other
conditions, as distinguished from spurious relationshipsr example,
Use logic models, do pattern matching, do explanation mgldaddress
rival explanations.

External Validity: establishing the domain to which a study’s findings can be
generalized. For example, use theory in single-case stuagse replica-
tion logic in multiple-case studies.

Case Study Design 47

Reliability: demonstrating that the operations of a study - such as tlze dat
collection procedures - can be repeated, with the samesesul

In this thesis, the Sustainable Software System study hexs tenstructed
as a case study with a multiple case design. The quality ofdlse study as
tested by the fours tests:

Construct Validity: The case study’s units of analysis were companies that:
involved at least 20 developers; had software systems wiifie-ime
of 10 years or more; and developed industrial automatioticgijons.
From May 2008 through December 2008, three automationrsysben-
panies with these characteristics were visited. Threesnalere inter-
viewed at each company: senior software developer, seoftware ar-
chitect, and senior product manager.

Internal Validity: Not applicable since the case study is not a explanatory or
causal case study.

External Validity: The domain, to which the case study findings can be gen-
eralized, is the domain of long-lived industrial softwagstems. The
case study’s three units of analysis were companies thablvied at
least 20 developers; had software systems with a life-timEQoyears
or more; and developed industrial automation applicatio@empari-
son of the findings has been made with the theory proposed kysCu
et al. [70][69]. Curtis et al. conducted an extensive fielddgtinvolv-
ing 19 projects in the domain of large complex software systeanging
from aerospace contractors to computer manufacturersre@htime,
distributed, or embedded applications. To further strieegtthe exter-
nal validity the case study interview should be conducteiti wig. au-
tomotive companies also developing large complex longdlisoftware
systems.

Reliability: Structured individual interviews were conducted which evap-
proximately three hours long on site of the participatinghpany. Par-
ticipants were guaranteed anonymity, and the informatmorted has
been sanitized so that no individual person or company cachelogified.
The same questions based on the theory in PBpeere asked to all
of the nine interviewees. The questions were open-endeckmded
participants to formulate answers in their own terms. Omsgehad
the lead as questioner in each interview and one person badgpon-
sibility for taking notes. After the interview, the persohahad the lead

48 Research Design

responsibility for taking notes wrote the interview pratband sent it to
the other person for review. Then the lead responsible fonganotes
revised the protocol and as a last validation sent the pobto¢he inter-
viewee for review. The preliminary case study findings weespnted to
the participating companies and additional companies iarahitecture
day workshop where software architects and managementimegred
to discuss the findings.

3.2 Field Study Design

The Influencing Factors field study and the USAP field studyewest con-
structed as case studies according to Yin’s described tadg design [115].
Instead a common research design for developing softwajieegring proce-
dures or models was used, illustrated in Figure 7. The So#\Eagineering
Taxonomy development followed the same research desigredsfluencing
Factors field study and the USAP field study, but the test cases the field-
and case studies of this thesis.

This thesis’s field study research design is very similatdocase study
research design. The case study collects data and anasitsisadrevise the
theory, but the theory itself is not a testable method oatdstsolution as in this
thesis’s field studies. Using the theory refined in the casgysimethods and
solutions can be constructed but the focus of the case stumtythe refinement
of the theory.

In the field study research design, illustrated in Figurén@,theory in the
form of a method and an architectural pattern was tested anlgm owners.
The test validity was confirmed by using established udgitésts and multiple
test cases from the same domain. The Influencing Factorssfigdy included
two test cases to show the value of the constructed Influgrantors method,
described in Papek, when the business goal prioritization or quality attréout
prioritization is unclear. The test case selection inctlidee case with unclear
prioritization of business goals and one test case withaangrioritization of
software quality attributes. The goal of this field study washow that the
method makes both the business goal prioritization and dfievare quality
attribute prioritization clear and therefore guides tteh@ectural decisions and
strengthens the stakeholders consensus around pridriémecerns. The data
collection in the field study was done in form of interviewscdment reading
and observations from participation in project workshaps$groject meetings.

The USAP field study studying the interplay of usability anftware ar-

Field Study Design 49

Domain Generic Problem
Problem Domain Case Problem

Research Related Work
Questions

‘ Built Knowledge
Theory
ﬂ Related Work
(Pattern/Method)

Domain Documentation

Data_ Domain User Interviews
Collection

Data -Analysis Framework
Analysis

Test Validit

Test Tool
Problem owner

$

Test of
Theory

Theory « Test Protocols
Revision

Figure 7: The research design of the Influencing FactorstlamtSAP field
study

chitecture [117][118][119][120] included two test casasai sequence from
different companies, but in the same industrial softwastesy domain. The
results of the first test case led to a revised USAP theory. [ZHe revised

USAP theory was incorporated in a USAP test tool, an expeedactory.

The experience factory was used in the second test case byrodoct-line

architects and the test was documented with camera regprdireries and
interviews.

One could argue that field studies, the Influencing Factold $ieidy and
the Usability-Supporting Architecture Pattern field stuidyl into the category
of qualitative research called action research. Actioeassh, as described
by Benbasat [121], are studies in which the author, usualgsaarcher, is
a participant in the implementation of a system, but sinmdtaisly wants to
evaluate a certain intervention technique. This has nat liee case for the

50 Research Design

field studies in this thesis since | was not an active membtreoflevelopment
project teams.

The goal of the companies, participating in the field stydmees been to
apply the results in their projects to get a benefit out of thetigipation. The
problems were authentic since the problems have been lootatd by the com-
pany’s problem owners.

Chapter 4

Research Contribution

4.1 Influencing Factors Method

The Influencing Factors method collects concerns, extrafiteencing Factors
from the concerns, and analyzes those for their influenceaisimbss goals and
software quality attributes. The result is a business goahted prioritization
of software quality attributes. The way the Influencing Badé$ used in Pa-
per A, the Influencing Factor is a factor that states a motivatarpbssible
system requirements from the stakeholders’ perspective.

By presenting the collected effect of several concerns, éngthe ma-
trix used in PapeA, the Influencing Factors method makes both the business
goal prioritization and the software quality attribute iagpclear and therefore
guides the architectural decisions and strengthens tkehstitlers consensus
around prioritized concerns. The analyzed concerns cdstdantribute to
a more complete requirement specification, helping theesystevelopers un-
derstand the origins of the requirements.

PaperA describes how the different impacts of the Influencing Fachoe
used to prioritize among the Influencing Factors for two antlt cases. The
first case was performed on the upgrade of a large legacytiausoftware
system and the second case on the re-factoring of an existingtrial software
system. The two case study systems had a diverse set of gtd&ed) such as
software architect, system architect, developers, ®speoduct management,
line management, engineers, and users. Both systemsezuffem an un-
clear understanding of what concerns were the most imptorfdre resulting
impact analysis helped the stakeholders prioritize amaoiftgvare quality at-

52 Research Contribution

tribute scenarios in the case with the re-factored systdm.prioritization in-
cluded usability and led to the Usability-Supporting Atelsture Pattern study
described in Pape and PapeD. The other case, with the legacy system,
resulted in the stakeholders’ understanding of their higtu$ on short-term
market expansion instead of a balanced focus including-teng quality en-
hancements. Today this company is doing a major investmemthancing the
maintainability of the system.

The contributions of this thesis, related to research que&Q3 “How
can current and future stakeholder concerns be colleckdralyzed for their
impact on business goals and quality attributes in the doofandustrial soft-
ware systems?”, are:

e The Influencing Factors method, which shows stakeholderisithact of
their concerns on the system with the intention to help $takkers reach
consensus with awareness of the impact of their concernsisindss
goals and quality attributes of the system.

— The Influencing Factors method is not a design developmethiode
since it says nothing about how to translate the prioritzatcerns
into architectural structures.

— The low effort required by the Influencing Factors methodr Fo
the two test cases, the gathering of concerns from stakefwld
took about a person week and the contribution of each stédeho
was approximately two hours of interviews for those thatidot
participate in the one day Quality Attribute Workshop [6]rof
the two case studies it was concluded that for a skilled &chi
with business goals understanding and software qualitipates
skills, the Influencing Factors analysis of the concernsikhtake
no longer than a day or two.

My contribution was the construction of the Influencing leastmethod,
the conduction of the field study investigating the Influegdractors method’s
applicability to two industrial software companies, théedeollection, and the
analysis of the field study.

4.2 Sustainable Industrial Software Systems

The sustainable industrial software systems theory pteden PapeB intro-
duces some insights into the importance of time dynamicthi®sustainabil-
ity of industrial software systems. The time dynamics icdssed not only

Usability-Supporting Architecture Patterns 53

for technology factors but also for organizational and bess related factors.
Where the Influencing Factors method discussed busine$s g their im-
pact on architectural decisions, this paper discusseshbaerge of business
goals and their co-existence with changes in organizatidmaarket environ-
ments. This paper therefore contributes to a deeper exjgoraf a broader
spectrum of the enterprise architecture and its relati@ystem- and software
architecture.

The contributions of this thesis, related to research jque&fQ2 “What
are the concerns affecting the sustainable developmentinflastrial software
system?”, are:

e The industrial software system sustainability theory 8tates that:

— The most important factor to recognize for sustainable ldgve
ment is the factor of change. Change in organization, teolgyp
and market over time is something inevitable and must be getha

— The second most important factor, is the sustainable tanget
ket. Customers needing the same basic functionality oveadks,
tend to invest in systems that have sustained on the manketfg
times. Sustainable systems are rewarded by the sustamabket,
thereby increasing their sustainability further.

The industrial software system sustainability theory is@mon contribu-
tion by me and Anders Wall.

4.3 Usability-Supporting Architecture Patterns

Usability and its interplay with software architecture veiscussed in the In-
fluencing Factors paper, Pap&r as one of five quality attributes. Paper
reports on and discusses the Usability-Supporting Archite Pattern study
in the domain of sustainable industrial software systentscamtributes with
a description of an enhanced research method and a sofwardat visual-
izes the research method’s constructed responsibiliiée tool, visualizing
the responsibilities, acts as an experience factory [18@$img reusable archi-
tectural knowledge for a set of system-environment int@yacscenarios. The
architects access the reusable experience in the form sélbéiresponsibil-
ities with implementation instructions. The architectg tise knowledge as
instructions on how to implement usability support in thé\gare architecture
early in the software design phase.

54 Research Contribution

In PaperC, itis reported on the revised USAP method and the constructi
of the tool that visualized the method’s results. In Pdpeit is reported on
and discussed the results and validation of the USAP cadg.stihe contri-
bution of this paper is significant since very few studiesegport on software
architects being able to use a tool early in the softwaregdeisi a way that
helps them implement usability support in the software igecture. The two
architects used the tool for one day and reported on a developcost sav-
ing of more than five weeks for the one-day interaction withttbol, giving a
return-of-investment of 25:2.

The contributions of this thesis, related to research queRQ1 “How can
support for usability be built into software architectufaradustrial software
system in the early design phase?”, are:

e The identification of four foundational patterns descripieusable ac-
tivities and tasks with architectural usability-suppogtiresponsibility
descriptions and responsibility implementation desigs.

e Three Usability-Supporting Architecture Patterns: “Ata& Event”,
“User Profile” and “Environment Configuration”.

e The experience factory, in the form of a web-based tool, aaintg the
reusable architectural knowledge. Architects accessrtbeledge in or-
der to understand how to implement usability support in ticitecture
early in the design phase.

— The experience factory can be used for evaluating an acthite
with respect to its usability support.

— The company, using the experience factory for their prodinet
system’s architecture, reported on a Return-Of-Investroep5:2
and an improved architecture quality as a result of usingeipe-
rience factory.

e Presenting a sequence of responsibilities, with respditgimplemen-
tation descriptions, to the architects in a step-by-stepmasis perceived
as much more relevant and usable than being presented withnaple
solution in the form of a UML pattern.

— The field study experienced success after refactoring the pat
tern embedding the reusable architectural respons#slitito a se-
quence of steps. Each step’s responsibility descriptistntots the

Software Engineering Taxonomy 55

architect how to architecturally support a part of the comrasks
of the system’s three USAPSs.

— The architects felt this way of presenting a pattern helfeant
reflect on their own architectural design and take apprtpda-
sign decision in relation to each responsibility in a ndtarder of
steps. This successis in line with Alexander’s discoveaypieople
trying to apply the set of pattern (the pattern languagd)iexed
success first when using a generative structure of the lgegthe
sequence in which the steps were to be performed.

My contribution was the field study’s project managemerd,egkperience
factory’s architectural design and implementation, arel discovery of the
usability supporting architectural responsibilities mn@ance for product line
system'’s architecture. My, Lovemark’s and Alfredsson’snoaon contribu-
tion was: the identification of the common tasks for the “Ata& Event”
process, the construction of reusable usability suppgpeichitectural respon-
sibilities for the tasks and the conduction of the first tem$ecin the field
study. My, John's, Bass's and Golden’s common contributias: the sys-
tems’ task analysis of the processes of creating systerneamrent work prod-
ucts; the discovery of common tasks among the processesafiryy four
system-environment work products; and the replacement@ié sample
solution with a generative sequence of reusable archit@atesponsibility de-
scriptions with responsibility implementation descripis.

4.4 Software Engineering Taxonomy

Since sustainable development must address concernstieoMacro-Design
level down to Micro-Design level, a framework that can cifysthe concerns
would be very useful in order to find interrelationships bedw the concerns
for the construction of strategies to improve the sustdedévelopment. There-
fore three Enterprise Architecture frameworks were careid. The three
frameworks were: the Zachman framework [15][16][17] , thep@rtment Of
Defense Architecture Framework (DODAF) [53] and The OpeaugrArchi-
tecture Framework (TOGAF) [54].

As this thesis was searching for an enterprise architecttifact clas-
sification framework, not an enterprise architecture dpson development
framework focusing on interoperability aspects or in-feingormation system
architecture development framework, it resorted to stiyZachman frame-
work in more detail.

56 Research Contribution

PapelE describes the motivation, the assumptions, and the creatithe
Software Engineering Taxonomy. The assumptions made ilplesto con-
struct the Software Engineering Taxonomy as a derivativéhefZachman
Framework. The paper also classifies all software engingexitifacts from
the IEEE Software Engineering Book Of Knowledge (SWEBOKDbl@hed
2004 [123], to test the completeness of the classificatipacity of the taxon-
omy.

Apple and Google are test cases showing how shared composiels
crossing the site dimension of the Software Engineeringfamy might lead
to faster innovation.

The Scrum process artifacts are classified to show whichw@odt Engi-
neering Taxonomy perspective is the focal point of the Scuotgss. The
result is a large set of Scrum artifacts being classified énstiftware develop-
ment organization’s Business Concept perspective.

The contributions of this thesis, related to research que&tQ4 “How
can industrial software system stakeholders’ concernseeribed by views
in an enterprise framework, that incorporates softwarernemgging artifacts
descriptions?”, are:

e The Software Engineering Taxonomy derived out of the ZachRrame-
work.

— The Software Engineering Taxonomy integrates softwar@éeeg
ing artifacts into the views of the Zachman framework, thgre
building relations between enterprise views and softwagireser-
ing views for industrial software systems.

— The Software Engineering Taxonomy adds the site dimension t
the Zachman Framework. The site identifies the environnfeheo
system descriptions, e.g. the operational environmerhteodével-
opment environment. The development environment can bedgha
between development organizations resulting in multipésshar-
ing view descriptions.

— The classification of the IEEE SWEBOK [123] artifacts usek/on
one software development environment perspective, naifibea-
tional environment perspective, resulting in the clasaiftn being
two-dimensional.

— The Software Engineering taxonomy can serve as a reasgaimg#
work into which concerns, artifacts and results of softwaingi-
neering theories, processes and case studies are clagsiffed

Applied Software Engineering Taxonomy 57

ther analysis. The consistency rules of the Zachman frameave
valid also for the Software Engineering Taxonomy.

My contribution was the construction of the Software Engitireg Taxon-
omy, the classification of the IEEE SWEBOK software engimggartifacts in
the Software Engineering Taxonomy, and the analysis of &p@bogle, and
Scrum cases guided by the classification of their softwagineering artifacts
in the Software Engineering taxonomy.

4.5 Applied Software Engineering Taxonomy

PaperF uses the Software Engineering Taxonomy from P&p&s a reasoning
framework to analyze the artifacts from: the Influencingtbesmethod study,
the Usability-Supporting Architecture Patterns study #relSystem Sustain-
ability case study. Case study design, execution and d@sajshe System
Sustainability case study is additionally described ind?&p
The contributions of this thesis, related to research jque&fQ4 “How

can industrial software system stakeholders’ concernseeribed by views
in an enterprise framework, that incorporates softwareremging artifacts
descriptions?” are:

e The Software Engineering taxonomy can classify all artffdom this
thesis’s three studies’ collected data and used theory.

e Not all of the Software Engineering Taxonomy views are ngagsto
describe a specific method or theory. What views are useendispon
the scope of the researched object. In the classificatioheotXSAP
study artifacts, eight views were used in contrast to thésthable Sys-
tem study that used nineteen views.

e The Software Engineering Taxonomy made the site distindigtween
system-operational environment and system-developnrasitomment
very clear for the case/ field study artifacts. The site digion decides
what roles and work products are related to what systenr@&mwvient
interface. For example, in the operational environmerg, shistem-
environment interface may be the user interface and the wm#uct
an “Alarm & Event Condition”. In the system-developmentigaament
the interface may be the development environment’s interfa.g. the
implementation’s interface to the system and the work pcbducode
structure.

58 Research Contribution

The contributions of this thesis, related to the extendedyais of the re-
search presented in Papggiand PapeD, to the research questi®tQ1 “How
can support for usability be built into software architeetof industrial soft-
ware system in the early design phase?” are:

e The inclusion of a traditional enterprise perspective, ibsiness con-
cepts perspective, led to discoveries of new interrelatigps between
the USAP artifacts: system-environment interaction sgenaystem
environment business roles & work products, system-enwir@nt ac-
tivities and tasks related to the roles & work products, oesbility de-
scriptions, quality attributes, and responsibility implentation descrip-
tions.

¢ Classification of the USAP artifacts made use of the businessept
perspective for four of the twelve artifacts. The inclusgdra traditional
enterprise perspective, the business concepts perspdetito new con-
clusions regarding the use of general activities for patteeation.

e System environment business roles and work products arg artigact
in linking the USAP scenario [26] to common activities angkiasup-
porting more than one role or more than one work product.

e System environment may be operational or development@mvient.
The environment decides what system-environment inteffacsiness
roles and work products should be used in the USAP informatier
scription/ selection process. The environment dimendioa,site di-
mension in PapeE, of the Software Engineering Taxonomy is therefore
important.

e The placeholder of the common activity is furnished by thekygyoduct
or the role for the three USAP scenarios in the field study.

e The responsibility is related to the quality chosen to bepsuied for
the scenario. For USAP, the usability quality is supportgthe USAP
responsibility.

The contributions of this thesis, related to the extendedyais of the Sus-
tainable Industrial Software Systems from Papeto the research question
RQ2 “What are the concerns affecting the sustainable develapofean in-
dustrial software system? development organization” are:

Applied Software Engineering Taxonomy 59

e The sustainable key-competences in the industrial softwgstem de-
velopment organization carry the application domain kmealgk and the
system knowledge, thereby increasing the social sustiityabf the
company. The sustainable key-competence pass the knoevtatddgo
the system developers during informal design discussions.

e The development organizations sustain economical capjtalanning
for changes when the changes are technology changes. Whemethges
are organizational, e.g. distributed development, theagament have
lost social capital by failing to plan for how the developrherganiza-
tion has to adapt to the new work-form. It has been too littlevn in the
companies, what requirements a distributed developmevitoemment
has on the development organization’s structures and coriaation.

e The incorporation of a remotely located development teathérdevel-
opment organization will be especially difficult in a cukuhat has so-
cial capital invested in sustainable key-competences lagid informal
spreading of knowledge. If the organization has ignore@stigating
in explicit software documentation, increasing the tategéronomical
capital, the new remotely located team can make use of mé¢itbesocial
capital nor the economical capital related to system know:h

e The sustainable target market increases the intangibleoaaical capi-
tal.

¢ Intangible economical capital in the form of goodwill anghugation is
increased by delivering reliable systems for a long-tintbéstarget mar-
kets.

e The business case arguing added value of software engigderisus-
tainable development is not good enough for the three ilgaisd cases
making the use of software engineering methods and adifparse.

e Curtis’s study [70][69], the Dikel study [77] and the Sustle Indus-
trial Software Systems case study point toward a conclufiah sus-
tainable development concerns related to the softwarela@vent or-
ganization, must be addressed first before software engjggeols and
methods can have a significant impact on sustainable deweloip

The contributions of this thesis, related to the extendedyais of the In-
fluencing Factors from Papéy, to the research questid®®Q3 “How can cur-
rent and future stakeholder concerns be collected andzedhfgr their impact

60 Research Contribution

on business goals and quality attributes in the domain afistvéhl software
systems?” are:

e The perspective of the influencing factor is connected taytradity con-
cern’s ownership of the influencing factor. If the customews the
quality concern, i.e. has voiced the quality concern, ggoading in-
fluencing factor can be found in all the Software Engineefiagon-
omy perspectives. The development organization’s maiatality con-
cern’s corresponding influencing factors are only founchim Business
Concepts and Scope Contexts perspective, not in the Sysigio per-
spective. Discussions regarding architectural soluttormaintainabil-
ity issues, seem to be reserved for the architects and g@rmsloutside
success-critical stakeholders’ discussion forums.

My contribution to PapeF was the analysis of: the Influencing Factors
method field study, The USAP field study, and the Sustainatuladtrial Soft-
ware Systems case study. Our common contribution was thgrdasd data
collection of the Sustainable Industrial Software Systease study.

Chapter 5

Future Work

The most substantial future work is related to the systerraswbility theory
and the USAP's integration of additional quality attribate

5.1 Sustainable Industrial Software Systems

It remains to expand the external validity of the Sustaiadhtustrial Soft-
ware Systems case study, i.e. find more related work and linde@ domain-
external case with a long-lived complex software system frem the auto-
motive domain. The automotive domain would be especiatgresting due to
its high requirements on environmental sustainabilitye Teory in PapeB
was the base for the propositions. Since the propositioms net all verified,
the theory should be modified according to the findings froendhse study
and validated. The analyzed findings should also be furtiseudsed with the
involved case companies.

When applying the concept of sustainable development taldmesified
concerns from the interviews, which were ranked as beingghf importance,
there was an unbalance between the economical sustaipadmiivironmental
sustainability, and the social sustainability. Most of twncerns addressed
economical capital or ways of increasing economical capame concerns
addressed social capital but no concern addressed endraaheapital. In the
analysis, one environmental capital concern is added basdahowledge of
the systems, collected through documentation and experiéihen the value
of addressing the individual sustainable development@&onis not known,

62 Future Work

it's very difficult to say, if the system development is sursadle or not. The
concerns with the highest impact on sustainable developmast be found,
based on the added value of addressing the concerns. Meirite objective
of the concerns’ issues can be established, possibly usegbal Question
Metric approach suggested by Basili et al. [41].

Another open issue is the value of software engineeringeqsdo the do-
main of industrial software systems. The lack of organiragirerequisites for
using software engineering concepts led to software arcthite related issues
being underrepresented in the Sustainable System caseistadviews. But
that does not mean that software engineering concepts dwametany impact
on sustainable development of industrial software systehine sequence of
introducing them must simply start with raising softwargieeering aware-
ness among the executive leaders, who in their turn coute ithie software
engineering knowledge among the staff. By doing so, theatcapital of the
organization would be increased as well as its social sustdity. But the
current state leaves the sustainability case study witm @pestions around
the importance of software architecture concepts for e development.
A case study can simply not answer these questions, sincgotin@in must
mature and use software architecture concepts on a daily foesome time,
before their importance for sustainable development caavhkiated.

Will the future stakeholders have their needs met withoatdystems in-
corporating software engineering concepts as: expli¢ttvsoe development
process, formal software evaluation process, domain sisalgoftware doc-
umentation, pattern languages, model driven archite@ta® If not, future
work must formulate a sustainability business case thatidies the value of
software engineering. To do so, a gap analysis between thentistate today
and the desired state must be done and measures constmucted progress
of the movement to the desired state. Software engineerauydibe the tool
that enforces the movement to the desired state. Entergmitetecture and
usability are concepts, important for sustainable devalent, that need to be
incorporated with software engineering.

It remains to use the Software Engineering Taxonomy classifin of sus-
tainable development concerns for the set-up of goals aridasnién order to
address some of the sustainable development concernsripaoges felt they
could meet in a better way. The interrelationships betwherclassified con-
cerns could then be used to create an sustainable developr@Eovement
process, in the same manner as the USAP information ddsorigelection
process was created in Pajper

Usability Supporting Architecture Patterns 63

5.2 Usability Supporting Architecture Patterns

The Usability-Supporting Architecture Patterns study usrently being ex-
tended in order to apply the enhanced concepts. The new fielg will use
security and safety as research base. If multiple qualitijpate supporting re-
sponsibilities could be created then the issue of qualitipate trade-offs will
surface. Further, the question of how to identify and presenflicting quality
concerns to the architects will have to be answered. Theviillg reasoning
is part of an ongoing case study were no results are yet nglolis

In the activity taxonomy, the quality aspect is to be foundiom respon-
sibility level as shown in Figure 7. For example, the “AlarmE&ent” tasks
have usability requirements as well as security- and saésjyirements. Not
all operators or system engineers are allowed to author &arfA& Event”
condition since it will have implications on the safety aedwrity of the envi-
ronment of the “Alarm & Event” system. A falsely authored & & Event”
condition might lead to the “Alarm & Event” system not wargithe operator
when the devices are not working properly, possibly caudiaimages in the
environment. Additionally the “Alarm & Event” might not warthe operator
about an intrusion attempt to the system. The respongiisilitandling security
and safety for the activity task “Create a specification” trhesconsidered as
well as the usability responsibilities for the same aagfitétsk.

The architects may assign the responsibility to a porticthefystem, e.g.
a component which they put an identifier on, e.g. a name or eambthe
architects have assigned e.g. both a security and a ugak#iponsibility to
the same component(s), then the trade-off between thensijldies can be
made visible on component level.

Figure 8 shows how the activity task “Modify a specificatidra’s two qual-
ity concerns: security and usability. The system’s speatifims are only al-
lowed to be modified by authorized users due to security ssand possibly
also safety issues. To address the security concern of thatyatask, one
security responsibility states “The system must permitrohibit specific au-
thoring of a specification”. At the same time one usabilitgpensibility states
“The system must provide a way to access the specificatioh&s& two re-
sponsibilities have different implementation descriptioThe security respon-
sibility’s implementation description says that thereddde portions of the
systems that permit or prohibit access depending on whofaskgrmission
to modify the specification. The usability responsibiktymplementation de-
scription says that there must be portions of the systenpiitaide access to
the specification.

64 Future Work

Activity Task:
“Modify a
specification”

Quality Concern: Quality Concern:

|
Security I | Usability
v !

,~” Security Responsibility™~, ,~ Usability Responsibiiity >
I The system must permit ory II The system must provide}
! prohibit specific authoring 7 \ away to access the)

\~~__9f_fi_5_'F’_e|_Ci_fi£§ti_0_r‘__»’ S« .-_Sbecification ___~*

Y Y
Portion(s) of the system tha Portion(s) of the system th
permit(s) or prohibit(s) provide(s) access to the
authoring of the specificatio specification

1
|

Figure 8: Example of activity task’s multiple quality comos’ trade-off

In a ongoing case study, the described trade-off conceptowilimple-
mented in an extended version of the experience factoryJB&P web test
tool, described in Pap& and PapeD.

Bibliography

[1] P. Pollan. Our decrepit food factoriedew York Times2007.

[2] G.C Unruh. Escaping carbon lock-ifEnergy Policy vol. 30(no.4):pp.
317-325, 2002.

[3] G.H. Brundtland. Our common future. Report of the Worldn@mis-
sion on Environment and Development. Published as Annextoel
Assembly document A/42/427, 1987.

[4] T. Dyllick and K. Hockerts. Beyond the business case faporate sus-
tainabilityt. Business Strategy and the Environmdrit130-141, 2002.

[5] C.Labuschagne, A.C. Brent, and R.P.G. Erck. Assessiagtistainabil-
ity performances of industrieslournal of Cleaner Production, Volume
13, Issue 4, March 2005, Pages 373-383(4):373—-385, 2005.

[6] M. Barbacci, R. Ellison, A. Lattance, J. Stafford, C. W8tock, and
W. Wood. Quality attribute workshops, 3rd edition. Teclahieport,
Software Engineering Institute, Pittsburgh, PA, USA, 2003

[7] P. Clements, R. Kazman, and M. Kleiikvaluating Software Architec-
tures, Methods and Case Studiésidison-Wesley, Boston, 2002.

[8] I. Ozkaya, L. Bass, R.L. Nord, and R.S. Sangwan. Makiragtical use
of quality attribute information Software, IEEE25(2):25-33, March-
April 2008.

[9] D.J. Reed. Stalking the elusive business case for catpsustainability.
World Resources Institute, Washington, 2001.

65

66 Bibliography

[10] O. Salzmann, A. lonescu-Somers, and U. Steger. Theéssicase for
corporate sustainability:: Literature review and reskamgtions.Euro-
pean Management Journaé3(1):27 — 36, 2005.

[11] R K. Singh, H.R. Murty, S.K. Gupta, and A.K. Dikshit. Arverview
of sustainability assessment methodologieEcological Indicators
9(2):189 - 212, 2009.

[12] M. Shaw and D. Garlan.Software Architecture: Perspectives on an
Emerging Discipline Prentice Hall, 1996.

[13] L. Bass, P. Clements, and R. Kazm&woftware Architecture in Practice
Addison-Wesley, Boston, second edition, 2003.

[14] P. JohnssonEnterprise Software System Integration: An Architectural
Perspective PhD thesis, Industrial Information and Control Systems,
Royal Institute of Technology (KTH), Stockholm, Sweden020

[15] J. A. Zachman. A Framework for Information Systems Aretture.
IBM Systems JournagP6(3):276—292, 1987.

[16] J. A. Zachman.The Zachman Framework for Enterprise Architecture;
A Primer for Enterprise Engineering and Manufacturingachman In-
ternational, 2003.

[17] J. A. Zachman. The Zachman Framework and Observatioiathod-
ologies.Business Rules Journd(11), 2004.

[18] J. F. Sowaand J. A. Zachman. Extending and formaliziegtamework
for information systems architectur®M System JournaB1:590-616,
1992.

[19] K. Beck and W. Cunningham. Using pattern languages fijea-
oriented programs. Technical Report Technical Report NR-8Z-
43, Apple Computer, Inc. and Tektronix, Inc., 1987. Subexditto
the OOPSLA-87 workshop on the Specification and Design fge@b
Oriented Programming.

[20] J. O. Coplien. Advanced C++: Programmmg Styles and Idiams
Addison-Wesley, 1992.

[21] E. Gamma, R Helm, R. Johnson, and J. Wissid¥ssign Patterns - El-
ements of Reusable Object-Oriented Sojlwa&ddison-Wesley, 1995.

Bibliography 67

[22] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, Mndtal.
Pattern-oriented Software Architecture A System of Pagemlume 1.
Wiley, first edition, 1996.

[23] C. Alexander. A Pattern Language: Towns, Buildings, Construction
Oxford University Press, USA, 1977.

[24] C. Alexander.The Timeless Way of Buildingdxford University Press,
1979.

[25] L.J. Hoffman, K. Lawson-Jenkins, and J. Blum. Trustdey Security:
An expanded Trust ModeCommun. ACM49(7):95-101, 2006.

[26] L. Bass, B. E. John, and J. Kates. Achieving usabilitptiygh software
architecture. Technical Report No. SEI-TR-2001-005, EgimMellon
University/Software Engineering Institute, Pittsbur§h, 2001.

[27] L. Bass and B. E. John. Linking usability to softwarehdtecture pat-
terns through general scenarickhe Journal of Systems and Software
66:187-197, 2003.

[28] E. Folmer and J. Bosch. Architecting for usability: a&y. Journal of
Systems and Softwarg0(1-2):61—-78, 2004.

[29] E. Folmer, J. van Gurp, and J. Bosch. A Framework for wapg the
Relationship between Usability and Software Architectu&oftware
Process: Improvement and Practice, Volume 8, Issue 2. R&383.,
2003.

[30] N. Juristo, H. Windl, and L. Constantine. Introducingability. Soft-
ware, IEEE 18(1):20-21, Jan/Feb 2001.

[31] N. Juristo, M. Lopez, A. Moreno, and M.-l. Sanchez-Segumprov-
ing software usability through architectural patternsgpétgresented at
the ICSE 2003 Workshop on Bridging the Gaps Between Soft&are
gineering and Human-Computer Interaction, Portland, GmedJSA.,
2003.

[32] N. Juristo, A.M. Moreno, and M.-I. Sanchez-Segura. d&lines for
eliciting usability functionalitiesSoftware Engineering, IEEE Transac-
tions on 33(11):744-758, Nov. 2007.

68 Bibliography

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

K.E. Sveiby. The New Organizational Wealth: Managing and Mea-
suring Knowledge Based AsseBerrett Koehler, San Francisco, CA.,
1997.

R. Ayres. Industrial Metabolism: Restructuring for Sustainable Bkv
opment chapter Industrial Metabolism: Theory & Policy, pages @-2
United Nations University Press, 1994,

G. Strand. Keyword evil: Google’s addiction to cheago#ficity.
Harper's MagazineMarch 2008.

D. Dunphy, A. Griffiths, and S. BenrOrganizational Change for Cor-
porate Sustainability: Understanding Organizational @Gige Rout-
ledge, 2003.

J.S. Coleman. Supplement: Organizations and ingtitat Sociolog-
ical and economic approaches to the analysis of socialtateicThe
American Journal of Sociolog®4:5S95-S120, 1988.

Martin O’Connor. The “four spheres” framework for saigtability. Eco-
logical Complexity 3(4):285 — 292, 2006. Complexity and Ecological
Economics.

B. Ness, E. Urbel-Piirsalu, S. Anderberg, and L. Olss@ategorising
tools for sustainability assessmeicological Economics60(3):498 —
508, 2007.

I. Ozkaya, R. Kazman, and M. Klein. Quality-attributeded economic
valuation of architectural patterns. Etonomics of Software and Com-
putation, 2007. ESC '07. First International Workshop o, thages
5-5, May 2007.

V. R. Basili, G. Caldiera, and D. H. Rombadbncyclopedia of Software
Engineering chapter The goal question metric approach. Wiley, 1994.

A. Jain and B. Boehm. Developing a theory of value-baseftivare
engineering. IFEDSER '05: Proceedings of the seventh international
workshop on Economics-driven software engineering retegrages
1-5, New York, NY, USA, 2005. ACM.

M. Jackson. Will there ever be software engineerin§EE Software
pages 36—39, 1998.

Bibliography 69

[44] H. ziv and D.J Richardson. The Uncertainty PrincipleSioftware En-
gineering. In19th International Conference on Software Engineering
(ICSE'97) 1997.

[45] V. R. Basili and J. D. Musa. The future engineering oftaafre: A
management perspectivEomputey 24(9):90-96, 1991.

[46] E. Dijkstra. The structure of the “THE”-multiprograning system.
Commun. ACM 115:341-346, 1968.

[47] M. Shaw. Larger scale systems require higher-levefrabsons. Pro-
ceedings of the Fifth International Workshop on Softwaredfcation
and Design, 1989.

[48] L.D. Erman, F. Hayes-Roth, V. R. Lesser, and R. D. Rag Hearsay-I|
Speech-Understanding System: Integrating Knowledge smRe Un-
certainty. ACM Comput. Sury12(2):213-253, 1980. 356816.

[49] C. Gacek, A. Abd-Allah, B. Clark, and B. Boehm. On the diion of
software system architecture. IBSE 17 Software Architecture Work-
shop 1995.

[50] R. Hilliard. Systems and software engineering - Reca@anded prac-
tice for architectural description of software-intenssystemsISO/IEC
42010 IEEE Std 1471-2000 First edition 2007-07-f&ges c1-24, 15
2007.

[51] R. C. Thomas. A Practical Guide to Federal Enterprisehitecture,.
www.gao.gov/bestpractices/bpeaguide.pdf, 2001. retdeJuly 11th
2009.

[52] J. N. Martin. An introduction to the Architectural Frameworks
DODAF/MODAF/NAFE Course given at the Royal Institute of Tech-
nology, Stockholm, Sweden, 2006.

[53] DoD. Department of Defence Architecture Framework Kilog Group,
DoD Architecture Framework, DoDAF, version 1.0. DeparttaDe-
fence, 2003.

[54] TOG. The Open Group Architecture Framework, version 8/9, 2002/6
The Open Group,.

