
Mälardalen University Press Dissertations

No.71

Adaptive Bounding Volume
Hierarchies for Efficient

Collision Queries

Thomas Larsson

January 2009

School of Innovation, Design and Engineering
Mälardalen University

Väster̊as, Sweden

Copyright c©Thomas Larsson, 2009
ISSN 1651-4238
ISBN 978-91-86135-18-8
Printed by Arkitektkopia, Väster̊as, Sweden
Distribution: Mälardalen University Press

Abstract

The need for efficient interference detection frequently arises in computer
graphics, robotics, virtual prototyping, surgery simulation, computer
games, and visualization. To prevent bodies passing directly through
each other, the simulation system must be able to track touching or
intersecting geometric primitives. In interactive simulations, in which
millions of geometric primitives may be involved, highly efficient colli-
sion detection algorithms are necessary. For these reasons, new adaptive
collision detection algorithms for rigid and different types of deformable
polygon meshes are proposed in this thesis. The solutions are based on
adaptive bounding volume hierarchies.

For deformable body simulation, different refit and reconstruction
schemes to efficiently update the hierarchies as the models deform are
presented. These methods permit the models to change their entire
shape at every time step of the simulation. The types of deformable
models considered are (i) polygon meshes that are deformed by arbitrary
vertex repositioning, but with the mesh topology preserved, (ii) models
deformed by linear morphing of a fixed number of reference meshes, and
(iii) models undergoing completely unstructured relative motion among
the geometric primitives. For rigid body simulation, a novel type of
bounding volume, the slab cut ball, is introduced, which improves the
culling efficiency of the data structure significantly at a low storage cost.
Furthermore, a solution for even tighter fitting heterogeneous hierarchies
is outlined, including novel intersection tests between spheres and boxes
as well as ellipsoids and boxes. The results from the practical experi-
ments indicate that significant speedups can be achieved by using these
new methods for collision queries as well as for ray shooting in complex
deforming scenes.

i

To my family with love!

Preface

This is a collection-of-paper thesis, which means that the main results
have already been presented in published papers. Therefore, the thesis
is divided into two parts. It starts with a so-called “coat” in Part I
(Chapters 1–5), which gives a more thorough background and motivation
to the work than what was possible in the individual papers. It also
shows how the papers are connected and related to each other, and
what the main contributions of this work are as a whole. Then Part II
(Chapters 6–12) follows with the published papers reprinted. Although
it would suffice to refer to these papers, they are reprinted in the second
part of the thesis as a convenience for the reader. A list of the included
papers is given in Table 4.1 on page 38.

Now at the conclusion of this work, I would like to thank my ad-
visor, computer graphics expert, and paper co-author Professor Tomas
Akenine-Möller for all his support and guidance. I would also like to
thank my principal advisor Professor Björn Lisper for all the support he
has given me. Furthermore, I really appreciate the fruitful cooperation
I have had with Rikard Lindell when it comes to sharing the program
responsibility for our bachelor programs in computer science and game
development with me, which in particular helped me to find the neces-
sary time to finish the last part of this thesis. And of course, my thanks
go to my other colleagues here at the department. All have helped by
contributing to the positive and creative research environment which we
share daily. Thank you all!

More than anything else, I am also indebted to my wonderful wife
Paulina and our two beloved sons, André and William, for always en-
couraging me, and for the inspiration you provide, and for sharing with
me the more important things in life. Without your love and support
I would not have finished this work. Finally, I would like to thank my

v

vi

parents for always being there, and for their support during my under-
graduate studies.

Thomas Larsson
Väster̊as, January 18, 2009

Contents

I Thesis 1

1 Introduction 3
1.1 Computer Graphics . 3
1.2 Interactive Visual Simulation 4
1.3 Spatial Data Structures 5
1.4 Problem Description . 7
1.5 Outline of Thesis . 10

2 Bounding Volume Hierarchies 13
2.1 Definition . 13
2.2 Choice of Bounding Shape 17
2.3 Hierarchy Construction 19
2.4 Fundamental Operations 23
2.5 Scene Graphs . 24
2.6 Adaptive Hierarchies . 25

3 Collision Queries 27
3.1 Collision Detection . 27

3.1.1 Collision Detection using BVHs 32
3.2 Ray Tracing . 34

3.2.1 Ray Tracing using BVHs 35

4 Contributions 37
4.1 Research Methodology . 39
4.2 Collision Queries for Deforming Models 39

4.2.1 Hierarchy Refitting for Vertex Deformation 40
4.2.2 Hierarchy Refitting for Specific Deformation 42

vii

viii Contents

4.2.3 Hierarchy Restructuring for Breakable Models . . . 44
4.3 Collision Queries for Rigid Bodies 46

4.3.1 Tight Fitting Hierarchies using Slab Cut Balls . . 46
4.3.2 Heterogeneous Bounding Volume Hierarchies . . . 49
4.3.3 Sphere-Box Overlap Testing 50
4.3.4 Ellipsoid-Box Overlap Testing 51

5 Conclusions 53
5.1 Future Work . 56

Bibliography 61

II Included Papers 81

6 Paper A:
Collision Detection for Continuously Deforming Bodies 83
6.1 Introduction . 85
6.2 Previous Work . 86
6.3 Algorithm Overview . 88

6.3.1 Deformation Types 90
6.3.2 Bounding Volume Pre-processing 90
6.3.3 Run-time AABB Updates 92
6.3.4 Multiple Body Simulation 93

6.4 Experiments and Results 94
6.5 Future Work . 100
6.6 Conclusions . 100
References . 101

7 Paper B:
Efficient Collision Detection for Models Deformed by
Morphing 105
7.1 Introduction . 107
7.2 Previous Work . 108
7.3 Collision-Detection Algorithm 109

7.3.1 Morphing Models 111
7.3.2 Blending k-DOPs 114
7.3.3 Blending Spheres 116

7.4 Results . 117
7.5 Optimisations . 121

Contents ix

7.6 Conclusions and Future Work 123
References . 124

8 Paper C:
Strategies for Bounding Volume Hierarchy Updates for
Ray Tracing of Deformable Models 129
8.1 Introduction . 131
8.2 Previous Work . 133
8.3 Adaptive Hierarchies . 134

8.3.1 Initial Hierarchy Construction 135
8.3.2 Efficient Hierarchy Refitting 137
8.3.3 Hierarchy Traversals 139

8.4 Experiments . 142
8.5 Discussion . 146
8.6 Conclusions and Future Work 148
References . 149

9 Paper D:
A Dynamic Bounding Volume Hierarchy for Generalized
Collision Detection 153
9.1 Introduction . 155
9.2 Dynamic Hierarchies . 158

9.2.1 The Update Phase 158
9.2.2 The CD Query Phase 161
9.2.3 Cost Function and Expected Performance 163
9.2.4 Memory/Speed Trade-Off 164
9.2.5 Front Tracking for Deformable Models 165
9.2.6 Extensions to Other BVs 165

9.3 Detecting Self-Intersections 166
9.3.1 Sorting-Based Self-CD 168

9.4 Results . 173
9.5 Discussion and Future Work 174
References . 175

10 Paper E:
Bounding Volume Hierarchies of Slab Cut Balls 181
10.1 Introduction . 183

10.1.1 SCB Representation and Memory Cost 186
10.2 Fast SCB Computation 187

x Contents

10.3 Hierarchy Construction 190
10.3.1 SCB Convergence Rate 192

10.4 A Fast SCB–SCB Overlap Test 193
10.5 Evaluation . 197
10.6 Discussion . 203
10.7 Conclusions and Future Work 204
References . 205

11 Paper F:
On Faster Sphere-Box Overlap Testing 213
11.1 Introduction . 215
11.2 Overlap Tests . 215
11.3 Branch Elimination and Vectorization 217
11.4 Results . 218
References . 219

12 Paper G:
An Efficient Ellipsoid-OBB Intersection Test 221
12.1 Introduction . 223
12.2 Ellipsoid-Box Overlap Test 223

12.2.1 Inside Condition and Visible Face Selection 226
12.2.2 Transformation to Canonical Sphere Space 227
12.2.3 Determining Sphere-Parallelepiped Overlap Status 229
12.2.4 An Optional Quick Rejection Test 231

12.3 Experimental Results . 232
12.4 Degenerate Bounding Volumes 233
12.5 Discussion and Future Work 234
References . 235

I

Thesis

1

Chapter 1

Introduction

This thesis is mainly concerned with how geometric collision queries can
be realized efficiently in real-time computer graphics and visualization
applications. The main goal of this work is to present novel practical
data structures and algorithms applicable under varying conditions in
interactive simulations. More precisely, adaptive bounding volume hier-
archies are presented, together with geometrical algorithms which accel-
erate important operations such as collision detection (CD) for complex
and dynamic scenes. The research has led to seven papers, which are
presented in Chapter 4, and they are also included in their whole in
Chapters 6–12.

To start with, however, a short introduction is given to computer
graphics in general and to interactive visual simulation. Next, spatial
data structures are introduced in brevity. Then the collision detection
problem is presented, which is the main problem addressed in this work.
Finally, an outline of the rest of the thesis concludes this chapter.

1.1 Computer Graphics

In 1960, designer William Fetter of Boeing Aircraft Company devised
the term “computer graphics” to describe the design methods they de-
veloped to produce ergonomic descriptions for aircraft design. Much has
happened since this early start of computer generated images. Nowa-
days, computer graphics is an indispensable tool in a broad range of

3

4 Chapter 1. Introduction

application areas such as printing, design and manufacturing, interac-
tive simulations, scientific visualization, education, and entertainment.
The perhaps most widely known application areas for computer graphics
are in TV, moving picture production, and computer games, in which
images generated by computer graphics play a critical role.