70 Bibliography

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

P. B. Kruchten. The “4+1" View Model of architectur8oftware, IEEE
12(6):42-50, Nov 1995.

C. O'Rourke, N. Fishman, and W. Selkow. Enterprise Atatture, Us-
ing the Zachman FrameworKhomson Course Technolq@003.

M. Diehl. Zachamn ISA Framework for Healthcare Infortima Stan-
dard. Available: http://apps.adcom.uci.edu/Enterptisa/
Zachman/Resources/ ExampleHealthCareZachman.pdf §aede25.
September 2009], 1997.

ISO/IEC 10746 - 3: 1996, Information technology - Opastiibuted
processing - Reference model: Architecture, 1996.

M. Morris, M. Schindehutte, and J. Allen. The entrepgeris business
model: toward a unified perspectivelournal of Business Reseatch
58(6):726 — 735, 2005. Special Section: The Nonprofit Mankdtand-
scape.

R. Malveau and T. J. Mowbraysoftware Architect Bootcamrentice
Hall Professional Technical Reference, 2003.

D. Soni, R. L. Nord, and C. Hofmeister. Software arctiitee in indus-
trial applications. INCSE '95: Proceedings of the 17th international
conference on Software engineerimages 196—207, New York, NY,
USA, 1995. ACM.

R. Kazman, J. Asundi, and M. Klein. Making architectdesign deci-
sions: An economic approach. Technical report, Softwargirtaering
Institute, Carnegie Mellon University, 2002.

R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. MerBoNord, and
B. Wood. Attribute-driven design (add), version 2.0. TeéchhReport
CMU/SEI-2006-TR-023 ESC-TR-2006-023, Software Engiimepn-
stitute, Pittsburgh, USA, 2006.

I. Jacobson, M. Griss, and P. Jonsson. Making the reusadss work.
Computer30(10):36—42, Oct 1997.

P. Clements and L. NorthropSoftware Product Lines: Practices and
Patterns Addison-Wesley, 2002.

B.W. Boehm and K.J. Sullivan. Software economics: alroap, 2000.

Bibliography 71

[67] K. Schwaber. Scrum development process. Workshop RRepaoisi-
ness Object Design and Implementation. 10th Annual Conéeren
Object-Oriented Programming Systems, Languages, andaspipins.
Addendum to the Proceedings. ACM/SIGPLAN OOPS Messendgr 6(
October 1995.

[68] G. Ruhe and M.O. Saliu. The art and science of softwdease plan-
ning. IEEE Software22:47-53, 2005.

[69] B. Curtis, H. Krasner, and N. Iscoe. A field study of théaare design
process for large systems. Communications of the ACM, VbIN®.
11, pp. 1268-87.,1988.

[70] W. Curtis, H. Krasner, V. Shen, and N. Iscoe. On buildsgjtware
process models under the lamppost.I@SE '87: Proceedings of the
9th international conference on Software Engineeripgges 96-103,
Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

[71] C. Taylor Fitz-Gibbon and L. Lyons Morris. Theory-bdsevaluation.
Evaluation Practicel7(2):177 — 184, 1996.

[72] Z. Antolic. An Example of Using Key Performance Indioet for Soft-
ware Development Process Efficiency Evaluation. TechriRegort,
R&D Center, Ericsson Nikola Tesla d.d., 2008.

[73] B. Boehm, Abts C., A. Winsor Brown, S. Chulani, B. K. ({ar
E. Horowitz, R. Madachy, D. J. Reifer, and B. SteeCast Estimation
with COCOMO Il Prentice Hall, 2000.

[74] M. Halstead.Elements of Software Sciendglsevier, 1977.

[75] McCabe. A complexity measuréEEE Transactions on Software Engi-
neering 2:308-320, 1976.

[76] R. Burlton. Business process management: profiting from process
Sams, Indianapolis, IN, USA, 2001.

[77] D. Dikel, D. Kane, S. Ornburn, W. Loftus, and J. Wilson.p@lying
software product-line architectur€omputey 30(8):49-55, Aug 1997.

[78] W. R. Ashby. An Introduction to CyberneticsFirst Edition, Chapman
and Hall: London, UK, 1956.

72 Bibliography

[79] W.R. Ashby. The Law of requisite Variety. Avalable:

http://[pespmcl.vub.ac.be/REQVAR.html [accessed 20 uatg009].

[80] J. O. CoplienMulti-Paradigm Dedign for C++ Addison-Wesley, Read-

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

ing, MA, 1998.

M. Barbacci, M. Klein, T. Longstaff, and C. Weinstock. u@lity At-
tributes. Technical Report CMU/SEI-95-TR-021, CMU/SE995.

H.D. Rombach. A controlled expeniment on the impact aftvsare
structure on maintainabilitySoftware Engineering, IEEE Transactions
on, SE-13(3):344-354, March 1987.

P. Oman and J. Hagemeister. Metrics for assessing wa@aftsystem’s
maintainability. InSoftware Maintenance, 1992. Proceerdings., Confer-
ence onpages 337-344, Nov 1992.

N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, anWw. Ye.
Energy-driven integrated hardware-software optimizetiosing sim-
plepower. InISCA '00: Proceedings of the 27th annual international
symposium on Computer architectupages 95-106, New York, NY,
USA, 2000. ACM.

IS0 9126-1:200mformation Technology - Software engineering - Prod-
uct quality - Part 1: Quality modelnternational Organization for Stan-
dardization, 2001.

E. Woods and N. Rozanski. Using architectural perspest InFifth
Working IEEE / IFIP Conference on Software Architecture Q&A
2005) pages 25-35, Pittsburgh, Pennsylvania, USA, Novembes.200
IEEE Computer Society.

N. Rozanski and E. WoodsSoftware Systems Architecture: Working
with Stakeholders using Viewpoints and Perspectiveklison-Wesley,
2005.

R. S. Pressman.Software Engineering: A Practitioner's Approach
McGraw-Hill, NY, 1992.

T. K. LandauerThe Trouble with Computers: Usefulness, Usability and
Productivity MIT Press., Cambridge, 1995.

Bibliography 73

[90] I. Jacobson. Object oriented development in an indhlstnvironment.
In OOPSLA '87: Object-Oriented Programming Systems, Langsiag
and Applicationsvolume 22(12), pages 183-191. SIGPLAN Notices,
1987.

[91] L L. Constantine and L. A D. Lockwoo&oftware for User: A Practical
Guide to the Models and Methods of Usage-Centered Desgigdison-
Wesley, 1999.

[92] I. Jacobson, M. Christerson, P. Jonsson, and G. Ovatga@bject-
Oriented Software Engineering - A Use Case Driven Approach
Addison-Wesley, 1992.

[93] R. Wirfs-Brock and A. McKeanObject Design: Roles, Responsibilities,
and Collaborations Addison-Wesley, 2003.

[94] I. M. Breedvelt-Schouten, Paterno. F., and C. SeveriReusable struc-
tures in task models. IDSV-IS pages 225-239, 1997.

[95] M. J. Mahemoff and L. J. Johnston. Brainstorming witmeec tasks:
An empirical investigation. Innterfacing Reality in the New Millen-
nium: OZCHI 2000pages 224-231, Sydney, December 2000. ACM.

[96] E. Golden, B. E. John, and L. Bass. The value of a usgislippporting
architectural pattern in software architecture designoAtlled exper-
iment. InProceedings of the 27th International Conference on Saéwa
Engineering, ICSESt. Louis, Missouri, May 2005.

[97] K. Perzel and D. Kane. Usability patterns for applioas on the world
wide web. InPloP '99 Conference1999.

[98] E. Folmer, J. Van Gurp, and J. Bosch. Software architecanalysis
of usability. InIFIP Working Conference on Enginering for Human-
Computer Interaction2004.

[99] R. P. GabrielPatterns of Software: Tales from the Software Community
Oxford University Press, New York Oxford, 1998.

[100] D.A.W. Thompson. On Growth and Form Cambridge Univ. Press,
Cambridge, 1917.

[101] K. Beck, K. Schwaber, W. Cunningham, M. Fowler, andtal&uther-
land. The Agile Manifesto Available: http://agilemanifesto.org/ [ac-
cessed 10. February 2009].

74 Bibliography

[102] J. Sutherland and K. Schwaber. The Scrum Papers:
Nuts, Bolts, and Origins of an Agile Process. Available:
www.jeffsutherland.com/scrum/ScrumPapers.pdf [Acedss 25.
June 2009], October 2007.

[103] J. O. CoplienFor those that were Agile before Agile was coléeynote
speech at OO Days at Tampere University of Technology, Néezm
2008.

[104] K. Beck, R. Crocker, G. Meszaros, J. Vlissides, J. Opl@n, L. Do-
minick, and F. Paulisch. Industrial experience with degigtterns. In
ICSE '96: Proceedings of the 18th international confereoe&oftware
engineeringpages 103-114, Washington, DC, USA, 1996. IEEE Com-
puter Society.

[105] E. Gamma. Object-Oriented Software Development based on ET++
PhD thesis, University of Zurich, Institut fur Informatik991.

[106] B. Anderson and P. Coad. Patterns workshopn @OPSLA '93 Adden-
dum to the Proceeding8CM Press., January 1994.

[107] B. Anderson. Towards an architecture handboolO@PSLA '92: Ad-
dendum to the proceedings on Object-oriented programmystems,
languages, and applications (Addendumpages 167-168, New York,
NY, USA, 1992. ACM.

[108] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissidessigpepat-
terns: Abstraction and reuse of object-oriented desigieGOOP '93:
Proceedings of the 7th European Conference on Object-@ritRro-
gramming pages 406—-431, London, UK, 1993. Springer-Verlag.

[109] M. Fowler. Pattern Of Enterprise Application ArchitectureAddison-
Wesley, 2003.

[110] J. O. Coplien. Organization and architecture. 1999CHE Forum on
Object-oriented Software Architecture, 1999.

[111] M. E. Conway. How do committees inventPatamation magazine
1968.

[112] J. O. Coplien. Borland software craftsmanship: A newoklat process,
quality and productivity. Irb th Annual Borland International Confer-
ence 1994,

[113] P. Birgi. Seeing Work Practices Through a Culturald_&text Practice
3(1), 2004.

[114] D. Kane, D. Dikel, and J. WilsonSoftware Architecture: Organiza-
tional Principles and PatternsPrentice Hall, 2001.

[115] R. K. Yin. Case study research: Design and Methodsdume 5 ofAp-
plied Social Research Methods Seri8&GE Publications, third edition,
2003.

[116] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damfelecting em-
pirical methods for software engineering research. In ElISh Singer,
and D. I. K. Sjoberg, editorsGuide to Advanced Empirical Software
Engineering pages 258-311. Springer London, 2008.

[117] P. Stoll, L. Bass, B. E. John, and E. Golden. Prepariagliity Sup-
porting Architectural Patterns for Industrial Use. Pratiags of Inter-
national Workshop on the Interplay between Usability Eatibn and
Software Development (I-ISED), Pisa, Italy, 2008.

[118] P. Stoll, F. Alfredsson, and S. Lovemark. Usabilityparting Archi-
tecture Pattern for Industry. Proceedings of the NordiCB0&, Lund,
Sweden, 2008.

[119] P. Stoll, L. Bass, B.E. John, and E. Golden. Supportilsgbility in
Product Line Architectures. Proceedings of the 13th Iratomal Soft-
ware Product Line Conference (SPLC), San Francisco, USAyuau
2009.

[120] B. E. John, L. Bass, E. Golden, and P. Stoll. A respadlitsitbased
pattern language for usability-supporting architectyratterns. Pro-
ceedings of the ACM SIGCHI Symposium on Engineering Intévac
Computing Systems (EICS), Pittsburgh, PA, US, 2009.

[121] I. Benbasat, D. K. Goldstein, and M. Mead. The casearebestrategy
in studies of information systemMIS Q, 11(3):369-386, 1987.

[122] V.R. Basili, G. Caldeira, and H.D. Rombadhncyclopedia of Software
Engineering chapter The Experience Factory. Wiley, 1994.

[123] P. Bourque and R. Dupuis, editorGuide to the Software Engineering
Body of KnowledgelEEE Computer Society, 2004.

Included Papers

77

Appendix A

Paper A:

Guiding Architectural
Decisions with the
Influencing Factors Method

Pia Stoll, Anders Wall Christer Norstrom
Industrial Software Systems Computer Science and Eleicson
ABB Corporate research Malardalen University
pia.stoll@se.abb.com, christer.norstrom@mdh.se

anders.wall@se.abb.com

In Working IEEE/IFIP Conference on Software ArchitectuvélCSA) 2008,
Vancouver, BC, Canada, February, 2008

79

Abstract

The Influencing Factors (IF) method guides the architeaiubh stake-
holders’ concerns to architectural decisions in line withrent business goals.
The result is a set of requirements on software qualitylatteis and business
goals and highlighted trade-offs among software qualifftattes and among
business goals. The IF method is suitable for sustainaliteya® systems
since it allows new concerns, resulting from changes infass goals, stake-
holder concerns, technical environment and organizatiolpe added to exist-
ing concerns.

Introduction 81

A.1 Introduction

For the architect it can be difficult or even impossible tas$atall concerns
from stakeholders in one architecture. Concerns are timbseeists which per-
tain to the system’s development, its operation or any odlspects that are
critical or otherwise important to one or more stakehold@wmncerns include
system considerations such as performance, reliabibtsty and distribu-
tion [1]. Concerns are not always in line with stated busingsals and do
not always have positive impact on the product’s markeedéffitiator(s). For
example the upper management wants to use standard haraihseftware
but this could have a negative impact on a product with hidjalsiity as its
market differentiator.

The sustainable software systems area is concerned witartchéecture
and designing of systems that are maintainable, suppertaid modifiable
during long life-times in the face of changing customer iiszgaents and chang-
ing environments (hardware, commercial-of-the-sheléipisis, security threats,
operating systems, communication standards). A sustairgaistem could
have been developed according to plan, but still would natidbe to cope suc-
cessfully with change since the requirements for sustéérsdftware systems
will change over time. Sooner or later the systems archiitastto take archi-
tectural decisions in order to satisfy changes in both lassigoals and changes
in functional and nonfunctional requirements. In order ¢gobo-active the ar-
chitect should continuously analyze the changing concanasnot only wait
for the concerns to be transformed into functional and nmetional require-
ments.

Requirements usually lack any trace of what concerns thiginated from
and therefore it is not clear what effect they have on busigesals and quality
attributes. This may lead to confusion among the develdpgtementing re-
quirements they do not really understand the origin of. Tiedyeed concerns
could contribute to a more complete requirement specifinahian the require-
ment list. In [2] Nancy G. Leveson proposes an approach teigesspecifi-
cations that support human problem solving and where theoowt from the
concern analysis could serve as input.

It would make the architects life easier and enable betterneonication
among diverse stakeholders if there was a time-saving rdétinthe analyzing
of concerns and their influence on the architecture. Theitaattcould then
put forward the implications of each concern and their imérelations and
help the stakeholders to make rational decisions on whatezos should be
prioritized. Concerns may be very stakeholder-relatedtecah be beneficiary

82 Paper A

to filter the concerns so that only the facts of the concertes ¢éime analysis and
not the relation to the stakeholders. This paper preseatsfluencing Factors,
IF, method which targets this challenge. The method cdlezhcerns, extracts
influencing factors from the concerns and analyzes thosiéarinfluence on
business goals and software quality attributes. The résatbusiness goal
oriented prioritization of software quality attributes.

The influencing factor is a factor that affects architectesign [3]. The
influencing factors are extracted from the stakeholdersicems in the IF
method. The global analysis described in [3] analyzes eaftiencing fac-
tor's detailed impact on the design, the schedule and thgpoaemts and not
on specific business goals or software quality attributesmia line managers
concern; “We want to implement the system in Java since oueldpers are
skilled in and enjoy working with Java” the influencing factomplement the
system in Java” is extracted. The same influencing factoirdfarence differ-
ent business goals and software quality attributes. The saftaencing factor
as above; “Implement the system in Java” can also be exttéatm an upper
management concern; “We want to use Java since it is tooydosté-design
the system in C#”. In this concern the business goal is toagedotal cost of
ownership and in the first concern the business goal is totaiaijobs of the
workforce on the legacy system. The method is illustrateti ¥wvo industrial
case studies. The first case study was performed on the wpgfeaal large
legacy system and the second case study on the re-factdmgexisting sys-
tem. The two case study systems had a diverse set of staketaddch as soft-
ware architect, system architect, developers, testevdust management, line
management, engineers, users, and many more. Both systéfered from an
unclear understanding of what concerns were the most impbrShould the
architects propose architectures that try to solve all eoms; which in practice
would be impossible, or should they focus on some of them?

The remainder of this paper is organized as follows; Sedi@uescribes
current research and the definition of business goals atdeaef quality at-
tributes used in the method, Section A.3 presents the oektips of enter-
prise, system and software architecture, Section A.4 pteske three steps of
the method, Section A.5 and A.6 present two case studiesswhermethod
was applied. Section A.7 presents the conclusions of thé with the IF
method and finally, future work is presented in Section A.8.

Business goals and software quality attributes 83

A.2 Business goals and software quality attributes

A software product interfaces with people who have an isteseshare in the
product’s business or enterprise. These people are thehstllers of the sys-
tem. The stakeholders are users, developers, managemestg&smarketing
people, support engineers etc. The stakeholders experéehvantages as well
as disadvantages with the product depending on the conttexynéind that the
product should satisfy. Concerns can influence both busigeasls as well as
system quality attributes. For example: In order to prodieeble, adaptable
applications, the reflection architectural pattern, wipcbvides a mechanism
for changing structure and behavior of software systemsuayeally [4], can
be used. This pattern increases the modifiability of theesystBut software
reflection techniques may put high requirements on softaevelopers since
this way of coding is more complex than normal static prograng. The com-
plexity can lead to longer development time and therefdiecathe business
goal “Reduce cost of development” or “Time to Market” in a atige way.
Analyzing concerns for their influence on business goalssafitvare quality
attributes is therefore necessary in order to find a suitaisleitectural solution.
To be able to analyze the concerns influence on the businafstge business
goals can be categorized. Len Bass and Rick Kazmann hagociated busi-
ness goals from a number of ATAM evaluations [5]. Bass’ andriann’s five
categories are: (1) “Reduce total cost of ownership”, (2)gtove capabil-
ity/quality of system”, (3) “Improve market position”, (4pupport improved
business processes”, and (5) "Improve confidence in aneépton of the sys-
tem”. The category “Reduce total cost of ownership” inclitlee subcategory
“Reduce cost of development” and in the category “Improyeatéity/quality
of system” the subcategories “Performance” and “Ease dfaresfound. The
categories facilitate the analysis of business goal changth time in the IF
method.

As well as having its own set of business goals a company ordousu-
ally have its own sets of system quality attributes. In treecgtudies where we
have applied the IF method we have used the six system ga#lilgutes dis-
cussed in [6]; (1) Modifiability, (2) Security, (3) Usabiljt(4) Performance, (5)
Availability and (6) Testability. In [6] it is argued thatlrability is a part of the
availability quality and reliability tactics are a sub séttte availability tactics.
In the two case studies where the IF method was applied hilditdhas been
used to cover both availability and reliability related esfs. However, some
voices have argued that reliability would have been béttan tivailability. The
architecture team or architect applying the IF method ghtheérefore clarify

84 Paper A

with the architecture’s stakeholders what quality attiéisiare to be used in the
beginning of the analysis.

To be able to analyze the concerns for a software productthesens first
must be extracted from the stakeholders. Interviews, dectmreading and
personal experiences are some ways of extracting concéhesQuality At-
tribute Workshop, QAW [7], is an established method to ettcancerns in the
form of scenarios from stakeholders in order to find prin€eitl business goals
and software quality attributes. The QAW method can be usedmjunction
with the Attribute Driven Design method, ADD [6], to achieae architecture
where all important quality attributes are considered. QA&V lets stakehold-
ers put forward their concerns in the form of scenarios ingdsrobin fashion
in a one day’s workshop. In order to prioritize the scenatiesstakeholders
vote. This method gathers a large variety of stakeholdet$éethem meet and
hear each others concerns. In our second case study the QAllYVisesincor-
porated with the IF method to get a complete picture of therftized business
goals and software quality attributes.

A.3 Enterprise, System and Software Architecture

The influencing factors are part of the stakeholder conaamdsnclude trends,
technical environment, previous experiences and markatdds etc, Figure
1. The stakeholder concerns can have many influencing factor

The stakeholder concerns change over time as the influefaaitags change
over time. New trends, experiences and technical enviratsefluence busi-
ness goals and system quality attributes. For every changericerns the
software architect faces new business goals to satisfynanwdsoftware qual-
ity attributes to achieve in the system respective the sofharchitecture.

Business goals are manifested by the enterprise archiéaghich includes
business processes and business structures, e.g. a cowtgahysells a prod-
uct needs a sales division and probably a marketing divisidre enterprise
architecture provides a basis for the system architeceuge, a company de-
veloping a safety critical software product needs a teanafetg experts and
processes for testing and verifying the safety propertidhe product. The
business goal categories presented in Section 2 are strgigted to the en-
terprise architecture’s business processes and businessiges shown in Fig-
ure 1. The first category of “Reduce total cost of ownershigams reducing
cost for the entire enterprise architecture. The second,dhnd fifth categories;
“Improve capability/quality of System”, “Improve markéiare” and “Improve

The IF method 85

custom Relationships of enterprise, system and soRware arnhl(enture/

o

Influencing factors (change over time|

}—<(h5»5>>

cinfluanced by>> oyes i oy oy>> =xinflusnced bys>
Laﬂwﬁrequahty al‘mhu(pl Business goals Trends | Experiences | ste |

<emanifastss>

Business processes

<sincludes>

=<includess>

Enterprise architecture

<<should
sstisfym~

<<should
achizves>

<<based on>>

<<includes>
System architecture i [

=sinclugers

<2 ---<<gets contex from>>

| Sales SW development et

ceincludesss <<includess® caincludesss

‘ Software architecture ‘

concems

change over time

Maduls B is pert of meguls A

Meduls C depends on medule O

Figure 1: Relationships of enterprise, system and softaarigitecture

confidence in and perception of system” aim at increasingetenue for the
sales and marketing part of the business structure in tleegeige architecture.
“Support improved business processes” enables the seftserelopment in

the business structures to run smoother.

The system architecture provides a context for the softwachitecture
and includes beside software architecture also hardwarpewople.

A.4 The IF method

The Influencing Factors method consists of three steps:

¢ |dentify influencing factors,
e Prioritize influencing factors and

e Analyze prioritized influencing factors.

Each step will be described in detail in this section. Thpstae best done by

the system’s software architect and/or software engineer.

86 Paper A

A.4.1 Identify influencing factors

The first step in the IF method collects concerns from difiesources like:
stakeholder interviews, quality attribute workshop (QAWiscussions with
colleagues, search of the business related documentseesahpl experiences.
From the concerns influencing factors are identified. Theémiting factor is
a factor that affects the architecture design [3].

For identification of an influencing factor the business goativations
and/or the system quality attribute motivation is notedit(is stated in the
concern). Not all relationships between influencing faxtord system quality
attributes are possible to extract from its correspondorgern. The software
quality attribute influence may be more difficult to trace bag the corre-
sponding concern than the business goal influence. A botifpprocess called
affinity diagrams [8] can be used by the project team whersiflasg the in-
fluencing factors’ effect on business goals and softwariate qualities. The
team members group the influencing factors together by Hudiware qual-
ity attribute influence in an affinity sorting process. Focleaoftware quality
attribute and business goal the influence is divided into:

e Positive impact
e Negative impact
e Requires

A positive impact means an influencing factor which contiésuto the
achievement of the goal or the implementation of a softwaiaity attribute.
An influencing factor having a negative impact means thairtfieencing fac-
tor inhibits the business goal accomplishment or the soéwaality attribute
implementation.

The influencing factor which requires a business goal omso# quality
attribute requires that specific tactics are used to acldesertain quality or
accomplishment of a business goal. There is a differencgdegt having a
positive impact on a system quality attribute and on haviregairement on it.
For example “Support distributed development” requirghtiegree of “Mod-
ifiability” but has no positive impact on the quality. The ughcing factor “Im-
plement POSIX compliant software” has a positive impact adifiability but
does not require modifiability, since it is a modifiabilitycte itself. The in-
fluencing factors are categorized according to their infl@eom business goals
and software quality attributes and can then be enteredli@dF matrix as
shown in Figure 2. The matrix gives a good overview of the grficing factors

The IF method 87

and especially the trade-offs between them. The influerfeicr is entered
into the cell which corresponds to its influence on businesdsgand software
quality attribute. In the IF matrix for the two case studiles tlassified busi-
ness goals as discussed in [5] and the six quality attridubes [6] are used.
But it's possible to use a different set of business goalssarftivare quality
attributes that better suits the system being analyzed.

The IF matrix is one way of viewing business goal impact anftivsoe
quality attribute impact of the influencing factors. If thatd was put into a
relational database, the user can chose different viewlseoflata than the IF
matrix in order to get the best understanding of the impaeinaf the internal
relations between the influencing factors.

A.4.2 Prioritize influencing factors

In the first step of the IF method the influencing factors weeatified and their
influences on business goals and software quality attsbaee documented
in the IF matrix. The second step of the IF method is to idgrtkié prioritized
business goals of the system and to extract those influeriaatgrs having
a positive impact on the prioritized business goal. It careégy to identify
prioritized business goals, e.g. from interviews with uppgnagement or
from the business presentation in a Quality Attribute Wodgs However,
sometimes it is more difficult to collect this informationge in a distributed
management organization where the system architect higsdantact with
the business goal responsible management. For this digtdbnanagement
situation, as is shown in the first case study, it can be tledtftuencing factors
cluster around a positive impact on a specific business gde.architect can
in this case try to verify with the management that this djpebusiness goal is
the one prioritized in the organization.

After extracting those influencing factors having a positimpact on the
prioritized business goal, step three in the IF method cHiowo The results
should be verified with the stakeholders so that the stakien®having con-
cerns that are not prioritized can get an understandingeointffuence of their
concerns and why they are not prioritized.

A.4.3 Analyze prioritized influencing factors

After the influencing factors which have a positive impacttbae prioritized
business goal(s) are extracted their influence on softwaakty attributes can
be analyzed. The factors are analyzed for their impact osdfievare quality

88 Paper A

attributes. For instance, if five influencing factors havesitive impact on the
prioritized business goal “Improve market share” those factors influence
on the software quality attributes are analyzed. If all & five influencing
factors require modifiability the architect knows that he/should implement
modifiability tactics and/or patterns in the architectufiéhis means that the
architecture should try to satisfy the concerns relatedhéoinfluencing fac-
tors having a positive impact on the prioritized business Jonprove market
share” and therefore apply modifiability tactics [6] anddararchitectural style
[9] and/or pattern [4] with a positive impact on modifiakylitf several quali-
ties are required, techniques like the “Cost Benefit Analethod” [10] can
be used to make cost-oriented decisions on what archisdstategy to apply.
It is also important to analyze the negative impact of thentized factors. If
the same factors requiring modifiability have a negativedntn performance
the architect must take preventive measures not to get arpafice drop. The
IF matrix shows the internal trade-offs between businesdsgand internal
tradeoffs between software quality attributes. It may ts thfluencing fac-
tors having a positive impact on the prioritized business Jonprove market
position” also have a negative impact on the business goaditiRe total cost
of ownership”. In this case the architect can discuss thilk thie management
responsible for the business goal prioritization.

A.5 Casestudy 1l

The first system on which the architecture team of the soévegstem ap-
plied the IF method was a legacy system. The system suffesaddn unclear
understanding of what business goals the many stakehbta®rserns were
targeting and what software qualities were to be prioritimethe current devel-
opment of the legacy system. For company confidentialitpara we cannot
publish all descriptions of the influencing factors. But oofi the influencing
factors are used as examples for clarifying purposes.

A.5.1 Identify influencing factors

The concerns from stakeholders were collected troughviiees, document
reading, personal experiences and team discussions. rinihgefactors were
identified from the concerns and organized according t@ thi#tience on busi-
ness goals and system quality attributes. For some of therfathe influence
was not obvious, e.g. there was a factor having both positive negative

Case study 1 89

Business Goal Quality Attributes
Modifiability Performance Security Availability Testability Usalbyli
Req. [Pos.[Neg. [Req. [Pos. |[Neg. [Req. [Pos. [Neg. |Req. [Pos. [Neg. [Req. |Pos. [Neg. [Req. [Pos. [Neg.
imp. [Imp. Imp. [Imp. imp. [Imp. imp. [Imp. imp. [Imp. Imp. [Imp.
Reduce [Pos. |F1.2) F1. F1.2, IF3.1)
Total |mpaciF3.2 —— F3.2 I3
Cost of Neg. [F13)IF3.4{F3.5|IF2.3, IFL.3\IF2.2, IF2.2,||iF with positive and negative imp AJEL3,
Owner- jmpaciE1.4]IF4: \F3Q 3.€ IF3.7 | lon same business goal. IF2.3,
ship I ‘31”:4" \Iuéﬁ\\ Prioritized influencing /;gg
(:‘%‘? IF3.6v \§ factors having a negative :
. =} impact on "Reduce Total
@ IF3.7, Cost of Ownership”
IF4.1,]
™ IFa.2 |_
ImprovefPos. IF3.5|IF3.5 IE3.6,JF3.€ IF3.7 IF3.7 IF3.5
Capab.jmpac Prioritized IFs requiring IF3.7
Quality Neg. Ijiess Goal | modifiability tactics and/o|
of Jmpac Trade-Of patterns
System[Req. |IF3.2 = IF2.2 IF22
F3.2
Improve Pos. fF1.3\|F8.4 5F2.3, F1.3yF2.2 IF2.2,| F_.2 F1.3,
Market mpach&l. @’g 1. IF3.3 ~_ F3 A4)|F2.3
Posmo'n\ IF2.1, IF22, Prioritized influencing 5 F3.3,
g;; :233-4 factors with positive impact| \\ | :Egi
] ‘3'r/ - on both prioritized busines: L — i
@ goals and negative impact p{Prioritized IFs requiring
performance availability/usability/testability
Neg |1 iized | tactics and/or patterns.
Support:Dmo’;éC {Business GO%
Improvedmpac] /
BusinesiNeg.
Processgmpac
Req. WF1.2 IF2.2 JF2.2 IF2.2 IF22 IF2.4F3.1
IF2.1
Improve [Pgs. ¥|F3.4|F3.5|F3.5 F1.3§F3.€ IF3.3, F3.2, IF2.4JF1.3,
Conf. igfmpa IF1.4 IF3.7 F3.7, IF3.1)F1.4,
and IF3.3 F5.1 IF3.2|IF3.3,|
Percept| 1 IF3.5,
of the B IF3.6,| IF3.7,
System IF3.7 IF5.1
Neg.
mpac

Figure 2: IF Matrix - Case Study 1

impact on the same business goal, the factor IF1.1: Mictdamfictionality
Dependencies. Using ready produced functionality woulderthe job easier
for the developers, but at the same time introduce costsrinstef licenses
and dependencies on Microsoft functionality upgradestiiisifactor we have
both a positive and a negative impact on the same busines&Rgzhuce total
cost of ownership”. In this particular case we argued thatittense cost would
be lower than the savings we would get in development cosslmguhe func-
tionality. Therefore the total impact is a positive impanttbe business goal
and a negative impact on security due to the introduced mxitelependency
on security patches.

We had several influencing factors having a positive impaciree business

90 Paper A

goal and a negative impact on another business goal. Efipanfluencing

factors having a positive impact on the business goal “Im@idarket Posi-
tion” tend to have a negative impact on “Reduce Total Costwhe&rship, e.g.
IF2.1 “Expand geographical market to China and India”. 1F&ay involve
support for new native languages which results in additideeelopment cost.
Figure 2 shows the IF matrix for the first case study.

A.5.2 Prioritize influencing factors

Since the business goal prioritization was unclear to tlogept team the busi-
ness goal focus was clarified by analyzing the influencingpfadmpact on
business goals. The conclusion was that a large majorithefrifluencing
factors was focused on improving market position and confidén, and per-
ception of the system. We would have expected more focus eduBe Total
Cost of Development” and “Improve Capability/Quality ofsbgm” since the
legacy system was ten years old. The focus on “Improving EaPosition”
and “Improving Confidence in and Perception of the Systems$ weerefore
confirmed with the stakeholders. The result was that theviatig factors were
prioritized: 1IF1.3, IF1.4,1F2.4,1F3.1, IF3.2, IF3.3, IB3and IF5.1. They have
a positive impact on both of the prioritized business goalsese factors will
be analyzed in step three of the IF method.

A.5.3 Analyze prioritized influencing factors

From the matrix in Figure 2 we extracted the prioritized iafiaing factors and
made a list of their impact on software quality attributdguife 3. The factors:
IF1.3, IF1.4, IF3.2, IF3.3 and IF5.1 required modifiabilictics and/or pat-
terns. The prioritized factors IF2.4, IF3.1 and IF3.3 regdiusability tactics
and/or patterns. The factors: IF3.2 and IF5.1 require@bdgty tactics and/or
patterns and the prioritized factor IF3.3 required avalilgbactics and/or pat-
terns to be implemented in the architecture. Modifiabilitg aisability seemed
therefore to be the most important software quality attebu

Figure 3 also shows that the performance quality was neggimpacted
by four of the prioritized influencing factors: IF1.3, IF1.43.3 and IF3.4.
This means we had a trade-off between performance, moditfjabisability
and testability.

Figure 4 shows that the business goal “Reduce total costvalalement”
was negatively impacted by the prioritized factors: IF1R,.4, IF3.3, IF3.4
and IF5.1. We therefore had a business goal trade-off betWeduce Total

Case study 1 91

Impact on Modifiability Performanc Security Availability Testability Usability
SC‘;:;V”?;E Req. |Pos.[Neg. |Req. |Pos. [Neg. [Req. [Pos. [Neg. [Req. |Pos. [Neg. [Req. [Pos. |Neg. [Req. [Pos. [Neg.
Imp. [Imp. Imp. Imp. Imp. [Imp. Imp. (Imp. Imp. [Imp. Imp. (Imp.
Attributes p. [mp p p P p p p p P P P
Prior. JF1.3[x X X
Infl. IF1.4] x X x | x
Factors |F2.4 X
IF3.1 X
IF3.2 [x X X
IF3.3[x X X X
IF3.4 X X
IF3.5 X X X
IF5.1[x X X

Figure 3: Quality Attribute Analysi§) Case Study 1

Impact on Busine{ Reduce Total Cost ¢fimprove Capability/| Improve Market Support Improved | Improve Confidence

Goals Ownership Quality of System Position Business Processefsin and Perception o
the System

Req. |Pos. [Neg. [Req. |Pos. [Neg. |Req. [Pos. |Neg. [Req. |Pos. [Neg. |Req. |Pos. [Neg.

imp. Imp. Imp. [Imp. imp. Imp. imp. Imp. imp. ~ Imp.
Prioritized||F1.2 X X X
Influenc. |F1.4 X X X
Factors |F2.4 X X X
F3.1 X X
F3.2 X X X
F3.2 X X X
F3.4 X X X
F3.£ X X X X
F5.1 X X X

Figure 4: Business Goal AnalydisCase Study 1

Cost of Ownership” and “Improving Market Position”/“Imprimg Confidence
in and Perception of the System”.

A.5.4 Conclusions: Case Study 1

The business goal focus was made visible by the IF matrix.rgelanajority
of the influencing factors had a positive impact on “Improvarket position”
and “Improve confidence in and perception of the system”. §thkeholders
confirmed this business goal focus and we could show thaffdliss has a
strong trade-off with the business goal “Reduce total cbetvmership”.

The IF matrix made internal trade-offs between businesssgasible as
well as internal trade-offs between software quality bttieés. A side-effect
of the analysis was the discovery that concerns relatededtisiness goal
category “Improve confidence in and perception of the systeas strongly
correlated to the business goal category “Improve marksitipa”.

92 Paper A

A.6 Case study 2

The system in this case study was a total reconstruction olcasystem ar-
chitecture that was to deliver the same features as the slgrsy but with

additional new functions and qualities. The business godlhis case study
was explicitly stated as “Increase sales to year 2009” irtreghto the first

case study where the business goal was unclear. For thetseasa study the
IF method was used to prioritize among the multitude of stalaer concerns
and legacy concerns inherited from the old system.

A.6.1 Identify influencing factors

In order to find the most important stakeholder concerns heid torrespond-
ing quality attributes a Quality Attribute Workshop [3], svheld. A couple of
weeks before the QAW took place we collected requirementgrin of use-
cases for the new system and legacy requirements from thgyetdm. The
business goal requirements were extracted from the bussoase presentation
at the start of the QAW. The voting result was a surprise toQA&V mod-
erators since the top-five scenarios did not include the imgsbrtant legacy
quality attribute requirements: performance and avditgbi he discussion of
the result with the participating stakeholders showedttiat had voted on the
scenarios dealing with new features of the system and iginthiee mandatory
legacy features. However, by using the IF method we couldhekthe influ-
encing factors from the concerns related to the legacy reménts as well.

A.6.2 Prioritize influencing factors

In this case study the prioritization of influencing facteras intensively dis-
cussed. Should we only take the ones from the Quality AtteitMiorkshop
prioritization? By following the business goal priorittzan from step two in
the IF method we included both legacy requirement relatideincing fac-
tors and top-five QAW scenario related influencing factoigufe 5 show the
overlap of the influencing factors in a Venn diagram. Morepkegure 5 also
shows that important influencing factors would have beendef if only the
influencing factors related to the QAW top-five scenarios itave been an-
alyzed.

The business goal prioritization of influencing factorauteesd in the prior-
itized influencing factors; IF1.2, IF1.2, IF1.3, IF2.1, IB2IF2.3, IF2.4, IF2.5,
IF2.6, IF2.7,1F3.1,1IF3.2, IF3.3, IF4.1, IF4.7, IF5.1, IR®nd IF5.4.

Case study 2 93

Mandatory legacy
related

Prioritized Business Goal (!
related

QAW top-five

related IF2.1 IF2.3 P51
IF2.2 IF4.1 F24 IF5.2
IF4.7 IF25 [F5.4

IF2.6

IF2.7

Figure 5: Overlap of influencing factors

Analyze prioritized influencing factors In step two we piiized the influ-
encing factors extracted from concerns related to theifized business goal
“Improve market position”.

The prioritized influencing factors have requirements bgwlities but the
majority of the influencing factors require modifiabilitycasability, Figure 6.
Most of them have a trade-off with the performance qualitige Brchitecture
can not be constructed only to satisfy the requirements odifrability and
usability without regarding the performance requiremédnhe IF1.2 “Imple-
ment same performance as today”. The IF 1.2 has a strongyleggairement
on performance and actually drives the architecture. Eigushows that nine
of the eighteen prioritized influencing factors have a niggatnpact on the
business goal “Reduce total cost of ownership”. That isbtigness goal “Im-
prove Market Position” has a trade-off with the businessl g@aduce total
cost of ownership”.

A.6.3 Conclusions: Case Study 2

In this second case study the IF method was a necessary comi¢o the
QAW. The stakeholders who participated in the QAW put theteg on sce-
narios describing new product functionality and new pradulities. There-
fore all legacy requirements and prioritized businessgydain’t get into the
top-five scenario ranking.

One question we had regarding step two in the IF method wdsnias

94 Paper A

Impact on Software Quality [Modifiability Performance Security Availability Testability| Usalbyli
pttributes Req. [Pos. [Neg. [Req[Pos[Neg|Req.[PosNeg. [Req] Pos [Neg. [Req[Pos[Neg.[Req] PosNeg.
Imp. Imp. Imp. [Imp. Imp. [Imp. Imp. Imp. Imp. [Imp. Imp.[Imp.
Prior. |Mandatory [IF1.1 X
Infl. legacy req. IF1.2 X
Factorsjrelated _
IF1.3 X
IF3.1 X X
IF3.2 X X
IF3.3 X
QAW top- [IF2.1 X
five scenario| IF2.2 X
related) X
IF4.1
IF4.7 X X X
Positive IF2.3 X X
impacton [F2.4 | x X X
lprioritized |F2.5 X
pusiness =5 5 X ™
goals F2.7 X X
IF5.1 X
IF5.2 X
IF5.4

Figure 6: Software Quality Attribute Analysi$ Case Study 2

Impact on BUsINESs Loa)

S Keauce |otal

UsIProve Lapaoiity,

IMprove viarket

Support improved|

Iimprove connaeng

of Ownership | Quality of System Position Business Processgis and Perception
the System
Req. [Pos. [Neg. [Req. [Pos. Neg. |Req. |Pos. [Neg. [Req. [Pos.|Neg. |Req. |Pos. [Neg.
Imp. [Imp. Imp. |Imp. Imp. |[Imp. Imp. [Imp. Imp. [Imp.
Prior. [MandatorylF1.1 X X X
Infl. legacy reqjiF1.2 X X X
Factorsfelated |IF1.3 X X
IF3.1 X X X X
IF3.2 X X X X
IF3.3 X X X
QAW top- IF2.1 X X X
ffive IF2.2 X X X X
lscenarios (IF4.1 X X X
related [IF4.7 X X X
Positive [IF2.3 X X
impact on IF2.4 X X X
lprioritized IF2.5 X X X X
business (IF2.6 X X X X
lgoals IF2.7 X X X
|F5.1 X X
IF5.2 X X
IF5.4 X X

Figure 7: Business Goal AnalydisCase Study 2

Conclusions 95

sufficient to use prioritized business goal(s) as selectitteria for the prioriti-
zation of IFs. Case study two showed us that by using theipizied business
goal(s) as criteria we covered IFs extracted from manddegscy require-
ments concerns and from the QAW top-five scenario concelms.cbuld have
been the case since mandatory legacy requirements are af plagt business
goal “Improve market position” which has the subcategoryg&nd or Retain
market share”. The subcategory implies that the functighahd qualities of
the system must be retained or improved.

The result from the QAW was used as input to the IF method amdukput
from the IF method as input to the ADD method [11] and the USA®hod
[12].

A.7 Conclusions

The IF method extracts influencing factors from stakehaldewncerns. The
influencing factor is a factor that affects the architectdesign. The influ-
encing factors’ impacts on software quality attributes Aodiness goals are
analyzed. In the two case studies the gathering of concesnsdtakeholders
took about a person week and the contribution of each stédeheas approx-
imately two hours of interviews for those that couldn’t peipgate in the one
day quality attribute workshop. From the two case studiesoveluded that
for a skilled architect with business goals understandirdysoftware quality
attributes skills, the IF analysis of the concerns shoulté tao longer than a
day or two. Changes in business goal focus during the lifebf the software
system means that new influencing factors are added. Thelaaltigencing
factors and their impacts may be added to the existing onesrilational
database and the view of the impact can be presented in masy g. in the
IF matrix format. In the IF method the business goal pripaition is central. It
is the prioritized business goals that controls what cameiill be prioritized.

One difficulty in the IF method is the categorizing of impaaotlsusiness
goals and software quality attributes in step two. This ie difficulty the IF
method shares with methods described in [7], [13] and [11].

A.8 Future work

We will investigate the possibility to apply the IF methoddre a QAW and
use the result to understand the effect of the stakeholdengerns and present

96 Paper A

this to the stakeholders before starting the QAW. This niigiyp the stakehold-
ers to make more focused voting decisions.

Moreover, it would be interesting to look deeper into therelation be-
tween business goals and software quality attributes. v case studies
we have seen a high correlation between “Usability” and ‘flowe Confidence
in and Perception of the System” and between “Usability” dmprove Mar-
ket Position”.

Finally more research in the field of influence of concernsusiress goals
and software quality attributes will make step two in the IEthod more pre-
cise.

Bibliography

[1] P. Bourque and R. Dupuis, editor§&uide to the Software Engineering
Body of KnowledgelEEE Computer Society, 2004.

[2] N. G. Leveson. Intent specifications: An approach todindy human-
centered specifications|EEE Transactions on Software Engineering
26(No. 1), 2000.

[3] C. Hofmeister, R. Nord, and D. SoniApplied Software Architecture
Addison-Wesley, Boston, 2000.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, andShl.
Pattern-oriented Software Architecture A System of Pagerolume 1.
Wiley, first edition, 1996.

[5] L. Bass and R. Kazman. Categorizing business goals fitwace archi-
tectures. Technical Report CMU/SEI-2005-TR-021 ESC-TR52021,
Software Engineering Institute, 2005.

[6] L. Bass, P. Clements, and R. Kazm&uftware Architecture in Practice
Addison-Wesley, Boston, second edition, 2003.

[7] M. Barbacci, R. Ellison, A. Lattance, J. Stafford, C. W8tock, and
W. Wood. Quality attribute workshops, 3rd edition. Teclahieport,
Software Engineering Institute, Pittsburgh, PA, USA, 2003

[8] H. Beyer and K. HoltzblattContextual DesignMorgan Kaufmann Pub-
lishers, Inc., San Francisco, CA, 1998.

[9] D. Garlan and M. Shaw. Software Architecture: Perspectives on an
emerging disciplinePrentice-Hall Inc., 1996.

97

[10] R. Kazman, J. Asundi, and M. Klein. Making architectdiesign deci-
sions: An economic approach. Technical report, Softwargiriaering
Institute, Carnegie Mellon University, 2002.

[11] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Mergari\ord, and
B. Wood. Attribute-driven design (add), version 2.0. TechhReport
CMU/SEI-2006-TR-023 ESC-TR-2006-023, Software Engimeginsti-
tute, Pittsburgh, USA, 2006.

[12] L.Bass and B. E. John. Linking usability to softwaretdtecture patterns
through general scenariobhe Journal of Systems and Softw#®:187—
197, 2003.

[13] P. Clements, R. Kazman, and M. KleifEvaluating Software Architec-
tures, Methods and Case Studiégldison-Wesley, Boston, 2002.

Appendix B

Paper B:

Achieving Sustainable
Business for Industrial
Software Systems

Pia Stoll Anders Wall
Industrial Software Systems Industrial Software Systems
ABB Corporate research ABB Corporate research
pia.stoll@se.abb.com anders.wall@se.abb.com

In Conference on Business Sustainability, Ofir, Portug20g&

99

Introduction 101

B.1 Introduction

Sustainable development of industrial software systentis @antrollable out-
come in terms of cost, schedule and quality despite chamigisating from
new technology, stakeholders’ concerns, organizatioth paisiness goals dur-
ing long life-times is a challenge. Unruh [1] has argued thaherous barriers
to sustainability arise because today’s technologicaesys were designed and
built for permanence and reliability, not change. Sustailitg is a character-
istic of a process or state that can be maintained at a céetaghindefinitely.
The implied preference would be for systems to be produdtigefinitely, to
be “sustainable”. For instance, “sustainable developieotild be develop-
ment of software systems that last indefinitely. Author MiehPollan [2] has
defined an unsustainable system simply as “a practice orepsothat can't
go on indefinitely because it is destroying the very condgion which it de-
pends”.

There are several factors obstructing the sustainabilitiie@ software de-
velopment process:

e Competing concerns from various stakeholders affect theesyand the
winner among the concerns is not always the most logical. aHma-
ture software system most probably political concernseuithpete with
functional concerns and affect the system.

e The system’s software qualities are exposed to change,tieegintro-
duction of faster multi-core processors might solve penfamce issues
outside the scope of the architecture and therefore thesfaad mission
of the architecture shifts to other issues.

e The business goals of the system are exposed to change. appses
when the management shifts the focus from increase of gualitost
cut and thereby changes one important business goal foystens.

e The technical environment and organization structure gharA new
platform or distributed development might be unavoidabie therefore
puts requirement on change for the system.

If these factor where possible to control and a stable balahcost, sched-
ule, and quality outcome of the software system was achjetred system
would be a sustainable software system. The developmeiiteo$aftware
system would deliver required quality to the customerdgséadtion at the de-
sired scheduled and cost indefinitely. However unrealibticmight seem it is

102 Paper B

truly the goal of sustainable software development. The isos very impor-
tant measure since a long-lived system can be achieved ghabst but this
would lead to an unsustainable development process whicidveventually
collapse.

Since software developmentis considered an art involveapje and peo-
ple communicating a sustainable system model must inchitieences from
people, architecture, hardware, software, communicatiwh unpredictable
changes in form of; stakeholders’ concerns’ changes, tdogy changes,
business goal changes, and organizational changes. Withflaences in-
cluded in one model it would be desirable to be able to prealicit least
reason about the outcome of the system; cost, schedule atitygThe re-
maining of this paper is organized with a short overview ¢dted work in the
section “Related Research” and the issues important feaisable industrial
software systems is given in section “Issues for SustagBbtiness”. The pa-
per is concluded in the section “Conclusions” followed byhars description
of further work in section “Future Work”.

B.2 Related Research

The importance of technical, business, and social influecesoftware ar-
chitecture is discussed in [3] and the relationship amoegtéichnical, busi-
ness, and social environments that subsequently influertagefarchitecture
is called the architecture business cycle (ABC). The ABQif&s on the cre-
ation of software architecture and the maintenance of tti@tacture and con-
formance of the system to the architecture. The ABC does antlle sus-
tainable system issues where it's possible that the aathie has to change
during the system’s lifetime. An attempt to address suatdeasystems can be
found in [4] where the integration of established enginagmethods with a
development organization’s life cycle is discussed. HbesAttribute Driven
Design (ADD) method, [5], and the Cost Benefit Analyze Metl{GBAM)
[4], are suggested as means for the architect to design avs @ppropriate
architectural responses to the new challenges during fhease development
life cycle. The methods are preferably used in the developplease and the
Architecture Trade-off Analysis Method (ATAM) used aftkietsystem is re-
leased and the stakeholders want to discover risks andigégngoint in the
architecture related to business goals.

For the change requests entering the system after its edleastakehold-
ers have to take a decision if they are worth implementingodr Im an article

Related Research 103

from Boehm [6] it is argued that software engineers shoutd lat proposed
changes to software systems as investment possibilitésalculate on the
value of investing in those changes with methods similahéonhethods in the
investment economics, e.g. option theory. Especially #iaesof the success-
critical stakeholders concerns should be considered itapbr For the sus-
tainable software system this would mean that the softwagineers have to
be updated on who is a success-critical stakeholder and b@altulate the
value of his/hers concern’s implementation. The calcofatiould also serve
as guidance to what concerns should be allowed to enter hemsyas change
requests.

However calculating a correct development effort for a ps®d changer
request is very difficult. Joergensen [7] has showed thatvsoé project cost
estimation uncertainty assessments are frequently baseapert judgment,
i.e., unaided, intuition-based processes and not on fommoalels. His guide-
lines suggest, among other things, that the most promisnategies are not
based on formal models, but on supporting the expert presess

The implementation of change requests also have to havesupphe de-
velopment process. The process has to support unpredicthbhge requests
as well as support their fast realization. The Scrum [8] tgM@ent process
has gained a lot of supporters as it's a light-weight progégsa strong con-
nection to agile development methods. Scrum considersttware develop-
ment process to be a chaotic empirical process which regjaiose watching
and control, with frequent intervention. A scrum softwareject is controlled
by establishing, maintaining, and monitoring key contraigmeters. The key
control parameters are backlog, issues, risk, problemglaages - task level
management is not used. However in [9] Boehm argues that dgielopment
methods are not well suited to large development orgapizatuch as those
evolving sustainable software systems. Scrum identifiestbst important
stakeholders and these success critical stakeholderceomare implemented
atfirst. This is similar to Ruhe and Saliu [10] who describertlease planning
approach based on the features’ internal dependenciegdberce constraints
and the stakeholders’ importance.

In [11], Ziv and Richardson state the uncertainty principisoftware en-
gineering (UPSE) as “Uncertainty is inherent and inevigablsoftware devel-
opment processes and products”. The software developmédestribed as a
complex human enterprise carried out in problem domainsuaider circum-
stance that are often uncertain, vague or otherwise incetpr he principle of
uncertainty is also valid for those changes entering theldgewment organiza-
tion which are considered unpredictable in time and consecgl The control

104 Paper B

of the sustainable software development despite the UP®#as makes the
sustainable software development challenging.

B.3 Issues for Sustainable Business

The system architecture provides a context for the softaanaitecture and in-
cludes, beside software architecture, also hardware aoplgeSystem quality
attributes and business goals influence the system arthitecThe influenc-
ing factors which are factors affecting the architecturg phathe stakeholder
concerns [12] and include trends, technical environmenatjipus experiences,
market demands etc.

The influencing factors change over time and hence the stédeds’ con-
cerns change over time. The influencing factors impact arnulio require-
ments on system quality attributes and business goals. |&ils to that the
system quality attributes change as result as well as thiedmssgoals. Chang-
ing business goals can lead to changing enterprise artli¢éeand changing
development organization as business structures anddssgimocesses.

Since all these changes come from outside the softwarensytbiey are
uncontrollable and unforeseeable. When building softveaichitecture from
start it may be possible to build in support for foreseeahknges but not for
an unforeseen change, e.g. a sudden organizational change.

B.3.1 Technology

What makes software especially difficult to develop for gimgble system is
that software and hardware themselves are not sustairiadifigvare technolo-
gies, tools, architectures like the World Wide Web, langsalike C and C#
change the software engineering culture in which systehddéxs operate and
learn. In many cases the demand from the customers on smuadélas prefer-
ably in a running plant regardless of what changes occur tiwer translates
into a requirement on backward compatibility. Backward patibility also
concerns hardware, where the customer might run the systemarolware no
more available on the market.

For long-lived systems typically the components from wtitoh system is
built, have shorter life-cycles than the complete systevtemy components in
a large and complex software system are acquired from fartls developers.
Consequently, a system provider has no or limited contret dve complete
system (e.g. no access to source-code). Hence, it is veryriam to contin-

Issues for Sustainable Business 105

2

©

c /
i}

=

(&)

c

=}

2

| Il 11
effort

Figure 1: Product life-cycle phases

uously monitoring the sub-suppliers road-maps and to hdighaand sound
relation with them. By doing so, a company have the possitidireact well in
time before a particular component or technology for whiuh development
organization has no control over gets obsolete. The fatstifavare technolo-
gies and commercially available software components hiawder life-cycles
than what is required for the system is something that neetde tonsidered
when designing the architecture.

Typically the life-cycle of a software product can be divideto three
phases: initial design (l), evolution (1), and end-ogliflll) (see Figure 1).
During the initial design phase the requirements are usuall-known and
the development of new functionality requires relativélid effort. In the evo-
lutionary phase the requirements that were not known irr@jretroduced and
the effort for developing and implementing these requineimeequire higher
effort, since consideration must be taken to what alreadst®in the system.
The architecture developed during initial design does targe extent define
what is possible in later phases from an economical poinisaf.v

It is important to find a balance between upfront investmants.g. soft-
ware architectural design, and time-to-market for sofend@velopmentin sus-
tainable complex industrial systems in the perspectiveprbduct’s life-cycle.
By diagnosing a system’s life-cycle phase in terms of trendsrucial orga-
nizational measurements we believe that it is possible tntjatively moti-
vate efforts in improving fundamental software qualitie®rder to prolong a

106 PaperB

system’s productive life-time. A typical trend in an orgzational measure-
ment could be the increasing number of person-hours indestated to the
decreasing number of function points delivered. This cde@@n indication of
a system being in the end-of-life phase (lll).

Even though technology evolves in a high pace, busines#igdegic does
not. Operating systems and hardware changes all the tintadbgsic princi-
ples for, e.g. control the motion of a robot, evolves slowsamother example
is the paper production. The chemical process behind papéduption will
not change as it's defined by physical parameters and reactibhe control
algorithms, which are part of the business logic, involvedontrolling the
pressure, strain and so on will continuously be refined buerperience ma-
jor change. Usually there are great investments in the basifogic and the
investments are secured by intellectual property claimst & important to
make as much as possible out of these investments. This iewleehave the
core competence, and the core business. Returning to tbeebasmess has
proven to be successful for many companies where ABB is otteeofi. ABB
returned its focus to automation and power distributiorresbme years with
a broader scope. Isolating the business logic in a way tredilea the technol-
ogy around it to evolve with the least possible cost is cluclhe statement
may seem easy enough but for researchers who have been QRIGRAN
for their algorithms because its ability to process a hugewarhof control
parameters fast and that now have the possibility of usingadalgorithms
translated into C# just as efficiently it's not that easy. @tehey now remodel
the process in Matlab because in the long run C# offers morarddges than
FORTRAN? What's the return of investment, the ROI, valuehef¢hange?

B.3.2 Organization

Accordingto [3] there are three classes of organizatioriiénces on software
architecture;

e Immediate business: An organization may have an investineettain
assets, such as existing architectures and the produets baghem.

e Long-term business: The architecture can form the coreeoloihg-term
infrastructure investment to meet the organization’'dstjia goals.

e Organizational structure: The organizational structune shape the ar-
chitecture such that the division of functionality aligngttwexisting
units of expertise.

Issues for Sustainable Business 107

For sustainable systems there is a challenge in creatingtaisable ar-
chitecture possible to implement under these three diffeveganizational in-
fluences. There will be shifts in organization influencedesa development
organization, e.g. if distributed development is introgidicln this case the dis-
tributed development could for instance put requiremertherarchitecture to
support isolated module development. Another exampletigeifarchitecture
suddenly has to support the migration of several produtbsdne, as may be
the case when a company acquires another company. For #astoa shift
in organizational structure goes from immediate businedsrigterm busi-
ness. Development organizations often have to deal witktidrshifts like this
without the customer noticing any major differences in attystem software
quality.

Recognizing that change requests are something normahanddviations
from predictions will occur for a sustainable software syst the question is
how to act upon them. Should a change in stakeholders’ coateward more
secure system always respond in that the system is optirforesgcurity? Or
will this be in conflict with business goals as e.g. makingshstem available
over Internet? In traditional control theory [13], optiration theories have
been developed to optimize the system parameters for isfab8omething
similar is needed for sustainable software systems in dalerake the right
system decisions in terms of economics, architecturentadolgy and people.
There are many states that can be controlled and/or obsemwvadustainable
software system model:

e Software architecture- The design and the infrastructfileeosystem

e Software technology- The various technologies used adwitead base,
such as programming environment, operating system andenicate.

e Software components- The various proprietary and commlezrompo-
nents used to realize the system, examples of componenisarater-
face, user management and transaction managers.

e Hardware- The core of the system where the software is rgnnin

e Software communication- everything regarding commuigeainclud-
ing compatibility with other vendor products, communioathardware,
communication stacks and redundancy concepts.

e People interaction- Most industrial systems have peopd¢ ithteract
with them and how this is performed is one key to the operatiaine
whole system.

108 Paper B

e Development processes- Processes influence the organiaati the ar-
chitecture and the opposite.

The two last states, people interaction and the developpnecgésses, might
be the hardest to control since they include human psyckolog14] Berry
examines programming accidents, i.e., models, methotifacts, and tools,
to determine that each has a step that programmers find virfypand con-
sequently avoid or postpone. The avoidance or postponetigtatbs the pro-
cesses in a not controllable way and leads at the worst tontiradiable cost,
schedule, and quality outcome.

But before the change request reaches the developmentistageto be
approved and there is various way of handling change remeinés. In [15],
Erdogmus suggests a decision support theory in form of yg#s theory for
guiding investment decisions regarding a change in thevaoft Typically the
option theory calculations could serve as input to a chaaegeest board.

During the lifetime of a long-lived system there will be arttover of engi-
neers. The engineers possess competence and know-howriagdee sys-
tem. Typical examples of crucial know-how is the intentiod aational behind
certain architectural decisions. As engineers come antmgogh the organi-
zation there is a great risk that this knowledge is lost. Aersequence, poor
design decision may be taken during a system'’s evolutioglmtontributes to
shorten the productive phase of the sustainable systemsp&parchitectural
documentation is one way to minimize the risk of competeneénddue to
turn-over of engineers. Yet again the human psychologycigmers the field
since software developers often find documentation a vemyfydastep and
avoid this as far as possible. When documenting softwarpdbele doing the
documentation has to find it meaningful and ultimately, sdobhumentation
has to have some notion of intention, i.e. rationales fohigectural decisions
as describe by Leveson in [16].

B.3.3 Market

It's not only customers’ expectations that change over tialso a company’s
business goals change, e.g. penetration of new marketsy Eempany has
its own set of business goals and to achieve a common pasoajitihe goals,
it would be beneficiary to generalize them. One approachdsemted by Bass
and Kazman where they have categorized the business goaisafmnumber
of ATAM evaluations [17]. Their five categories are; 1) “Reduotal cost of
ownership”, (2) “Improve capability/quality of system’3)“Improve market

Issues for Sustainable Business 109

position”, (4) “Support improved business processes”,(@)dimprove confi-
dence in and perception of the system”.

Typically there will be a movement between quality focusesibess goals
as (1), (2), and (3) and functionality focused businessgasl(3) and (5). A
“fresh” software system is typically more focused on “Impeamarket posi-
tion” and “Improve confidence in and perception of the systefew func-
tionality is then released to customers and feedback frematease in form of
change requirements and trackers leads to yet more newidoality. When
the software system has grown to a certain extent the focgistrshift to qual-
ity focused goals as “Reduce total cost of ownership”, amggtove capabil-
ity/quality of system”.

The challenge lays in balancing the shift in business godtstieir inter-
pretation to software quality goals and functionality riegonents. For example
“Reduce total cost of ownership” can mean outsourcing pHrtke develop-
ment and this puts high requirements on the modifiabilitytesthbility quality
and also on software development processes differentiourse development
described by Larsson et al. in [18].

Another example is the conflict of the shift towards “Reduntaltcost of
ownership” including the tactics to use standard hardwHrthe market dif-
ferentiators for the product are high robustness and backe@anpatibility, it
means the robustness issue has to be solved with standahdararand the
backward compatibility issue with non complex architeetim order not to
implement expensive development. This is truly a challefiges customer’s
perception of the system should be the same, only with uddattware and
hardware. Industrial systems have customers running yelgacware which
have no intention or motivation to shift hardware to thedatechnology. For
system developers the customer’s hardware puts requitesnethe software
to be backward compatible with the legacy hardware as wélhakward com-
patible with legacy software.

It is not uncommon for industrial software system to haveva deminat-
ing customers who demand certain system qualities. In #ge the challenge
lies in to what extent the system producer can tailor theesysb please one
dominant customer before the other customers object to etting their re-
quirements met or having to pay for qualities they don't iegju We have
seen examples where a few dominant customers have drivestearsto be too
costly compared to competitors offers. The reason is tieedytem provides a
lot of functionality which are not specifically requestedthg majority of cus-
tomer categories, but requires more expensive hardwanrasinficture which
contributes to the cost. However there is also an advant&beaviarge dom-

110 PaperB

inant customer. They provide the means for the rework of giséem to an
extent not possible otherwise, which in the CelsiusTeck pagved very suc-
cessful. In the case of CelsiusTech [19], the unpredicteliidamge in the form
of the simultaneous awarding of two massive contracts (efathich was for
a system beyond anything the company had ever attemptett) Eedomplete
redesign of the system architecture based on the core ashetaew product-
line architecture was the entry to new business areas nabpisdy accessible.

B.4 Conclusions

This paper has described the challenges for the developrheustainable in-
dustrial software systems. The most important factor togaize is the factor
of time and its effect on system development since indusioffware systems
often have long lifetimes. The second factor to recognizthas change in
organization, technology, and market over time is sometimevitable and
that the development has to calculate for this. The thirtbfato recognize is
that changes are not always predictable or foreseeabléhahd static system
could have difficulties to host unpredictable and unforabechanges. The
forth factor to recognize for industrial systems is thairtbastomers most of-
ten don’'t want to experience any change since a change iegjkinowledge
update or process interruptions is costly. The last factoe¢ognize is that the
producer can achieve the desired quality and cost despitedittable changes
at an unreasonable cost, but this would lead to an unsubtaidavelopment
process which would eventually collapse. This leads usdatinclusion that
the sustainable industrial software system has to cortteotost, quality, and
schedule outcome of the system despite unpredictable adétfable changes
in organization, market, and technology affecting theeysbver time.

B.5 Future Work

Future work will include an attempt to establish a sustdmabftware system
model, including measures for the key states importanttfercontrol of the
outcome of a sustainable industrial software system. s Work software
economics will be a key essence influencing the softwareneeging theory
for the model.

Bibliography

[1] G.C Unruh. Escaping carbon lock-irEnergy Policy vol. 30(no.4):pp.
317-325, 2002.

[2] P. Pollan. Our decrepit food factoriedew York Times2007.

[3] L. Bass, P. Clements, and R. Kazm&uftware Architecture in Practice
Addison-Wesley, Boston, second edition, 2003.

[4] R. Kazman, J. Asundi, and M. Klein. Making architectuesiyn deci-
sions: An economic approach. Technical report, Softwargirtaering
Institute, Carnegie Mellon University, 2002.

[5] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Mersor/&d, and
B. Wood. Attribute-driven design (add), version 2.0. TdchhReport
CMU/SEI-2006-TR-023 ESC-TR-2006-023, Software Engimeginsti-
tute, Pittsburgh, USA, 2006.

[6] B.W. Boehm and K.J. Sullivan. Software economics: a roagd, 2000.

[7] M. Joergensen. Evidence-bases guidelines for assessfsoftware de-
velopment cost uncertaintyEEE transactions on software engineering
31, 2005.

[8] K. Schwaber. Scrum development process. Workshop Repasiness
Object Design and Implementation. 10th Annual Conferemc®bject-
Oriented Programming Systems, Languages, and Applicatiddden-
dum to the Proceedings. ACM/SIGPLAN OOPS Messenger 6(4p-Oc
ber 1995.

[9] B. W. Boehm. A view of 20th and 21st century software emgirng.,
2006.

111

[10] G.Ruhe and M.O. Saliu. The art and science of softwdease planning.
IEEE Software22:47-53, 2005.

[11] H. Ziv and D.J Richardson. The Uncertainty PrincipleSaftware En-
gineering. In19th International Conference on Software Engineering
(ICSE'97) 1997.

[12] P. Stoll, A. Wall, and C. Norstrom. Guiding Architec&liDecisions with
the Influencing Factors Method. Proceedings of the WorkigigH/IFIP
Conference on Software Architecture (WICSA) 2008, 2008.

[13] L. Ljung. System Identification - Theory For the UsePrentice Hall,
Upper Saddle River, N.Y, 1999.

[14] D.M Berry. The inevitable pain of software developmewthy there is
no silver bullet. INLNCS 2941Springer Verlag, 2004.

[15] H. Erdogmus. Valuation of complex options in softwaeelopment,
1999.

[16] N. G. Leveson. Intent specifications: An approach tddig human-
centered specificationslEEE Transactions on Software Engineering
26(No. 1), 2000.

[17] L. Bass and R. Kazman. Categorizing business goalsftware archi-
tectures. Technical Report CMU/SEI-2005-TR-021 ESC-TR5021,
Software Engineering Institute, 2005.

[18] S. Larsson, A. Wall, and P. Wallin. Assessing the infleeenn processes
when evolving the software architecture, 2007.

[19] P. Clements and L. NorthropSoftware Product Lines: Practices and
Patterns Addison-Wesley, 2002.

Appendix C

Paper C:

Preparing Usability
Supporting Architectural
Patterns for Industrial Use

Pia Stoll Len Bass, Bonnie E. John, Elspeth Golden
ABB Corporate Research Carnegie Mellon University
Forskargr and 6 5000 Forbes Ave.
SE 72178 Vasterds, Sweden Pittsburgh, PA, USA 15213
Tel: +46 21 32 3000 Tel: 1+412 268 2000
pia.stoll@se.abb.com bej@cs.cmu.edu, ljb@sei.cmu.edu,

egolden@cmu.edu

In International Workshop on the Interplay between UsgbHivaluation and
Software Development, I-USED 2008, CEUR Workshop procegsiseries,
ISSN 1613-0073, Pisa, Italy, September 24th, 2008

113

Abstract

Usability supporting architectural patterns (USAPSs) hlagen shown to pro-
vide developers with useful guidance for producing a saftveachitecture de-
sign that supports usability in a laboratory setting [1].clase collaboration
between researchers and software developers in the rekl, woe concepts
were proven useful [2]. However, this process does not sodtedustrial de-
velopment efforts. In particular, development teams neelet able to use
USAPs while being distributed world-wide. USAPs also mugiport legacy
or already partially-designed architectures, and whengusiultiple USAPs
there could be a potentially overwhelming amount of infatioragiven to the
software architects. In this paper, we describe the restring of USAPS using
a pattern language to simplify the development and use dipleiIUSAPs. We
also describe a delivery mechanism that is suitable forstrél-scale adoption
of USAPs. The delivery mechanism involves organizing resgulities into a
hierarchy, utilizing a checklist to ensure responsilgiithave been considered,
and grouping responsibilities in a fashion that both sufgpose of multiple
USAPs simultaneously and also points out reuse poss#isilit the architect.

Categories and Subject Descriptors

D.2.2 { Design Tools and TechniquésUser interfaces; D.2.11
{ Software Architectures} : Patterns; H.5.2 User Interfaceg
Theory and Methods

General Terms
Design, Human Factors.

Keywords

Software Architecture, Usability, Human-Computer Intgien, HCI

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copieare not made or dis-
tributed for profit or commercial advantage and that copies kear this notice and
the full citation on the first page. To copy otherwise, or repiblish, to post on servers
or to redistribute to lists, requires prior specific permisson and/or a fee.

Introduction 115

C.1 Introduction

The Software Engineering community has recognized thdtilityaaffects not
only the design of user interfaces but software system dpweént as a whole.
In particular, efforts are focused on explaining the imgiens of usability on
software architecture design ([3], [4], [5], [6], [7]). Oeéort in this area is to
produce artifacts that communicate usability requireménia form that can
be effectively used for software architecture evaluatiod design. These us-
ability supporting architectural patterns (USAPS) haverbghown to improve
the ability of software architects to design higher quaditghitectures to sup-
port usability features such as the ability to cancel a lamging command
([1], [8]). Other uses of USAPs in industrial settings haee productive [2]
but have revealed some problems that prevent scaling USARs&despread
industrial use. These problems include:

1. Prior efforts have involved personal contact with USABesgchers, ei-
ther face to face or in telephone conversations. This psodess not
scale to widespread industrial use.

2. The original USAPs included UML diagrams modifying the KI\Ar-
chitectural pattern to better support the usability concé&dthough in-
tended to be illustrative, not prescriptive, software #@sgts using other
overarching patterns (e.g., legacy systems, SOA) vieweskttlUML di-
agrams as either unrelated to their work or as an unwantesmaen-
dation to totally redesign their architecture.

3. The original use of USAPs was as a collection of individoatterns.
Even using one pattern involved processing a large amoudétaiiled
information. Applying multiple USAPs simultaneously ikdly to over-
whelm software architects with information.

In this paper, we introduce a pattern language [9] for USARS teduces the
information that architects must absorb and producesnimétion at a level that
applies to all architectures. We also discuss the desigulefigery mechanism
suitable for industrial scale adoption of USAPSs.

C.2 Background

A USAP has six types of information. We illustrate the typethvinformation
from the cancellation USAP [10]:

116 PaperC

1. A brief scenario that describes the situation that the B$Aintended
to solve. For example, “The user issues a command then chdnge
or her mind, wanting to stop the operation and return thexso# to its
pre-operation state.”

2. A description of the conditions under which the USAP igvaht. For
example, “A user is working in a system where the softwarelbiag-
running commands, i.e., more than one second.”

3. Acharacterization of the user benefits from implemeritiegJSAP. For
example, “Cancel reduces the impact of routine user ersinssj by
allowing users to revoke accidental commands and returheip task
faster than waiting for the erroneous command to complete.”

4. A description of the forces that impact the solution. Fxareple, “No
one can predict when the users will want to cancel commands”

5. An implementation-independent description of the s$olyt.e., respon-
sibilities of the software. For example, one implicatiortw force given
above is the responsibility that “The software must alwésteh for the
cancel command.”

6. A sample solution using UML diagrams. These diagrams wmeaded
to be illustrative, not prescriptive, and are, by necesgityerms of an
overarching architectural pattern (e.g., MVC).

It is useful to distinguish USAPs from other patterns forteafe design
and implementation. USAPs are not user interface patttrasis, they do not
represent an organization or look-and-feel of a user iatere.g., [11]; they
are software architecture patterns that support Ul comscelor are USAPs
structural software architecture patterns like MVC; they patterns of soft-
ware responsibilities that can be applied to any structisesuch, they can be
applied to any legacy architecture and can support the ifumadity called for
in Ul patterns.

C.3 A Pattern Language for USAPs

Through collaboration among academic and industrial rebeas and usabil-
ity engineers, we are constructing three USAPs for procasisa and robotics
applications. The first author and her colleagues in thestiguesearch team

A Pattern Language for USAPs 117

Relationship between USAPs

Foundational
USAPs

End-User
USAPs

User Profile
Alarms &
Events

For [Environment
Alarms | Configuration
and
Events

- Authorization

Authoring

@cufion wi
authored
parameters

Logging

Figure 1: USAP Pattern Language for “User Profile”, “Alarnisents and
Alerts”, and “Environment Configuration”

drafted an “Alarms, Events and Alerts” USAP while, indepemnitly, the last
three authors drafted a “User Profile” USAP and an “Environn@onfigura-
tion” USAP. When these three USAPs were considered togdtheas clear
that there was an enormous amount of redundancy in the reifgildies nec-
essary for a good solution. In addition, in preliminary dissions, industry
software architects reacted negatively to the large amofimformation re-
quired to implement any one of the USAPs.