Computer graphics have also grown to become an important aca-
demic discipline. The Computing Curricula 2001 [1] gives the following
definition of the computer graphics field:

Computer graphics is the art and science of communicating
information using images that are generated and presented
through computation. This requires (a) the design and con-
struction of models that represent information in ways that
support the creation and viewing of images, (b) the design of
devices and techniques through which the person may inter-
act with the model or the view, (c) the creation of techniques
for rendering the model, and (d) the design of ways the im-
ages may be preserved. The goal of computer graphics is to
engage the person’s visual centers alongside other cognitive
centers in understanding.

As can be seen from this definition, communication through com-
puter graphics imagery heavily relies on model and image representa-
tion, generation, and interaction. Accordingly, the main research areas
in computer graphics are called modelling, rendering, and animation.
Briefly, modelling deals with the problem of how to represent objects
and build these representations, rendering is about generating synthetic
images from model and scene descriptions, often with the goal of produc-
ing photo-realistic images, and animation is about specifying and con-
trolling how objects move, change their shape, and interact with each
other. Today’s interactive computer graphics applications rely heavily
on the complementary research from all these areas.

1.2 Interactive Visual Simulation

When an animation is driven and produced in real time by simulation,
user interaction, and rendering, we can experience a virtual reality, or
an interactive visual simulation. Many important applications can be
created based on this type of simulation systems. For example, in flight

1.3 Spatial Data Structures 5

simulation, virtual worlds are created to mimic the real world, so that
novice pilots can be trained for future flight operations under safe con-
ditions. Virtual surgery makes it possible for surgeons to practise ad-
vanced operations under realistic, but safe, circumstances. Architectural
walk-through applications help architects to design buildings, and make
it possible for potential customers to experience buildings before they
have been built. In interactive storytelling, fantasy worlds can be ex-
plored and experienced through computer graphics imagery.

How the simulation is driven forward is, in general, application-
specific. For example, it can be done by applying physical laws of motion,
or by applying some kind of procedural simulation rules. In interactive
graphics systems, the user is allowed to control and dynamically change
the state of the simulated scene, for example by using different kinds of
input devices, such as mice, data gloves, and force feedback devices.

To make such applications possible, real-time rendering and simula-
tion systems are required [2]. In this context, the term real-time often
means that images of the scene can be generated or rendered at 30–90
frames per second. Nowadays, when scenes may be composed of millions
of geometric primitives and that high definition image resolutions are
mandatory, it is easy to see why these systems must be powerful. Most
often the simulated scenarios tend to become too complex if realistic
models are to be used. As an example, imagine a visual traffic simula-
tion application using a scene that includes detailed geometric models of
all the buildings, vehicles, and pedestrians in a big city. Clearly, sophisti-
cated techniques would be needed to simplify the simulation sufficiently
to make it computationally possible, while ensuring that by running the
simulations we get valuable feedback and results. To make complex sim-
ulation scenarios possible, efficient data structures, algorithms and other
speed-up techniques are required.

1.3 Spatial Data Structures

Since algorithmic improvements can lead to asymptotically faster execu-
tion times, they are essential when dealing with large complex scenes. A
fundamental technique to accelerate applications in computer graphics,
and in other fields as well, such as computational geometry, geometrical
information systems (GIS), and robotics, is to use spatial data struc-
tures [3]. This type of data structure is used to represent scenes and

6 Chapter 1. Introduction

geometric data in an n-dimensional space. The data structures serve as
a database that supports efficient search algorithms to answer different
types of queries. For example, in rendering and animation, visibility and
collision queries are common to answer questions such as: Which mod-
els, or parts of the models, are inside the observer’s field of view? Given
a directed ray or a line segment, which geometric primitive is hit first?
Is there any intersection between two given geometric models, and if so,
which parts of the models are in contact? Given n moving models, at
which moment in time will the first collision occur?

Many spatial data structures are based on subdividing the space effi-
ciently into hierarchical levels of non-overlapping convex regions or sub-
volumes. Examples of such space subdividing data structures are BSP
trees [4, 5, 6, 7], kd-trees [8, 9], quadtrees [10, 11, 12, 13], octrees [14],
and multi-level grids [15, 16]. The BSP tree and the kd-tree data struc-
tures are quite similar. At each level, both of them divide the space into
two half-spaces using a single split plane. One of the main differences
between them is that in a kd-tree the splitting planes are always perpen-
dicular to one of the principal axes of the coordinate system, whereas in
a BSP tree, the splitting planes can be arbitrarily positioned. Therefore,
the kd-tree can be seen as a special case of the BSP tree.

When it comes to the quadtree and octree, on the other hand, each
region is divided recursively into equally sized sub-regions using two and
three split planes, respectively. This means that a split gives rise to four
new sub-regions in the quadtree case, and eight new sub-regions in the
octree case. In contrast to BSP trees and kd-trees, which are often used
for subdividing spaces with any number of dimensions, the quadtree is
often used to subdivide in 2D and the octree is often used to subdivide
in 3D.

Multi-level grids, or nested grids, have been presented as a more
efficient alternative compared to quadtrees and octrees for some appli-
cations, mainly ray tracing. Usually, the top-level grid is a box with
O(n) equally sized cells representing the relative locations of n geometric
primitives. Each cell contains a reference to the m geometric primitives
located wholly or partly inside it. Furthermore, a cell can potentially
hold a reference to a sub-grid for refined representation when m is too
large. The nestling of grids is then repeated recursively as needed. Nor-
mally, however, the number of levels used is quite small [16]. In some
cases, using only a single level may be the best choice, and the data
structure is then often called a uniform grid [17, 18, 19, 20].

1.4 Problem Description 7

Another type of spatial data structure, the bounding volume hierar-
chy (BVH), focuses on representing the space surrounding geometrical
objects efficiently, rather than on tiling the space itself efficiently. This
data structure encloses the geometrical object it covers at several in-
creasingly more detailed levels. For more information on the bounding
volume hierarchy, see Chapter 2.

Most of these mentioned data structures are hierarchical, which pro-
vides the means for logarithmic query times in many cases. Since the
construction of the selected data structure is usually quite expensive it is
preferably done as a precomputation or during application initialization.
Necessary changes during run-time are then often made incrementally
to amortize the update cost, and thereby avoiding severe performance
bottlenecks that otherwise may occur.

1.4 Problem Description

As discussed above, specialized data structures and algorithms are needed
to be able to handle efficiently the complexity of interactive visual simu-
lations. An always recurring problem in such dynamic simulations is col-
lision detection, which is essential to avoid objects from passing straight
through each other in the virtual environment. Since collision detection
is computationally very challenging and often reported to be a major
bottleneck in physical simulations, this is the problem in focus in this
dissertation.

Given a scene with n moving objects or bodies, the number of unique
body pairs that can be selected is

Nb =
(

n

2

)
=

n(n− 1)
2

. (1.1)

Thus, a naive collision detector can check the current collision status in
a scene by considering all these body pairs. Such a method suffers from
the all-pair weakness, and it is far too slow for most interactive visual
simulations. Even if initially only a fast constant time operation, such
as a sphere-sphere overlap test, is executed per body pair just to find
out that there is not a single collision, this would still take O(n2) time.
Therefore, the goal of any collision detection algorithm is to first reduce
the number of object pairs that must be considered using an efficient
heuristic. Such an initial phase is often referred to as the broad phase of
the collision detection process [21, 22].

8 Chapter 1. Introduction

Figure 1.1: Two meshes with 5,120 triangles per mesh shown wireframe
(top left) and Gouraud shaded (top right). Penetrating triangle pairs
are shown in red. There are 168 intersecting triangle pairs. Naive test-
ing results in 26,214,400 triangle-triangle overlap tests. At the bottom
image, two models with 81,920 triangles per mesh are shown. In this
case, there are 13,768 intersecting primitive pairs. Naive testing results
in 6,710,886,400 triangle-triangle intersection tests. In this case, execut-
ing all these overlap tests sequentially took approximately 17 minutes
on a laptop computer with an Intel CPU T2600 2.16 GHz.

1.4 Problem Description 9

Similarly, a slightly different variant of the all-pair weakness must
be avoided when more detailed collision testing is necessary between
the remaining body pairs, after the initial pruning in the broad phase.
Suppose that two bodies in such a body pair are composed of mi and mj

geometric primitives, respectively. Checking each geometric primitive
of the first body against every primitive of the other body results in
mi × mj intersection tests, which again is far too slow for all but the
simplest bodies, as illustrated in Figure 1.1. Therefore, once again the
goal must be to reduce the number of primitive pairs tested by using
appropriate data structures and algorithms. This part of the collision
detection process, where detailed tests are made between all pairs of
objects that were not pruned by the broad phase, is often called the
narrow phase of the collision detection process [21]. In total for n models,
using a naive CD method in both the broad and narrow phase, would
lead to a time complexity of O(n2m2), assuming that each model has m
geometric primitives.

Besides the number of rigid bodies in motion and the geometric prim-
itive count in the scene, there are other aspects influencing the complex-
ity of the problem. For example, certain types of complex contact sce-
narios arising in virtual assembly applications can trigger a worst-case
behaviour of otherwise efficient hierarchical CD approaches with severe
performance implications. In such cases, a tight-fitting hierarchical data
structure, adaptive to the curvature of models, is needed to avoid severe
and unnecessary performance bottlenecks [23]. Also, a potential cause of
inaccuracies, often referred to as the tunnelling problem, is the employed
time-stepping mechanism. Clearly, in a pure discrete time-stepping sim-
ulation, there is a chance that the moving bodies pass straight through
each other between any two time steps ti and ti+1. In some applica-
tions, a strategy to avoid inaccurate motion of the bodies is needed,
such as back-tracking in simulation time, event-based time-stepping, or
four dimensional swept-volume intersection testing [24, 25, 26].