Our early work [4] recognized the possibility of reusing lsisoftware tac-
tics as separating authoring from execution and recordogg(ng), but our
subsequent work had not incorporated that notion, treaamh USAP as a
separate pattern. A consequence of focusing on indussglaithat reuse in
constructing and using USAPs was no longer an academic tihexperiment,
but a necessity if industrial users are to construct and &&R$ themselves.

We observed that both the industry research team and themo@de-
search team independently grouped their responsibilittesvery similar cat-
egories. This led us to construct a pattern language [2tisfates relationships
between USAPs with potentially reusable sets of respditsbithat can lead
to potentially reusable code. Our pattern language regjééitarms, Events and
Alerts”, “User Profile” and “Environment Configuration” ifgwn in Figure 1.

The pattern language has two types of USAPs. “End-User US#aRsw
the structure given in Section C.4. Their purpose from a’sigaint of view
can be expressed in a small scenario, they have conditiales which they are
relevant, benefits for the user can be expressed and theiyedloge fulfillment

118 Paper C

of software responsibilities in the architecture desigmdfJser USAPs are
used by the requirements team to determine which are apjditathe system
being developed. In this example, they are “User Profilefaf&s, Events and
Alerts”, and “Environment Configuration”.

The pattern language also contains what we are calling “&ational US-
APs”. These do not have the same six portions as the End-UsaP8. For
example, there is no scenario, no description of conditiand no benefits to
the user for the Foundational USAPs. Rather, they act asveeftark to sup-
port the construction of the End-User USAPs that make doestact to user
scenarios and usability benefits. For example, all of the-Bser USAPs that
we present have an authoring portion and an execution pottiat is, they are
specializations of the Authoring Foundational USAP andExecution with
Authored Parameters Foundational USAP. These foundatid®APs make
use of other foundational USAPs, Authorization and LoggivWg abstracted
the commonalities of the End-User USAPs to derive the resipdities of the
Foundational USAPs. The responsibilities in the Foundati®) SAPs are pa-
rameterized, where the parameters reflect those aspebtsBntd-User USAPs
that differ.

An example of the parameterization is that the Authoringrieational
USAP and the Execution with Authored Parameters FoundatldS8AP each
have a parameter called SPECIFICATION. The value of SPECAFION is
“Conditions for Alarm, Event and Alerts”, “User profile”, drfConfiguration
description” for the three End-User USAPs, respectivelyaddition to param-
eterization, End-User USAPs explicitly list assumptiobsat decisions the
development team must make prior to implementing the resipiities. For
example, in the “Alarms, Events and Alerts” End-User USAB,development
team must define the syntax and semantics for the conditi@till trigger
alarms, events or alerts. End-User USAPs may also have@uhlitesponsi-
bilities beyond those of the Foundational USAPs they use.ekample, the
“Alarms, Events and Alerts” End-User USAP has an additioeaponsibility
that the system must have the ability to translate the natsesf externally
generated signals (e.g., from a sensor) into the defineceptsicBoth the as-
sumptions and additional responsibilities will differ fibie different End-User
USAPs.

There are three types of relationships among the Founddii#APs and
these are shown in Figure 1 as different color arrows. Thee€dimation rela-
tionship (turquoise) says that the Foundational USAP isegsization of part
of the End-User USAP. The End-User USAP passes paramettdrattboun-
dational USAP and, if there are any conditionals in the rasfmlities of the

Delivering a single USAP to Software Architects 119

Foundational USAP, the End-User USAP may define the valu#sosg con-
ditionals. The Uses relationship (black) also passes peters) but the USAPs
are at the same level of abstraction (the foundational)evdle Depends-On
relationship (red) implies a temporal relationship. Foarmaple, the system
cannot execute with authored parameters unless those g@@nihave first
been authored. The double headed arrow between authorihipgging re-
flects the possibility that the items being logged may bea@etthand the pos-
sibility that the identity of the author of some items may bgded.

Foundational USAPs each have a manageable set of respitiesilfAu-
thorization has 11; Authoring, 12; Execution with authopadameters, 9; and
Logging 5), as opposed to the 21 responsibilities of the ERSAP that
seemed to be too much for our experiment participants toralis@ne sitting
[1]. These responsibilities are further divided into grsdpr ease of under-
standing, e.g., Authoring is separated into Create, Sawalify] Delete and
Exit the authoring system. This division into manageablarigational US-
APs simplifies the creation of future USAPs that use them.dxample, the
User Profile End-User USAP requires only the definition ofapagters and
the values for one conditional, and pointers to the Auttgpand Execution
Foundational USAPs.

C.4 Delivering a single USAP to Software Archi-
tects

The roadblocks to widespread use of USAPs in industry ifledtin the in-
troduction were (1) the need for contact with USAP reseascie the de-
velopment process, (2) reactions to examples using a pkatioverarching
architectural pattern (MVC) and (3) an overwhelming amafrinformation
delivered to the software architect. Data from our labagastudy and the pat-
tern language outlined above put us in a position to solveetipeoblems. Our
laboratory study [1] showed that a paper-based USAP coulassbd by soft-
ware engineefswithout researcher intervention, to significantly improfeir
design of an architecture to support the users’ need to tdomg-running
commands. Although significantly better than without a US#Rse soft-
ware engineers seemed to disregard many of the respotisibiisted in the
USAP in their designs. To enhance attention to all respditigb, we have

1The participants in our lab study had a Masters in SE or ITewsined in software architec-
ture design, and had an average of over 21 months in industry.

120 Paper C

chosen to design a web-based system that presents resfiesiin an in-
teractive checklist (Figure 2). The design includes a setdio buttons for
each responsibility that are initially set to “Not yet careied.” The archi-
tect reads each responsibility and determines whethendtiapplicable to the
system being designed, already accounted for in the acthitg or that the
architecture must be modified to fulfill the responsibilitf’Not applicable”,
“Must modify architecture to address this” or “Architectueiddresses this” is
selected, then the responsibility’s check-box is autoradyi checked. If “Not
considered”, “Must modify architecture or “Discuss statdfisesponsibility”,
is selected, the responsibility will be recorded in To-B3 tjenerated from the
website (Figure 3). We expect this lightweight reminderadosider each and
every responsibility will not be too much of a burden for tetdtect, but will
increase the coverage of responsibilities, which is cateel with the quality
of the architecture solution [8].

As Figure 2 show, the responsibilities are arranged in aalgéry, which
reflects both the relationship of End-User and Foundatit/f&A\Ps and the
internal structure within a Foundational USAP. This hiehgrdivides the re-
sponsibilities into manageable subparts. The check-bemfsce this struc-
ture by automatically checking off a higher-level box whéritachildren have
been checked off, and conversely, not allowing a higheetlesx to be checked
when one or more of its children are not. Thus, this mechagismltaneously
addresses the problems of providing guidance withoutwetdgion by USAP
researchers and simplifying the information provided ®gbftware architect.
Another mechanism for simplifying the information deliedrto an architect
is that each responsibility has additional details avélaimly by request of
the architect. These details include more explanatiomrrake about the need
for the responsibility and the forces that generated it, somde implementa-
tion details. This information is easily available, but fiot the face” of the
software architect. As well as simplifying the presentatibis mechanism de-
emphasizes the role of illustrative examples situated fieremce architecture
like MVC. We expect that this presentation decision willued the negative
reactions to generic example UML diagrams. When using thkitehouse in
industry, the reference architecture used in exampleisokitould be changed
to an architecture used by that industry. This would botlekcate understand-
ing of the examples and increase the possibility of re-uiieggample solution.
This presumes that the tool is constantly managed and upbgtie-house us-
ability experts and software architects, a presumptioitit@ed by delivering
the examples in separate web pages.

Although the hierarchy of responsibilities reflects theatieinship of the

Delivering a single USAP to Software Architects 121

Fle Edit View Favortes Toos Help
Qck ~) ~ [x] (@) (| Psearch Scrvomes @)| (3~ W -| o B
USABILITY-SUPPORTING ARCHITECTURE PATTERN: AUTHORING

: RESPONSIBILITIES
Main Page
Authoring ™~ AUTHORING,
Description I AU.L. Create a
Responsibilities 7 AU. 1.1 The system must provide a way for an authorized author fo create a [User Profile, Configuration description,

« Create a specification.
o Save a specification ’
o Modify a specification Show Rationale

1 St Show Implementation Details

Conditions for Alarms, Events and Alerts]

o Delete a
® Exit the authoring system User Profile USAP: € Not yet considered
) User Profile € Must modify architectare
Exccution with authored parameters @ Architecture addresses this
Description © Not apglicable
Responsibilities 7 Discuss stafus of
® Access the appropriate Environment Configuration USAP- © Not yet considered
specification Gl s ® Must modify architecture
& Use specified parameters © Architecture addresses this
s Additional responsibilities © Not apglicable
™ Discuss status of
Logging Alarms, Events and Alerts USAP " Not vet considered
e Conditions for Alarms. Events and Alerts & Mo iy seibmwe
Responsibilities Architecture addresses this
 Specify the items to be © Not applicable
logged ™ Discuss status of responsibiity

Figure 2: Prototype of a web-based interface for deliveti®f\P responsibil-
ities to industry software architects

End-User USAPs and the Foundational USAPSs, the differeeteden the
types of USAPs is not evident in the presentation of resfditss. It was
a deliberate design choice to express each responsilpiligrins of the End-
User USAP's vocabulary. Thus, the responsibilities in Fég2iare couched in
terms of “User Profile”, “Configuration Description”, “Coititns for Alarms,
Events, and Alerts” and this string replaces the param@&&CIFICATION in
the Foundational Authoring USAP.

In the next section, we discuss how we anticipate managiegithation
when the architect chooses multiple USAPs as being relawvatiite system
under construction. This will allow distribute architectdeams both to record
rationale for their choice and to discuss potential sohgicAttaching design
rationale and discussion is optional so our delivery todisuipport discussion,
but not require it, keeping the tool lightweight.

At any point in the process of considering the different cesgibilities, the
architect can generate a “to do” list. This is a list of all bétresponsibilities
that have been checked as “Not yet considered” or “Must nyadifhitecture”.
See Figure 3 for an example. The list can then be enteredtiptarchitect’s
normal task list and will be considered as other tasks arsidered.

Supporting world wide distribution of the architecturertea the use of
USAPs has two facets.

122 Paper C

/3 usAP Usabiity Test - Microsoft Internet Explorer

Fle Edt View Favortes Toos Hep
Qsack ~ () - [¢] @] n| D search Joravones €)| (- L B v Jeg @& B
USABILITY-SUPPORTING ARCHITECTURE RESPONSIBILITIES

Main Page ToDo List “print
Authoring AUTHORING
Description AU.1. Create a
Responsibilitics AU.1.1 The system must provide a way for an authorized author to create a "Add Implementation Details
» Create a specification [User Profile, Configuration description, Conditions for Alarms, Add Comment
* Save a specification ‘Events and Alerts]
e Modify a ificati

Y Sty User Profile USAP: ‘Architecture addresses this
* Delete a specification User Profile (Discuss status)
 Exit the authoring system. Environment Configuration USAP: Must modify architecture
Confizuration Description
Exccution with authored parameters Alarms. Events and Alerts USAP: ‘Must modify architecture
Descrintion Conditions for Alarms, Events and Alerts

Figure 3: Prototype “to do” list produced from those resphilises that are
marked as requiring architectural modification

e Enable world wide access

e Reduce the problems associated with simultaneous updatiffdrent
members of the team.

The use of the World Wide Web for delivery allows world wideass with
appropriate access control. Standard browsers suppodotieept of check
lists and producing the “to do” lists.

Allowing simultaneous updates is not supported by stanbliargsers. Some
Wikis do support simultaneous updates, e.g. Media%Vixiit we do not yet
know whether these wikis directly support checklists aredgbneration of “to
do” lists. We are currently investigating which tool or camdttion of tools
will be adequate for our needs and what modifications migié e be made
to those tools.

C.5 Delivering multiple USAPs to software archi-
tects

Our motivation for developing the USAP Pattern Language peasially to

simplify the delivery of USAPs when multiple USAPs are relet/to a partic-
ular system. We also want to indicate to the architect theipiisies for reuse.
In this section, we describe how we anticipate accomplistiiese two goals.

2www.mediawiki.org

Current status and future work 123

Recall that the Foundational USAPs are parameterized asidirad User
USAP provides a string that is used to replace the paramé&tar.instance,
consider a responsibility from the Authoring Foundatiod®AP “The sys-
tem must provide a way for an authorized user to create a SRESTION”.
When three End User USAPs are relevant to the system undigngesch as
“User Profile”, “Environment Configuration”, and “AlarmsyEnts and Alerts”,
the three responsibilities are displayed to the architecfTde system must
provide a way for an authorized user to create a [User Pr@ibafiguration
description, Conditions for Alarm, Event and Alerts]”. Ehpresentation satis-
fies two goals and introduces one problem. Presenting tesponsibilities as
one reduces the amount of information displayed to the tchsince every
Foundational USAP responsibility is displayed only ondbe# with multi-
ple pieces of information. This presentation also indisatethe architect the
similarity of these three responsibilities and hence theseepossibilities of
fulfilling them through a single piece of parameterized code

The problem introduced by this form of the presentationds titow the ra-
dio buttons becomes ambiguous. Does the entry “Architecddresses this”
mean that all of the three responsibilities have been adédesr only some of
them? We resolve this ambiguity by repeating the radio bsttbree times,
once for each occurrence of the responsibility. Thus, theethesponsibilities
will be combined into one textual description of the resploitiy but three
occurrences of the radio buttons.

C.6 Current status and future work

At this writing, we have developed the pattern language lioed End User
USAPs and four Foundational USAPs (Figure 1) and have fleshbedll the
responsibilities for these seven USAPs. We have constiecfaototype de-
livery tools for a browser based checklist and “to do” lishgeator. We plan to
test the delivery mechanism in an ongoing industrial dgwalent effort. This
will demonstrate strengths and weaknesses of our approative will iter-
ate to resolve any problems or capitalize on any opporesitbne suggestion
put forth in early industry feedback is to enhance the toiskolly assigning
expected effort to each responsibility. One requirememgéreser at ABB said
that her perception of the effort needed to implement a stehad been thor-
oughly revised just be looking at the to-do list. By addingreated hours to
the responsibilities, industry would get a better estinwdtéhe usability im-
provements’ translation into software implementationtcoBhese estimates

124 Paper C

Requirements team

Selected
USAPs with
redundant
responsibilities
combined

Figure 4: Tool to support the requirements elicitation pss

would vary depending on many factors such as underlyingtaiathral style,

implementation language, skill of programmers, etc. bwtrgd organization
may have enough data from previous projects to make suchadss for their

organization. In addition, such a feature could emphasieesavings realized
by reuse; responsibility-implementations that serve ipleltEnd-User USAPs
would show up as requiring very little effort after the finstplementation.

The delivery platform that we have described here, to be bgexbftware
architects, is envisioned to be the final portion of a toolichd@here are two
additional roles involved in the development and use of USAHrst, USAP
developers will have to create USAPs within the stylizedternof the USAP
Pattern Language. Tool support for USAP developers wilhtyesimplify the
creation of USAPs.

The second role is the requirements definers; often a teanprésed of
technologists and human factors engineers, usabilityneegs, designers, or
other users or user advocates. Figure 4 shows how we eneigani support-
ing this role.

The requirements team has available to them a repositorséfRs. They
select the ones that are appropriate for the system beirgfrooted. In our
experience, the USAP end-user scenarios are very generabarbe used to
invoke ideas about how they apply to the system at hand. Henvendustrial
teams would like to tailor these scenarios to match theiryelay usability
issues. Thus, the tool supporting requirements defineftsillv them to re-
write the general scenarios to suit their specific applicati

The tool then creates input for the delivery tool while sitankously com-
bining redundant responsibilities. The output of the regmients definition
process will then be presented to software architects, saxritbed in this pa-

Acknowledgments 125

per, to aid in their architecture design process.

In summary, USAPs have been proven to be useful to softwatetacts
but have also demonstrated some problems that hinder maluste. Defini-
tion of a USAP Pattern Language and an appropriate seleofitools sup-
porting the roles involved in the creation and use of USARmikhsimplify
industrial use. We are currently constructing versionsese tools and testing
the extent to which they do, in fact, enable the industrial @SUSAPs.

C.7 Acknowledgments

We would like to thank Fredrik Alfredsson and Sara Lovemanktheir con-

tributions to the “Alarms, Events and Alerts” USAP. This wavas supported
in part by funds from ABB Inc. The views and conclusions irsthaper are
those of the authors and should not be interpreted as repimgehe official

policies, either expressed or implied, of ABB.

Bibliography

Bibliography

[1]

(2]

3]

[4]

[5]

[6]

[7]

E. Golden, B. E. John, and L. Bass. The value of a usabslityporting
architectural pattern in software architecture designoAtmlled exper-
iment. InProceedings of the 27th International Conference on Soéwa
Engineering, ICSESt. Louis, Missouri, May 2005.

R. J. Adams, L. Bass, and B. E. JohnApplying general usability
scenarios to the design of the software architecture of #abokative
workspaceln A. Seffah, J. Gulliksen and M. Desmarais (Eds.) Human-
Centered Software Engineering: Frameworks for HCI/HCD $oftware
Engineering Integration. Kluwer Academic Publishers,200

L. Bass, B. E. John, and J. Kates. Achieving usabilityptigh software
architecture. Technical Report No. SEI-TR-2001-005, Egim Mellon
University/Software Engineering Institute, Pittsburf, 2001.

L. Bass and B. E. John. Linking usability to software atetture patterns
through general scenariobhe Journal of Systems and Softw#®:187—
197, 2003.

E. Folmer. Software Architecture Analysis of UsabilityPhD thesis,
Department of Computer Science, University of Groningemrigen.,
2005.

E. Folmer, J. van Gurp, and J. Bosch. A Framework for capi.the Re-
lationship between Usability and Software Architecturaft®are Pro-
cess: Improvement and Practice, Volume 8, Issue 2. Pag8g.62003.

N. Juristo, A.M. Moreno, and M.-I. Sanchez-Segura. liites for elic-
iting usability functionalities.Software Engineering, IEEE Transactions
on, 33(11):744-758, Nov. 2007.

126

[8] E. Golden, B. E. John, and L. Bass. Quality vs. quantitynparing eval-
uation methods in a usability-focused software architectnodification
task. InProceedings of the 4th International Symposium on Emgirica
Software EngineeringNoosa Heads, Australia, November 17-18 2005.

[9] C. AlexanderA Pattern Language: Towns, Buildings, Constructi@x-
ford University Press, USA, 1977.

[10] B. E. John, L. Bass, M.-1. Sanchez-Segura, and R.J. Ad&ringing us-
ability concerns to the design of software architectureProceedings of
The 9th IFIP Working Conference on Engineering for Humamr@ater
Interaction and the 11th International Workshop on Desigpecification
and Verification of Interactive Systentéamburg, Germany, 2004.

[11] J. Tidwell. Designing Interfaces: Patterns for Effective Interaction-
sign O’Reilly Media: Sebastopol, CA, 2006.

Appendix D

Paper D:
Supporting Usability in
Product Line Architectures

Pia Stoll Len Bass, Bonnie E. John, Elspeth Golden
ABB Corporate Research Carnegie Mellon University
Forskargr énd 6 5000 Forbes Ave.
SE 72178 Vasteras, Sweden Pittsburgh, PA, USA 15213
Tel: +46 21 32 3000 Tel: 1+412 268 2000
pia.stoll@se.abb.com bej@cs.cmu.edu, ljb@sei.cmu.edu,

egolden@cmu.edu

In Software Product Lines Conference, SPLC 2009, San FFemcUSA, Au-
gust, 2009

129

Abstract

This paper addresses the problem of supporting usabilithenearly stages of
a product line architecture design. The product line useamgxample is in-
tended to support a variety of different products each withdically different
user interface. The development cycles for new productesaetween three
years and five years and usability is valued as an importaatityuattribute
for each product in the line.

Traditionally, usability is achieved in a product by desiggmaccording to
specific usability guidelines, and then performing usestedser interface de-
sign can be performed separately from software architectlesign and pro-
totyping, but user tests cannot be performed before detdiledesign and
prototyping. If the user tests discover usability probldeeling to required
architectural changes, the company would not know aboatuhtil two years
after the architecture design was complete. This problers addressed by
identifying a collection of 19 well known usability scemarithat require ar-
chitectural support. In our example, the stakeholders ffier product line pri-
oritized three of these scenarios as key product-line stesnor improving
usability. For each of these three chosen product-line ades we developed
an architectural responsibility pattern that provided gt for the scenario.
The responsibilities are expressed in terms of architedttaquirements with
implementation details and rationales. The responsibgitvere embodied in
a web based tool for the architects.

The two architects for the product line developed a prelanyrdesign and
then reviewed their design against the responsibilitiggpsuting the scenar-
ios. The process of review took a day and the architects coatbeely esti-
mated that it saved them five weeks of effort later in the ptoje

Introduction 131

D.1 Introduction

ABB, a global leader in power and automation technologiesyiges systems
that enable utility and industry customers to improve tipeirformance while
lowering environmental impact. To that end, ABB must desigi imple-
ment extensive long-lived software systems. This papeygmts the results of
a collaboration between ABB Corporate Research, ABB cosiniegs units,
and Carnegie Mellon’s Software Engineering Institute anonidn-Computer
Interaction Institute to support usability within the cext of a product line
architecture being newly developed.

The best method to support usability concerns through soéwarchitec-
ture has been the subject of some investigation over theypass. In addition
to the authors’ work ([1] , [2], [3]), Folmer and his colleaggi([4], [5]) and Ju-
risto and her colleagues [6] have investigated the relaligrmbetween software
architecture and usability. None of this work has gainedasfead industrial
acceptance primarily because all of the results reportgdire the hands-on
involvement of the researchers. Our goal in the projectntepamn here was to
deliver appropriate knowledge concerning usability anftiwsre architecture
to ABB’s software architects in a format and at a time that lddaenefit their
design, in a way that could scale to worldwide developmentist

This paper reports the results of a new approach to providsapility
knowledge to software architects early in the design pmess without the
active participation of the researchers. The activitig@reed on include

e Stakeholders selecting several usability scenarios itaptto the project
under design

e The research team defining architectural patterns to gatisfscenarios
chosen

e The research team embedding those patterns into a tool

e The architects using the tool for one day to review an earfgiva of
their design. They did this without previous exposure toghterns and
without any participation by the research team.

e The architects reflecting on the impact of their use of thd. tadey
estimated that it saved them five weeks of work.

Itwas the nextto last bulléd the architects using the knowledge embedded
in the toolU that can be scaled. Since the tool is web based, architeetsyi

132 Paper D

project for which the usability scenarios embedded in tlo¢doe relevant can
use the tool and the knowledge embedded in it without anywevent of the
researchers involved.

D.2 Background

Prior to the collaboration reported in this paper, the pbjeam in an ABB
business unit developing a new product line of systemstiegevith an ABB
research team, had done a use case analysis, performed ity @iiaibute
Workshop to collect non-functional requirements from ptiped scenarios
[7], used the Influencing Factors method [8] and conducteditkt step of the
Product Line Architecture development approach [9] withittentification of
commonalities and variation points. Thus, from the requaets collection
and analysis perspective, the project team was well prdpeinen they began
to outline the architecture. The software architects hatigtarting sketching
the architecture and had not yet written any code. Theirémgntation plan
started with the backbone of the product line system, the @amctionality,
which would support all the variation points for the productisability had
been prioritized as one of three most important softwarditipsafor the new
architecture during the Quality Attribute Workshop. Onetloé challenges
for this project therefore was how to incorporate usabilgguirements into
the core architecture early without having either a desigmser interface or
a finished prototype for user tests. The user interfacedre tleveloped in-
dividually for each product and each product will use comroore parts of
the system. The product development cycles will vary betwbese and five
years. Thus, the question was: How can we best support itgaaitly when
the product prototypes cannot be user tested until yeags thie architecture
design is to be completed? Most of standard usability etialuaechniques
U questionnaires, heuristic evaluation, think-aloud ilggtstudies U depend
on having at least a paper prototype if not a running systelres@& types of
tests may find modifications whose satisfaction requiresiging the archi-
tecture. The effort of re-working the product-line architee and the design
for a line of products two years or even four years after tlohiggcture has
been established would be tremendous. The risk of findingreewsability
problems requiring architectural work late in this devehgmt cycle was not
acceptable and ABB decided to use usability supportingiteactaral patterns
(USAPs) in a collaboration with CMU. The decision was basethe fact that
USAPSs use generic usability scenarios common in compleesysand from

Background 133

these construct generic software architecture respditisi By working this
way ABB expected to support some of the major usability issegly in the
software design phase without having an actual user imedasign in place.

A USAP is, as the name suggests, a software architectutakpatat pro-
vides instructions as to how to achieve specific usabilignacios. These pat-
terns are at the level of software architecture respoiitsiisil Examples of such
patterns are canceling a long-running command, aggrepdéita, or support-
ing personalization of the user interface. Note that theseaftware architec-
ture patterns in the flavor of [10] not usability patternstsas in [11]. Usabil-
ity patterns describe user interface patterns such as amiaegion’s look and
feel whereas software architecture patterns suggest a@tdesign solutions
to specific problems.

As originally conceived, a USAP included six types of infation. We
illustrate the types with information from the cancellatidSAP [3].

1. A brief scenario that describes the situation that the B$Aintended
to solve. For example, “The user issues a command then chdnige
or her mind, wanting to stop the operation and return thexso# to its
pre-operation state.”

2. A description of the conditions under which the USAP igvaht. For
example, “A user is working in a system where the softwarelbiag-
running commands, i.e., more than one second.”

3. A characterization of benefits to the user from implementhe USAP.
For example, “Cancel reduces the impact of routine userg¢stips) by
allowing users to revoke accidental commands and returheip task
faster than waiting for the erroneous command to complete.”

4. A description of the forces that impact the solution. Fxaraple, “No
one can predict when the users will want to cancel commands”

5. An implementation-independent description of the s$olyt.e., respon-
sibilities of the software. For example, one implicatiortud force given
above is the responsibility that “The software must alwasteh for the
cancel command.”

6. A sample solution using UML-style diagrams. These diagravere
intended to be illustrative, not prescriptive, and were,negessity, in
terms of an overarching architectural pattern (e.g., MVC).

134 Paper D

USAPs have been shown to significantly improve a softwarkitcture
design in laboratory experiments [2]. They have also beed usreal devel-
opment settings, with heavy involvement from the develspéthe USAP [1].
However, these prior uses of USAPs suffer from two defedtst,Rhe indus-
trial usages have all involved the developers of USAPs. Gleiarly does not
scale up. Secondly, the laboratory experiments were paged and the par-
ticipants omitted important responsibilities of the USARsving additional
room for quality improvement. Our initial goals when we ciolesed applying
USAPs to the ABB project were to solve the two major problenad tve have
discussed.

1. The designers should be able to utilize the USAPs withouediate
researcher involvement.

2. The designers should be encouraged to consider all oegponsibili-
ties.

D.3 Prior work

Prior to working with ABB, the last three authors performeldlaoratory ex-
periment to test the utility of the various types of inforiatin a USAP. The
results also suggested directions for a delivery tool foABS, so summariz-
ing the experiment and results here sets a context for theriexge reported
in this paper.

There were three different conditions in the experimentti€pants in the
first condition were given only the scenario that descrilesdituation that
the USAP is intended to solve. This mimics a common relatigmbetween
usability engineers and software designers in that theilitysgngineers pro-
vide general requirements (e.g., the system must be abdamtetlong-running
commands) but the creation of a design solution to fulfilsécequirements is
up to the software engineers.

Participants in the second condition were provided withgtenario plus
a list of responsibilities that may have to be fulfilled toisiyt the scenario,
depending on the particular system to which the scenarieirglapplied. Par-
ticipants in the third condition were provided with the sagq, the list of re-
sponsibilities, and a sample solution using the MVC ovériaig architecture
pattern, expressed in UML-style diagrams.

The results of the experiment were that providing the pigditts with in-
formation about responsibilities and a sample solutioalted in significantly

Stakeholder choice of scenarios 135

Responsibilties Considered
=]
|

| ==

Scenario Scenario & Scenario &
Genaral Genaral
Responsibilities Responsibilities &
Sample Solution

Subset of USAP Given to Participant

Figure 1: Results of laboratory experiment

better architecture design than those created by pantitsgmovided with just
the scenario (p less than 0.05), but that the UML diagramsadiigignificantly
improve the architecture design over the responsibildlese. These results
were reported in more detail in [2]. Figure 1 shows the resafithe laboratory
experiment.

Note, however, that there were 19 responsibilities in the

problem given to the participants in the laboratory studguFe 1 shows
that the group with the best performance achieved an averfagely 9.5 re-
sponsibilities considered. That is, the participantsisohs, on average, only
addressed half of the responsibilities that might have lbeesidered.

D.4 Stakeholder choice of scenarios

The initial interactions between the ABB project team arel @MU research
team consisted of information exchange about the projeéngloeveloped and
about the USAP approach. The researchers then presentsdlifty scenar-
ios possibly relevant to this domain.

e Progress feedback

136 Paper D

e Warning/status/alert feedback
e Undo

e Canceling commands

e User profile

e Help

e Command aggregation

e Action for multiple objects

¢ Workflow model

¢ Different views of data

e Keyboard shortcuts

¢ Reuse of information

¢ Maintaining compatibility with other systems
¢ Navigating within a single view
e Recovering from failure

¢ |dentity management

e Comprehensive search

e Supporting internationalization

e Working at the user’s pace

The ABB project team was asked to prioritize the general ilisalkce-
narios and they decided to focus on two and add an additioreal ®he cho-
sen scenarios were User Profile and Alarms and Events (rehfrome Warn-
ing/status/alert feedback). The additional scenario wagrenment Configu-
ration.

USAP Patterns 137

D.5 USAP Patterns

In the process of developing the three USAPs that were téstdte architects,
we developed a Pattern Language [12], consisting of fouma@tUSAPs and
end-user USAPs, to exploit the commonalities among the WSARe pattern
language was not visible to the architect and we will not dbscit in this
paper. The interested reader is referred to [13] for a datsoni of the pattern
language.

There are two aspects of the patterns on which we will focust Ehere
is an enumeration of textual responsibilities. These nesibdities are imple-
mentation independent. Collectively they cover the respimlities necessary
for implementing the three USAPs. There were 31 respoits#isifor the ar-
chitect to examine; 26 are shared by all three USAPs and 5Sparéfie to
Alarms and Events. Each of the shared responsibility coeltiain to each
USAP and so the architect must consider 83 distinct sitnatio

An example of a responsibility is “The system must provideearns for
an authorized author to save and/or export the [User Pr@fdafiguration de-
scription, Conditions for Alarms, Events and Alerts] (eloy auto-save or by
author request). If other systems are going to use the [Usditd? Configura-
tion description, Conditions for Alarms, Events and Algrtsen use a format
that can be used by the other systems.”

The portion of the responsibility that shows the three USARder con-
sideration “[User Profile, Configuration description, Citinths for Alarms,
Events and Alerts]” is an artifact that results from the &attLanguage. For
each responsibility, we also provided implementation itketdn the original
formulation of USAPs, we provided UML patterns. This praeisof UML
followed the standard pattern writing advice of being vepgdfic with re-
spect to the patterns described. Three things made us eefflacdiagrams
with “implementation details”

1. The results of the controlled experiment did not show aif@ant im-
provement in the participants that had access to diagraerstbg par-
ticipants that did not have access to diagrams.

2. Several ABB architects (not those involved in the prodinet develop-
ment described here) felt that the diagrams were too judtghelince
the diagrams in the solution were different than the diagraftheir
architecture, they felt that they were being told they hasigieed their
architecture incorrectly.

138 Paper D

3. These architects also questioned whether it would beilpeds inte-
grate three (or more) different USAPs within the existinghétecture.
They had three different UML sample solutions and could eaiily
figure out how they should be integrated in practice.

The implementation detail provided for the responsibijtyoted above is:

If the initiation of the save was automatic:

That portion of the system that manages the authoring psopesforms the
initiation.

That portion of the system that manages the authoring psostses and/or
exports the specification.

If the initiation of the save was at the author’s request:

The portion of the system that renders output must render &l allows
the parameters needed by the system (e.g., format, log¢atidme input and
display them. The portion of the system that accepts input fhe user must
accept the parameters. That portion of the system that mestig authoring
process stores and/or exports the specification.

Note that this is basically a textual description of what lgolie repre-
sented in a diagram. The structural elements of the impléatien details are
represented as “portions of the system” and the behavitealents as activi-
ties performed by those portions of the system. By using thel\tportion of
the system” instead of a visual description in the form of alUpattern, the
designer can project the words onto her/his design andyvbrddt the portion
exists or, if not, design a new part in the solution corresiog to the “por-
tion of the system” and its described activities. We willaliss the designers’
reaction to the implementation guidance in the section antiens.

D.6 Delivery tool

The challenge of encouraging the designers to considezglomsibilities was
met by transferring the USAPs into a web-based tool [14]. dbals of the
tool were ease-of-use, ease-of-understanding, helpendehigners to actively
consider all responsibilities, and the most important gbatlging the gap be-
tween usability requirements from a set of general usgtstienarios to soft-
ware architecture requirements in the form of responsisli

Delivery tool 139

The ease-of-use and ease-of-understanding goals argedfiethe tool by
hiding the pattern language concepts of foundational US#send-user US-
APs from the user. The USAPs concept is instead visualizedpassentation
of the foundational responsibilities hierarchy in the gational menu with-
out using the words “Foundational” or “End-User” (see Fg@j. In the main
window each foundational USAP’s responsibilities are liged with a pat-
tern language parameter furnished by the prioritized eset-USAPs: Alarm
& Events, User Profile, and Environment Configuration. Eadponsibility
has a check-box that is not checked by the architect, but bptemal state
that is only is set to “check” when the designer has changedtdte of the
radio-button associated with each end-user USAP relatédetwesponsibil-
ity. The radio-buttons states are set by the designer anettethers/his ar-
chitecture’s state in relation to the responsibility anelséh are: “Architecture
addresses this”, “Must modify architecture” and “Not appble”. The state
“Not yet considered” is the default state set when the desibas not yet made
an active choice. The user can only make an adequate chtéceedding the
responsibility text thoroughly. Otherwise it would be diffit for the user to
know her/his design’s state in relation to the respongybilThe entire layout
of the USAP delivery tool was consciously made simple aneladirAdditional
informational text was hidden and displayed only when the ghoose to dis-
play it by clicking a link, e.g. “Show rationale” for a respmhility. The help
text could be hidden again by clicking a link, e.g. “Hide oaidle.” We felt that
the information content otherwise would be overwhelmingtfe users. The
main page contained instructions on what a USAP is and howddhe USAP
delivery tool. The states of the radio-buttons and checkebare persistent as
long as the web-tool is open, enabling the user to go backatidih the tool
without losing data. Since the delivery tool was a prototyeedid not take it
to the level of a full-fledged content management tool witratatdase as the
backbone. We wanted user feedback from the tests to infaerdehkign before
investing in this more expensive development step.

Figure 2 shows a screen shot of some of the responsibilifigee designer
wishes to discuss the responsibility with the remaindehefdesign team or
other stakeholders, a check-box “Discuss this” can be @tebl the designer.
A future extension would be to add the possibility of inchuigia comment for
each responsibility. The interface of the tool encouragesdesigner to set
the state of hers/his architecture in relation to each mesipdity. The check-
boxes next to each responsibility indicates to the desighether the respon-
sibility is fully considered for each USAP or not. These teat are intended
to address the problem that appeared in the laboratoryestudisubjects not

140 Paper D

Fle Edit View Favortes Toos Help
Qck ~) ~ [x] (@) (| Psearch Scrvomes @)| (3~ W -| o B
USABILITY-SUPPORTING ARCHITECTURE PATTERN: AUTHORING

: RESPONSIBILITIES
Main Page
Authoring ™~ AUTHORING,
Description I AU.L. Create a
Responsibilities 7 AU. 1.1 The system must provide a way for an authorized author fo create a [User Profile, Configuration description,

« Create a specification.
o Save a specification ’
o Modify a specification Show Rationale

1 St Show Implementation Details

Conditions for Alarms, Events and Alerts]

o Delete a
® Exit the authoring system User Profile USAP: € Not yet considered
) User Profile € Must modify architectare
Exccution with authored parameters @ Architecture addresses this
Description © Not apglicable
Responsibilities 7 Discuss stafus of
® Access the appropriate Environment Configuration USAP- © Not yet considered
specification Gl s ® Must modify architecture
& Use specified parameters © Architecture addresses this
s Additional responsibilities © Not apglicable
™ Discuss status of
Logging Alarms, Events and Alerts USAP " Not vet considered
e Conditions for Alarms. Events and Alerts & Mo iy seibmwe
Responsibilities Architecture addresses this
 Specify the items to be © Not applicable
logged ™ Discuss status of responsibiity

Figure 2: Prototype of a web-based interface for deliveti®f\P responsibil-
ities to industry software architects

responding to half of the responsibilities.

It is also worth noting that the name of each of the three US&tiRsen
for delivery is enumerated under the responsibility, arad the designer must
respond to each responsibility in the context of each USAB.gossible that
state of the architecture will vary among the USAPs. Makimg dtate of the
architecture explicit with respect to each of the differeiAPs will encour-
age the designer to consider each responsibility’s agplibafor each USAP.
Presenting the three instances of each responsibilitythegeinstead of or-
ganizing them by their USAP, encourages the architect t@iden common
design solutions.

Finally, observe that under each responsibility is a linkt tivhen clicked
displays the implementation details as discussed abovenWie discuss the
results of using this tool, we will discuss how the desigmeesie use of this
feature.

Once the designers have considered and responded to aét oétponsi-
bilities, they can generate a “to do” list. This is a list okthesponsibilities
that either have not yet been considered or that require aficatibn of the
architecture. Figure 3 shows a screen shot of the “to dogksterated by the
screen shot in Figure 2. The “to do” list can then be incorfemténto whatever
project management scheme the designers use.

Results of using the USAP delivery tool 141

/3 usAP Usabiity Test - Microsoft Internet Explorer

Fle Edt View Favortes Toos Hep
Qsack ~ () - [¢] @] n| D search Joravones €)| (- L B v Jeg @& B
USABILITY-SUPPORTING ARCHITECTURE RESPONSIBILITIES

Maztac ToDo List R
Authoring AUTHORING
Description AU.1 Creatca

Responsibilities AU.L.1 The system must provide a way for an authorized author fo create a "Add Implementation Details
o Cr ificatio [User Profile, Confipuration description, Conditions for Alarms Add Comment
Events and Alerts]

User Profile USAP:
User Profile

« Delete a specification
o Exit the authoring system.

Exccution with authored parameters Alarms. Events and Alerts USAP: ‘Must modify architecture
Descrintion Conditions for Alarms, Events and Alerts

Figure 3: Prototype “to do” list produced from those resphilises that are
marked as requiring architectural modification

D.7 Results of using the USAP delivery tool

The two software architects from the product line systenjgetoused the
USAP delivery tool at a time when they had completed a prelamy architec-
ture design. One architect was senior and had created mtyst pfeliminary
design. The second architect had recently joined the grojgchad a solid
background as software architect at an automobile company.

The Authorization foundational USAP was omitted from thst tee per-
formed in order to make the number of responsibilities &bl for a single
day of testing. Since for the product line under developmauathorization
would not be needed, this did not impact the utility of the femm the point of

view of evaluating the current design for support of the ¢hcbosen usability
scenarios.

The two architects from the product line system project usedJSAP de-
livery tool in one session lasting six hours interrupted tpna hour break for
lunch and two 15-minute breaks for coffee. They examinedistlissed each
responsibility in turn, made notes as appropriate, anddeéeoivhat response to
make to that responsibility. In the six hours of work they qbated consider-
ation of all of the responsibilities for each of the USAPseYlaveraged about
12 minutes per responsibility.

Overall the designers felt that the USAP delivery tool wagegbelpful.
Some of the quotes regarding the helpfulness of the tool:

142 Paper D

Designer 1. Yeah, |, | think it’s, it's a very easy way to get
some kind of review of your work. You will not
get the complete picture of all your work, but
it will be a very good check, or at least an
indication of the completeness of your system.

The main goal for ABB when applying the USAP technique wasnto i
corporate usability support early in the design processdierto build in the
support in the core architecture. By building in usabiliyport early in the
architecture, ABB expects to avoid late and costly redeaftgr the users have
tested an actual version of the product line systems predusbme of the
quotes that related to the goal of early architectural lisabupport were:

Designer 1: We have discussed lots of internal stuff in the
system but this gave us some picture of what
the user is going to see.

Designer2: And that is things that we were not going to get
that input, until very late in the design process,
if we hadn’t used this tool now. So it was good
to have these points of view come in this early.
I think we have identified at least a couple of
new subsystems.

Designerl: Yes. And some shortcomings of the previous
design.

Designer2: Yeah.

The designers also responded well about the level of alistnaof the
responsibilities:

Designer2: The tool raises very abstract discussions and
thoughts. It is much work to go through these
responsibilities.

Designer 2: The most useful thing with this tool is that it
guides your thoughts, and it helps you to think
about the architecture that you have from
different perspectives.

From preliminary reactions at another ABB business whershasved the
USAPs before removing the UML example and developing théepatan-
guage, we were concerned that the designers would feel fgigpd” or that
they would feel that they had received unwanted and/or fillelecommen-
dations. Instead, the reactions were very positive:

Results of using the USAP delivery tool 143

Designer 1. It was like having a partner to discuss with.

Designer 2: The issues that you list in your tool, when you
are sitting several people talking together
about them, then you have to discuss how we
handle these issues in our system, in our
architecture. And that, that provides an
understanding for the peoples who are
important in the discussion, of how the
architecture works.

In contrast to the earlier negative reactions to UML diaggsarha sample
solution, we found that as the designers examined the lisissponsibilities,
they nearly always examined and discussed the implementatiggestions.
One of their suggestions for improvement of the tool wastt@implementa-
tion suggestions could be automatically included in theddist so that they
would be available for future use, indicating that they shese suggestions as
useful instead of intrusive.

In summary, the reactions of the software architects todbkwere very
positive. The designers had viewed all implementationilieita a top-down
fashion indicating that for every responsibility they felhelpful to view the
implementation guidelines. They also asked for a copy ofdbkso that they
could have it available as they worked through their to-db li

During their use of the tool, the architects identified 14iéssthat needed
further consideration. Over the next several weeks, theitexcts considered
these fourteen issues and their actual impact. The art$iijedgment as to
the resolution of each of the issues is detailed below.

144 Paper D

Issue 1. Cost Saving: - would have been done any way
Issue 2. Cost Saving: - 1weeks

Issue 3. Cost Saving: - weeks

Issue 4. Cost Saving: - would have been done any way
Issue 5. Cost Saving: - very uncertain of value

Issue 6. Cost Saving: - very uncertain of value

Issue 7. Cost Saving: - very uncertain of value

Issue 8. Cost Saving: - 1 weeks

Issue 9. Cost Saving: - very uncertain of value

Issue 10. Cost Saving: - would have been done any way.

Issue 11. Cost Saving: - very uncertain of value

Issue 12. Cost Saving: - 2 weeks, could be more if this
idea is fully exploited

Issue 13. Cost Saving: - very uncertain of value

Issue 14. Cost Saving: - very uncertain of value

For the issues where the architect felt secure in providivgjae, 5 weeks
were saved. Note the uncertainty of the architect with retsfgemany of the
other issues. In the worst case, this uncertainty trarsstateo additional sav-
ings but, likely, there were additional savings beyond #siimated initially.
In any case, saving 25 days (5 weeks) for less than one dayedtment by
two people is still an amazing result.

The savings does not include the time the researchers hasstéa in pro-
ducing the USAPs but Alarms and Events and user profiles arenom us-
ability scenarios. These USAPs are reusable across majgcigrand thus the
investment to produce them will get amortized across melfpojects.

D.8 Conclusions and Future Work

On the one hand, providing professionals with a check lisiativities they
should perform is a very old concept. Computerizing the klgcis not a
major step. The resulting tool is extremely simple. On thepohand, getting
a 25-to-2 return on investment (ROI) for the architects - dags work by two
people saved five weeks - is an amazing result. One study withestimate
is not scientific evidence but this study is one of the few repof ROI with
respect to the use of any architectural technique. Architatknowledge can
be encoded into very simple tools and still be effective. hitectural tool
builders might consider simple methods to encode their kedge rather than

Acknowledgments 145

attempting very sophisticated tools. Furthermore, thisgeeets of this work
are significant.

1. The patterns are primarily described at the level of rasjiilities. These
are independent of implementation, and lead the architetiiénk about
how a particular responsibility relates to their currensteyn design
rather than forcing them to attempt to compose structursttuctions
with their current design.

2. Using textual descriptions for implementation instioies rather than di-
agrams was well received by the architects at ABB. The push fsam
architects with respect to diagrammatic instructions haspneviously
been reported.

3. Encouraging the architects through a tool to examinefdi®items in
the checklist removes the problems with paper delivery efcthecklist.

In addition, there is nothing in the USAP delivery tool thaitspecific to
usability patterns. Any quality attribute where the regments can be ex-
pressed as a set of responsibilities, e.g. security, ciglylbe included in the
tool. The same portions of a system could then be represémtesth a se-
curity responsibilities implementation details and in ahibty responsibilities
implementation details.

D.9 Acknowledgments

The Software Engineering Institute is a Federally FundeseBeh and De-
velopment Center created by the US Department of Defenseorfiop of
the third author’s time on this research was funded by thetihs of Educa-
tion Sciences, US Department of Education, through Gra®5B840063 to
Carnegie Mellon University, and by ABB. The views and cos@as herein
are those of the authors and should not be interpreted asseging the offi-
cial policies, either expressed or implied, of IES, SEI,th8. Government, or
ABB.

Bibliography

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

R. J. Adams, L. Bass, and B. E. JohnApplying general usability
scenarios to the design of the software architecture of #abokative
workspaceln A. Seffah, J. Gulliksen and M. Desmarais (Eds.) Human-
Centered Software Engineering: Frameworks for HCI/HCD Softiware
Engineering Integration. Kluwer Academic Publishers,200

E. Golden, B. E. John, and L. Bass. The value of a usabslityporting
architectural pattern in software architecture designoAtwlled exper-
iment. InProceedings of the 27th International Conference on Soéwa
Engineering, ICSESt. Louis, Missouri, May 2005.

B. E. John, L. Bass, M.-I. Sanchez-Segura, and R.J. Ad&msging us-

ability concerns to the design of software architectureProceedings of
The 9th IFIP Working Conference on Engineering for Humama@ater

Interaction and the 11th International Workshop on Desigpecification
and Verification of Interactive Systentéamburg, Germany, 2004.

E. Folmer. Software Architecture Analysis of UsabilityPhD thesis,
Department of Computer Science, University of Groningemrigen.,
2005.

E. Folmer, J. van Gurp, and J. Bosch. A Framework for capiLthe Re-
lationship between Usability and Software Architecturaft®are Pro-
cess: Improvement and Practice, Volume 8, Issue 2. Pag8%.62003.

N. Juristo, A.M. Moreno, and M.-I. Sanchez-Segura. liites for elic-

iting usability functionalities.Software Engineering, IEEE Transactions
on, 33(11):744-758, Nov. 2007.

146

[7] M. Barbacci, R. Ellison, A. Lattance, J. Stafford, C. W8tock, and
W. Wood. Quality attribute workshops, 3rd edition. Teclahiceport,
Software Engineering Institute, Pittsburgh, PA, USA, 2003

[8] P. Stoll, A. Wall, and C. Norstrom. Guiding Architectli2ecisions with
the Influencing Factors Method. Proceedings of the WorkigigH/IFIP
Conference on Software Architecture (WICSA) 2008, 2008.

[9] P. Clements and L. NorthropSoftware Product Lines: Practices and
Patterns Addison-Wesley, 2002.

[10] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, Mndbtal.
Pattern-oriented Software Architecture A System of Paierolume 1.
Wiley, first edition, 1996.

[11] J. Tidwell. Designing Interfaces: Patterns for Effective Interactiba-
sign O’Reilly Media: Sebastopol, CA, 2006.

[12] C. AlexanderA Pattern Language: Towns, Buildings, Constructi@rx-
ford University Press, USA, 1977.

[13] B. E. John, L. Bass, E. Golden, and P. Stoll. A respotigidbased pat-
tern language for usability-supporting architecturatgrais. Proceedings
of the ACM SIGCHI Symposium on Engineering Interactive Cautig
Systems (EICS), Pittsburgh, PA, US, 2009.

[14] P. Stoll, L. Bass, B. E. John, and E. Golden. Preparirgdiity Support-
ing Architectural Patterns for Industrial Use. Proceediobinternational
Workshop on the Interplay between Usability Evaluation &uoftware
Development (I-ISED), Pisa, Italy, 2008.

Appendix E

Paper E:

Software Engineering
featuring the Zachman
Taxonomy

Pia Stoll, Anders Wall Christer Norstrom
Industrial Software Systems Computer Science and Eleicson
ABB Corporate research Mélardalen University
pia.stoll@se.abb.com, christer.norstrom@mdh.se

anders.wall@se.abb.com

Technical Report, School of Innovation, Design and EnginggIDT), Malardalen
University, Sweden, 2009.

149

Abstract

Sustainable development of industrial software systempzones is related
to aspects of the architecture’s environment with influsrioem organization,
business and architecture. The definition of sustainaleldpment states that
a development organization must meet the needs of the aajaon’s stake-
holders, without compromising its ability to meet the neeflfuture stake-
holders as well. Classifying the software developmentzants in a framework
of views, from the macro-design level down to the micro-dedevel, would
give a deeper understanding of the forces that act betweesusitainable soft-
ware development artifacts.

In this report, the Software Engineering Taxonomy is presgmvhich is
derived from the Zachman Enterprise Architecture FramkwBased on two
assumptions, the Software Engineering Taxonomy proved &bke to classify
all software engineering artifacts from the IEEE SoftwargiBeering Book
Of Knowledge (SWEBOK) published 2004.

The Software Engineering Taxonomy also proved to give uisesights
into how customer sites and development sites may intepa$t innovation
exemplified with the companies Apple (AppStore) and Google taxonomy
also proved to be useful for process analysis which is shamthe Scrum
process.

Introduction 151

E.1 Introduction

This report investigates the possibility of classifyindte@re engineering arti-
facts for industrial software systems. The classificatlorudd include artifacts
related to business and organization and therefore thriegiise Architecture
frameworks were considered. The three frameworks wer&ahkman frame-
work, the Department Of Defense Architecture Framework [2®) [1] and
The Open Group Architecture Framework (TOGAF) [2].

The discipline of enterprise architecture is commonly adered to have
its birth in an academic article by Zachman, published 198tk research
oriented IBM Systems Journal [3]. Zachman saw the growingmexity of
information software system that extended in scope and ditypto cover an
entire enterprise. He stated that decentralization oesysesources without
structure results in chaos and argued for the need of infammaystem archi-
tecture. Zachman searched for an objective independeist ljasn which to
build a framework for information system architecture aesalved to be in-
spired by classic architecture. After some enhancemehtthi@ result was a
classification framework, a taxonomy, of 30 cells repreisgrihe intersections
of usage perspectives and content abstractions of artimiééformation.

Enterprisé architecture as defined by the Federal Architecture Working
Group (FAWG) [5] is: a strategic information asset base aescdbes the
mission (i.e. the business), the information and the teldgies necessary
to perform the mission, and the transitional processesnfiptementing new
technologies in response to changing mission needs. Anpgisiearchitecture
includes a baseline architectéréarget architectufeand a sequencing plan

According to James N. Martin [6] enterprise architecturalsievith “Get-
ting to the Future” and has drivers and outcomes. The emserarchitecture is
according to Martin a means for transforming enterprisectjes into busi-
ness plans and mission needs.

In the mid 1990s the DOD determined that a common approacheeded
for describing its architectures, so that DOD systems ceffidiently commu-
nicate and inter-operate during joint and multinationamgpions. The interop-

1Enterprise - an organization supporting a defined busiresgesand mission. An enterprise
includes interdependent resources (people, organizatemd technology) who must coordinate
their functions and share information in support of a commission.

2Baseline architecture - the architecture as it is todag, eédled as-is architecture

3Target architecture - the (planned) future architectulsy aalled to-be architecture or goal
architecture

4Sequencing plan - the strategy for changing the baselifstacture to the target architecture,
also called the transition plan

152 Paper E

erability aspects of the DODAF is reflected in its architeatwiews which are
focused on describing what's being communicated and hoha®perational
View (OV) of the DODAF. The Systems View (SV) of DODAF idend$ the
systems that support the OVs and the Technical View (TV)iless the crite-
ria for each required system that will satisfy the inter@fdity requirements.
DODAF is as such not an architecture development method lasaification
framework, it's an architecture description developmesntfework focused on
describing interoperability aspects of systems of systems

TOGAP is developed and maintained by members of The Open Group,
working within the Architecture Forum. The original deveioent of TOGAF
Version 1, in 1995, was based on the Technical ArchitecteaenEwork for In-
formation Management (TAFIM), developed by the US DepanttoéDefense
(DOD). The DOD gave The Open Group explicit permission antbarage-
ment to create TOGAF by building on the TAFIM, which itself svile result
of many years of development effort and many millions of aialof US Gov-
ernment investment.

TOGAF is more ambitious in scope than its defense counterp@DAF.
TOGAF organizes architectures into four domain levels:

Business architecture- defines business strategy, governance, organization,
and key business processes

Application architecture - specifies individual application systems to be de-
ployed

Data architecture - defines structure of an organization’s logical and physica
data assets and associated data management resources

Technology architecture - specifies software infrastructure intended to sup-
port the deployment of core, mission-critical applicaion

As this report was searching for a enterprise architectdifaet classifica-
tion framework, not an enterprise architecture descniptievelopment frame-
work or in-house information system architecture develeptiramework, it
resorted to study the Zachman framework in more detail.

The remainder of this report is organized as follows; Sedi® describes
the Zachman Framework, Section E.3.1 describes the Seftimagineering
Taxonomy and the classification of the SWEBOK software eggjimg arti-
facts, Section E.3.3 and Section E.3.4 uses the Softwarmé&gring Taxon-
omy from Section E.3.1 to analyze the cases: AppStore, @aagd Scrum,

Shttp://www.opengroup.org/architecture/togaf9-docfdfAccessed: 4. February 2009]

Zachman Framework 153

and Section E.4 presents the conclusions of the work wittstifavare Engi-
neering Taxonomy and its usefulness for the software epgimg discipline
and future work.

E.2 Zachman Framework

In ajoint article [4], published 1992, Sowa and Zachman&ixghat the Zach-

man framework links the concrete things in the world (eesitiprocesses, lo-
cations, people, times and purposes) to the abstract hiteinomputer. The
Zachman framework is not a replacement of programming ttediniques, or

methodologies but instead, it provides a way of viewing retesm from many

different perspectives and how they are all related. Thaétsork logic can be

used for describing virtually anything considering itstbig of development.

The logic was initially perceived by observing the desigd annstruction of

buildings. Later it was validated by observing the engimgeand manufac-

ture of airplanes. Subsequently, it was applied to entsepriluring which the
initial material on the framework was published [3][7][§owa and Zachman
write:

Most programming tools and techniques focus on one aspext or
few related aspects of a system. The details of the aspgcséhe
lect are shown in utmost clarity, but other details may becolbesd

or forgotten. By concentrating on one aspect, each tectelioges
sight of the overall information system and how it relatethoen-
terprise and its surrounding environment. The purpose efi8A
framework [Today, the Zachman framework A.R.]is to show how
everything fits together. It is a taxonomy with 30 boxes dscat
ganized into six columns and five rows. Instead of replacthgro
techniques, it shows how they fit in the overall scheme.

According to Zachman, “Architecture” is the set of desdviptrepresenta-
tions relevant for describing a complex object (actualhy abject) such that
the instance of the object can be created and such that thepte® represen-
tations serve as the baseline for changing an object instanc

The columns of the framework represent different abstastfrom or dif-
ferent ways to describe information of the complex objeche Teason for
isolating one variable (abstraction) while suppressingtiers is to contain
the complexity of the design problem. Abstractions clg@sif the description
focus are:

154 Paper E

Abstraction INVENTORY PROCESS NETWORK | ORGANIZATION TIMING MOTIVATION
SETS TRANSFORMATIONS NODES GROUPS PERIODS REASONS

Perspective (WHAT) (HOW) (WHERE) (WHO) (WHEN) (WHY)
SCOPE e.g. Inventory |e.g. Process Types e.g. Networje.g. Organization|e.g. Timing |e.g. Motivation
CONTEXTS Types Types Types Types Types
(Strategists)
BUSINESS e.g. Business |e.g. Business e.g. Business|e.g. Business e.g. Business|e.g. Business
CONCEPTS Entities & Transform & Input Locations & [Role & Work Cycle & End & Means
(Executive Relationships Connections Moment
Leaders)
SYSTEM e.g. System |e.g. System e.g. System [e.g. System e.g. System |e.g. System
LoGIC Entities & [Transform & Input ~ |Locations & |Role & Work Cycle & End & Means
(Architects) Relationships Connections Moment
TECHNOLOGY [Je.g. e.g. Technology e.g. e.g. Technology |e.g. e.g. Technolog
PHYSICS Technology | Transform & Input Technology |Role & Work Technology |End & Means
(Engineers) Entities & Locations & Cycle &

Relationships Connections Moment
COMPONENT e.g. e.g. Component e.g. e.g. Component |e.g. e.g. Componen
ASSEMBLIES ~ JComponent | Transform & Input ~ [Component |Role & Work Component |End & Means
(Technicians) Entities & Locations & Cycle &

Relationships Connections Moment

Figure 1: The Zachman Framework

Inventory Sets - Describes ‘what” information is used

Process Transformations- Describes “How” the information is used
Network Nodes - Describes “Where” the information is used
Organization Groups - Describes “Who” is using the information
Timing Periods - Describes “When” the information is used

Motivation Reasons - Describes “Why” the information is used

The rows of the framework represent “Perspectives” clasgif the de-
scription usage. The perspectives are:

Scope Contexts- perspective descriptions corresponds to an executive sum
mary for a planner or investor who wants an estimate of thpesobthe
system, what it would cost, and how it would perform.

Zachman Framework 155

Business Concepts perspective is the perspective of the owner, who will
have to live with the constructed object (system) in theydeslutines
of business. This perspective descriptions corresponkde@iterprise
(business) model, which constitutes the design of the kgsiand shows
the business entities and processes and how they interact.

System Logic - perspective is the designer’s perspective. The SystentclLog
perspective descriptions correspond to the system modéejrd by a
systems analyst who must determine the data elements actibfusithat
represent business entities and processes.

Technology Physics- perspective descriptions correspond to the technology
model, which must adapt the system model to the details qirbgram-
ming languages, I/0O devices, or other technology. Thisdprspective
where the four views of the “4+1” model by Kruchten [9] can lsed to
describe software architecture.

Component Assemblies- perspective descriptions correspond to the detailed
specifications that are given to programmers who code iddalimod-
ules without being concerned with the overall context arcttire of the
system.

The relevant descriptive representations would necég$eve to include
all the intersections between the Abstractions and thepBetises (Figure. 1).
“Architecture” would be the total set of descriptive regetations (models)
relevant for describing the complex object and requirecetvesas a baseline
for changing the complex object once it is described. Zactsneomplex
object is the enterprise, but principally he states thatctiraplex object can
be any object.

The Zachman framework is a structure, not a methodology featag
the implementation of the object. The Zachman Frameworls am imply
anything about how architecture is done (top-down, bottgmetc). The level
of detail is a function of a cell not a function of a column. Teel of detalil
needed to describe the Technology Physics perspective magthrally high
but it does not imply that the level of detail of the Scope @atg descriptions
should be lower or the opposite.

The framework is normalized, that is adding another row durom to
the framework would introduce redundancies or discontiiesli Composite
models and process composites are needed for implementétioomposite
model is a model that is comprised of elements from more tharframework

156 Paper E

model. For architected implementations, composite moaheist be created
from primitive models and diagonal composites from horiadly and verti-
cally integrated primitives. The structural reason forlealing diagonal rela-
tionships is that the cellular relationships are transiti@hanging a model may
impact the model above and below in the same column and anglrothe
same row.

The rules of the framework are [7]:

Rule 1: Do not add rows or columns to the framework

Rule 2: Each column has a simple generic model

Rule 3: Each cell model specializes its column’s genericehod
Rule 3 Corollary: Level of detail is a function of a cell, notalumn
Rule 4: No meta concept can be classified into more than ohe cel
Rule 5: Do not create diagonal relationships between cells

Rule 6: Do not change the names of the rows or columns

Rule 7: The logic is generic, recursive

The model, i.e. the view, in the Zachman framework can benatigwith
the ISO/IEC 42010:2007 viewpoints [10]:

An organization desiring to produce an architecture frarndwfor

a particular domain can do so by specifying a set of viewoint
and making the selection of those viewpoints normative fgr a
Architectural Description claiming conformance to the dom
specific architectural framework. Itis hoped that existamghitec-
tural frameworks, such as the ISO Reference Model for Open Di
tributed Processing (RM-ODP) [11], the Enterprise Arcloitigre
Framework of Zachman [3], and the approach of Bass, Clements
and Kazman [12] can be aligned with the standard in this manne

Zachman's framework does not describe what language teouttesf model
descriptions or how to do the actual modeling for each celier&fore each
view of the Zachman’s framework is free to use the viewpoatested by the
responsible of the description. It should therefore beiptes$o use the view-
points from the ISO/IEC 42010:2007 to describe a model,a.giew, within
the framework.

Software Engineering Taxonomy 157

For manufacturing a process composite would be necessag/pibcess
composite describes the working process of creating theehttas$criptions of
the composite model, typically ending with the descripsiohthe components
in the Component Assemblies perspective, e.g. a servicamefvork. A third
dimension of the framework, called science, has been psablog O’Rourke
et al. [13]. This extension is known as the Zachman DNA (Déldtegrating
Architecture). In addition to the perspectives and aspbetz-axis is used for
classifying the practices and activities used for prodgeiththe cell represen-
tations.

E.3 Software Engineering Taxonomy

In order to be able to use the Zachman framework for softwaggneering
artifacts, two basic assumptions were done:

1. The software engineering classification framework yerfrom the Zach-
man framework, describes the software system’s developonganiza-
tion and the customer’s scope and business related to tldeofisgstem
support.

2. The software engineering classification framework\éerfrom the Zach-
man framework, is three-dimensional where site is the tHindension.
The site might be the software development organizatiotereal de-
velopment organization or the customer’s enterprise ag &mthe site
has a part in the system usage or system development.

The assumptions are illustrated in Figure 2. With theseraptions, the
system development’s Business Concepts perspective aglirdbe the soft-
ware development artifacts, e.g. software developmeiites, software de-
velopment team locations and connections, software dpretat roles and
work products, software development schedules, and saEtdevelopment
strategies. The models in the customer’'s Business Conpeptpective will
describe the customer’s production related to the needstésysupport. The
resulting software engineering classification framewsr&dlled the Software
Engineering Taxonomy.

E.3.1 Shared Perspectives

The models in the Software Engineering Taxonomy might besshacross de-
velopment and customer sites but it is the software devedopmrganization

158 Paper E

Customer(s)’s Software Development Organization(s)’s
perspectives perspectives
\ y4
/ System Customer(s)’s \ / Software Development \
Business Concepts Org_anization(s)’s
[Customer(s)’s: system related Business Concepts
production activities, system related [Software Development
production team locations and Organization(s)'s: s_o_ft_ware
connections, system related production development activities,
roles and work products, system software development team locations
related production schedules, system and connections, software
related production strategy ...] development roles and work products,
software development schedules,
\ /O\ software development strategy]/
s ~N

System Logic
[e.g. Requirements, System activity diagram, Systedomain
\ model, System State chart...] Y,
| |

Technology Physics
[e.g. Class entities, Timing entities, Design rulgs

Component Assemblies
[e.g. Code, Frameworks, Languages, Detailed rules]

Figure 2: The Customer’s and the Software Development Gzgton’s per-
spectives

that controls the degree of openness. For example if themestis an active
member in the requirements handling team at the softwarelolement orga-
nization, then the requirements handling activity is staeross sites. This
would mean that the model with the Business Concepts peirgpend Pro-
cess Transformations abstraction is partly shared singsetbdel contains the
requirements handling activity. Another example of shanedels across sites
is the open source development. In open source developsaeetal software
development sites share software development model gdeos across sites.
Not only the development activities can be shared across, &itit also the test-
ing activities. Google lets their customers test the Gosgfwvare applications
before the final release, which makes the customers paredétt team.

Software Engineering Taxonomy 159

E.3.2 Software Engineering Descriptions

The IEEE Software Engineering Body Of Knowledge, SWEBOKs tiee ob-

jective to promote a consistent view of software enginegvioridwide and

was published 2004 [14]. SWEBOK has references to a verg latgnber of

software engineering theories. The SWEBOK has divided tiftsvare engi-

neering domain into a set of knowledge areas; software requnts, software
design, software construction, software testing, sogwaaintenance, soft-
ware configuration management, software engineering nesmneaugt, software
engineering process, software engineering tools and rdsthend software
quality. The knowledge areas act as knowledge for the pemsorking in that

specific area. In contrast to the work described in [15][1@] tlassification
of the SWEBOK software engineering artifacts in this replrés not try to

reflect the software engineering professions but insteald aeclassification
approach similar to the building engineering [17] .

The process used to classify the descriptions from the SWEBEs:

1. Anything resembling an artifact was extracted from theEB@K.

2. The artifact duplicates were removed when all of the ot were ex-
tracted.

3. The non-duplicate artifacts were analyzed and groupeatdmg to their
descriptions. For example, the “Release Schedule” artifas grouped
together with “Construction Schedule”, “Project Schedid milestones”,
and “Test Schedule”.

4. The grouped artifacts were translated into general mdestriptions.
For example, the group of schedules in the previous step waerg
alized into the model description “Schedules for projestteases and
processes”.

5. The general model descriptions were classified accotditige perspec-
tives and abstractions from the Software Engineering Taxon

160 Paper E

Abstraction = INVENTORY PROCESS NETWORK
SETS TRANSFORMATIONS NODES
Software (WHAT) (HOW) (WHERE)
Development
Organization
Perspective ‘
SCOPE J[Reports, Standards, [Requirement Handling/ Design/ [[Internal & External
CONTEXTS Stakeholders, Tools, Construction/ Testing/ Development Team
Products, Programming Maintenance/ Networks, Supplier
Languages, Developer Coni . y Networks]
Competencies] onfiguration Management
Engineering Management]
BUSINESS J[Estimations, Prototypes, |[Activities for: Requirement [Internal & External
CONCEPTS Analysis, ..., Decisions and |Handling/ Design/ Construction/ |Development Team
their Relations] Testing/ Locations &
Maintenance/ Connections]
Configuration Management/
Engineering Management]
SYSTEM I[System Domain Model] [System Activity Diagram] [Sysém Deployment
LOGIC Diagram]
TECHNOLOGY [J[Development View, Class [[Logical View, Interface [Physical View,
PHYSICS Diagram] Specification] Deployment Diagram]
COMPONENT [[Database Configuration, |[Algorithms, [Communication
ASSEMBLIES Build Configuration] Code Modules, Protocols, Port
Frameworks] Configurations]

Figure 3: The SWEBOK software engineering artifacts cfassin the Soft-
ware Engineering Taxonomy. The figure shows the three fitahwos.

The software engineering artifacts are not physical likéhabuilding en-
gineering but differ in their descriptions, not in their @ligal dimensions. A
software engineering description can be very complex,adpmain model in-
cluding a large set of entities and their relations, andntloaless complex, e.g.
the listing of reports. Some of the software engineerinieats from SWE-
BOK could be descriptions of their own. For example, thefaati“System
Class diagram” could be a complete description of the modgltive Inventory
Sets abstraction and the Technology Physics perspectikien\¥erforming the
classification it was important to distinguish between thstemer’s perspec-

Software Engineering Taxonomy 161

ORGANIZATION TIMING MOTIVATION <— Abstraction
GROUPS PERIODS REASONS
(WHO) (WHEN) (WHY) Software
Developmen
‘ Organization
Perspectivg
[External Regulatory [Internal & External [Business Goals, Process] SCOPE]|
Bodies, Development Releases, Scopes, Policies, CONTEXTS
Internal & External Global Economy Events, ...] |Culture, Principles,
Development Teams] Missions]
[Internal & External [Schedules for Projects/ ReleaseH/Strategies for: BUSINESS]
Development Team Roles |Processes] Processes'/ Projects’/ CONCEPTS
& their Work Products] Staffing/ System and

Projects’ Objectives]

[System Use Cases] [State Charts] [Requirements, SYSTEM
Constraints, Qualities] LOGIC
[User Interfaces] [Sequence Diagrams] [Design Rules, TECHNOLOGY
Design Principles PHYSICS
[Security Control, Safety [[Concurrency Model] [Explicit Design Rules/ COMPONENT
Control] Design Principles ASSEMBLIES

Configuration]

Figure 4: The SWEBOK software engineering artifacts cfassin the Soft-
ware Engineering Taxonomy. The figure shows the three ldstrots.

tives and the development organization’s perspectivaseXxample, the model
description “Schedules for projects, releases and presésss classified with
a Timing Periods abstraction and Software Development izgéion’s Busi-
ness Concepts perspective. The software engineeringdastifvhich describe
the development of a software system and the system itsedf @xgected to be
straight-forward to classify in Zachman’s System Logicgpective since this
perspective contains model descriptions of software systehitecture, e.g.
use cases, activity diagrams, requirements.

It was also expected that Zachman’s Business Conceptsgutirggwould

162 Paper E

be difficult to use for Software Engineering artifacts sitigis perspective is
typically used to model the customer’s business processaedd of system
support, e.g. production processes. The classificatiomeththat the develop-
ment organization’s Business concepts as e.g. softwatiageslevelopment
schedules, prototype analysis etc could easily be clagéifithe Software En-
gineering Taxonomy when the taxonomy perspectives wersdfteare devel-
opment organization perspectives.

Non of the SWEBOK software engineering artifacts descritiesl cus-
tomer’s Scope Contexts or customer’s Business Conceppgaive and hence
the classification of the SWEBOK artifacts is done using ahly software
development organization’s perspectives. The resultlagsdication of the
SWEBOK atrtifacts is two-dimensional and shown in Figure 8 emFigure 4.

The generalized model descriptions are enclosed by bagketach cell
of the Software Engineering Taxonomy in Figure 3 and Figurieat example,
the cell with the Inventory Sets abstraction and Scope Gtstgerspective
contains descriptions of reports, stakeholders, stasdaotls and products
used by the software development organization. The ceh wie Process
Transformations abstraction and Scope Contexts perspemtntains model
descriptions of processes for requirement handling, designstruction, test-
ing, maintenance, configuration management, and engintgearanagement.
In the Software Engineering Taxonomy, the processes doiotate the clas-
sification; they are a part of the classification scheme. Tdwp& Contexts-
and Business Concepts perspectives with the Process @rarsfons abstrac-
tion got a large number of artifacts classified since SWEBOHtains a large
amount of process descriptions and activity definitiongtierprocesses. The
models description would be instantiated for each softwaxelopment orga-
nization. For example, an organization doing Scrum [18Fpsses would in-
stantiate the model with the Business Concepts perspesity®rocess Trans-
formations abstraction with descriptions of typical Scraptivities: “Sprint
Review”, “Planning”, etc.

E.3.3 Apple and Google Process Composite Models

The interactions between development sites and custotitigdiion sites are
re-engineered into the Software Engineering Taxonomyvar tcompanies’
applications: Apple’s AppStore [[19], [20], [21]] and Gde& services [22].
The companies are world-leading [23] in establishing newsaaf interact-
ing with their customers during software development aretetfore highly
interesting for creating composite models which bridgeghp between cus-

Software Engineering Taxonomy 163

tomer/utilization site(s) and development organizatibe(s) in the Software
Engineering Taxonomy.

Apple has created a way to easily install applications intiome by struc-
turing application code into bundles [21]. The bundle duiteis part of the
Apple framework. Apple shares the framework but in conttasthe open
source community gives external developers no access typle core busi-
ness logic components.

The shared composite model pattern for bridging the utibra and devel-
opment sites gap for Apple and Google is visualized in, FdurThe innova-
tive integration takes place in the Network Nodes abswadti the Software
Engineering Taxonomy for both AppStore and Google services

The AppStore describes the connections of internal- areteat develop-
ers, customers, and the Apple organization through theneteand through
the mobile phone network.

The customers get a test/product strategy role when thesestly drive
both the internal and external development by downloadiegriternally and
externally developed applications. The top-ten downldsidd visible for cus-
tomers as well as developers on the AppStore web page.