An area closely related to collision detection is proximity detection,
which is a more general problem which for example is relevant in appli-
cations focusing primarily on collision avoidance [27, 28, 29]. Given a
minimum allowed distance δ, a proximity query is performed to detect
any two objects located too closely to each other. Collision detection can
be considered a special case of proximity detection with δ = 0. By using
appropriately thickened versions of the involved objects in the BVHs,
however, a CD query can be turned into a proximity query [30].

10 Chapter 1. Introduction

The simulation of soft or elastic bodies constitutes another type of
challenge. Imagine a scene inhabited by complex deforming meshes,
modelled by hundreds of thousands of geometric primitives. Obviously,
acceleration data structures are needed to handle the geometric com-
plexity, but since the bodies undergo deformations, the data structures
must be rebuilt or updated in proper ways to remain useful. Therefore,
adaptive hierarchical data structures and algorithms are needed also in
this more dynamic case.

There are many types of interactive simulation systems that include
dynamically deforming scenes, for example, in physical simulation, com-
putational surgery, molecular modelling, animation, cloth simulation,
and computer games. Deformable models whose contact behaviours need
to be simulated include articulated characters with clothing, soft tissues
and organs, biological structures, molecules, and other soft or elastic
materials.

Finally, collision or intersection queries are not only important for
the detection and resolution of the collisions of moving bodies in graph-
ics simulations. In ray tracing, a huge number of ray-scene intersections
must be determined as part of the rendering process. Therefore, ray
tracing may be regarded as another type of collision detection prob-
lem, and similar types of data structures and algorithms are needed.
In particular, interactive ray tracing of complex dynamic scenes is very
challenging and requires highly efficient data structures and aggressive
code optimizations.

1.5 Outline of Thesis

The rest of this thesis is organized as follows. Chapter 2 gives an in-
troduction to bounding volume hierarchies and their usage, since this
is the main data structure utilized in the proposed solutions. Then, in
Chapter 3, collision queries are discussed, which is the main algorithmic
problem studied in this thesis. In Chapter 4, the proposed algorithms
for hierarchical collision detection of rigid and deforming meshes are de-
scribed, which includes short summaries of the papers this thesis is based
on and brief descriptions of the main contributions of each. For a more
detailed treatment, please consult the original papers, referred to as pa-
pers A–G (see Table 4.1). These papers are also reprinted in Chapters
6–12 in this thesis as a convenience for the reader. Finally, Chapter 5

1.5 Outline of Thesis 11

presents the conclusions as well as some interesting directions for future
work.

Chapter 2

Bounding Volume
Hierarchies

A bounding volume hierarchy, or a bounding volume tree, is an acceler-
ation data structure for speeding up various types of geometric queries.
The BVH provides a complete coverage (enclosure) of a set of geomet-
ric primitives at several levels-of-detail (LODs). By using a BVH, it is
often possible to reduce the running time of a geometric query from,
e.g., O(n) to O(log n). BVHs have found extensive usage to speed up
collision detection, motion planning, view-frustum culling, picking, ray
tracing, and other spatial operations. As an example of a BVH, consider
the visualization of some of the levels in a BVH of spheres on a teapot
model given in Figure 2.1.

2.1 Definition

Bounding volume hierarchies have much in common with classical tree
data structures such as binary search trees [31], interval trees [13], and
in particular R-trees and their variants [32, 33, 34]. A bounding volume
hierarchy is a tree data structure on a geometric model M that stores
all the geometric primitives of M in the leaf nodes. Each node in the
tree stores a volume that encloses all the primitives located below it,
i.e., in its subtree. In this way, the root node stores a bounding volume
(BV) enclosing all the primitives or the entire model. And the children

13

14 Chapter 2. Bounding Volume Hierarchies

Figure 2.1: A visualization of a BVH of spheres on a teapot model. The
top three rows show the levels 1, 3, 4, 5, 7, and 9. The bottom row shows
the spheres in the leaf nodes (left) and the actual teapot mesh (right),
which has 6,400 triangles.

2.1 Definition 15

nodes, store BVs enclosing various subsets of the primitives or parts of
the model in a wrapped hierarchical fashion.

A BVH has degree k when each internal node, or non-leaf node, has
exactly k children. Common values of k are 2, 3, 4, and 8, giving rise to
binary, tertiary, quaternary, and octonary trees, respectively. However,
if the number of children nodes located directly under a parent varies
throughout the tree, it also makes sense to talk about the degree ki

of single nodes in the tree. In this case, the node with the maximum
number of children in the tree determines the degree of the whole tree,
i.e., k = max ki.

The levels of the trees are numbered starting with the root at level
zero. Consequently, the height of a BVH on a model with n primitives
is at least

h = �logk n�. (2.1)

To see why, consider a complete binary tree data structure, i.e., a tree
where all leaves are located at the same height, with n nodes (both
internal and leaf nodes), m leaves, and height h. Then the number of
nodes n can be written out as a sum of the nodes in all the tree levels,
which gives

n = 20 + 21 + 22 + . . . + 2h = 2h+1 − 1 = 2m− 1. (2.2)

From this formulation, it is clear that the number of levels below the
root node, i.e., the height of the tree h, is exactly

h = log2 m = �log2 n� = log2(n + 1)− 1. (2.3)

In general, a complete tree with degree k = ki has

n = k0 + k1 + k2 + . . . + kh =
kh+1 − 1

k − 1
=

km− 1
k − 1

(2.4)

nodes. Thus, the height of such trees is

h = logk m = �logk n�. (2.5)

The logarithmic height property of complete trees discussed above
also holds true for all balanced trees, since in this case, the greatest
allowed difference in depth of two leaf nodes is one. For arbitrary tree
structures, however, which possibly contain one or a few long chains of

16 Chapter 2. Bounding Volume Hierarchies

nodes, the height may degenerate to linear in the number of nodes n.
To avoid this, most construction algorithms aim at building balanced,
or reasonably balanced hierarchies (see Section 2.3).

The memory requirement of a BVH is linearly proportional to the
number of leaf nodes. Given a complete tree data structure on a model
with m geometric primitives, i.e. m leaves, and k = ki, the total number
of internal nodes, l, in the tree is given by

l =
m− 1
k − 1

. (2.6)

A simple way to decrease the memory requirements of the tree data
structure is to raise the degree of the tree. Suppose a complete binary
tree is given with 2m − 1 nodes. By switching to a tree with a larger
degree k > 2, and assuming that the tree remains complete, or almost
complete, also after the switch, the reduction factor of the total number
of nodes in the tree is well captured by the equation

η(k) = lim
m→∞

2m− 1
m + (m− 1)/(k − 1)

= 2− 2
k

. (2.7)

For example, going from degree 2 to degree 8 reduces the number of
internal nodes in the resulting tree by a factor of seven, and the total
number of nodes by approximately η(8) = 1.75.

Another prominent property of BVHs are their ability to approxi-
mate objects, rather than space, in an efficient way. This is in contrast
to spatial space partitioning data structures, such as octrees, kd-trees,
and grids, where the opposite is generally true. For example, this means
that the child volumes in a BVH are allowed to intersect, and thereby
partly covering the same space, see Figure 2.1. This makes it possible to
insert each geometric primitive into a single leaf node in the tree, which
effectively avoids the reporting of duplicate hits in search queries. This
also leads to another advantage of the BVH data structure: the mem-
ory requirement of a BVH is always linear in the number of geometric
primitives, as opposed to spatial space partition data structures, such
as kd-trees and octrees, which sometimes requires super-linear storage
space.

2.2 Choice of Bounding Shape 17

Shape Fit Test speed Memory cost Rot.Inv.
AABB poor good 6 no
26-DOP fair fair 26 no
Sphere poor good 4 yes
OBB good poor 15 yes
Ellipsoid good poor 15 yes
SCB fair fair 9 yes

Table 2.1: A rough comparison of the properties of different types of
BVs. Note that no BV is best in all cases. The first two properties,
tightness of fit and speed of the BV-BV overlap test, are given using a
relative 3-degree scale (poor, fair, good). The memory requirements are
given as the number of scalar values commonly used to represent the
shape. The last column shows the rotational invariance of the shapes.

2.2 Choice of Bounding Shape

To realize a BVH we have to choose what shape (or shapes) to employ
as bounding volumes in the nodes of the tree. Which shape to choose
turns out to be a very important design choice. Two key factors to
consider are the tightness of fit of the volume and how fast the required
geometric tests are [35]. Figure 2.2 gives an example of two different
types of bounding volumes, the sphere and the slab cut ball (SCB),
which is a sphere cut by two parallel planes. In practice, a handful of
simple convex volumes appear to be the most popular, for example the
sphere [36, 37, 38, 39, 40, 41], axis-aligned bounding box (AABB) [42,
43, 44, 45, 46], oriented bounding box (OBB) [47, 32, 48], and discrete-
orientation polytope (k-DOP) [49, 50, 51].

For all these bounding volumes types, there are simple and efficient
algorithms to compute a minimal, or almost minimal, BV which encloses
a given point or polygon set [52, 53, 54]. In particular, how to compute
minimum bounding spheres, also called smallest enclosing balls, is a well-
studied classical problem in computational geometry. Perhaps somewhat
surprisingly, theoretical results show that the optimal bounding sphere
of a point set can be computed in worst case O(n) time [55]. Sev-
eral other more practical methods for computing the optimal ball have
also been presented, such as the recursive algorithm by Welzl, which
has an expected linear running time by relying on randomization of the
input points and a move-to-front heuristic [56, 57]. Some other inter-

18 Chapter 2. Bounding Volume Hierarchies

Figure 2.2: Examples of two different types of bounding volumes enclos-
ing a polygon mesh. As can be seen, the slab cut ball (left) provides
a much tighter approximation of the underlying mesh than the sphere
(right), which speaks in favour for the slab cut ball. Another important
factor to take into account is how fast geometric operations on the vol-
umes can be performed and in this respect, the sphere is expected to be
more advantageous.

esting choices of bounding volumes include the ellipsoid [58, 59], cylin-
der [60], sphere swept volumes [61, 62], quantized orientation slabs with
primary orientation (QuOSPO) [63], intersection volume of a sphere and
AABB [64], and spherical shell [65].

Clearly, the best choice of BV type appears to be highly dependent
on both model and scenario. This conclusion is supported by Table 2.1,
which presents a simple comparison of some important properties for
some interesting BV types. For example, spheres are invariant under
rotation, but the tightness of fit is in general quite poor. OBBs are
known to have a good tightness of fit, but they also have a high storage
cost, as compared to AABBs or spheres. Geometric tests on AABBs are
generally very fast, but since AABBs are not invariant under rotation,
recomputation of the shape is required even for simple rigid body motion.
Alternatively, if the AABBs are simply rigidly transformed together with
the moving bodies, they become OBBs.

The list of proposed bounding volume types in the research literature
is steadily growing. Some of the more recent proposals include the zono-
tope [66], slab cut ball (SCB) [67], and velocity-aligned discrete oriented
polytope (VADOP) [26]. Since it has been shown that the choice of

2.3 Hierarchy Construction 19

BV type in a BVH sometimes influence the execution time of geometric
queries dramatically, a wise selection of the BV type with respect to the
current application may be crucial (see e.g. [23, 67]).

2.3 Hierarchy Construction

Besides choosing an appropriate type of bounding volume, a tree-building
algorithm must also be selected. Normally, the input consists of a set of
geometric primitives, and the output is a partitioning (decomposition) of
these primitives into a regular tree data structure, where each tree node
stores a BV enclosing all the primitives in its subtree. However, since
the number of structurally different BVHs that can be produced grows
exponentially with the number of input primitives, finding a globally
optimal tree structure is considered intractable. Instead, many different
heuristics have been developed which can be categorized into three main
types of hierarchy construction algorithms, which are often referred to as
top-down, bottom-up, and incremental insertion construction methods.

In practice, top-down construction seems to be the most commonly
used method. The example BVH in Figure 2.1 was constructed using a
simple top-down building approach. In a top-down building algorithm,
the root node is created first, and a BV is computed which encloses
all the primitives. Then follows a recursive step, where the remaining
primitives are divided into k subsets, and k child nodes are created with
BVs enclosing these subsets. This recursive step is then applied for each
created node, unless the remaining primitives are below a given thresh-
old, in which case the recursion is terminated and a leaf node is created
enclosing the remaining primitives. How to divide the primitives into
appropriate subsets is managed by a so called split rule, which is of-
ten based on a sorting or bucketing strategy to determine the subsets.
Klosowski et al. gives several examples of split rules [49]. Top-down
BVH building belongs to the divide-and-conquer family of algorithms.
Given that both the BV computation algorithm and the split method
runs in O(n) time, and that the produced tree structure has a height of
the order O(log n), the whole tree building procedure runs in O(n log n)
time. If an unbalanced tree is produced, however, the performance dete-
riorates to O(n2). This case is an analogue to the worst case behaviour of
quicksort [68], and by using a robust and carefully designed split method,
the worst case behaviour can be avoided in practice (see e.g. [67]).

20 Chapter 2. Bounding Volume Hierarchies

In contrast to top-down approaches, constructions of hierarchies from
the bottom-up are based on merging nodes rather than splitting them [32,
59, 69]. The construction starts by creating the leaves in the tree data
structure, where each leaf node has a BV enclosing either a single geo-
metric primitive or a few primitives located close to each other. Then
follows a process where nodes with nearby BVs are grouped together to
find appropriate parents. This grouping continues until there is only one
node left, the root. Note that when k nodes are to be grouped, their BVs
need to be merged to find a proper BV of the parent. The running time
of the bottom-up construction depends on the time complexity of both
the merge algorithm and the algorithm used to select suitable nodes to
be merged. Since at least O(n) merging operations and selection opera-
tions have to be done, the overall construction is O(n) in the best case.
Usually, however, more sophisticated BV merging and/or node group-
ing strategies are employed to ensure a better quality of the hierarchies,
resulting in a time complexity of O(n2) or worse [69]. Clustering algo-
rithms are essential for bottom-up construction of BVHs to guide the
grouping of nodes. Since clustering is an important concept in many
different research fields, much research has been conducted on clustering
algorithms [70]. For example, practical methods for solving the facil-
ity location problem efficiently [71] can be applied in a BVH construc-
tion scheme. A quite different bottom-up construction method based
on estimates of the mass distribution of a volumetric model has also
been proposed to produce binary bounding volume hierarchies [72, 73].
In general, bottom-up construction algorithms are more complicated to
implement and usually run slower than top-down methods [74].

BVHs can also be built using incremental insertion methods [75, 76].
The idea behind these methods is to add or insert one geometric prim-
itive at a time to an initially empty hierarchy. Usually, the insertion
proceeds from the root node to a leaf, where the path taken depends on
a cost function that is used to minimize the insertion cost locally. Then,
the insertion point of the primitive is chosen to be the node along this
path that minimizes the total volume of the tree. Given that the eval-
uation of the cost function and the volume enlargement operation for
each encountered node during insertion is executed in constant time, the
whole hierarchy tree construction is expected to take O(n log n). Thus,
this way of building BVHs is in general as practical and fast as top-down
approaches. For example, incremental insertion guided by surface area
heuristics has been used to build BVHs to accelerate ray tracing [75, 77].

2.3 Hierarchy Construction 21

The quality of the produced BVHs, however, depends on the insertion
order of the primitives. Thus, randomizing the insertion order may be
worthwhile. Finally, after all primitives have been inserted, an additional
restructuring phase may be used to improve the hierarchy structure.
Haber et al. propose two such global optimization heuristics referred to
as successive re-insertion and elimination of ill-formed groups [76].

Omohundro presents five ball tree construction methods, one bottom-
up, two top-down and two incremental insertion algorithms. Interest-
ingly, the experimental results revealed that the bottom-up method pro-
duced the trees of highest quality. However, its high construction cost
limits its usefulness. Consequently, for large data sets, a simple top-down
or an incremental insertion method is preferred [74].

Regardless of which one of these three main classes of construction
methods is chosen, several other important design issues must be dealt
with. Clearly, balanced hierarchies may seem attractive from a theoret-
ical perspective. For some inputs and construction methods, however,
balanced BVHs may lead to a significant overlap between nearby BVs
leading to truly inefficient search queries. Since the goals of minimiz-
ing the tree depth as well as the BV overlap between nearby nodes are
usually in conflict with each other, the construction algorithm needs to
deal with a trade-off between the maximum allowed depth of nodes, and
the amount of overlap between adjacent volumes that can be tolerated.
Construction speed is another factor that is involved in this trade-off.
To exemplify, consider the well known issue of selecting pivot element
in quicksort. Strictly enforcing a completely balanced partitioning of
the elements to be sorted, by always selecting the median as the pivot
element, would of course avoid the worst-case O(n2) behaviour of quick-
sort, but it would also make quicksort much slower for almost all inputs.
Instead, choosing the median-of-three randomly selected elements as the
pivot element has been widely adopted, because it is very fast, and it
also effectively avoids the worst-case in practice.

Another reason why it sometimes makes sense not to require the
hierarchies to be balanced is update cost. The tree structure may become
too expensive to maintain due to sudden dynamic changes during run-
time. However, classic tree data structures such as almost balanced AVL-
trees [78, 79] and red-black trees [80, 31] may of course be interesting
to adopt in BVH creation and maintenance. The height of a red-black
tree is guaranteed to be within a constant factor of two compared to
the height of a balanced binary tree. Thus, for a balanced binary tree

22 Chapter 2. Bounding Volume Hierarchies

with n nodes, the height of a corresponding red-black tree cannot exceed
2 log2(n+1). Another interesting data structure is the splay tree, which is
a type of binary search tree that automatically moves frequently accessed
elements nearer to the root [81]. Similar techniques may be fruitful also
for BVHs to optimize query times for application-specific scenarios.

Another concern in the design of BVHs is the choice of the branching
factor. In practice, the most common choice seems to be binary BVHs.
Some analytical arguments for choosing node degree k = 2 are given
by Klosowski et al. [49]. However, no definite answer to what is best
has been given. Clearly, a higher k gives shorter search paths from the
root to the leaves, but at the same time the work at each encountered
node increases, since there are more branches to consider. The opposite
holds true for a lower k, which makes the search paths longer, but the
operations and branch selections at each node faster. In the end, the best
choice appears to be application and machine specific. It is not unusual
that practical experiments indicate advantages for using a k > 2 [44, 51].
In particular, parallelization of the work at the hierarchy nodes speaks
in favour of choosing multi-way trees. Sometimes binary tree nodes
are chosen simply because this appears to simplify the design of the
construction algorithm. In any case, however, a binary BVH structure
can be converted to a quaternary BVH simply by removing every other
level and to an octonary BVH by removing two levels at a time.

Uneven distribution of the sizes of the geometric primitives in the
models is another source of inefficiency in many constructed BVHs. Con-
sider, for example, a giant polygon stored in a leaf node at the maximum
depth of a BVH. This polygon will cause the computation of huge bound-
ing volumes in all nodes from this leaf all along the path up to the root
node. In the worst case, this polygon is so large that all these bounding
volumes must have the same size, although they are minimal. In fact, it
will then overlap entirely with all other BVs in the hierarchy. If there are
many giant polygons in a model, this problem degrades the performance
severely, because of the resulting overlaps among lots of BVs internally.
How can the construction algorithm deal with giant polygons to avoid
unnecessary performance breakdowns? A possible solution could be to
store problematic large geometric primitives in internal nodes. In this
way, these primitives can be stored at a much higher level in the hierar-
chy to avoid a troublesome expansion of all the BVs in a complete path
down to a leaf node. A similar technique would be to add an extra leaf
node that stores the primitive directly below the internal node in ques-

2.4 Fundamental Operations 23

tion, thereby raising the degree of the internal node, rather than storing
primitives in internal nodes. Another way of attacking the problem with
problematic variation in the primitive sizes would be to clip primitives
and/or BVs that are considered too large into several pieces [82]. In this
case, however, the attractive O(n) storage cost of a BVH can no longer
be guaranteed.