Google’s Ecosystem [22] describes the global locationscamdiections of
Google’s systems, services, advertisers, and customerdamnations barriers
world-wide. Google makes services available for exteritagd4o use in their
applications via standard protocols. Customers get gteshict strategy role
when they test beta-versions of Google’s products volilptar

The system design and deployment are crucial but not shared ghey
are descriptions of the core business logic. By considevingt models in the
Software Engineering Taxonomy are possible to share wiibreal sites, new
ways of bridging the gap between utilization and developncan be found,
which could create faster innovation of new or enhanceduyartsd

E.3.4 Scrum Composite Process Model

When reverse-engineering the Scrum process, as descyb8&dhwaber in
[18], into our Software Engineering Taxonomy it becomesarcthat the Scrum
approach is rather extensive in the scope- and businegsgotix® (Figure 6).
To bridge the gap between customer/utilization site anctldper site, the
Scrum process includes the customer and the sales organiaatmembers of
the developmentteam. By integrating customer, managemnsdedse manage-
ment, and developmentin a set of teams, all the teams’ coaeee integrated
in a dynamic team work product called “product backlog”. Tingportant

164 Paper E

Customer(s)’s Software Developmen
site Organization(s)’s site
| |
/ System Customer(s)'s \

Business Concepts
[Network Nodes: Application commercial distribution through mobile

phones and the Internet]
[Organization Groups: Test Team,
Development Team]

- /
e N

System Logic
[Network Nodes: Application interactions through maile phones and

Internet]
___[Motivation Abstraction: Requirements, Constraints, Design rules])
I

J

P
Technology Physics
[Not shared]

Component Assemblies
[Process Transformations: Services, Frameworks]
[Network Nodes: Communication protocols]

Figure 5: Bridges between Customer Site(s) and DevelopBig(s) for Ap-
ple and Google.

activities in the Scrum development process is the cosnatitns and risk
estimations.

The requirements and qualities are described in the Sadtizagineering
Taxonomy cell with the Motivation Reasons abstraction ay&t&n Logic per-
spective. The code or program is described in the cell wighRtocess Trans-
formations abstraction and Component Assemblies peligpedthe compos-
ite process model, the Scrum development process as dexbnilf1 8], takes
a step from requirements to architectural design and domaiteling in the
pregame phase. If the Scrum composite process model wowvdctaleen a di-
rect step from requirements to code, then Zachman'’s rule stqoulating “Do
not create diagonal relationships between cells” woulchzseen violated.

An interesting approach would be to integrate explicitisnfiolated design
rules [24], described in the taxonomy cell with the MotieaitReasons abstrac-
tion and the Technology Physics perspective. This wouldhtatarnative way

Conclusions and Future Work 165

Abstraction INVENTORY | PROCESS NETWORK | ORGANIZATION TIMING MOTIVATION
SETS TRANSF. NODES GROUPS PERIODS REASONS
Software (WHAT) (HOW) (WHERE) (WHO) (WHEN) (WHY)
Development
Organization’s
Perspective
SCOPE [Standards, |[Planning/ [List of Scrum |[Customer/ [Competitors | [System Vision]
CONTEXTS Expertise] Closure Team Development/ Releases]
Process] Networks] Management
Teams]
BUSINESS [Estimations, [[Daily Scrum, [[Scrum Team |[Scrum Teams/ [Sprint dates, |[Release Plan]
CONCEPTS Prototypes, [Sprint, Locations & Work ; “Sprint Release Date]
Analysis, ..., |Review, Connections] | Backlog”
Decisions and Ana!yze, “Product
their Design, Backlog”]
Relations] Develop,...]
SYSTEM [System [High level [Requirements]
LOGIC Domain application —
Model] model] 'I
nodel — K| — - — —
TECHNOLOGY [System — - -
PHYSICS Design] ~ “\/
I OK | - \,P:‘\O/
v \\\OV ~
COMPONENT [Code modulei P \/ [Explicit Design
ASSEMBLIES Frameworks e Rules/
/ Configuration]

Figure 6: Scrum reverse engineered into the Software EagimggTaxonomy

or additional step to take from requirements to code.

E.4 Conclusions and Future Work

The Software Engineering Taxonomy derived out of the ZachRramework
relies on two assumptions:

1. The software engineering classification framework yerfrom the Zach-
man framework, describes the software system’s developonganiza-
tion and the customer’s scope and business related to tldeofiegstem
support.

. The software engineering classification framework \xéerfrom the Zach-
man framework, is three-dimensional where site is the tHindension.
The site might be the software development organizatiotereal de-
velopment organization or the customer’s enterprise ag &mthe site
has a part in the system usage or system development.

166 Paper E

The classification of the IEEE SWEBOK artifacts uses onlygb&ware
development organization’s perspectives, not the custperspective, result-
ing in the classification being two-dimensional. Howeveg three dimen-
sions of the Software Engineering Taxonomy can be used trridesa soft-
ware development organization that shares models witlrreadteoftware de-
velopment sites or customer sites, e.g. Google, Apple’'sSApre and Open
Source development as described in this report. The agalygippStore and
Google showed that the taxonomy’s Network Nodes abstmaetial Organiza-
tion Groups abstraction columns are important for sharindefs with external
development- and utilization sites for faster innovatibnew products.

The reverse engineering of the Scrum process into our Sadftiagineer-
ing Taxonomy showed that all of the Scrum artifacts can bgsified and that
the focal point of the Scrum is on the Scope Contexts persjgeand the Busi-
ness Concepts perspective of the development organizattmdescriptions
of the System Logic perspective and the Technology Physcspective are
thin in the Scrum process.

The Software Engineering taxonomy can serve as a reasangpivork
into which artifacts and results of software engineerirapties, processes and
case studies might be mapped for further analysis. The afléee Zachman
framework are valid for the Software Engineering Taxonomy.

It remains to do a formal validation of the Software Enginregiaxonomy.
The formal validation could be in the form of a more thoroughexction of
software engineering artifact and their classificationrttier, an expert panel
could judge the classification’s correctness.

Bibliography

[1] DoD. Department of Defence Architecture Framework WogkGroup,
DoD Architecture Framework, DoDAF, version 1.0. DeparttnafrDe-
fence, 2003.

[2] TOG. The Open Group Architecture Framework, version 8/9, 2002/6
The Open Group,.

[3] J. A. Zachman. A Framework for Information Systems Atebture IBM
Systems JournaP6(3):276—292, 1987.

[4] J. F. Sowa and J. A. Zachman. Extending and formaliziegitamework
for information systems architecturtBM System JournaB1:590-616,
1992.

[5] R. C. Thomas. A Practical Guide to Federal Enterprisehitecture,.
www.gao.gov/bestpractices/bpeaguide.pdf, 2001. retdeluly 11th
20009.

[6] J. N. Martin. An introduction to the Architectural Frameworks
DODAF/MODAF/NAFE Course given at the Royal Institute of Technol-
ogy, Stockholm, Sweden, 2006.

[7] J. A. Zachman.The Zachman Framework for Enterprise Architecture; A
Primer for Enterprise Engineering and Manufacturingachman Inter-
national, 2003.

[8] J. A. Zachman. The Zachman Framework and ObservatiomMdeihod-
ologies.Business Rules Journd(11), 2004.

[9] P. B. Kruchten. The “4+1” View Model of architectur&oftware, IEEE
12(6):42-50, Nov 1995.

167

168 Bibliography

[10] R. Hilliard. Systems and software engineering - Reca@nded prac-
tice for architectural description of software-intensiystems.ISO/IEC
42010 IEEE Std 1471-2000 First edition 2007-07-pages c1-24, 15
2007.

[11] ISO/IEC 10746 - 3: 1996, Information technology - Opeastrbuted
processing - Reference model: Architecture, 1996.

[12] L. Bass, P. Clements, and R. Kazm&uaftware Architecture in Practice
Addison-Wesley, Boston, second edition, 2003.

[13] C. O’'Rourke, N. Fishman, and W. Selkow. Enterprise Atatture, Using
the Zachman Frameworkhomson Course Technolq@003.

[14] P. Bourque and R. Dupuis, editor&uide to the Software Engineering
Body of KnowledgelEEE Computer Society, 2004.

[15] O. Mendes and A. Abran. Software Engineering Ontolofy\Pevelop-
ment Methodology. Technical report, University from Quelre Mon-
treal, 2004.

[16] P. Wongthongtham, E. Chang, and I. Sommerville. Saftwa
Engineering Ontology for Software Engineering Knowledge
Management in Multi-site Software Development Environinen
http://smi.stanford.edu/projects/protege/conferé@y//presentations,
2007.

[17] ASTM. ASTM Standard C33, “Specification for Concretegkggates”,
2003.

[18] K. Schwaber. Scrum development process. Workshop RRepasiness
Object Design and Implementation. 10th Annual Conferenc®bject-
Oriented Programming Systems, Languages, and Applicatiddden-
dum to the Proceedings. ACM/SIGPLAN OOPS Messenger 6(4p-Oc
ber 1995.

[19] D. B. Yoffie and M. Slind. Apple computer, 2006, 2007.

[20] P. Tsarchopoulos. Innovation lessons from applee Economist2007.
[21] Apple. About bundles, 2005.

]

[22] B. Iyer and T. H. Davenport. Reverse engineering gasgiteovation
machine.Harvard Business Revig®008.

[23] J. McGregor. The world’s 50 most innovative companissiness Week
2008.

[24] M. J. LaMantia, Y. Cai, A. D. MacCormack, and J. Rusnak:olstion
analysis of large-scale software systems using desigotsteimatrices
and design rule theoryHarvard Business School Working Knowledge
2007.

Appendix F

Paper F:

Applying the Software
Engineering Taxonomy

Pia Stoll, Anders Wall Christer Norstrom
Industrial Software Systems Computer Science and Eldcson
ABB Corporate research Malardalen University
pia.stoll@se.abb.com, christer.norstrom@mdh.se

anders.wall@se.abb.com

Technical Report, School of Innovation, Design and EnginggIDT), Malardalen
University, Sweden, 2009.

171

Abstract

The Software Engineering Taxonomy is a derivative of thehfizan frame-
work. Being a derivative of the Zachman framework, the SafewEngineer-
ing Taxonomy follows the Zachman consistency rules andrpm@tes tradi-
tional enterprise architecture views together with sofenengineering views.
In this report, the Software Engineering Taxonomy is appés a reasoning
framework in three studies: the Influencing Factors metheld fstudy, the
Usability-Supporting Architecture Patterns field studyddéhe Sustainable In-
dustrial Software Systems case study.

Software engineering artifacts from the three studiesx@raeed and clas-
sified in the Software Engineering Taxonomy. From the clizsgion of data
from the studies, it's shown that each one of the studies assgbset of
the thirty views in the Software Engineering Taxonomy toallig® a specific
method or theory. What views are used, depends on the sctipe@fsearched
object. In the classification of the USAP study artifactghéiviews were used
in contrast to the Sustainable System study, that usedegnetiews. This
shows that the scope and interrelation complexity of snatdé development
is much higher than the scope and interrelation compleXitthe usability-
supporting architecture pattern. It also shows that thensoé engineering
discipline needs enterprise perspectives to be able todeall aspects of sus-
tainable industrial software system development.

Classification of the USAP artifacts made use of the busicessept per-
spective for four of the twelve artifacts. The inclusion ¢faditional enterprise
perspective led to new conclusions regarding the use ofrgkaetivities for
pattern creation. General domain application activitied their tasks make
use of the domain’s role and work product as placeholder. géreeral ac-
tivities and tasks then become domain application speciti@ reusable task
has reusable responsibilities and by specifying what tyuattribute the task
support, the responsibilities can be constructed to sugpat specific qual-
ity of the task. This has been shown for usability in the USAlRIg. The
USAP information description-selection process coulddscdbed by follow-
ing Zachman'’s consistency rules in the Software Engingefaxonomy.

Introduction 173

F.1 Introduction

For a software engineering researcher it can be useful warjsurnalistic
questions regarding the information collected in field ®adnd case studies.
Journalistic abstractions are typically: “What does tHerimation describe?”;
“How is the information used?”; “Where is the informatiored®”; “Who is
using the information?”; “Why is the information used?”. @@mnding on the
usage perspective of the information, the answers wilkdiftf the informa-
tion is related to the perspective of the system'’s developmiganization, the
answers will be different than if the information is relatedhe perspective of
the system’s architecture.

How information from the development organization’s pexgjve and from
the system’s architecture perspective relate to each othéd also be helpful
to describe. For example, sustainable development of austridl software
system organization is impacted by organizational pasteainchitecture pat-
terns and the knowledge transfer in the organization. Cointlyia case study
exploring sustainable development in the domain of indaissoftware sys-
tems, will collect information from many perspectives. tuid then be helpful
for software engineering researchers to use a enterpabéderture taxonomy
where the journalistic abstractions and the usage pergpseéict as classifier
of the information.

In previous work we presented a derivative of the Zachmamdraork
called the Software Engineering Taxonomy which is suggekie the clas-
sification of software engineering information [1]. Theléoling sections de-
scribe how the Software Engineering Taxonomy is applietited studies: the
Usability Supporting Architecture Patterns study [2][8]e Influencing Fac-
tors method study [4], and the Sustainable Industrial Soégwsystems study

(5]

F.2 Software Engineering Taxonomy

In ajoint article [6], published 1992, Sowa and Zachman&ixphat the Zach-
man framework links the concrete things in the world (eeditiprocesses, lo-
cations, people, times and purposes) to the abstract biteinomputer. The
Zachman framework is not a replacement of programming ttediniques, or
methodologies but instead, it provides a way of viewing retesm from many
different perspectives and how they are all related. Thaéssork logic can be
used for describing virtually anything considering itstbig of development.

174 Paper F

The logic was initially perceived by observing the desigd annstruction of

buildings. Later it was validated by observing the engimgeand manufac-
ture of airplanes. Subsequently, it was applied to entsepriluring which the
initial material on the framework was published [7][8][owa and Zachman
write:

Most programming tools and techniques focus on one aspext or
few related aspects of a system. The details of the aspgcséhe
lect are shown in utmost clarity, but other details may becolbsd

or forgotten. By concentrating on one aspect, each tectelioges
sight of the overall information system and how it relatesh®
enterprise and its surrounding environment. The purposthef
Information System Architecture framework is to show hosnev
thing fits together. It is a taxonomy with 30 boxes or cellsaerg
nized into six columns and five rows. Instead of replacingioth
techniques, it shows how they fit in the overall scheme.

According to Zachman, “Architecture” is the set of desdviptrepresenta-
tions relevant for describing a complex object (actualhy abject) such that
the instance of the object can be created and such that thepte® represen-
tations serve as the baseline for changing an object instanc

The columns of the framework represent different abswastifrom, or
different ways to describe, information of the complex ahjé'he reason for
isolating one variable (abstraction) while suppressingtiers is to contain
the complexity of the design problem. Abstractions clg@sif the description
focus are:

Inventory Sets - Describes “What” information is used

Process Transformations- Describes “How” the information is used
Network Nodes - Describes “Where” the information is used
Organization Groups - Describes “Who” is using the information
Timing Periods - Describes “When” the information is used

Motivation Reasons - Describes “Why” the information is used

The rows of the framework represent “Perspectives” clasgif the de-
scription usage. The perspectives are:

Software Engineering Taxonomy 175

Abstraction INVENTORY PROCESS NETWORK | ORGANIZATION TIMING MOTIVATION
SETS TRANSFORMATIONS NODES GROUPS PERIODS REASONS

Perspective (WHAT) (HOW) (WHERE) (WHO) (WHEN) (WHY)
SCOPE e.g. Inventory |e.g. Process Types e.g. Networje.g. Organization|e.g. Timing |e.g. Motivation
CONTEXTS Types Types Types Types Types
(Strategists)
BUSINESS e.g. Business |e.g. Business e.g. Business|e.g. Business e.g. Business|e.g. Business
CONCEPTS Entities & Transform & Input Locations & [Role & Work Cycle & End & Means
(Executive Relationships Connections Moment
Leaders)
SYSTEM e.g. System |e.g. System e.g. System [e.g. System e.g. System |e.g. System
LoGIC Entities & [Transform & Input ~ |Locations & |Role & Work Cycle & End & Means
(Architects) Relationships Connections Moment
TECHNOLOGY [Je.g. e.g. Technology e.g. e.g. Technology |e.g. e.g. Technolog
PHYSICS Technology | Transform & Input Technology |Role & Work Technology |End & Means
(Engineers) Entities & Locations & Cycle &

Relationships Connections Moment
COMPONENT e.g. e.g. Component e.g. e.g. Component |e.g. e.g. Componen
ASSEMBLIES ~ JComponent | Transform & Input ~ [Component |Role & Work Component |End & Means
(Technicians) Entities & Locations & Cycle &

Relationships Connections Moment

Figure 1: The Zachman Framework

Scope Contexts- perspective descriptions corresponds to an executive sum
mary for a planner or investor who wants an estimate of thpesobthe
system, what it would cost, and how it would perform.

Business Concepts perspective is the perspective of the owner, who will
have to live with the constructed object (system) in theydeslutines
of business. This perspective descriptions corresponkde@iterprise
(business) model, which constitutes the design of the kgsiand shows
the business entities and processes and how they interact.

System Logic - perspective is the designer’s perspective. The SystentclLog
perspective descriptions correspond to the system modéjrd by a
systems analyst who must determine the data elements actibfusithat
represent business entities and processes.

Technology Physics- perspective descriptions correspond to the technology
model, which must adapt the system model to the details qirbgram-
ming languages, 1/0O devices, or other technology. Thisdprspective

176 Paper F

where the four views of the “4+1" model by Kruchten [10] canused
to describe software architecture.

Component Assemblies- perspective descriptions correspond to the detailed
specifications that are given to programmers who code iddalimod-
ules without being concerned with the overall context arctire of the
system.

The relevant descriptive representations would necég$eve to include
all the intersections between the Abstractions and thepBetises (Figure 1).
“Architecture” would be the total set of descriptive regetations (models)
relevant for describing the complex object and requirecetoesas a baseline
for changing the complex object once it is described. Zactisneomplex
object is the enterprise, but principally he states thatctimaplex object can
be any object.

The Zachman framework is a structure, not a methodology feating
the implementation of the object. The Zachman Frameworls chag imply
anything about how architecture is done (top-down, bottgametc). The level
of detail is a function of a cell not a function of a column. Tibeel of detalil
needed to describe the Technology Physics perspective magthrally high
but it does not imply that the level of detail of the Scope @aitd descriptions
should be lower or the opposite.

The framework is normalized, that is adding another row durom to the
framework would introduce redundancies or discontingit@omposite mod-
els and process composites are needed for implementaticomposite model
is one model that is comprised of elements from more than mamadwork
model. For architected implementations, composite moaheist be created
from primitive models and diagonal composites from hortatiy and verti-
cally integrated primitives. The structural reason forleging diagonal rela-
tionships is that the cellular relationships are transit@hanging a model may
impact the model above and below in the same column and anglrothe
same row.

The rules of the framework are [8]:

Rule 1: Do not add rows or columns to the framework
Rule 2: Each column has a simple generic model
Rule 3: Each cell model specializes its column’s genericehod

Rule 3 Corollary: Level of detail is a function of a cell, notalumn

Software Engineering Taxonomy 177

Rule 4: No meta concept can be classified into more than ohe cel
Rule 5: Do not create diagonal relationships between cells

Rule 6: Do not change the names of the rows or columns

Rule 7: The logic is generic, recursive

The model, i.e. the view, in the Zachman framework can benatigwith
the ISO/IEC 42010:2007 viewpoints [11]:

An organization desiring to produce an architecture frarneéefor

a particular domain can do so by specifying a set of viewoint
and making the selection of those viewpoints normative fgyr a
Architectural Description claiming conformance to the dom
specific architectural framework. Itis hoped that existamghitec-
tural frameworks, such as the 1ISO Reference Model for Open Di
tributed Processing (RM-ODP) [12], the Enterprise Arcloiigre
Framework of Zachman [7], and the approach of Bass, Clements
and Kazman [13] can be aligned with the standard in this mainne

Zachman's framework does not describe what language toutiesf model
descriptions or how to do the actual modeling for each celier&fore each
view of the Zachman’s framework is free to use the viewpoatested by the
responsible of the description. It should therefore beiptes$o use the view-
points from the ISO/IEC 42010:2007 to describe a model,a.giew, within
the framework.

For manufacturing a process composite would be necessag/pibcess
composite describes the working process of creating theehttas$criptions of
the composite model, typically ending with the descripsiohthe components
in the Component Assemblies perspective, e.g. a servicamefvork. A third
dimension of the framework, called science, has been psablg O’Rourke
et al. [14]. This extension is known as the Zachman DNA (Déldtegrating
Architecture). In addition to the perspectives and aspbetz-axis is used for
classifying the practices and activities used for prodgeiththe cell represen-
tations.

In order to be able to use the Zachman framework for softwagéeeering
artifacts, two basic assumptions were done:

1. The software engineering classification framework\eéetfrom the Zach-
man framework, describes the software system’s developanganiza-
tion and the customer’s scope and business related to tideofiegstem
support.

178 Paper F

Customer(s)’s Software Development Organization(s)’s
perspectives perspectives
\ y4
/ System Customer(s)’s \ / Software Development \
Business Concepts Org_anization(s)’s
[Customer(s)’s: system related Business Concepts
production activities, system related [Software Development
production team locations and Organization(s)'s: s_o_ft_ware
connections, system related production development activities,
roles and work products, system software development team locations
related production schedules, system and connections, software
related production strategy ...] development roles and work products,
software development schedules,
\ /O\ software development strategy]/
s ~N

System Logic
[e.g. Requirements, System activity diagram, Systedomain
\ model, System State chart...] Y,
| |

Technology Physics
[e.g. Class entities, Timing entities, Design rulgs

Component Assemblies
[e.g. Code, Frameworks, Languages, Detailed rules]

Figure 2: The Customer’s and the Software Development Gzgton’s per-
spectives

2. The software engineering classification framework yéetfrom the Zach-
man framework, is three-dimensional where site is the tHindension.
The site might be the software development organizatiotereal de-
velopment organization or the customer’s enterprise ag &mthe site
has a part in the system usage or system development.

The assumptions are illustrated in Figure 2. With theseraptions, the
system development’s Business Concepts perspective aglirdbe the soft-
ware development artifacts, e.g. software developmeiities, software de-
velopment team locations and connections, software dpreat roles and
work products, software development schedules, and sadtdavelopment
strategies. The models in the customer’s Business Conpeptpective will
describe the customer’s production related to the needstésysupport. The

Software Engineering Taxonomy and System Sustainability 79

resulting software engineering classification framewagrgalled the Software
Engineering Taxonomy.

F.3 Software Engineering Taxonomy and System
Sustainability

In previous work [5], the presented sustainable indussoétivare systems the-
ory introduces some insights into the importance of timeadyits for the sus-
tainability of industrial software systems. The time dyiesrs discussed not
only for technology factors but also for organizational &ndiness related fac-
tors, which are enterprise architecture factors. Chandmisiness goals and
their co-existence with changes in organization and magkeironments are
also discussed leading to a deeper exploration of a brogaetrsm of the
enterprise architecture and its relation to system- antivaoé architecture.
The case study’s units of analysis were companies with thefing software
development characteristics:

e The company’s software development involved at least 2@ldeers
e The company had software systems with a life-time of 10 yeansore

e The company developed industrial automation applications

From May 2008 through December 2008, three automation reysten-
panies with these characteristics were visited. Threesnalere interviewed
at each company: senior software developer, senior satam@hitect, and se-
nior product manager. The same questions, based on thésiaindustrial
software systems theory, were asked to all of the nine irdeees. Struc-
tured individual interviews were conducted, which wereragpnately three
hours long, on site. Participants were guaranteed anopyant the infor-
mation reported was sanitized so that no individual persatompany could
be identified. The questions were open-ended and alloweitipants to for-
mulate answers in their own terms. The preliminary caseysiindings were
presented to the participating companies and additiomapemies in an archi-
tecture day workshop where software architects and managesere invited
to discuss the findings.

180 Paper F

F.3.1 Sustainable Industrial Software System Development

Pollan has defined an unsustainable system simply as “dqeactprocess that
can’t go on indefinitely because it is destroying the veryditions on which it
depends”[15]. Unruh has argued that numerous barriersstaisability arise
because today’s technological systems were designed dhfbbpermanence
and reliability, not change [16].

“A global agenda for change” - was what Gro Harem Brundtla=dthe
chairman of the World Commission on Environment and Develept, was
asked to formulate in 1987 [17]. As a result, the Brundtlaothmission de-
fined sustainable development as:

Sustainable development is development that meets the néed
the present without compromising the ability of future gatiens

to meet their own needs. It contains within it two key coreept
the concept of “needs”, in particular the essential needshef
world’s poor, to which overriding priority should be giveand
the idea of limitations imposed by the state of technologl/san
cial organization on the environment’s ability to meet gnetsand
future needs.

In [18], Dyllick and Hockerts transpose the definition to thesiness level:

Corporate sustainability is meeting the needs of a firm’'sctiand
indirect stakeholders (such as shareholders, employdients,
pressure groups, communities etc), without compromisenahil-
ity to meet the needs of future stakeholders as well.

Following the reasoning of the Brundtland commission [1¢ ®yllick
and Hockerts [18], sustainable industrial software dgwelent would be de-
fined as:

Sustainable industrial software development meets thdsek
the software development organization’s direct and inttistake-
holders (such as shareholders, employees, customers)esngi
etc), without compromising the organization’s ability t@en its
future stakeholders’ needs as well.

In this report, the term “corporate sustainability” is uselden the work
referred to uses the term. Otherwise the term “sustainadleldpment” is
used.

Software Engineering Taxonomy and System Sustainability 81

Economic
Sustainability

Environmental Social
Sustainability Sustainability

Figure 3: Three dimensions of corporate sustainability

Three dimensions of corporate sustainability is outlingdDyllick and
Hockerts: environmental sustainability, economic susthility, and social
sustainability, the “triple-bottom-line” in Figure 3. Didk and Hockerts con-
clude that a single-minded focus on economic sustaingbiih succeed in the
short-run; however, in the long-run sustainability regaiall three dimensions
to be satisfied simultaneously.

Sustainable development of industrial software systeradrige challenge
due to changes in concerns originating from: new technology stakeholder
needs, new organizations, and new business goals durirgléec It's chal-
lenging since it has not been researched for industrialveof systems and
the domain need an understanding of the success-criticalecns related to
the achievement of sustainable development of systemseasothplexity of
organizations, processes, and architectures increase.

Organizational complexity involves many success-ciistakeholders, of-
ten located all over the world, who have to reach a consensusd the most
important business goals for the system now and in the néxtefu Sustain-
able systems have the built-in legacy heritage and havertsider the present
software architecture and design when introducing newnegsi goals. Stake-
holders, including the architects, need an understandihgw the organiza-
tion’s business goals affect architectural qualities and versa. For example,
industrial software systems are often affected by compagngers and acqui-
sitions, where two or more systems have to be consolidatedime system
or the systems have to share a core part. The effect of suégiateon soft-
ware quality is hard to overlook. Sustainability is therefeelated not only to
software structures and their interactions but also to ysees’s environment

182 Paper F

in terms of the enterprise aspects as organization, bissiteegics and scope.
Enterprise aspects have not been put in relation to softeatatecture and
implementation for industrial software systems in an eipivay earlier. As
organizational complexity grows when the systems areiligtrd developed,
the impact of the enterprise aspects on the software systsigriificant.

F.3.2 Case Study Questions and Propositions

The theory presented in paper [5] was the base for the thaniplgof a case
study intended to investigate the definition of a sustamaidustrial software
system and the sustainability success-factors of thregpanies developing
sustainable industrial software systems. The case stusigrdéollowed the
proposed design by Yin [19]. The quality of the case study teated by the
four tests suggested by Yin:

Construct Validity: The case study’s units of analysis were companies that:
involved at least 20 developers; had software systems wiifie-time
of 10 years or more; and developed industrial automatioticgijns.
From May 2008 through December 2008, three automationrsysben-
panies with these characteristics were visited. Threesnalere inter-
viewed at each company: senior software developer, seoftware ar-
chitect, and senior product manager. The same questioersl loasthe
theory in PapeB were asked to all of the nine interviewees.

Internal Validity: Not applicable since the case study is not a explanatory or
causal case study.

External Validity: The domain to which the case study findings can be gen-
eralized is the domain of long-lived industrial softwarestgyns. The
case study’s three units of analysis were companies thablvied at
least 20 developers; had software systems with a life-timEQoyears
or more; and developed industrial automation applicatio@empari-
son of the findings has been made with the theory proposed kysCu
et al. [20][21]. Curtis et al. conducted an extensive fielddgtinvolv-
ing 19 projects in the domain of large complex software systeanging
from aerospace contractors to computer manufacturersre@htime,
distributed, or embedded applications. To further strieegtthe exter-
nal validity the case study interview should be conducteiti wig. au-
tomotive companies also developing large complex longdlisoftware
systems.

Software Engineering Taxonomy and System Sustainability 83

Reliability: Structured individual interviews were conducted which evap-
proximately three hours long on the interviewee’s sitetiBipants were
guaranteed anonymity and the information reported has baeitized
so that no individual person or company can be identified. questions
were open-ended and allowed participants to formulate erssin their
own terms. One person had the lead as questioner in eachiéwend
one person had the responsibility for taking notes. Afterititerview
the person who had the lead responsibility for taking notestevthe
interview protocol and sent it to the other person for revidlien the
lead responsible for taking notes revised the protocol anallast vali-
dation sent the protocol to the interviewee for review. Thaiminary
case study findings were presented to the participating eoiep and
additional companies in an architecture day workshop whkefevare
architects and management were invited to discuss the fjadin

The case study propositions were:

1. We believe sustainable systems can control the develozost

2. We believe the customers expect the system to be lond-live

3. We believe that offering a sustainable system is a macketrdage
4

. We believe that sustainable systems must cope with changgani-
zations, technology, business goals, and stakeholdansktns, without
losing control over its cost, quality and schedule output

5. We believe sustainable systems will have an organizatitma high
communication interaction

6. We believe that organizations that manage sustainasterag will have
an organization with clearly defined roles and clear harel-o¥ infor-
mation

7. We believe that organizations that manage sustainabterag will plan
for changes by forward feeding them upon detection into therpng of
next major steps of the system

8. We believe that organization that manage sustainabteragswill have
stated long-term business goals communicated to the engjamization.

9. We believe that major organizational changes are thediffistlt changes
for a sustainable system

184 Paper F

10. We believe sustainable systems can do major architéctuainges with-
out the customers noticing any major changes to the prodtmt.in-
stance, migrating to a product-line architecture withdou@rging the
essences of the product

11. We believe sustainable systems have high-frequentatiaver devel-
opment progress in between release dates

The case study questions were formulated in a way that theeaasould
provide data to verify or reject the propositions. The casel\ss question
“What is system sustainability to you?” was asked to all & ihterviewees
to let them define the concept of a sustainable industriéveoé system. By
doing so, the interviewees could relate to their own deéinitvhen answering
the rest of the questions regarding system sustainability.

F.3.3 Classification of Case Study Data

Concerns related to sustainability were extracted fromatisvers. When do-
ing so, sustainability concerns were extracted which tkeriewees thought
they had met in a good way. Additionally sustainability cers were ex-
tracted which the interviewees wanted to meet in a betterheaguse they be-
lieved meeting these concerns would improve the sustdityadsi the system.
The resulting concerns were mapped in the Software Engimge@axonomy
with the Scope and Business perspectives being the peirggreot the system
development organization. The result of the mapping of tilected data in
the Software Engineering taxonomy is shown in Figure 4.

F.3.4 Analysis of Classified Case Study Data

The product managers had exhaustive answers around cene#inScope
Contexts- and Business Concepts perspectives. Surgyisthg senior de-
velopers and the architects did not have the correspondimaustive answers
around concerns with System Logic- and Technology Physicspgective. This
could very well relate to the reported unclear developex-rahd architect role
descriptions. Further the answers described how the desed@nd architects
did not have documented software architecture, definesvaodtarchitecture
or an architecture design process. The developers andextshiaccording to
the interview answers, simply lack many of the model desiomg from the
System Logic perspective and the Technology Physics petrgpe

Software Engineering Taxonomy and System Sustainability 85

Abstraction Inventory Process Network Organization Timing Motivation
Sets Transformations Nodes Groups Periods Reasons
Developmen (WHAT) (HOW) (WHERE) (WHO) (WHEN) (WHY)
Perspective
Scope 'Well-known Flexible Project Comply with Minimal target Keep track of |Sustainable
Contexts sustainable key Management standardization |market competitors’ revenue
competences - Process; organizations competition; v releases strategy;
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Elexible in-house |and federal v Sustainable
Well-known key software agencies v Sustainable 3d- — [target marketsy
stakeholders; Well development party software;
documented system [Process; Sustainable HMI | [
knowledge; Formal technology technology vendors; Open and
Sustainable HMI evaluation process; Sustainable communicative
technology; Formal & development organization
Documented role& architecture organization groups culture &
descriptions evaluation process
Business Short-term based Excellent High-frequent Long system | Strategy for
Concepts decisions balanced technology communication life cycle keeping
with long-term scouting; between 3d v sustainable key-
considerations; Few customer- party product
Feature-driven and |tailored projects; [supplierand | |
quality-driven ROL; | Quality development Release cycle, | Cultural
Maintenance cost improvement in balance with | Poundaries
separated from projects balanced . customer- communication
development cost; with development [High-frequent desired system strategy;
Globally applicable projects; communication update-rate; Well-
development KPIs; Keep close contact| between Product High-frequent | communicated
Objective time- with target market |Management project follow- |System-related
prediction algorithm | customers; and architects; up cycles customer goals
for development Analyze target High-frequent and development]
projects market needs f communicati goals
& new 1echno|ogﬁ between & C 1 5 &
distributed
development
teams;
System Don't mimic Reliability;
Logic organizational
groups’ interfaces
when designing
system /N 1 | T .
components’ Maintainability;
interfaces; Portabilit
Minimum of
complexity in Scalability,
architecture Understandable
requirements
Technology Jlsolated Business Logi¢ Sustainable Stable system | Low-frequent
Physics Business Logic interoperation changing HMI
{ supporting interfaces,
Sustainable HMI sustainable 3
technology customer business v & &
processes
components
Component JRe-usable components| Standardized
Assemblies é communicatio
protocols q

Figure 4: The Enterprise-wide concerns related to corpaagtainability: The
check signs indicate that the concerns are met by the coegartie warning
signs indicate that the companies want to meet the conaembetter way

186 Paper F

Even if the term software engineering was coined as early dsei 1968
NATO Software Engineering Conference [22] and Dijkstracdie®d software
structures the same year [23], the usage of software engigesnd software
architecture concepts and tools in the domain of industaétivare systems is
low.

Basili and Musa write thdt .. we must isolate and categorize the compo-
nents of the software engineering discipline, define notstfor representing
them and specify the interrelationships among them as treegpnanipulated”
[24]. Jackson claims that....there will never be software engineering. As
these specializations flourish (e.g. compiler engineeroperating systems
[author’'s remark]) they leave software engineering behindA professor of
software engineering must, by definition, be a professonsblved problems”
[25]. There is an unclear definition of what software engiiregis and what
the important components of the software engineeringplise are. Industrial
software system organizations lack clear guidance on whdtd€ descriptions
would give the best return of investment in their domain. Questions asked
in the case study was “What is a major architectural change?ét the in-
terviewees describe their perception of architecture drahges to it. The
answers varied from the question being an philosophicatipreto an archi-
tectural rule change. But no two persons’ answers were tie sa

According to Garlan and Shaw [26], the definition of softwarehitecture
is:

software architecture involves the description of elermdram
which systems are built, interactions among those elempats
terns that guide their composition, and constraints on ¢heat-
terns

In [13], Bass et al. define software architecture as:

The software architecture of a program or computing system i
the structure or structures of the system, which comprifigvace
elements, the externally visible properties of those etgsmand
the relationships among them.

According to Gacek et al. [27], a software system architeotomprises:

e A collection of software and system components, connestiand con-
straints.

e A collection of system stakeholders’ need statements.

Software Engineering Taxonomy and System Sustainability 87

¢ A rationale which demonstrates that the components, caiomsg and
constraints define a system that, if implemented, wouldfyathe col-
lection of system stakeholders’ need statements.

Johnson has investigated the definitions of software actuite to find a
general consensus among the definitions [28]. But Johnsomntsgo conclude
that“It is not generally agreed upon what a component or entityitiss not
generally agreed upon what a structure is, or even if it isecchlled structure,
and itis not generally agreed upon what else comprises soétarchitecture”.

Considering Johnson’s conclusion, the question is how ifierénces in
agreement upon what comprises software architecturet affieat risk-willing
industry’s adaptation of software architecture’'s consepwhen each indus-
try or application area has to define its own understanding@imeaning of
software architecture, it might lead to that traditionaftware-intensive do-
mains take a lead in the adaptation of software architectoneepts and the
non-traditional software-intensive domains have a long t@ego to reach the
same software quality maturity. If software quality matyiaffects the sus-
tainability of the software system, this is a serious issithaut an obvious
solution. Each software application domain can hardly @dfsmown software
engineering research discipline as Jackson discusses [25]

The case study questions were analyzed to find out if songetiad been
missed that would have scattered some light on the absdwniasefarchitecture
concerns. However, the interview contained several questielated to the re-
lation between architecture and technology for systemagubility. It seems
like the case study'’s findings confirm Curtis’s reasoningrtiSwvrites that the
software production efficiency is not a function of only sadte engineering
methods and quality thinking but to a larger extent a fumctiborganizational
issues such as behavior and communication [21].