The final design choice discussed here is related to how the bounding
volumes are computed. In a layered hierarchy, each bounding volume
of a parent node completely covers all bounding volumes located in its
subtree. However, this property of a layered hierarchy is not always
needed. In many cases, it is preferable to build tighter fitting hierarchies
by letting each parent BV completely cover all the geometric primitives
located in its subtree, rather than also enclosing all the bounding volumes
in the subtree. A hierarchy with this property is sometimes referred to
as a wrapped hierarchy. Note that a wrapped hierarchy is always as
tight or tighter than the corresponding layered hierarchy [83, 30]. For
some applications, however, a layered layout of the BVs is chosen, either
because of the way search queries are executed or because BV update
operations can be made faster [84, 85].

In addition to the points discussed above, construction of mem-
ory [86, 87] and cache friendly [34, 88] hierarchies is also attractive. How
to construct BVHs of high quality is a complex subject, and it remains
an open research problem which can be attacked from many angles.

2.4 Fundamental Operations

Since the BVH is a spatial data structure, it is mainly used to perform
different types of geometric queries concerning the relative location of
objects. The queries are realized by designing different types of search
algorithms traversing one or more BVHs. For example, BVHs can be
used to efficiently find ray-primitive intersections, or to determine po-
tentially visible primitives from a certain viewpoint, in a scene. BVHs
can also be utilized to perform fast distance queries, such as finding the
nearest neighbour to a given query object, or to report all the inter-
secting primitives between two models. Queries for collision detection or
interference detection and ray tracing are discussed further in Chapter 3.

The computational complexity of these operations is dependent on
several factors such as the tree height, the ability of the BVs to approx-

24 Chapter 2. Bounding Volume Hierarchies

imate the underlying geometry tightly, the amount of overlap between
BVs inside the BVH, and the size of the output, i.e., the number of
elements in the search result. Although the theoretical worst-case time
complexity of a BVH-based search algorithm may sometimes look daunt-
ing, BVHs are well-known for their good performance in many computer
graphics applications.

As an example, consider the case of performing a query to find all
the primitives hit by a ray. This operation is expected to take O(log n)
time, and in the best case, when the ray misses the BV in the root, the
query even finishes in O(1) time. In the worst case, however, all BVs
in the hierarchy are hit by the ray, which means the ray query is O(n),
which admittedly does not look promising for ray shooting. Still, BVHs
are used to accelerate ray tracing with good results [46]. Interestingly,
since the performance of a ray-BVH traversal is dependent on the actual
number of BVs hit by the ray, the worst case of a traversal is given
by the stabbing number s, which is the maximum number of BVs that
can be hit in a traversal seen over all possible rays [32]. This means
that the worst case performance of ray shooting using a BVH is O(s).
Therefore, a natural design goal in BVH construction for ray tracing,
besides keeping a logarithmic height of the tree, would be to keep the
stabbing number s ∈ O(log n), which in particular involves avoiding too
much overlap between sibling volumes.

How to design efficient BVHs for different applications with theoret-
ically proven asymptotic worst-case bounds remains an open research
question. Only a few research efforts in this direction have been pub-
lished, see e.g. [89, 83].

2.5 Scene Graphs

A scene graph is a common data structure that is related to the BVH.
Usually, a scene graph represents both logical and spatial relations in
a scene or virtual environment. In a scene graph, different types of
nodes, representing e.g. groups of objects, transformations, geometric
primitives, light sources, and cameras are arranged into a tree or directed
acyclic graph (DAG) [90, 91].

Interestingly, several scene graph packages also let the scene graph
play a role as a BVH, since it is usually straightforward to extend a
scene graph to also become a BVH by storing bounding volume data

2.6 Adaptive Hierarchies 25

at appropriate locations in the structure. In this way, an acceleration
data structure is directly available together with the scene description at
a small additional memory cost as compared to using another separate
data structure, such as a kd-tree or octree. Operations such as view-
frustum culling, picking, collision detection, and range queries can then
be implemented conveniently as different kinds of scene graph traversals.

2.6 Adaptive Hierarchies

Whenever possible, the BVHs are created in a preprocess or during appli-
cation initialization, since most construction algorithms are super-linear.
Once built, the data structure can then be used to perform various types
of queries without performing any time-consuming changes or updates
to the hierarchy during run-time. Many scenes, however, involve dif-
ferent types of dynamic features. For example, geometric objects may
be stationary or moving. Objects in motion may be rigid, deformable,
and even breakable. New geometric objects may be inserted on-the-fly
in the scene, due to unpredictable events. Keeping BVHs up to date
due to dynamic changes like these constitutes a significant challenge in
real-time graphics simulations.

If a BVH has the attractive feature that it remains useful in a real-
time graphics simulation even when the circumstances change by adapt-
ing to the new situation, we refer to the BVH as an adaptive hierarchy.
For deformable models, this means that when the shape of a model is
changed, its BVH can adapt to the new situation in an efficient way by,
for example, BV refitting schemes [44, 84, 92], incremental reconstruc-
tion [45, 93], and/or amortized updating [46] and afterwards still remain
an efficient acceleration data structure. Clearly, careful design of inser-
tion and deletion operations is essential for intelligent dynamic updates
of tree data structures (cf. [78, 80, 81]). For example, AVL-trees have
been leveraged in a BVH-based approach for faster collision detection
between fracturing objects [94].

Even for rigid models, it makes sense to refer to a BVH as adaptive
if it has the ability to remain efficient over a wide range of queries and
scenarios. In particular, if a number of models in a rigid body simula-
tion all of a sudden enter a highly complex configuration with respect
to the geometric queries, without significant performance breakdowns,
the BVH can be said to be adaptive to this new complex scenario, even

26 Chapter 2. Bounding Volume Hierarchies

though the actual BVH data structures are static [47, 67]. The perfor-
mance of a BVH can also be improved by learning from actual use. For
instance, the hierarchy could be restructured to provide faster access to
frequently queried elements, and construction of the data structure can
also be deferred until queries are issued. In this way the trees are con-
structed piece by piece guided by actual queries. Such techniques have
been proposed to create adaptive BSP-trees with good results [95, 96].

The loose octree can also be seen as an adaptive space partitioning
data structure. Similarly to the BVH, the loose octree allows overlapping
cells or blocks [97, 3]. By expanding the block size in each direction by,
for example, a factor of two, too small objects straddling the previously
unexpanded block borders can be inserted at more appropriate levels in
the octree, which may lead to more efficient spatial queries. Also, since
objects can be inserted or deleted in O(1) time, the loose octree seems
to be suitable for dynamic environments with a large number of moving
objects.

As can be seen in Chapter 4, adaptive BVHs for collision queries in
dynamic simulation environments is what this thesis is mainly about.
Of course, the ultimate goal of adaptive BVHs is that one type of BVH
could be used for every type of model, query, and scene. It seems clear
that research in this area need to focus more on developing BVHs with
a broader applicability.

Chapter 3

Collision Queries

As discussed in Chapter 1, being able to answer collision queries in com-
plex scenes is a fundamental requirement in virtual environments. Many
efforts have been described in the research literature to solve this prob-
lem. Therefore, this chapter gives an overview of important and related
research. Two types of collision queries are considered more closely. The
first one is needed in almost all kinds of rigid and deformable body sim-
ulations. Given a set of geometric models, are there any contact points
between them? Various attempts to solve this kind of collision detection
or interference determination problem are reviewed briefly in the next
section.

The second query type considered is ray shooting, which is a fun-
damental operation in many rendering algorithms. Given a set of rays,
are there any contact points between the rays and the scene objects? In
Section 3.2, a background to ray tracing is given and previous attempts
to solve the ray shooting problem are discussed.

3.1 Collision Detection

Hundreds of papers have been written on collision detection in various
situations, primarily in the fields of computer graphics, robotics, and
computational geometry. Whereas most early efforts were focused on
solving the collision detection problem in rigid body simulation [98, 99,
100, 28, 52], nowadays deformable bodies also receive significant atten-
tion [101]. There is currently no single best collision detection method.

27

28 Chapter 3. Collision Queries

The algorithm to be chosen depends on many factors that play different
roles in different applications [47].

In some applications it is sufficient to use approximate methods
whereas other applications might require accurate collision calculations.
The best performance is often achieved by using specialized or simplified
methods that utilize specific knowledge about the application. For ex-
ample, in a virtual bowling application, simple cylinder approximations
were used to represent the pins in the collision detection calculations
with plausible results [102]. Another example where application spe-
cific knowledge has been utilized to speed up the CD significantly can
be found in water wave simulation where precomputed wave-land inter-
action points are stored in wave-train boxes with fixed locations [103].
Sometimes, an application-specific solution may even include algorithms
that make the collision detection obsolete, as is the case in a proposed
method for finding the range of motion in the human hip joint [104].

In many other cases, a sufficient accuracy of the collision calcula-
tions must be guaranteed. For example, in robotics, inaccuracies in the
virtual simulation process might lead to severe damage, since the sim-
ulations are often used to verify the correctness of the corresponding
real world scenarios. Furthermore, in rigid body simulation, when the
force computations are based on the intersection data reported from the
collision detection algorithm, small errors might cause fundamentally dif-
ferent body trajectories, which is unacceptable in certain applications.
In general, what actions to perform given the results reported by the CD
process is determined by the collision response algorithm [105, 106, 41].
Whereas CD is fundamentally a math or geometry problem, collision
response is usually a physics or dynamics problem.