Additionally one could speculate in if the lack of model d@sttons from
these perspectives in itself is a sustainability concerrcofding to the inter-
view answers this is the case. The lack of system documentatimentioned
by all roles at all companies as a hinder for corporate suaitéity. One con-
clusion could be that in order to get the software enginggriocess artifacts,
e.g. architecture descriptions, in place the companieg gaighe organiza-
tional artifacts, e.g. role descriptions and communicgtio place first. Cur-
tis's study and the System Sustainability case study poinatd a possible
conclusion that a working software development orgarorativith model de-
scriptions from the Business Concepts perspective in placa prerequisite
for software engineering tools and methods to have a signifionpact on

188 Paper F

productivity and sustainability.
In [29], Malveau and Mowray suggest a Software Design-Lévetel
(SDLM):

The Software Design-Level Model (SDLM) builds upon thetéifac
model. This model has two major categories of scales: Micro-
Design and Macro-Design. The Micro-Design levels incluuke t
more finely grained design issues from application (sulesypt
level down to the design of objects and classes. The Macgigbe
levels include system-level architecture, enterprisehidecture,
and global systems (denoting multiple enterprises and rier-
net). The Micro-Design levels are those most familiar toeliep-
ers. At Micro-Design levels, the key concerns are the piowief
functionality and the optimization of performance. At thadvb-
Design levels, the chief concerns lean more toward manageme
of complexity and change. These design forces are preséneat
grains, but are not nearly of the same importance as they are a
the Macro-Design levels.

Using the concepts of the Software Design-Level Model, thikected in-
terview data suggest that the interviewees have a vast ityagbrsustainabil-
ity concerns at the Macro-Design level, described in theévaoe Engineering
Taxonomy'’s Scope Contexts perspective and in the Businessdpts perspec-
tive. Management of complexity and change are tightly cedpb sustainabil-
ity concerns [5].

In the Pasteur research project at Bell Labs [30], Copliext.ebvestigated
organizational structures. Coplien’s organizationatigs found two organi-
zational patterns:

e Architecture Follows Organization, a restatement of Coyisvaaw [31].

e Organization Follows Location, no matter what the orgatmrel chart
says.

A discussion related to Coplien’s first organizational@attvith one archi-
tect in the Sustainable Industrial Software System casy/sias about what
was the best alternative; to let the organization decidatblitecture or to let
the architecture decide the organization.

Cain et al. have described additional organization paitf38]. Their con-
clusion is that: “If there is one consistent measure of ss&fcd organization,
it is how well its members maintain relationships throughmeaunication”.

Software Engineering Taxonomy and System Sustainability 89

Dikel et al. developed organizational principles in an ffo predict the
success or failure of software architectures for largectgtemunications sys-
tems [33]. In the reported case study [33], they realizetitdahnical factors,
do not by themselves explain the success of a product-lotgtacture and that
only in conjunction with appropriate organizational belbas can software ar-
chitecture effectively control project complexity. Theewi of the software
architecture as a control instance working correctly ohtyé organizational
parameters are set correctly led Dikel et al. to reflect odavedeveloped by
Ashby [34], thelaw of requisite varietywhich suggests that a system should
be as complex as its environment:

...in active regulation only variety can destroy variety.ldads
to the somewhat counterintuitive observation that the leggu
must have a sufficiently large variety of actions in ordernswe
a sufficiently small variety of outcomes in the essentiaiaides
E. This principle has important implications for practicsitua-
tions: since the variety of perturbations a system can paty
be confronted with is unlimited, we should always try maznitis
internal variety (or diversity), so as to be optimally prepd for
any foreseeable or unforeseeable contingency.

Dikel et al. reason around that if a software architectureobrees more
complex than its environment, it may become too expensivehfe organi-
zation to support. In the book [35], Kane et al. describe 3fapizational
patterns and anti-patterns using the principles; VisiamytRm, Anticipation,
Partnering and Simplification (VRAPS).

If the environment would include the organizational enmireent as well
as the business environment then both the Micro-Design [@@& patterns
(discussed by Beck [36], Buschman [37] , Shaw [26], Gamm§adB8 Fowler
[39]) as well as the Macro-Design level [29] patterns (désmad by Fowler
[39], Coplien [40] and Kane [35]) must harmonize in their qoexity with the
complexity of the software architecture for a sustainabfeasare system. For
industrial software systems, a domain model of the busidessin along with
a measure of its complexity would be required in order to ustded on what
level the software architecture complexity should be.

Many attempts of measuring software architecture comfyldxdave been
made: Boehm et al. describe MBASE that considers architglatomplexity
[41]; Halstead [42] proposes measures to predict undetistgreffort based
on grammatical complexity of code modules; McCabe [43] psgs a graph-
theoretic cyclomatic complexity measure etc. The quessdh and in that

190 Paper F

case, what kind of organizational and architectural coxifyleneasure should
be used in the law of requisite variety if it were to be apptedoftware engi-
neering for the sustainability of industrial software gyss.

In the following lists of the sustainability concerns, thencerns’ impor-
tance for sustainability is ranked. The ranking is done ediog to how many
of the interviewees mentioned the concern as importanufstagability or de-
sirable for sustainability. If four or more intervieweesmtiened the concern,
then it got ranked as ***; if two or three interviewees memiga the concern,
then it got ranked as **; and if only one interviewee mentidiiee concern,
then it got ranked as *.

Concerns with Scope Contexts perspective:
1. Inventory Sets Abstraction

(a) Well-known sustainable key competences***

(b) Well-known key stakeholders*

(c) Well documented system knowledge***

(d) Sustainable Human Machine Interface (HMI) technology*
(e) Documented role descriptions***

2. Process Transformations abstraction

(a) Formalin-house software development process*
(b) Formal technology evaluation process***
(c) Formal architecture evaluation Process***

3. Network Nodes Abstraction
(a) Comply with standardization organizations and fedagahcies***
4. Organization Groups abstraction

(a) Sustainable standards***

(b) Sustainable 3d party software***

(c) Sustainable HMI technology vendors*

(d) Sustainable development organization groups***

5. Motivation Reasons abstraction

Software Engineering Taxonomy and System Sustainability 91

(a) Sustainable revenue strategy*
(b) Sustainable target markets in need of sustainableragsté
(c) Open and communicative organization culture***

It's striking that so many concerns with a Scope Contextspgestive are
seen as having high importance for corporate sustainabNbt all of these
concerns are targets for traditional software enginedsirtgnany of them ac-
tually are, such as: stakeholders, documented system kdge| software de-
velopment process, and architecture evaluation procediser ©@oncerns are
dealt with within the field of organizational theory: key cpetences, role de-
scriptions, project management process, developmemizaeon groups, and
organization culture. Some are related to the field of ecacsimevenue strat-
egy, target markets. Some concerns are related to techndidi technology,
technology evaluation process, 3d party software, HMItetbgy vendors and
standardization organizations. Compliance with fedegehaies’ regulations
processes may be a cross-cutting concern.

Concerns with Business Concepts perspective:
1. Inventory Sets abstraction
(a) Short-term and long-term gain in balance in cost-bemefdly-
Sis***

(b) Feature-driven and quality-driven Return Of Investineaicula-
tion***

(c) Maintenance-phase cost separated from design-phats® co
(d) Globally applicable development Key Performance lattics (KPIs)**
(e) Objective time-prediction of software developmenksas*

2. Process Transformations abstraction

(a) Excellent technology scouting***
(b) Few customer-tailored architectural changes***

(c) Quality improvement projects balanced with featureali@gment
projects***

(d) High-frequentcommunication between target marketicuers and
product managers***

(e) Analysis of target market need of new technology***

192 Paper F

3. Network Nodes abstraction

(a) High-frequent communication between 3d party produppser
and development organization***

(b) High-frequent communication between product manageaed
architects***

(c) High-frequentcommunication between distributed dtgwment teams***
4. Organization Groups abstraction
5. Timing Periods

(a) Long system life cycle***
(b) Release cycle in balance with customer-desired syspelata-rate***
(c) High-frequent project follow-up cycles*

6. Motivation Reasons abstraction

(a) Strategy for keeping sustainable key-competences***
(b) Cultural boundaries communication strategy***

(c) Well-communicated system-related customer goals aweldp-
ment goals*

Sustainability concerns with a Business Concepts perispeate seen as
having high importance by all roles. The Business Concegisgective in the
Software Engineering Taxonomy, mapping the case study @atze business
perspective of the development organization and dealsavithyday work is-
sues for all people working in the development organizafidre interviewees,
with the exception of one architect, had all worked for 10rgea more within
their current organization and in this time they had co#dcBusiness Con-
cepts concerns they see as highly important for the susiidityaf the system
they develop.

The Inventory Set perspective’s mapped concerns have nadisefrom
software engineering-, economics-, and management th&beyinterviewed
product managers asked for better ways of calculating tharR@©f Invest-
ment for quality-focused projects and for long-term préged he current cal-
culations benefit feature-driven projects as well as stesrir projects resulting
in developers hiding quality-improvement they see as rezagsn the feature-
driven projects. This could be one reason for over-optimigne-prediction
calculations done by the developers, since they only getoappfor feature

Software Engineering Taxonomy and System Sustainability 93

implementations. However, calculating a correct develepneffort for a pro-
posed change request is difficult.

Curtis describe the time required for learning applicatspecific informa-
tion as being buried under the traditional life cycle phasecture of most
projects and unaccounted for [20]. Thus, Curtis contintlestime required to
create a design is often seriously underestimated. Bydimfthe educational
aspect into the development effort estimations, the esmanight be more
correct than today. Some of the interviewees reported oeréxievelopers
making better estimations than non-expert developers. ekpert developer
had long-time experience of the system and probably of tipdicgtion do-
main of the customers as well. These expert developers vemde need less
education effort than the others, contributing to makingjrthime-estimates
more correct.

None of the interviewees had a clear picture of how they measchedule
alignment and development efficiency. The Key Performandieators (KPIs)
mentioned was the number of System Problem Reports relatqddlity-in-
use. The SPRs are reported by customers and testers. Thepnoanagers
said they would like to see a globally applicable KPIs thabswges develop-
ment performance in distributed development teams. Sgpgnaaintenance
cost from design cost would be a prerequisite for the use dblaatly appli-
cable KPI since maintenance and design have different cteaistics. Ac-
cording to the IEEE 610.12-90 definition [44], adopted by HBEE Software
Engineering Book Of Knowledge (SWEBOK) [45], design is btitte process
of defining the architecture, components, interfaces, ahdraharacteristics
of a system or component” and “the result of [that] proce SIWVEBOK de-
scribes software maintenance as “Once in operation, anesrele uncovered,
operating environments change, and new user requiremearass. The main-
tenance phase of the life cycle commences upon delivery”.

Globally applicable KPI could be based on the categoried@ttified in-
formation needs in the development organization suggédstesintolic [46]:
Schedule and Progress; Resources and Cost; Product Si&tanility; Prod-
uct Quality; Process Performance; Technology Effectigen€ustomer Satis-
faction. The KPIs could also be based on the complexity nreasliscussed
in: Boehm et al. [41], Halstead [42] or McCabe [43].

The customer-specific architectural change projects wexestainability
concern voiced by all developers and architects. This aosfithe top-two
finding, in Curtis’s study, related to fluctuating requirerteeas a hinder for
software development productivity [21]. One architecthie Curtis’s study
said:

194 Paper F

Software architect: The whole software architecture, tgibevith,

was designed around one customer that was going to buy aeoupl
of thousand of these. And it was not really designed arouad.th
marketplace at all ... Another ..., customer had anothednee
we’re, trying to rearrange the software to take care of these
customers. And when the third one comes along, we do the same
thing. And when the fourth one comes along, we do the sante thin

A similar statement was voiced by some of the interviewectigers and
architects. This does not necessarily have to be a bad thihg isoftware
system is designed to have configuration possibilitiesddorting the system
for a specific customer. But for the system to be designedihis the target
marketplace most important business processes have tobeikand the sys-
tem designed around these. Coplien has suggested the danadysis as one
way of finding commonalities for a system’s target markef[4lhis relates
to the sustainability concern findings: “Keep close conteath target market
customers” and “Analyze target market needs for new tecyyd!

Concerns with System Logic perspective:
1. Process Transformations abstraction
(a) Don’tmimic organizational groups’ interfaces whenigesg sys-
tem components’ interfaces*
(b) Minimum of complexity in architecture**

2. Motivation Reasons abstraction

() Reliability***
(b) Usability***
(c) Maintainability***
(d) Portability**
(e) Modifiability**
(f) Scalability**
(g) Understandable requirements**
Maintainability of the system is crucial for customers aesl@lopers. Since

the system is an expensive long-term investment for botleldper and cus-
tomer, the maintenance phase is very long ranging from témirty years.

Software Engineering Taxonomy and System Sustainability 95

Portability, modifiability, scalability and maintainaityl are seen as impor-
tant qualities to achieve. At the same time these qualitesancerns that the
companies in the study have difficulties to implement inrtegstems. Porta-
bility, modifiability, scalability and development maiirtability are not ob-
servable in runtime and are quality concerns that the dpwedmt organization
have. The customers’ concerns are related to run-time wdisierqualities as
reliability, usability and maintainability in form of e.gon-the-fly upgrades
and easy integration of inter operating systems. The riétiaquality is seen
as achieved by the case study’s participating companits\ilewees. The de-
velopment organization’s quality concerns not observableintime are seen
as not fully achieved.

Concerns with Technology Physics perspective:
1. Inventory Sets abstraction

(a) Isolated Business Logic***

(b) Sustainable Human Machine Interface (HMI) technologmpo-
nents*

2. Process Transformations abstraction

(a) Sustainable Business Logic supporting sustainabl@ecus busi-
Nness processes***

3. Network Nodes abstraction

(a) Stable system inter-operation interfaces***
4. Organization Groups

(a) Low-frequent changing HMI*

In the interviews, the importance of isolating the core bass logic from
frequent change impact was mentioned several times. Tlheebtminess logic
is a market differentiator and sustainable since it sugbg customer process
needs that are sustainable. Since these sustainable fabdscastomers do
not change over decades, the business logic handling tleesks is especially
important to identify, master and isolate.

The “Stable system inter-operation interfaces” concers idantified as
growing in importance due to the growing requirement onroperability in-
ternally at the customer location through intranets andriternet.

196 Paper F

All of the interviews testified that the Human Machine Inged was the
part of the system with the most frequent changes. Only oeeviiewee ex-
pressed a desire for sustainable HMI components which caugort easy
updates to the HMI. This was a bit surprising. If the HMI is thebsystem
with the most frequent changes then the concern would ldgiba to find
HMI technology that is sustainable in order for the frequelminges to be
less challenging. Relating to the Usability-Supportingiitecture Patterns
study of the interplay between usability and software dedhiire, isolating the
user interface logic is not enough to achieve a usable syi&g&). Architec-
tural changes are necessary in order to support aspectslofitys Frequent
changes to the user interface would hence correlate to shamges in the ar-
chitecture in order to get the desired behavior of the ugsesaction with the
system. Architectural changes are expensive since antectinal change in a
complex legacy system has a series of consequences foistieesylr he aware-
ness of the interplay between usability and software agchite is however
low in the software engineering community. In the IEEE SaiftevEngineer-
ing Body Of Knowledge (SWEBOK) published 2004 [45], the waoikhbility
is mentioned six times but SWEBOK refers to the software eoguics disci-
pline for how to work with usability. Rozanski and Woods sagtthe isolation
of user interface logic as the only usability tactic, in gast to their thorough
descriptions of ten security tactics [48].

Concerns with Components Assemblies perspective:
1. Inventory Sets abstraction
(a) Re-usable components*
2. Network Nodes abstraction
(a) Standardized communication protocols***

The issue with re-usable components was a concern for ordyobithe
interviewees. In [49], Jacobson et al. discuss the reusemponents and
say that reuse is hard because the following factors have iotérwoven and
mastered:

e Vision
e Architecture

e Organization and the management of it

Software Engineering Taxonomy and System Sustainability 97

e Financing
e Software engineering process

According to the analysis of data in this case study, theeenseto be a
lack of long-term quality investments possibly due to thel KBmbers and
NPV calculations favoring short-term investments. Onlg amterviewee saw
re-usable components as important for sustainability Arsdcould be due to
the difficulty of integrating the re-usability factors,tksl by Jacobson, in the
software development organization. Another reason mighhb lack of soft-
ware engineering insights among the system’s managemetisasssed in
Section F.4. If the management do not involve themselvesthd software
architecture tactics for how to address maintainability arodifiability con-
cerns, which typically result in long-term investmentse firojects with this
type of agenda suggested by architects and developersdss/eHance of be-
ing approved and prioritized.

In [18], Dyllick and Hockerts describe the non-balance afrsttierm needs
and long-term needs when setting business goals as:

In recent years, driven by the stock market, firms have tetwled
overemphasize short-term gains by concentrating more amn-qu
terly results than the foundation for long-term successchSan
obsession with short-term profits is contrary to the spifitsas-
tainability, which requires a balance between long-terrd ahort-
term needs, so as to ensure the ability of the firm to meet thasne
of its stakeholders in the future as well as today.

Case Study Propositions versus analyzed Data

The status of the propositions in relation to the analyzélected data is:
1. We believe sustainable systems can control the develozust
(a) This proposition was not verified nor rejected. The witawed per-
sons were not the ones who controlled the development cbst. T

case study should have included line managers and progeizie
to test this proposition.

2. We believe the customers expect the system to be longd-live

198 Paper F

(a) This proposition is verified. Sustainable system custsndo not
want unnecessary updates to the system for long time petiges
ically 2-3 years. A replacement of the system is acceptel ait
time-period of typically 10-30 years.

3. We believe offering a sustainable system is a market ddgan

(a) This proposition is verified. Developing a sustainalblgustrial
software system is extremely expensive. Due to the costyét'y
difficult to get a fast Return-Of-Investment when introchgcé new
system. Not many competitors are willing to take the risk.diAd
tionally the established sustainable system has a mareteti-
tiator of being reliable for long times. By being reliable fong
times, the system appeals to potential customers not giltiriake
the risk of investing in a relatively new system on the market

4. We believe sustainable systems must cope with changgammations,
technology, business goals, and stakeholders’ conceittgw losing
control over its cost, quality and schedule output

(a) This proposition is not verified nor rejected. The intewed per-
sons were not the ones who controlled the development aaeit, g
ity and schedule. The case study should have included lime ma
agers and project leaders to test this proposition.

5. We believe sustainable systems will have an organizatitma high
communication interaction

(a) This proposition is verified. The implicit knowledge tietwell-
known sustainable key-competences is communicated fréigue
through informal information channels, e.g. ad-hoc facéate
discussions.

6. We believe organizations managing sustainable systélirizawe an or-
ganization with clear defined roles and clear hand-overfofination

(a) This proposition is rejected. The roles of the intengevpersons
were not clearly defined and no clear hand-over of infornmatio
took place. The reason why the development still worked was t
find in the implicit knowledge owned by a set of sustainabhg-ke
competences in each company. The long work experience gave
them an implicit role as a source of information to whom osher
turned for help when needed.

Software Engineering Taxonomy and System Sustainability 99

7. We believe organizations managing sustainable systeithplan for
changes by forward feeding them upon detection into thenatanof
next major steps of the system

(a) This proposition is verified. When detecting major temlbgy
changes, e.g. Visual Basic support with-drawn from Micfgso
the organizations plan for the exchange. The planned steps w
pre-studies, architectural planning and release planriogvever,
when out-sourcing development work to low-cost countties or-
ganization did not do any pre-studies, or set up any rematéeco
encing facilities, or gave any courses in distributed wodnage-
ment. The non existent planning of the new distributed wagae
nization was reported as the most major threat to the sudiiiy
of the system by all three companies in the case study.

8. We believe organizations managing sustainable systelrisawe stated
long-term business goals communicated to the entire azgdon.

(a) This proposition is rejected. No one of the intervieweasld list
the mostimportant long-term business goals. They alsodtitbe!
that this was a hinder for the system’s sustainability.

9. We believe major organizational changes are the mostulifthanges
for a sustainable system

(a) This proposition is verified. All interviewees reportea the dis-
tributed development organization as the largest threaystem
sustainability. Additionally, it was reported on the urariele-
cision authority the development organization experidneben
controlled by more than two organizations located in défeparts
of the world. The unclear decision authority often led to sddamd
of consensus decision not optimizing the system but takdreto
politically correct.

10. We believe sustainable systems can do major archit¢ctenges with-
out the customers noticing any major changes to the prodemt.in-
stance, migrating to a product-line architecture withdou@rmging the
essences of the product

(a) This proposition is verified. All of the interviewees ogfed on the
importance of backward compatibility and the customerstingn

200 Paper F

no unnecessary production stops due to system mainten@hee.
development organizations planned for architectural ghanvith
the requirement on backward compatibility in focus. At theng
time this requirement was perceived as one of the most difficu
to achieve causing high development costs. But all interses
reported that the backward compatibility was a key-markétrd
entiator and as such very important.

11. We believe sustainable systems have high-frequentaiater devel-
opment progress in between release dates

(a) This proposition was neither verified nor rejected. Therviewed
persons were not the ones who controlled the developmenitgss.
The case study should have included line managers and projec
leaders to test this proposition.

Sustainable Development Dimensions

The list of success-critical concerns from the intervievesteanslated into sus-
tainability capital according to the three dimensions; fwical, Environ-
mental, and Social. Two of the systems support customes#bsas processes’
efforts to reduce energy consumption. Considering therenmental sustain-
ability, the systems therefore help the customer to redoeeonsumption of
natural energy resources. This supportis listed as enviental capital. Addi-
tionally, all three companies have good reputation amostpeoers for having
a reliable, high-quality product. The reputation is therefadded as an in-
tangible economical capital. Long market presence is ogyeakpect to the
sustainability of the industrial software systems. By hgiiong market pres-
ence and a reliable system, the customers trust the systériharefore feel
that they take a smaller risk by investing in the system. THrget market
of the industrial software system is sustainable itselficivimake the target
market customers willing to invest in a comparably expensiystem. These
customers feel that they will achieve a return-of-investitie a relative short
time compared to the lifetime of their business processhes.slistainable tar-
get market is added as tangible economical capital. Dueddihh initial
development cost of the industrial software system, few metitors are en-
tering the target market since the systems are sold maimytaliong market
presence and good reputation. Newcomers have no long taggket presence
and have not yet built up the good reputation of being retiéd decades. The
few competitors on the target markets is also added as edoalbapital.

Software Engineering Taxonomy and System Sustainability @1

Figure 5 shows the distribution of sustainable developroapital for the
three industrial software system development organigatio the case study.
Even if many capital units are classified as economical abpitd only one
unit as environmental capital, the number of capital undssinot say any-
thing about their relative value to the stakeholders. Ithhlge that the single
environmental capital unit is more worth to the system’&ait@elders than ten
of the economical capital units.

There is no balance in the dimensions, the tangible ecoradsustainabil-
ity is over-represented. It shows that, for individualsykiog in the industrial
software system domain, it will take substantial time beftre concept of
sustainable development will be natural in all of its dimiens. Creating eco-
nomical value is important for industrial systems, but thkes for two of the
systems would not be as high if the systems did not contritaugereduction
of the natural resource consumption. The environmentaasubility is in-
teracting with the economical sustainability. The sociadtainability capital
was decreased when distributed development was introdutieel companies.
Distributed development is seen as the most major threhetsustainable de-
velopment. There are ways to make distributed developmerk and many
of them represent an increase in social capital by soctadiza Oshri et al.
argue that, in order to achieve successful collaboratiomsfshould consider
investing in the development of socialization despite tbestraints imposed
by global distribution [50]. The socialization efforts ddibe e.g. increased
communication through virtual Face to Face (F2F) meetikigk;of meeting,
progress meetings etc.

F.3.5 Summary

Using the Software Engineering Taxonomy to classify theceons collected
from the interviews, clarified the enterprise architectpegspectives of the
concerns, i.e. if the concern was a system architectureecormr an business
concepts concern. Most of the concerns were classified irpéhgpectives
where executive leaders and strategist are responsibtedanodel descrip-
tions. Management of business processes, strategiesanaisis, external
partnerships, communication, staff, target markets eseen as the key to
achieve sustainable development.

The results of the sustainable industrial software systesse study are:
a set of success-critical concerns for sustainability; f&fieel propositions, 2
rejected, and 4 still to be verified or rejected. The list afcass-critical con-
cerns does not include as many architectural successgaasoexpected. In

202 Paper F

Economic
Sustainability
+ Isolated business logic in system A - Documented role descriptions
+ Sustainable business logic that supports - Sustainable 3d party software
sustainable customer business processes - Sustainable standards
+ Stable system inter-operation interfaces - Highly usable system
+ Standardized communication protocols - Highly maintainable system

+ Compliance with standardization
organizations and federal agencies

+ Long System life cycle

- Short-term and long-term aspects in
balance in cost-benefit analysis
- Feature and quality driven Return Of

+ Release cycle in balance with customer- Investment calculation

desired update-rate

+ Reputation

+ Sustainable target market
+ Highly reliable system

+ Strategy for keeping sustainable key-

competences
+ Long target market presence

- Objective time-prediction of software
development tasks

- Excellent technology scouting

- Few customer-tailored architectural
changes

- Quality improvement projects balanced with
feature development projects

+ Few competitors on the target markets - Well documented system knowledge

Environmental
Sustainability
+ System contributes to reduced

consumption of natural energy
resources

- Formal technology evaluation process
- Formal architectural evaluation process
- Analysis of target market needs of new
technology

Social

Sustainability
+ Well-known sustainable key-competences
+ Well-known success-critical stakeholders
+ Open and communicative organization culture
+ High-frequent communication between 3d party
products' suppliers and development organization
+ High-frequent communication between target market
customers and product management
-High-frequent communication between distributed
development teams
- High-frequent communication between product
management and architects
- Sustainable development organization groups
- Cultural boundaries communication strategy

Figure 5: Three dimensions of important sustainable deveént capital in
the domain of Industrial Software System according to thdirfigs. The “plus”
sign indicates that the companies felt they had the capitaé “minus” sign
indicates they felt they needed an improvement.

Software Engineering Taxonomy and System Sustainability

the report, it's speculated if this is related to the lack @figensus around the
concept of software architecture. The lack of a clear softveachitecture def-
inition and the lack of tools and methods based on such defintight make
the industry reluctant to embrace the concept of softwarieitcture. As long
as the software architecture concepts are not explicifindd, employing soft-
ware architecture concepts might constitute a risk to ttesirial software sys-
tem development organization. Curtis’s study [20][21]né& study [35], and
the System Sustainability case study point toward a passibhclusion that
a working software development organization, with modedodiptions from
the Business Concepts perspective in place, is a preregtosisoftware en-
gineering tools and methods to have a significant impact oduativity and
sustainable development.

When applying the concept of sustainable development taldmesified
concerns from the interviews, which were ranked as beindggdf importance
to the interviewees, there was an unbalance between themooal sustain-
ability, environmental sustainability, and the socialtairsbility. Most of the
concerns addressed economical sustainability or wayscoé@sing economi-
cal sustainability. Some addressed social sustainabilitypon addressed envi
ronmental sustainability. In the analysis, one environtaleustainability issue
is added based on knowledge of the systems collected thidagimentation
and experience. When the value of addressing the indivislustiainability
concern is not known, it's difficult to verify, based on theeimelationships
between sustainability dimensions, if the system devebopns sustainable or
not.

204 Paper F

F.4 Software Engineering Taxonomy and the IF
method

The Influencing Factors (IF) method collects concerns,aexdr Influencing

Factors from the concerns, and analyzes those for theireimflel on business
goals and software quality attributes. The result is a lassirgoal oriented
prioritization of software quality attributes. In [4], thefluencing Factor is a
factor that states a motivation for possible system requergs from the stake-
holders’ perspective.

By presenting the collected effect of several concerns, @éga matrix
format [4], the Influencing Factors method makes both thénless goal pri-
oritization and the software quality attribute prioritian clear and therefore
guides the architectural decisions and strengthens tkelstlders consensus
around prioritized concerns. The analyzed concerns cdstdantribute to
a more complete requirement specification, helping theesystevelopers un-
derstand the origins of the requirements.

Different impacts of the Influencing Factors are used torfiitk@ among
the Influencing Factors for two authentic cases [4]. The fieste was per-
formed on the upgrade of a large legacy industrial softwgstesn and the sec-
ond case on the re-factoring of an existing industrial safensystem. The two
field study systems had a diverse set of stakeholders, susdtftasre architect,
system architect, developers, testers, product managelimenmanagement,
engineers, and users. Both systems suffered from an unoidarstanding of
what concerns were the most important. The resulting impaalysis helped
the stakeholders prioritize among software quality attebscenarios in the
case with the re-factored system. The prioritization ideldi usability and led
to the Usability-Supporting Architecture Pattern studjf3R The other case,
with the legacy system, resulted in the stakeholders’ wstdeding of their
perhaps too high focus on short-term market expansionadsiéa balanced
focus including long-term quality enhancements. Today ¢bimpany is doing
a major investment in enhancing the maintainability of tysteam.

Influencing Factors from the Influencing Factors case studyhare used
for additional investigation using the Software Enginegifaxonomy as a rea-
soning framework. The Influencing Factors are classifiedér8oftware Engi-
neering Taxonomy to explore the possibility of a relatiotwseeen the classified
Influencing Factors and their perspective and abstraatidime taxonomy.

Software Engineering Taxonomy and the IF method 205

F.4.1 Classification of Influencing Factors

The Influencing Factors are all classified as having the Mtitw Reasons

abstraction since they describe stakeholder motivationthe usage perspec-
tives: Scope Contexts, Business Concepts and System Lieigiare 6 shows

the classified influencing factors with business goals osltips and quality

attribute impact. The business goal ownership statessiftlitt customer or
development organization that owns the business goal,hias. a benefit of

achieving the goal. Indirect, the development organizdtias a benefit of ful-

filling the customer’s business goals. But the customemnass goal would not
be addressed by the development organization if the custbatenot voiced

the goal or concern related to the goal.

F.4.2 Analysis of Classified Influencing Factors

Influencing factors with a System Logic perspective do neehdevelopment
organization’s quality concerns, e.g. testability and ntehability. These
concerns never surfaced as part of the success-critidarstiders’ concerns.
Testability and maintainability are non-runtime obseteatualities [13]. If
successfully implemented, the qualities could contritiotéong-term cost-
reductions for the development organization. Howevesehe/o qualities are
left to the architect to deal with and take informal decisiam in the investi-
gated cases.

The understanding and interest to deal with software mttidmplement
non-runtime observable qualities as testability and na&ability seem to be
non-present among the success-critical stakeholders.\iids verified for the
second case in the case study. Runtime observable qualiieeting the cus-
tomers’ perception of the system engage the successatstakeholders more.

Non-runtime observable qualities as testability and dgwalent maintain-
ability will likely never be voiced by customers and custamesponsible per-
sons. It should be noted that the system’s operation enviemit's maintain-
ability concerns, e.g. installation and on-the-fly upgsadffer from the de-
velopment environment maintainability concerns.

In the “System Sustainability” study described in Sectiod the archi-
tects and senior developers testified to how difficult it wasuild the busi-
ness case motivating development-environment maintaitysatnprovements
projects with a short-term cost-increase and long-terrhsasngs. One of the
findings was that all the companies in the study wanted alwarséfit calcula-
tion method that balanced short-term gains and long-teinsge they felt the

206 Paper F

Abstraction = MOTIVATION REASONS
(WHY)

Software
Development
Organization
Perspective \1,

SCOPE Business Goal | Quality
CONTEXTS Ownership Concern
IF3.1: Maintain backward compatibility Customers Modularity
IF4.1: Replace in house developed electronics and/o Developments |Availability
software with standard HW/SW without affecting
availability

IF4.7: Decrease development time by introducing the

product line system Developments |Maintainability
uct line sy:

BUSINESS IF1.2: Implement same performance as today Customers Performance
CONCEPTS |iF2.1: Make commissioning easier Customers Maintainability
IF2.2: Implement remote access Customers Security

IF2.3: Make it possible to upgrade parts of or wha system [Customers Maintainability
easy and fast.

IF3.2: Implement same robustness/availability as way Customers Availability

IF3.3: Implement same accuracy as today Customers Performance
SYSTEM IF1.3: Implement fast extensive communication Customers Performance
LoGIC infrastructure.

IF5.2: Handle analogue signals from external syste Customers Interoperability

Figure 6: Influencing Factors classified in the Software Begring taxon-
omy. The Influencing Factors related Business Goal owngrshd Quality
Attribute impact are shown next to the classification in omgt to clatter the
figure. Quality attribute concerns are classified in the@ydtogic/Motivation
Reasons cell.

current calculations much favored the short-term gains.

F.4.3 Summary

The classification of the Influencing Factors into the SofeAngineering Tax-
onomy contributed to some additional observations regagrsiakeholder role
and stakeholder perspective. For the stakeholders witBtiseness Concepts
perspective, maintainability and testability are handliéti software develop-
ment improvement strategies, e.g. introduction of protines. The architec-

Software Engineering Taxonomy and the IF method 207

tural structures for realizing these strategies are seldisoussed among the
success-critical stakeholders. Decisions regardingtaathral structures are
taken informally by the architects. According to the refsocase study analy-
sis of sustainable software development, the architealstfimard to build the
business case motivating development-environment maatigity improve-
ments projects with a short-term cost-increase and long-test savings. The
classification of Influencing Factors in the software engiirey taxonomy con-
firmed that this is a problem that has to be addressed e.gnirofean improved
short-term versus long-term gain return of investmentudaton.

208 Paper F

F.5 Software Engineering Taxonomy and the USAP
study

Usability and its interplay with software architecture veiscussed in the In-
fluencing Factors paper [4], as one of five quality attributés [2][3], the
Usability-Supporting Architecture Pattern field studyésdribed and discussed.
The field study was done in the domain of industrial softwgetems.

The field study contributes with a description of an enhand84Pp, three
described USAPs according to the enhancements, and a UStWuisotool
that visualizes the USAP information.

Visualizing the responsibilities in a tool helps the softavarchitects (on
a detailed design level) to implement usability supportie software archi-
tecture for specific usability scenarios early in the sofendesign phase. The
usability design is part of the enterprise architecturstesy architecture, and
software architecture but has not been put in relation teehe an explicit
fashion before. This field study’s research has thereforgribmted to fill a
gap not covered by existing literature in a sufficient way.

The contribution is significant since very few studies cgporéon soft-
ware architects being able to use a tool early in the softa@asign in a way
that helps them implement usability support in the softwaaahitecture. The
two architects in the field study used the tool for six hourd eported on a
development cost saving of more than five weeks gained by ititeraction
with the tool.

In this section Software Engineering Taxonomy (SET) willised in order
to create two process composites (methods). The work floweatting these
process composites guided by the SET will be:

1. Identify artifacts of the Usability Supporting Architece Pattern con-
cept

2. Classify artifacts in the Software Engineering Taxonomy

3. Create a process composite in the Software Engineenagoany, by
relating the classified artifacts in a sequence adheringgazachman
laws

The first process composite will describe a sequence foringeWSAP
artifacts in order to evaluate a software architecturersmjahe USAPs. The
second process composite will describe a sequence ofroged8AP artifacts.

Software Engineering Taxonomy and the USAP study 209

F.5.1 USAP Artifact Identification
USAP Responsibility

The word “responsibility” has been used in the publicatioh&)SAP [2][3]
but not formally defined in the context of the USAP. The resifity is orig-
inally a section of a Class Responsibility Collaborator @Rard. CRC cards
are used as a brainstorming tool in the design of objecttetesoftware. The
CRC cards were proposed by Cunningham and Beck [51]. Theyidege-
sponsibilities as:

Responsibilities identify problems to be solved. The smiatwill

exist in many versions and refinements. A responsibilityeseas

a handle for discussing potential solutions. The respalitsds of

an object are expressed by a handful of short verb phrase$ ea
containing an active verb. The more that can be expressed by
these phrases, the more powerful and concise the desigrin Aga
searching for just the right words is a valuable use of timélevh
designing.

(p- 2[51])

The responsibility as described by Beck and Cunningham ates used
by Buschmann et al. to describe the responsibilities okelagn architectural
patterns [37]. They describe the responsibility as:

Responsibility: The functionality of an object or a compuatrie a
specific context. A responsibility is typically specifiedabget of
operations.