The combined need for accuracy and speed in real-time simulations
makes the collision detection problem very challenging. The time avail-
able to resolve the collisions may, for example, be somewhere in the
range 0.1–5 milliseconds, depending on the application, so highly ef-
ficient solutions are needed. Some fast search methods are available,
when the involved bodies are convex [107, 108, 22, 109]. Concave ob-
jects can also benefit from these methods if they are decomposed into
convex parts [110].

For more general and complex rigid bodies, bounding volume hier-
archies have often been found to be the best choice [101]. Examples of
bounding volumes that have been used for efficient CD between rigid
bodies are spheres [38, 37], axis-aligned bounding boxes (AABBs) [111,

3.1 Collision Detection 29

43], arbitrarily oriented bounding boxes (OBBs) [47, 32], discrete orien-
tation polytopes (k-DOPs) [49, 50], spherical shells [65], slab cut balls
(SCBs) [67], tetra-cones [112], and convex pieces [110].

To further speed up hierarchical collision detection methods, tempo-
ral coherence can also be utilized. By using different types of caching
techniques, results from the previous simulation time step can be reused
for faster determination of new results [113, 114, 110].

In the case of soft or deformable bodies, much work remains to be
done [99]. For CD between deformable bodies using BVHs, spheres,
AABBs, and k-DOPs are very attractive, since refitting these volumes
is both simple and fast [44, 84, 51, 92, 85, 39, 115]. For highly dy-
namic triangle soups, octrees [116, 117], uniform grids [118, 18], hier-
archical spatial hashing [19, 119], and BVHs [45] have been used with
good results. Also, the recent development of programmable graph-
ics hardware has made GPU-based CD methods an interesting alterna-
tive [120, 121, 122, 123]. Some other interesting efforts aimed at different
geometries and types of applications that have been described include
methods for higher order surfaces [124, 125, 126] and cloth simulation
[127, 128].

Some initial work has also been performed in the field of virtual
surgery. One proposed method relies on graphics hardware to test the in-
terpenetration of a deformable organ and a user-controlled rigid tool [129].
In a work on laparoscopic surgery, a special bucket data structure was
used to store closely located polygons [130]. This data structure was
then used to search for contacts between a simple tool and an organ
represented by a polygonal mesh.

Another important topic is continuous collision detection (CCD),
which can be used to improve accuracy in, for example, motion planning
application [101]. In this area, the methods aim to avoid unwanted tun-
nelling effects, which may arise due to discrete time stepping. Usually,
time-swept versions of the geometric primitives between two consecu-
tive discrete time instants are employed in the overlap tests. Naturally,
these volumes depend on the motion trajectories of the models used in
the simulation. The real motion of the bodies can be approximated by,
for example, linear interpolation between the start and end positions
of the geometric primitives, thereby trading accuracy for speed. As in
discrete CD, BVHs are also frequently utilized for CCD [48, 131]. How-
ever, since CCD is computationally much more costly than discrete CD,
improved testing schemes are needed. For instance, feature-based hi-

30 Chapter 3. Collision Queries

erarchies have been proposed, which reduces the number of elementary
tests between feature pairs during the CCD queries between deformable
triangle meshes. The reduction is accomplished by using representative
triangles, i.e., triangles that are associated with a limited set of their
features (edges and vertices) [132]. This concept, however, only works
for meshes with topological connectivity information, and not for more
general polygon soups.

DualBvhTraversal(A, B, r)
input: A and B are hierarchy nodes
output: r is a container storing the intersection result

1. if Intersection(V1 ∈ A, V2 ∈ B) then
2. if Internal(A) and Internal(B) then
3. if Volume(V1) > Volume(V2) then
4. for each child c ∈ A
5. DualBvhTraversal(c, B, r)
6. else
7. for each child c ∈ B
8. DualBvhTraversal(A, c, r)
9. else if Internal(A) then
10. for each child c ∈ A
11. DualBvhTraversal(c, B, r)
12. else if Internal(B) then
13. for each child c ∈ B
14. DualBvhTraversal(A, c, r)
15. else
16. for each primitive pair (t1 ∈ A, t2 ∈ B)
17. if Intersection(t1, t2) then
18. Insert(r, t1, t2)

Figure 3.1: Pseudocode for a recursive BVH-based, 2-body, CD traversal.

3.1 Collision Detection 31

Figure 3.2: Visualizations of the dual hierarchy traversal between the
BVHs of two teapot models for five different time steps in a simulation.
In each case, only the deepest spheres encountered in the tree branches
during the dual traversal are shown. Thus, the number of spheres ren-
dered to visualize a dual traversal here is a measure of the amount of
work required to determine the collision status. As can be seen, the
closer the teapots get to each other, the more work the algorithm has
to perform. The bottom row shows the traversal at the last time step,
where the models are finally colliding with each other.

32 Chapter 3. Collision Queries

3.1.1 Collision Detection using BVHs

To check the collision status of two models, their bounding volume hier-
archies are traversed in tandem while searching for intersecting primitive
pairs. The pseudocode for such a dual hierarchy traversal is given in Fig-
ure 3.1. First of all, the overlap status between the BVs of the root nodes
is tested. If these volumes are disjoint, testing is done in O(1) time (Line
1). Otherwise, recursive refined testing is performed by descending in
the subtree of the node with the largest current volume (Lines 2-8). The
conditional test used here to decide which subtree to descend next (Line
3), can be replaced by another, perhaps more appropriate, so called de-
scent rule (for some examples, see [52]). When one of the current nodes
A and B is a leaf, we descend in the subtree of the remaining internal
node (Lines 9-14). Finally, when both nodes are leaves, the geometric
primitives associated with these leaves are intersection tested, and in-
tersecting pairs are inserted in a CD result list (Lines 15-18). After the
completion of the algorithm, the list of intersecting primitive pairs is
usually passed on to a collision response method for further processing.

In situations where a simple true or false answer is sufficient, the dual
BVH traversal can be aborted when the first intersecting primitive pair is
found, which leads to significantly faster query times in many cases [44].
For this, the recursive dual traversal presented in Figure 3.1 can easily
be transformed into a corresponding iterative traversal by using a stack,
and an immediate exit on the first found hit can then be realized by a
single return statement.

To get as good performance as possible, the algorithm in Figure 3.1
is also dependent of highly optimized low-level intersection test methods
(Lines 1 and 17). How to optimize such low-level routines remains an
important topic in computer graphics, since usually they are part of the
inner loop of more complex geometrical algorithms (see e.g. [133, 134,
52, 135, 53]).

A visualization of a dual traversal between the BVHs of two teapot
models is given for five different collision queries in Figure 3.2. As can
be seen, the dual traversal effectively zooms in on close surface areas
between the two teapots. The performance of the traversal is depen-
dent on the number of geometric primitives in the models, as well as
the number of overlapping BV pairs encountered during the traversal.
For rigid bodies, a traversal is expected to be sub-linear in many cases,
even when intersecting primitive pairs are found, since the height of a

3.1 Collision Detection 33

hierarchy storing n primitives is expected to be proportional to log n.
In the worst case, however, this BVH traversal algorithm is O(n2).

For example, Chazelle’s polyhedra illustrate that the number of over-
lapping geometric primitive pairs can be quadratically many [136, 30].
In such cases, a BVH-based CD approach does not offer much improve-
ment over the naive method mentioned in Chapter 1. The bounding
volume test tree, which is a structure that captures the behaviour of the
above presented dual hierarchy traversal algorithm, has a maximum size
of O(n2) nodes, and hence it also illustrates the worst case behaviour of
the algorithm [61, 62, 23].

Despite this theoretical quadratic worst case, BVH-based CD is re-
peatedly reported to be highly successful in practice. Some attempts to
theoretically explain the good performance of BVHs in practice under
certain assumptions have been published [137, 138, 139]. Interestingly,
some of these assumptions may be incorporated as design goals in BVH
construction for collision detection. Also, Haverkort et al. present some
theoretical results for range queries [89].

The choice of which bounding volume type to use is not simple, as dis-
cussed in Section 2.2. Therefore, to evaluate the performance of bound-
ing volume hierarchies, it has been suggested that a cost function can
be used [35, 47, 49]. This function states that the cost, T , of a certain
collision detection query is given by

T = NvCv + NpCp + NuCu, (3.1)

where Nv is the number of performed BV/BV intersection tests and Cv

is the cost of one such test. Similarly, Np is the number of geometric
primitive pairs that are intersection-tested and Cp is the cost of one such
intersection test. Finally, Nu is the number of BVs that are updated or
recalculated because of model changes and Cu is the cost of updating
one BV. By using tighter fitting bounding volumes in the hierarchies,
Nv, Np, and Nu can be lowered, but on the other hand, tighter volumes
often mean larger values of Cv and Cu. To minimize the cost function,
one has to deal with such conflicting goals.

Despite all the previous efforts, new and faster collision detection
methods are needed to increase speed and realism in both rigid and
deformable body simulations. The algorithms proposed in this thesis
are fast and accurate down to the finest resolution of the models. The
methods are based on adaptive bounding volume hierarchies. Summaries
of these methods are given in Chapter 4.

34 Chapter 3. Collision Queries

3.2 Ray Tracing

Ray tracing is a classic image synthesis technique. It was introduced
as early as 1968 by Appel as a shadow determination technique [140].
In 1980, Whitted published an article describing the basic recursive ray
tracing algorithm, which extended the original algorithm to handle spec-
ular reflection and refraction [141]. This version of the algorithm is essen-
tially the basic ray tracing method described in many computer graphics
textbooks of today [142, 143, 144]. Hundreds of articles on different as-
pects of the subject have been published and there are books entirely
devoted to ray tracing [145, 146, 147, 148].

In ray tracing, images are generated by tracing rays of light back-
wards, from the eye through the pixels in the image plane. These rays
are then recursively traced according to the rules that have been set up
for their interaction with the three-dimensional scene while the colour
contributions are gathered.

While ray tracing is well known for its ability to create stunning
pictures, it seems to be equally well known for its extremely high com-
putational cost. Naive ray shooting is O(n), and naive ray tracing of
an entire image with k pixels is then O(kn). We may regard the image
resolution as constant and drop the factor k, but still the number of pix-
els is substantial using, e.g., a full HD resolution of 1920× 1080 pixels.
Using a super-sampling method to generate higher quality anti-aliased
images increases k even further since several rays per pixel are spawned.
For example, to generate a single image in full HD, super-sampled with
9 primary rays per pixel, almost 20 million primary rays need to be
intersected with the geometry in the scene and potentially more than
100 million secondary rays, i.e. shadow, reflections and refraction rays.
Thus, given complex scenes, with millions of geometric primitives, the
number of intersection calculations required is huge. This disadvantage
of ray tracing caused it for many years to be considered as an offline
rendering method only.

The tremendous recent improvements in computer technology, how-
ever, have begun to change the view of ray tracing as a rendering method
which is too slow for interactive graphics applications. In real-time ray
tracing, something like 30–90 generated images per second are needed.
To be able to handle the computational burden, clever algorithms are
needed to reduce the number of intersection computations and utilize
the inherent parallelism of the ray tracing process.

3.2 Ray Tracing 35

Today, it has been shown that interactive ray tracing is possible,
even on affordable PCs [149, 150, 151, 152, 153, 46]. Still, however,
achieving real-time ray tracing requires highly optimized implementa-
tions which besides a carefully constructed acceleration data structure,
also utilize, for example, vectorized instruction sets, ray packets, cache-
coherent traversal schemes, and multi-threading.

Interestingly, fast ray tracing can also enable faster global illumina-
tion computations, since most global illumination algorithms rely heavily
on ray tracing [154]. Thus, ray tracing may play an important role in
achieving a long term goal in computer graphics — physically correct
simulation of light transport at interactive frame rates in complex and
dynamic environments.

Most proposed ray tracing approaches, however, are dependent on
acceleration data structures that are pre-built before simulation. Many
of these methods rely on certain limiting assumptions, such as that it
is only the camera which is animated, the rest of the scene remaining
static. Others have permitted the presence of certain dynamic models
in the scene, as a special case, but these have been assumed to be rigid
bodies [149]. Grids are a noteworthy exception, since they can be effi-
ciently reconstructed when used in animated scenes [155, 153, 16]. Fast
construction of other acceleration data structures has also become possi-
ble using today’s powerful computers [156, 157]. Programmable shaders
have also been used to implement interactive ray tracing on commodity
graphics hardware [158, 159].

3.2.1 Ray Tracing using BVHs

To make ray tracing a competitive choice and an interesting alternative
for interactive graphics applications in general, dynamically changing
scenes must be supported. This also includes scenes with complex de-
formable or flexible models, including breakable and exploding objects.
Although kd-trees have been used with much success for real-time ray
tracing of static scenes [151, 152], they are less suitable for dynamic
scenes due to their relatively high construction costs. In this respect,
BVHs are more attractive, and several recent papers propose using them
for ray tracing of both rigid and deformable scenes [160, 86, 161, 87, 46].

Furthermore, BVHs are more advantageous than kd-trees by requir-
ing asymptotically less memory space. This is another major reason
why BVH-accelerated ray tracing has gained a lot of interest lately with

36 Chapter 3. Collision Queries

the goal of constructing BVHs that can keep up with the best kd-trees
also for ray tracing static models. In particular, the surface area heuris-
tic (SAH) introduced by Goldsmith and Salmon has become known as
an effective technique for evaluating the quality of building operations
during hierarchy construction [75]. Several new improved construction
methods based on SAH have been developed recently [77, 69]. Unfor-
tunately, large geometric primitives giving rise to BVs with significant
overlap are not handled efficiently using SAH and traditional BVHs. To
ensure a high quality of the BVHs for scenes with such primitives too,
a technique called early split clipping has been proposed [82]. Other
recently proposed BVH-like data structures, which are also influenced
by the kd-tree, includes the bounding interval hierarchy (BIH) [162],
DE-tree [163], and B-KD Tree [164]

Real-time ray tracing is an emerging research field with many prob-
lems left to solve. Clearly, highly efficient and robust techniques for ren-
dering complex and dynamic scenes at steady real-time rates are needed.
Although the proposed BVHs and acceleration methods in this thesis are
focused mainly on collision detection, several of the techniques can be
applied to improve ray tracing as well. In particular, the algorithms for
efficient reconstruction and updating of BVHs due to model deforma-
tion during simulation are equally important for both collision detection
and interactive ray tracing. The applicability and benefits of these novel
methods are presented next in Chapter 4.

Chapter 4

Contributions

This chapter includes summaries of the conducted research and the main
contributions are emphasized. The results have been published in seven
papers, which are listed in Table 4.1. In the following discussion, these
papers are referred to as papers A–G. For a more detailed treatment,
consult the original papers. For convenience, the full text of the papers
is also reprinted in part II of this thesis.

The main contribution of paper A is a new algorithm for hierarchical
collision detection of meshes undergoing arbitrary vertex repositioning.
In particular, a hierarchy update method based on a new efficient BV
refitting scheme is given, yielding a significant speedup compared with
previous approaches. Paper B introduces a novel algorithm for collision
detection of morphing models, whose performance is of the same order
as algorithms previously used for hierarchical collision detection of rigid
bodies. In paper C, the main contribution is a new algorithm for ray
tracing of deforming meshes. The paper shows that the hierarchy update
method, which was proposed in paper A, gives a speedup of an order
of magnitude in the reconstruction phase, which is needed in ray trac-
ing of dynamically changing scenes. This makes feasible the interactive
ray tracing of scenes with hundreds of thousands of deforming geometric
primitives. Paper D introduces a generalized collision detection algo-
rithm based on dynamic BVHs. The method allows efficient CD even
for unstructured breakable or exploding objects. In paper E, a BVH
based on a novel type of BV, the slab cut ball, is introduced, which
enables highly efficient CD queries between rigid bodies. In papers F

37

38 Chapter 4. Contributions

A Thomas Larsson and Tomas Akenine-Möller. Collision Detection
for Continuously Deforming Bodies. In Eurographics Conference
2001, Short presentations, pages 325–333, Manchester 2001.

B Thomas Larsson and Tomas Akenine-Möller. Efficient Collision
Detection for Models Deformed by Morphing. The Visual Com-
puter, 19(2–3):164–174, 2003.

C Thomas Larsson and Tomas Akenine-Möller. Strategies for Bound-
ing Volume Hierarchy Updates for Ray Tracing of Deformable
Models. MRTC Report, Mälardalen University, February 2003.

D Thomas Larsson and Tomas Akenine-Möller. A Dynamic Bound-
ing Volume Hierarchy for Generalized Collision Detection. Com-
puters & Graphics, 30(2):451–460, 2006.

E Thomas Larsson and Tomas Akenine-Möller. Bounding Volume
Hierarchies of Slab Cut Balls. MRTC Report, Mälardalen Univer-
sity, June 2008. (Conditionally accepted for publication in Com-
puter Graphics Forum.)

F Thomas Larsson, Tomas Akenine-Möller, and Eric Lengyel. On
Faster Sphere-Box Overlap Testing. journal of graphics tools,
12(1):3–8, 2007.

G Thomas Larsson. An Efficient Ellipsoid-OBB Intersection Test.
journal of graphics tools, 13(1):31–43, 2008.

Table 4.1: The papers included in this thesis.

4.1 Research Methodology 39

and G, efficient overlap tests are proposed between boxes and spheres,
and boxes and ellipsoids. In CD, intersection tests between BVs must
be highly optimized, since they are usually part of the inner loop in the
hierarchy traversals.

4.1 Research Methodology

In all these above-mentioned works, the main methodology employed has
been based on literature studies, simulation experiments and running
benchmarks. The results of the experiments have been compared with
those of previously suggested methods, both in terms of correctness and
running times. This part of our work clearly shows that our proposed
solutions are efficient and useful in practice.

Since benchmarking collision queries and intersection testing is a dif-
ficult endeavour [165], the experimental set-ups have been chosen with
care. For example, it is important to make sure that a rich set of geo-
metric configurations are included in the experiments to reveal both the
weak and strong aspects of the algorithms, and that known problematic
special cases, or any other known limitation of the methods, are stated
clearly. Other issues that must be considered are the potential bias of the
results, for example, because of limited efforts to optimize any one of the
used algorithms, the choice of compiler optimization settings, hardware
setup, etc.

Since an awareness of these issues has guided the presented work, it
is expected that the reported experiments are reliable and have a high
practical value. Of course, theoretical arguments explaining and sup-
porting the experimental results are also very important. In particular,
when it can be shown theoretically that a method has the advantage of
an asymptotically lower time complexity, and this also can be demon-
strated in practice, a strong case can be built.

4.2 Collision Queries for Deforming Models

In deformable-body collision detection, the primary challenge is to deal
with the changing shapes of the geometric models efficiently. Clearly,
the implications this leads to for the used BVHs depend on the type of
deformation the bodies are undergoing. Three main types of deforma-
tion are considered here: (i) fixed-connectivity meshes undergoing arbi-

40 Chapter 4. Contributions

trary vertex repositioning, (ii) meshes deformed by a specific bounded
deformation model, such as morphing, and (iii) general deformation, i.e.
meshes undergoing arbitrary changes of the mesh connectivity (mesh
topology) as well as arbitrary vertex repositioning.