(p. 438[37])

Wirfs-Brock uses responsibilities in the same sense as BedkCunning-
ham [52]. She defines the responsibility as:

A responsibility = an obligation to perform a task or knowon{
mation

(p- 3[52])

Often there is confusion about the difference between remeénts and re-
sponsibilities. Since both are elements of the system ipihlelem space, they

210 PaperF

might appear to describe the same system motivation. InEEE ISoftware
Engineering Book Of Knowledge (SWEBOK) [45], the requirerhis defined
as:

A software requirement is a property which must be exhildited
software developed or adapted to solve a particular probl&he
problem may be to automate part of a task of someone who will us
the software, to support the business processes of the iaegam
that has commissioned the software, to correct shortcosnafg
existing software, to control a device, and many more. The-fu
tioning of users, business processes, and devices is thypooen-
plex. By extension, therefore, the requirements on pdaicoft-
ware are typically a complex combination of requirementsrir
different people at different levels of an organization #odn the
environment in which the software will operate.

The requirements are therefore a result of conflicting coreéom the
software system’s stakeholders and the software systemisoement. The
requirement is defined as a property. The USAP respongilititthe oppo-
site is not the result of conflicting concerns. The USAP resjiulity is con-
structed solely to fulfill the usability quality concern farspecific task and it
has distinctive characteristics that differs it from a riegnent. In short, these
are:

e Context - The USAP responsibility is always defined for a #jetask
for the fulfillment of the usability quality of that task.

e Localization - The USAP responsibility is always localizeda particu-
lar portion(s) of the system.

e Functionality - The USAP responsibility always describegsaaticular
behavior of the particular portion(s) of the system to whidhlocalized.

Additionally, the processes in which the artifacts aregnated differ. The
requirement artifact is integrated in the process of ctihgcstakeholders’ con-
cerns and eliciting these. The USAP responsibility is p&aroarchitectural
design process coupled to the processing of a general igaBilpporting
Architecture Pattern. The USAP responsibility is therefoot specific for a
commissioned system and its characteristics are exprasaaggeneral fashion
to be adapted by any system.

Software Engineering Taxonomy and the USAP study 211

USAP Activity and Task

During the work of identifying “Alarm & Event” USAP forces, sk analy-
sis was done to identify the tasks of the “Alarm & Event” sylstem’s users.
From the task analysis the forces should be identified Iggidirthe construc-
tion of usability supporting responsibilities.

In the article “Task Knowledge Structures: Psychologicgib and inte-
gration into system design.” [53], Johnson and Johnsonritescthe impor-
tance of task analysis to assist software designers torc@hstomputer sys-
tems which people find useful and usable:

One way to approach this goal is to assume that knowing some-
thing about how users approach and carry out tasks will aiff-so
ware designers when making design decisions which withaltily
affect computer system usefulness and usability. As at reski
analysis has emerged as an important aid to early design ih HC

Task analysis according to Johnson and Johnson is an ealpirethod
which can produce a complete and explicit model of tasksenditmain, and
of how people carry out those tasks. Even if the USAP studyndiddo a
complete task analysis according to how task analysis ixrithes! [53], it used
a number of the proposed data collection techniques for aashysis. The
techniques used to identify the tasks for the “Alarm & Evesa&nario were:

e Direct observations of commissioners demonstrating therfA & Event”
parts of the systems.

e Interviews with: commissioners of the systems, “Alarm & B¥/esystem
architects, support responsible for the systems.

e Studies of: documents describing the usage of the “Alarm &riEvsys-
tems, “Alarm & Event” guidelines e.g. the “Engineering Egient &
Materials Users’ Association” (EEMUA) publication no. 19RBlarm
Systems - A Guide to Design, Management and Procurement” [54

The analysis of the collected data was done as:
1. Identify the roles and created work products (goals) ef ‘thlarm &

Event” parts of the current systems (which would be constdid into a
product line system).

212 Paper F

2. Perform a task analysis of the activities involved in trepthe work
products of “Alarm & Event”.

3. ldentify the objects used in performing the actions, tRgised Alarm”
and “Alarm & Event condition”.

4. Reason around which ones of the tasks require archigstupport, e.g.
“Author an Alarm & Event condition”, “Handle a raised Alarm”

The result is a hierarchy of activities with sub-activitezdled tasks. The
activity is the highest level in the hierarchy and the tasthessecond highest
level.

The most important aspects of the tasks with requirementdritactural
support are formulated as responsibilities. In [55], therfwellation” USAP is
presented as a modified version of the Model-View-Contr¢N&/C) pattern
first defined by Beck et al. [36]. The MVC pattern was extendét wew
components, connectors and responsibilities to accomiadida “Cancel” re-
quirements on usability support.

Using the experience from the MVC pattern for “Cancel”, the @ pattern
was used to test if it also could be modified to host the redpiities for tasks
involving the work products: “Alarm & Event Condition”, “lés Profile”, and
“Environment Configuration”. The MVC-pattern did not deeithe responsi-
bilities. The task analysis was the base for constructirapilis/-supporting
architecture responsibilities. If the constructed resuilities would not have
been possible to assign to a modified MVC-pattern, eithethemgattern-
solution would have been chosen as a base or a new archékesannple solu-
tion constructed from scratch.

The responsibilities are formulated as ways in which theéesysarchitec-
ture must support the usability quality of the task in ordemtake the task
useful and easy to perform. At the time, this resulted in Bpoasibilities. To
structure the responsibilities, they were classified atiogrto the common ac-
tivities they support. This resulted in a hierarchy of atié and tasks, and the
tasks’s responsibilities. After a review of the CMU/SElrteand an “Alarm
& Event” expert at ABB, some of the responsibilities coulddoasolidated or
removed which resulted in a list of 43 “Alarm & Event” respdrikties.

Further analysis discovered that the responsibilitiemftbe processing
of the three work products had been categorized in a veryagitfisishion ac-
cording to the activities they participated in. The actdstwere versions of:
authoring, execution, logging, and authorization. Platddrs for the activities

Software Engineering Taxonomy and the USAP study 213

were identified that were furnished with the work productaler The discov-
ery was a break-through since the activities are generabppticable to the
processing of more work products by furnishing the placééiolvith the work
product or role. Each activity had a set of tasks attacheid tAuthoring” had
e.g. the tasks “Create an [Alarm & Event Condition]” and “Mfigcan [Alarm
& Event Condition]”. The tasks also made use of the placedradd furnished
it e.g. with the work product [Alarm & Event Condition].

During the continued analysis, it was discovered that tlspaesibilities
were nearly identical for each activity task no matter if tegponsibilities had
been created for the “Alarm & Event” scenario, the “EnviramhConfigura-
tion” scenario or the “User profile” scenario. The differemould be described
by using the activity place holder and furnishing it with twerk product or
role.

The discovery reduced the total number of responsibiliteshe scenar-
ios from over hundred to 31, since the scenarios could sharsnon activi-
ties, each consisting of tasks and the tasks’ usabilitypstting architectural
responsibilities. The common activities, tasks and residlities each had
a placeholder furnished by the scenario’s work product ersttenario’s role
making the activity, task, and responsibility scenarie<sfic.

If the processing of the work products is supported by comnesponsi-
bilities, then the solution space also can be common. Thetaotural solution
supporting the “Authoring” activity can be shared by theqassing of all three
work products. The shared solution just has to make roomiffardnt inter-
pretations of the general activities’ placeholder. Thatlie common solution
has to be able to offer the user a way of e.g. authoring botHa & Event
Condition” as well as an “Environment Configuration”, buetmechanisms
behind how authoring is supported by components and theaber could be
the same.

What was discovered was a way of offering the architectssedble so-
lutions, supporting common activities for the processifignore than one
system-environment work product for more than one role pBesibilities are
usually presented as parameters tagged to components iMardidgram.
In [3], the reason why UML sample solutions did not work foe tindustrial
software system domain is explored. The idea surfaced ahgddresponsi-
bility implementation description to each responsibitigscription. For each
responsibility, the portions of the system and their betrauinplementing the
responsibility, are described.

The architects are offered one responsibility at a timettogrewith a tex-
tual description of how this responsibility can be impleiteehby portions of

214 Paper F

the system and the portions’ behavior. It is not stated wispbrtions should
or could be or what pattern the solution should be based othisrway the
architects can read the responsibility implementatioridgson and visualize
how the wording “portions of the system” might be translait@d their own
architectural design. If the architects feel that parthefdrchitectural design
are in place to support the responsibility in the way the oesjbility imple-
mentation describe, then they do not have to change thetectlrie in order
to implement that specific responsibility.

R16 R2
O
R15 R15, o3
Solution Space
#2
R11 r11® Or7

Figure 7: Examples of solution spaces spanned by two diffesets of chosen
points

This way of presenting responsibilities is like putting agnidying glass
over a very small part of a sample solution which lets the itgcts translate
what they see from this very small part into their own desiBepending on
what responsibilities the architects choose, the solutjmace will be differ-
ent. This is illustrated with a set of points in a two-dimemsil space, see
Figure 7. Depending on what points are chosen the resulpiagesspanned by
the points will take on different shapes. For a softwareigcture, it's not the
shape that will look different but the set of components dmirtinteractions
implementing the chosen responsibilities.

In the “System-Environment Interaction Hierarchy” in Fig8, the USAP
work product processing considered in the USAP field study“aystem-
operational environment interaction” work products. Asyously discussed
in the Section F.3, software quality concerns not obseevabtuntime as e.g.
maintainability would be concerns of processing of “systdenelopment en-
vironment interaction” work products. The “System-Envingent Interaction

Software Engineering Taxonomy and the USAP study 215

Level 1:
Business System — Environment Role & Work Products
Concepts I
v v
System — Operational System — Development
Environment (S-OE) Work Products Environment (S-DE) Work Products
1
\ v A 4
Alarm and Event Condition LSJ_SSLP\;\%I:E Environment Configuration
S-OE Work Product —_ S-OE_Work Product
_ Product _
]]]
2 v v L Z
Authoring Execution Logging Authorization
Activity Activity Activity Activity
| |
\ 4 \ 4
Create a(n) [S-OE Work Product] Access a(n) [S-OE Work Product]
Task Task
Level 2 l
System
Logic The system must provide a way for an
authorized author to create a [User Profile, | Usability Quality
Configuration description, Conditions for [~ Concern
Alarms, Events and Alerts] : Responsibility

Level 3: There must be a portion of the system with a mechanism to create new [User
Technology Profile, Configuration description, Conditions for Alarms, Events and Alerts] :
Physics Implementation Details

Figure 8: System-Environment Interaction Hierarchy withet levels

Hierarchy” has three levels: Business Concepts persge@ixstem Logic per-
spective, and Technology Physics perspective. The tadgsimaone in the
USARP field study studied the interactions between the systethits oper-
ational environment. For the interactions between theesysind its devel-
opment environment, the task analysis has to study howteathj develop-
ers, project managers etc work with the development of tistegy. A task
analysis of the development environment would result in ghecessing of
“system-development environment interaction” relatedkyaroducts with us-

216 PaperF

ability concerns from the development environment. Théesysenvironment
interface, in that case, would be the test/build/implensgstem-development
environment interfaces.

At the time of the execution of the field study, the family otiaities,
tasks, responsibility descriptions and responsibilitplementation descrip-
tions were called a “Foundational Pattern” to align the USiMEh the spirit
and work of Alexander [56][57]. The idea of a “Foundationattern” is de-
scribed in more detail by John et al. [58].

F.5.2 Classification of USAP artifacts

The extracted artifacts from the USAP concept are:

System Environment Business Roles and Work Products describes the sys-
tem environment’s roles and work products.

System Environment Interface - describes system’s environment interface,
e.g. customer Ul or development environment (build/tegifement)
ul.

Quality attribute - describes a feature or characteristic that affects arigtem
quality according to IEEE 610 [44].

System-Environment Interaction Scenario - describes an interaction between
the system and its roles, e.g. a use case or a quality adrdisenario.

Activity - describes an activity involved in the System EnvironmeugiBess
Roles’ creation of Work Products.

Placeholder - describes the role or work product. Is used by the actithity,
activity’s tasks and their responsibilities, in order toka@hem specific
to the work product or the role.

Task - describes a task of the activity.

Responsibility Description - describes how the system must interact with its
environment to ensure that a specific quality attribute eamof the task
is met.

Responsibility Implementation - describes the implementation of the respon-
sibility as particular portion or portions of the system ainelir behavior.

Software Engineering Taxonomy and the USAP study 217

Pattern Responsibility Description - describes a responsibility of an estab-
lished pattern from e.g. [59][37].

Pattern Responsibility Implementation - describes the implementation of the
responsibility as components and connectors [59][37].

Rules & Guidelines - describes existing quality-specific, domain specificgsul
& guidelines for how the system should interact with its eomment in
order to have a certain quality.

Note that if the system environment interface is a buildt, tes imple-
mentation interface between the system and its developansthe roles and
work products are the development’s roles and work produtte system-
role interaction scenario will then describe how the testebuilder interact
with the system. In this case the site-dimension of the SvEngineering
Taxonomy is the software development organization’s $itie system envi-
ronment interface is the interface between the system armiitomers/users,
then the roles and work products are the customer’s rolesvankl products.
For the last case, the site dimension of the Software Engige&axonomy is
the customer’s. Figure 9 shows the classification of the US®iRacts into the
Software Engineering Taxonomy.

F.5.3 USAP Information Description-Selection Process

This section describes the flow of describing or selectimgU$AP informa-
tion. The flow uses the classified artifacts in the Softwargif#ering Tax-
onomy, Figure 9, and describes a sequence that follows Zatknsonsis-
tency rules and uses the experience from how the “Alarm & EV@8AP was
created. The result is the USAP Information Selection/ Bpson Process,
which is visualized in Figure 10.

Notice that no step changes both the usage perspectiveaimddhmation
abstraction to align with Zachman’s fifth rule of excludinggbnal steps in
the framework when constructing process composites. Tdreréwvo start al-
ternatives: Existing system-environment interface, erghstem-environment
domain’s Business Roles & Work products. The first optiorspmes that
a system environment interface is at hand, e.g sketch ocyega For the
product line system in the field study, the start was the kegeser inter-
faces of the systems to be part of the product line. The legaeyinterfaces
are then described/ selected. Then follows a descripgtsuson of reusable

218 Paper F

Abstraction Process Organization Motivation
Transformations Groups Reasons
System (HOW) (WHO) (WHY)
Environment
Perspective
Business * Activity * Business Roles
Concepts e Task & Work
* Placeholder Products
System * Responsibility e System- e Quality
Logic Description Environment Attribute
* Pattern Interaction * Rules &
Responsibility Scenario Guidelines
Description
Technology * Responsibility e System-
Physics Implementation Environment
Description Interface
* Pattern
Responsibility
Implementation
Description

Figure 9: USAP artifacts classified in the Software Engiimgeiaxonomy.
The environment can either be the system’s operationat@mwvient or the
system’s development environment

system-environment interaction scenarios, with requingision usability sup-
port in the architecture not solved by separating the sysewronmentinter-
face logic from the rest of the system’s logic. Reusableesystnvironment
interaction scenarios can be chosen from the scenariogisfi Bass and John
[60] or the Usability Patterns from Juristo et al. [61][62}]. The USAP
field study used the USAP scenarios: “System Feedback” asér‘Brofile”
[60][64]. The latter was divided into “User Profile” and “Bnenment Config-
uration”.

If the start would have been the system-environment domd@nsiness
Roles & Work products, then the reusable system-environmtaraction sce-
narios are described/ selected in parallel with the detsonifselection of system-
environment domain’s Business Roles & Work products. Fange, a large
set of roles and work products are at hand. By using the réaisyistem-
environment interaction scenarios, the roles and work yetsdrelated to the
scenario can be identified. These roles and work products unssbility sup-
port in the architecture for the system’s implementatiotheifr activities and

Software Engineering Taxonomy and the USAP study 219

tasks. The description of the system-environment dom&n&ness Roles &
Work products must be the step before describing/ selectingable activities
and tasks. Otherwise the furnishing parameter of the agiplaceholder can
not be identified.

The roles and work products are described/selected in tktestep. In the
USAP study the roles were: system commissioner and systematp. The
work products were: “Alarm & Event Condition”, “User Profiland “Envi-
ronment Configuration”. By describing/selecting multiplerk products, the
general activities involved in the processing of the roletsk product can be
identified.

When the tasks are described/ selected, the task’s platstislfurnished
by the description/ selection of role or work product. In th8AP field study
the place holder was furnished with the “Alarm & Event coiudit, “Environ-
ment Configuration”, and “User Profile” for the majority ofetliasks. For the
authorization tasks, the placeholder was furnished wighrtthe, “Author” and
“User”. The role or work product, furnishing the placehalieused by the
activity, responsibility description, and the responigijpimplementation.

Responsibilities are described/ selected, using: quatityoute informa-
tion, rules & guidelines information, pattern responsiigis, scenario informa-
tion and task information. The USAP responsibility usedubability quality
attribute and hence supports usability in the architecture

The final step, the description/selection of the respolitsibmplemen-
tation, is the view with the Technology Physics perspectind the Process
Transformation abstraction, since in this view architegscribe components
and connectors. By examining the responsibilities’ impdatation from this
view, the architects can compare the responsibility imgletation description
with their design, without changing their mind-set to amstimformation ab-
straction and usage perspective. The description/setecfithe responsibility
implementation uses information from: the responsibdigscription and pos-
sibly, existing pattern responsibility implementatiorsdeptions.

If architects immediately would view architecture pattenwhich have the
Technology Physics perspective and the Process Trandiorrabstraction,
after considering requirements or user’s roles and workyets, the diagonal
step in the Software Engineering Taxonomy would introdacemsistencies in
the descriptions and a difficult shift in mind-set betweethtinformation ab-
stractions and usage perspectives. Using the Software&sging Taxonomy
for classifying elements of the USAP and for incorporatimg élements in the
USAP information description/selection process, contab to a harmonized
sequence of process steps with a end-product that matahegplectations of

220 PaperF

Organization Groups Process Transformations ~ Motivation Reasons
(Who) (How) (Why)
Placeholder |
Start2: w
System-Environment
Business Roles & Reusable Activities |
Work Products W
1\ Reusatle_TaSks | Business Concepts
Reusable Quality Attributes
Reusable general Responsibility
System-Environment Descriptions
Interaction Scenario A
- Optional: Rules
Optional: Pattern and Guidelines

Responsibility
Descriptions

System Logic

Startl: Reusable
System-Environment Responsibility
Interface(s) (sketch or Implementation

legacy) Descriptions

A

Optional: Pattern
Responsibility
Implementation

Descriptions Technology Physics

Legend: B is described/selected after A.

B’s description depends on the
description of A

Figure 10: USAP information description/selection pra;eassing the classi-
fied artifacts from the Software Engineering Taxonomy. Tharg describes
in what order the USAP artifacts should be described or ssdeguided by
the USAP artifacts’ classification view’s location in thedaomy.

Software Engineering Taxonomy and the USAP study 221

the USAP information user.

The USAP field study included the design and implementatitimeoUSAP
information selection tool, presented in PapefThe tool guided the architects
through the USAP information description/selection peschbut offered only
selection features.

F.5.4 Summary

The USAP artifacts were identified and classified in the SafenEngineer-
ing taxonomy. The classification of the USAP artifacts shiblwew the arti-
facts can be arranged in a process composite to describeSIAB thformation
description/ selection process. Some new discoveries mee during the
analysis of the classified artifacts:

e The inclusion of a traditional enterprise perspective, ibsiness con-
cepts perspective, led to discoveries of new interrelatigps between
the USAP artifacts: system-environment interaction sgenaystem
environment business roles & work products, system-enwir@nt ac-
tivities and tasks related to the roles & work products, oesbility de-
scriptions, quality attributes, and responsibility implentation descrip-
tions.

e System environment business roles and work products arg artiiact
in linking the USAP scenario to common activities and taskg®rting
more than one role or more than one work product.

e System environment may be operational or development@mvient.
The environment decides what system-environment inteyfagsiness
roles and work products should be used in the USAP informatier
scription/ selection process.

e The placeholder of the common activity is furnished by thekqgyoduct
or the role.

e The responsibility is related to the quality chosen to bepsued for
the scenario. For USAP, the usability quality is supportgthe USAP
scenarios. Possibly, the USAP information descriptiol@cten process
can be used for other quality scenarios, if their tasks’itjuabncern can
be expressed as responsibilities.

222 Paper F

F.6 Conclusions and Future Work

The Software Engineering taxonomy can serve as a reasaimgfvork into
which artifacts of software engineering case and field studan be classified
for the creation of process composites or for further anslysor the Influ-
encing Factors method and the Sustainable Systems Case theidlata was
classified and analyzed. For the USAP field study, the dataclaasified and
used for process composite creation. Applying the Softlagineering Tax-
onomy led to the additional contributions:

e Sustainable systems case study

— The sustainable key-competences in the industrial softeypstem
development organization carry the application domairnkadge
and the system knowledge, thereby increasing the socitdisus
ability of the company. The sustainable key-competencss e
knowledge on to the system developers during informal ahediigy
cussions.

— The development organizations sustain economical cdpjitalan-
ning for changes when the changes are technology changesi Wh
the changes are organizational, e.g. distributed devedopnthe
management have lost social capital by failing to plan fow tioe
development organization has to adapt to the new work-fdtm.
has been too little known in the companies, what requiresant
distributed development environment has on the developoren
ganization’s structures and communication.

— The incorporation of a remotely located development teannén
development organization will be especially difficult in altare
that has social capital invested in sustainable key-coemget and
their informal spreading of knowledge. If the organizatias ig-
nored investigating in explicit software documentatiorcreasing
the tangible economical capital, the new remotely locataditcan
make use of neither the social capital nor the economicatatap
related to system know-how.

— The sustainable target market increases the intangibleoetical
capital.
— Intangible economical capital in the form of goodwill anguéa-

tion is increased by delivering reliable systems for a Itinge to
the target markets.

Conclusions and Future Work 223

— The propositions regarding the importance of intangibleneen-
ical capital of explicit defined roles and hand-over of imfi@tion
along with explicit business goals communicated to thererti-
ganization were rejected in the case study.

— The social capital in the form of implicit roles, well-knowo the
developers, is replacing the economic capital in the forfoohal
descriptions of roles and formal communication.

— The case study'’s propositions regarding the importancewtrol
of the the cost, quality, and schedule for sustainable deveént
remain to investigate. The investigation has to includeririews
with project leaders and line management. The case studynask
that the product managers, software architects, and sdniai-
opers would contribute to the control of cost, quality andest
ule. This turned out to be a false assumption. The product man
agers, software architects, and senior developers h&a dittno
insights into how Key Performance Indicators were measored
how schedule control was exercised.

— The list of success-critical concerns for sustainable ldgveent
does not include as many architectural success-criticatems as
expected. This could be related to the lack of consensusdribie
concept of software architecture. The lack of a consisteftivare
architecture definition and tools and methods based on sefth d
nition might make the industry reluctant to embrace the ephof
software architecture. Risks are not welcome in industotivare
systems that have to live for decades. The business cas@e@rgu
added value of software architecture for sustainable deveént
is simply not good enough for the three investigated casdisein
domain of industrial software systems.

— In order to increase tangible economical capital in the fofigoft-
ware engineering process artifacts, e.g. architecturerigéions,
the companies must first increase the tangible economipéata
in form of organizational artifacts, e.g. role descrips@nd social
capital in form of information communication channels. @&
study [20][21], the Dikel study [33] and the Sustainableustlial
Software Systems case study point toward a conclusion tizat s
tainable development concerns related to the softwardaavent
organization, must be addressed first before software eagirg
tools and methods could have a significant impact on sudtigina

224 Paper F

development.
¢ Influencing Factors field study

— Additional observations regarding stakeholder role aaklediolder
perspective. For the stakeholders with the Business Conpejp-
spective, maintainability and testability are discussediag stake-
holders as software development improvement strategigsdes-
tributed development or introduction of product lines. Hrehi-
tectural structures for realizing these strategies adosetiscussed
among the success-critical stakeholders. Decisions degpar-
chitectural structures are taken informally by the arat#eThis is
a noticeable difference between the software engineersogiine
and the building engineering discipline, where buildingistures
are discussed by architects, customers, and contractors.

o USAP field study

— The inclusion of a traditional enterprise perspective,libsiness
concepts perspective, led to discoveries of new interoglghips
between the USAP artifacts: system-environment intevsactce-
nario, system environment business roles & work produgsiem-
environment activities and tasks related to the roles & wardd-
ucts, responsibility descriptions, quality attributesi aesponsibil-
ity implementation descriptions.

— System environment business roles and work products arg a ke
artifact in linking the USAP scenario [64] to common aciedt
and tasks supporting more than one role or more than one work
product.

— System environment may be operational or development@mvir
ment. The environment decides what system-environmeet-int
face and business roles and work products should be usee in th
USAP information description/ selection process .

— The placeholder of the common activity is furnished by thekvo
product or the role.

— The responsibility is related to the quality chosen to bepsuied
for the scenario. For USAP, the usability quality is suppdtty the
USAP responsibility. Possibly, the USAP information dgstoon/
selection process can be used for other quality scenafidsir
tasks’ quality concern can be expressed as responstilitie

Conclusions and Future Work 225

When classifying artifacts, not all of the 30 cell descaps in the tax-
onomy need to be used. The Influencing Factors analysis heeel tells, the
USAP analysis used six cells. The Sustainable Industri@h@oe System case
study used 19 cells showing that sustainability is a conaépta large set of
descriptions and interactions between the descriptions.

It remains to implement the description features in the US#&rmation
description/selection tool. This is done in an ongoing aeste project. If it is
the case that the placeholder always can be furnished withreiole or work
product or not remains to validate by describing additidd8APs. Possi-
bly, the USAP information description/ selection proceas be used for other
quality scenarios, if their tasks’ quality concern can bpregsed as responsi-
bilities.

For the Sustainable System study, it remains to use theifdation of
sustainable development concerns for set-up of goals amdcsa order to
address some of the concerns the companies felt they cowdtlima better
way. The interrelationships between the classified corsosrald then be used
to create a process, in the same manner as the USAP infomuseription/
selection process was created.

Bibliography

Bibliography

[1]

(2]

3]

[4]

[5]

P. Stoll, A. Wall, and C. Norstréom. Software Engineerfiegturing the
Zachman Taxonomy. Technical Report ISSN 1404-3041 ISRN MDH
MRTC-240/2009-1-SE, Malardalen University, School of dmation,
Design and Engineering, 2009.

P. Stoll, L. Bass, B. E. John, and E. Golden. PreparingilisaSupport-
ing Architectural Patterns for Industrial Use. Proceediafinternational
Workshop on the Interplay between Usability Evaluation &uoftware
Development (I-ISED), Pisa, Italy, 2008.

P. Stoll, L. Bass, B.E. John, and E. Golden. Supportinghilgy in Prod-
uct Line Architectures. Proceedings of the 13th IntermaticGoftware
Product Line Conference (SPLC), San Francisco, USA, Au20@9.

P. Stoll, A. Wall, and C. Norstrém. Guiding Architectlif2ecisions with
the Influencing Factors Method. Proceedings of the WorkigigH/IFIP
Conference on Software Architecture (WICSA) 2008, 2008.

P. Stoll and A. Wall. Business Sustainability for Soft@s&systems. Pro-
ceedings of Business Sustainability, Ofir, Portugal, 2008.

[6] J. F. Sowa and J. A. Zachman. Extending and formaliziegitamework

for information systems architecturtBM System JournaB1:590-616,
1992.

[7] J. A. Zachman. A Framework for Information Systems Atebture.IBM

Systems Journal6(3):276—-292, 1987.

[8] J. A. Zachman.The Zachman Framework for Enterprise Architecture; A

Primer for Enterprise Engineering and Manufacturingachman Inter-
national, 2003.

226

Bibliography 227

[9] J. A. Zachman. The Zachman Framework and ObservatiomMdeihod-
ologies.Business Rules Journd(11), 2004.

[10] P. B. Kruchten. The “4+1" View Model of architectur8oftware, IEEE
12(6):42-50, Nov 1995.

[11] R. Hilliard. Systems and software engineering - Reca@nded prac-
tice for architectural description of software-intenssystems.ISO/IEC
42010 IEEE Std 1471-2000 First edition 2007-07-pages c1-24, 15
2007.

[12] ISO/IEC 10746 - 3: 1996, Information technology - Opeastrbuted
processing - Reference model: Architecture, 1996.

[13] L. Bass, P. Clements, and R. Kazm&uftware Architecture in Practice
Addison-Wesley, Boston, second edition, 2003.

[14] C.O’'Rourke, N. Fishman, and W. Selkow. Enterprise Aetture, Using
the Zachman Frameworlhomson Course Technolq@003.

[15] P. Pollan. Our decrepit food factorigdew York Times2007.

[16] G.C Unruh. Escaping carbon lock-ifEnergy Policy vol. 30(no.4):pp.
317-325, 2002.

[17] G.H. Brundtland. Our common future. Report of the Wo@ldmmis-
sion on Environment and Development. Published as Annexetoeal
Assembly document A/42/427, 1987 .

[18] T. Dyllick and K. Hockerts. Beyond the business casecfmporate sus-
tainabilityt. Business Strategy and the Environménit130-141, 2002.

[19] R. K. Yin. Case study research: Design and Methodsdume 5 ofAp-
plied Social Research Methods Seri8\GE Publications, third edition,
2003.

[20] W. Curtis, H. Krasner, V. Shen, and N. Iscoe. On buildéodtware pro-
cess models under the lamppost. IBSE '87: Proceedings of the 9th
international conference on Software Engineeripgges 96—-103, Los
Alamitos, CA, USA, 1987. IEEE Computer Society Press.

[21] B. Curtis, H. Krasner, and N. Iscoe. A field study of théwsare design
process for large systems. Communications of the ACM, \bIN8. 11,
pp. 1268-87.,1988.

228 Bibliography

[22] B. Randell. The 1968/69 NATO Software Engineering RigdAvailable
at: http://homepages.cs.ncl.ac.uk/brian.randell/
NATO/NATOReports/index.html [Accessed 20. June 200996.9

[23] E. Dijkstra. The structure of the “THE"-multiprograning systemCom-
mun. ACM 115:341-346, 1968.

[24] V. R. Basili and J. D. Musa. The future engineering oftaaie: A man-
agement perspectiv€omputer 24(9):90-96, 1991.

[25] M. Jackson. Will there ever be software engineerindZEE Software
pages 36-39, 1998.

[26] M. Shaw and D. Garlan. Software Architecture: Perspectives on an
Emerging Discipline Prentice Hall, 1996.

[27] C. Gacek, A. Abd-Allah, B. Clark, and B. Boehm. On the difon of
software system architecture. I6SE 17 Software Architecture Work-
shop 1995.

[28] P. JohnssonEnterprise Software System Integration: An Architectural
Perspective PhD thesis, Industrial Information and Control Systems,
Royal Institute of Technology (KTH), Stockholm, SwedenQ20

[29] R. Malveau and T. J. MowbraySoftware Architect BootcamgPrentice
Hall Professional Technical Reference, 2003.

[30] J. O. Coplien. Borland software craftsmanship: A neakl@t process,
quality and productivity. Irb th Annual Borland International Confer-
ence 1994,

[31] M. E. Conway. How do committees invenDatamation magazind 968.

[32] B. G. Cain, J. O. Coplien, and N. B. Harrison. Social gats in produc-
tive software development organizationsnnals of Software Engineer-
ing, 1996.

[33] D. Dikel, D. Kane, S. Ornburn, W. Loftus, and J. Wilsonp@lying soft-
ware product-line architectur€omputey 30(8):49-55, Aug 1997.

[34] W. R. Ashby. An Introduction to CyberneticsFirst Edition, Chapman
and Hall: London, UK, 1956.

Bibliography 229

[35] D. Kane, D. Dikel, and J. WilsorSoftware Architecture: Organizational
Principles and PatternsPrentice Hall, 2001.

[36] K.BeckandW. Cunningham. Using pattern languageslijga-oriented
programs. Technical Report Technical Report No. CR-874®le
Computer, Inc. and Tektronix, Inc., 1987. Submitted to tl@RSLA-87
workshop on the Specification and Design for Object-Origtegram-
ming.

[37] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, fndtal.
Pattern-oriented Software Architecture A System of Pagerolume 1.
Wiley, first edition, 1996.

[38] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides. ighegat-
terns: Abstraction and reuse of object-oriented desigrEGQOP '93:
Proceedings of the 7th European Conference on Object-@rieRro-
gramming pages 406—431, London, UK, 1993. Springer-Verlag.

[39] M. Fowler. Pattern Of Enterprise Application ArchitectureAddison-
Wesley, 2003.

[40] J. O. Coplien. Organization and architecture. 1999 C8B Forum on
Object-oriented Software Architecture, 1999.

[41] B. Boehm, Abts C., A. Winsor Brown, S. Chulani, B. K. Gtar
E. Horowitz, R. Madachy, D. J. Reifer, and B. Stee€nst Estimation
with COCOMO Il Prentice Hall, 2000.

[42] M. Halstead.Elements of Software Sciend&lsevier, 1977.

[43] McCabe. A complexity measuréEEE Transactions on Software Engi-
neering 2:308-320, 1976.

[44] IEEE. leee standard glossary of software engineegnginology.|[EEE
Std 610.12-199(pages —, Dec 1990.

[45] P. Bourque and R. Dupuis, editor&uide to the Software Engineering
Body of KnowledgelEEE Computer Society, 2004.

[46] Z. Antolic. An Example of Using Key Performance Indioeg for Soft-
ware Development Process Efficiency Evaluation. TechriRegport,
R&D Center, Ericsson Nikola Tesla d.d., 2008.

230 Bibliography

[47] J. O. Coplien Multi-Paradigm Dedign for C++ Addison-Wesley, Read-
ing, MA, 1998.

[48] N. Rozanskiand E. WoodSoftware Systems Architecture: Working with
Stakeholders using Viewpoints and Perspectiyatdison-Wesley, 2005.

[49] I. Jacobson, M. Griss, and P. Jonsson. Making the reusiadss work.
Computer30(10):36—42, Oct 1997.

[50] llan Oshri, Julia Kotlarsky, and Leslie P. Willcocks. IdBal software
development: Exploring socialization and face-to-facestimgs in dis-
tributed strategic projectd.he Journal of Strategic Information Systems
16(1):25 - 49, 2007.

[51] K. Beck and W. Cunningham. A laboratory for teachingeubjoriented
thinking. ACM SIGPLAN Notice24(10):1-6, 1989.

[52] R. Wirfs-Brock and A. McKeanObject Design: Roles, Responsibilities,
and Collaborations Addison-Wesley, 2003.

[53] H. Johnson and P. Johnson. Task Knowledge StructurgschBlogical
basis and integration into system desighcta Psychologica78:3-26,
1991.

[54] EEMUA. 191 Alarm Systems - A Guide to Design, Managemeamd
Procurement . Available: http://www.eemua.co.uR007, 2nd edition,
ISBN 0 85931 155 4.

[55] E. Golden, B. E. John, and L. Bass. The value of a usgslippporting
architectural pattern in software architecture designoAtmlled exper-
iment. InProceedings of the 27th International Conference on Saéwa
Engineering, ICSESt. Louis, Missouri, May 2005.

[56] C. Alexander.The Timeless Way of BuildingDxford University Press,
1979.

[57] C. AlexanderA Pattern Language: Towns, Buildings, Constructi@rx-
ford University Press, USA, 1977.

[58] B. E. John, L. Bass, E. Golden, and P. Stoll. A respotigidiased pat-
tern language for usability-supporting architecturatgrais. Proceedings
of the ACM SIGCHI Symposium on Engineering Interactive Catirpy
Systems (EICS), Pittsburgh, PA, US, 2009.

[59] E. Gamma, R Helm, R. Johnson, and J. Wissid&esign Patterns -
Elements of Reusable Object-Oriented Sojlwaddison-Wesley, 1995.

[60] L.Bass and B. E. John. Linking usability to softwaretdtecture patterns
through general scenariobhe Journal of Systems and Softw#&®:187—
197, 2003.

[61] N. Juristo, H. Windl, and L. Constantine. Introducirgability. Software,
IEEE, 18(1):20-21, Jan/Feb 2001.

[62] N. Juristo, M. Lopez, A. Moreno, and M.-l. Sanchez-Segumproving
software usability through architectural patterns. Paggesented at the
ICSE 2003 Workshop on Bridging the Gaps Between Softwararieeg
ing and Human-Computer Interaction, Portland, Oregon, J3803.

[63] N. Juristo, A.M. Moreno, and M.-l. Sanchez-Segura.d&lines for elic-
iting usability functionalities.Software Engineering, IEEE Transactions
on, 33(11):744-758, Nov. 2007.

[64] L. Bass, B. E. John, and J. Kates. Achieving usabilitptigh software
architecture. Technical Report No. SEI-TR-2001-005, Egim Mellon
University/Software Engineering Institute, Pittsburf, 2001.