4.2.1 Hierarchy Refitting for Vertex Deformation

In paper A, a new collision detection algorithm is proposed for multiple
deforming bodies represented by polygon meshes. The bodies are allowed
to undergo a complete change of shape from one time step to another by
arbitrary vertex movements, but the topology or mesh structure must
be kept the same. First, potential collisions are sorted out in a broad
phase, which is done by a sweep and prune method [166, 22]. The result
is a list of close body pairs that need to be examined more carefully.
This is done in a narrow phase, where a hierarchical search is performed
for each body pair in the list by using bounding volume hierarchies of
axis-aligned boxes. When the bodies deform, the boxes can be refitted
very efficiently, and also, the needed BV/BV intersection test between
two AABBs is extremely fast.

The bounding volume trees are constructed in a preprocess before
simulation time. A simple top-down tree-building strategy is used in
which the mesh is recursively split into new tree nodes until only one
face remains. During simulation, the structure of the tree is kept fixed.
When a body deforms, the axis-aligned bounding boxes in the nodes
are refitted according to a scheme referred to as the hybrid bottom-
up/top-down update method, which aims at finding an efficient balance
between the number of updated tree nodes and the number of tree nodes
encountered during collision traversals.

The performance of the proposed collision detection algorithm com-
pares very favourably with other suggested approaches. In the exper-
iments performed, it was found to be four to five times faster than a
previously leading method. Deforming meshes of up to tens of thou-
sands of geometric primitives were used in these experiments.

The main contributions of paper A are summarized below:

– A new collision detection algorithm is proposed for deforming meshes.
All the vertices of the meshes can be arbitrarily deformed at every
simulation time step. The algorithm is based on bounding vol-
ume hierarchies that can be pre-built and then efficiently updated
during simulation.

4.2 Collision Queries for Deforming Models 41

– A novel hierarchy update method is presented. The upper levels
of the hierarchies are updated bottom-up in an incremental way,
whereas the lower levels of the hierarchies are updated lazily, as
needed, during the collision traversals. This update method is
significantly faster than previously suggested methods.

– By examining and comparing the performance of bounding vol-
umes trees with k-ary tree nodes, where k = 2, 4, and 8, it was
found that k = 8 gave slightly better performance in all conducted
experiments. A higher value of k gives lower heights of the trees,
but increases the work to be performed per node in the collision
traversals.

– Two different ways of partitioning the faces of the meshes into the
hierarchy nodes during tree construction are proposed. The first
operates on the initial shape of the deforming body and the other
on the interconnectivity of the faces of the mesh, which remains
the same during simulation. Which is the better method depends
on the model and how it is deformed.

In paper C, the hierarchy refitting scheme presented in paper A is
further analyzed and evaluated for ray tracing of deforming meshes. In
complex and dynamically changing scenes, the reconstruction phase, re-
sponsible for updating the data structures as the simulation proceeds, is
likely to become a major bottleneck. Furthermore, the ray tracing phase
can be parallelized very efficiently, as compared with the reconstruction
phase, for which it seems harder to create successful parallel solutions.
With the new approach, it is shown that by only updating the upper
levels of the pre-built bounding volume hierarchies, the reconstruction
phase can be made an order of magnitude faster. The remaining parts
of the hierarchies are updated lazily as needed in the ray tracing phase.
This approach saves computation and leads to significant speedups in
many scenes.

The high performance of the approach has been verified in complex
scenes. It has been demonstrated that scenes with hundreds of thousands
of deforming and reflective triangles can be ray traced at interactive
frame rates. Completely dynamic and interactive scenes are supported,
since no a priori information of forthcoming deformations are used.

The main contributions of paper C are summarized below:

42 Chapter 4. Contributions

– The proposed solution extends the set of scenes that can be ray
traced at interactive frame rates. It is shown that interactive ray
tracing is possible for scenes with complex deforming meshes con-
sisting of hundreds of thousands of geometric primitives.

– By using the hybrid bottom-up/top-down update method from pa-
per A, the reconstruction phase runs an order of magnitude faster
as compared with using bottom-up refitted hierarchies. This is
important since the reconstruction phase risks becoming the bot-
tleneck in complex dynamic scenes.

– The suggested update scheme takes advantage of the fact that the
hierarchies do not need to be updated for the occluded parts of
the scene, although they may be deforming. This yields significant
speedups in the total rendering time of many complex scenes.

4.2.2 Hierarchy Refitting for Specific Deformation

In paper B, a new algorithm for the rapid detection of collisions or in-
tersections between morphing models is proposed, which further extends
the usage of bounding volume hierarchies for collision detection. The
morphing model is a polygonal mesh that is gradually transformed or
blended between a set of reference meshes. All the possible deformations
are bounded locally by the reference meshes, which make it possible to
create a morphing-aware bounding volume hierarchy for each morphing
model that can be updated by transforming or blending sets of reference
bounding volumes, which correspond to associated parts of the reference
meshes.

The hierarchies are built in a preprocess before simulation and then
their structures are never changed. Collision queries are performed by
dual hierarchy traversals which sort out possible intersections in an effi-
cient way. Whenever an outdated tree node is reached during a traversal,
it is updated by an extremely fast O(1) bounding-volume blending op-
eration, given that a fixed number of reference meshes are used. Strictly
speaking, the blending operation is O(m) for m reference meshes, but
since m is a very small integer, usually m ≤ 4, it makes sense to regard
m as a constant.

In practice, the performance of a full collision query is expected to be
sub-linear, as in hierarchical collision detection methods for rigid bodies.
Note that only for face pairs that are found to be located closely during

4.2 Collision Queries for Deforming Models 43

the collision traversals, must the actual blended vertices of those faces
be calculated. This means that for rendering, the vertices of the meshes
can be blended by the graphics processing unit (GPU), which saves CPU
time, and may improve the overall performance.

The expected high performance of the proposed algorithm has been
verified by different types of experiments with morphing meshes defined
by tens of thousands of triangular polygons. This algorithm for morphing
models was found to be significantly faster than the more general collision
detection method presented in paper A.

The main contributions of paper B are summarized below:

– A novel collision detection algorithm for morphing models is sug-
gested. It is based on morphing-aware bounding volume hierar-
chies. The performance of this algorithm is of the same order as
that for hierarchical rigid body collision detection with expected
logarithmic query times in most practical cases, and a best case of
O(1) when the root BVs are disjoint.

– A simple hierarchy construction method is presented that creates a
single hierarchy per morphing model with k-ary tree nodes, which
store one bounding volume per reference model per tree node.

– In the experiments, a tree degree of k = 8 was found to be a slightly
more efficient choice when compared with k = 2 and k = 4. Note
that it is very common in other works on hierarchical collision
detection for rigid bodies to suggest binary tree structures.

– A top-down update method is proposed, which is completely inte-
grated with the collision traversals. Only the nodes that are en-
countered during the dual hierarchy traversals are updated, and a
node is updated simply by blending the stored reference bounding
volumes.

– It is shown that the proposed method works for bounding volume
hierarchies of axis-aligned bounding boxes, k-DOPs, and spheres.

– The proposed collision detection strategy applies generally to other
types of bounded deformations for which a bounding volume refit
function is known that is independent of the geometric primitives
stored in the volume (see later published approaches [85, 39, 167,
168, 169]).

44 Chapter 4. Contributions

4.2.3 Hierarchy Restructuring for Breakable Models

In paper D, an adaptive BVH-based algorithm for highly dynamic col-
lision detection is presented, which generalizes the usage of bounding
volume hierarchies to a much broader category of models undergoing
non-rigid motion. Clearly, when the topology of the models is changed
during simulation due to, for example, melting, explosions, fracture, cut-
ting, or tearing, the culling efficiency of an associated BVH is often de-
creased drastically.

To cure arising culling inefficiencies in a BVH, two main techniques
are employed: (i) BVH restructuring which aims at reconstructing a spe-
cific part of a BVH by re-organizing the set of geometric primitives caus-
ing the inefficiency, and (ii) BV refitting which recomputes the bounds
or extents of a selected set of BVs without any re-partitioning of the
geometric primitives.

Clearly, the first technique has a much better potential when it
comes to restoring a high culling efficiency of the BVH, However, a high
quality re-partitioning of a node with m primitives usually requires an
O(m log m) strategy. Therefore, the restoration may give rise to severe
performance bottlenecks. BV refitting schemes, on the other hand, run
in worst case O(m) time, but may not always be enough to restore a rea-
sonable culling efficiency. Consequently, there is a fine balance between
these two techniques.

The proposed method is able to efficiently balance low-level update
work by amortizing structural changes of the dynamic BVHs over time.
Lazy evaluation and temporal coherence are exploited to determine both
restructuring and refitting. These techniques are urgently needed to
maintain query speed during highly dynamic scenarios, where the num-
ber of executed low-level operations arising from node splitting opera-
tions and refitting parent nodes by BV merging must be kept in bal-
ance with the cost of the number of executed low-level intersection tests
needed in the dual hierarchy CD traversals. To reflect this, the cost
function in Equation 3.1 is extended to also include relevant terms for
the primitive operations arising from hierarchy maintenance. In addi-
tion, by using these techniques, only active parts of the BVHs are used,
updated, and constructed, which means that the storage requirements
of the BVH becomes adaptive to the current complexity of the collision
queries.

So far, we have only considered CD between two or more different

4.2 Collision Queries for Deforming Models 45

bodies. Using the BVH for self-intersection detection, also called intra-
object CD, is a more challenging problem, since for connected primitives
the queries are misled to find lots of pairs with neighbouring geomet-
ric primitives, and the detection of these false intersections consumes
much of the execution time. Although the proposed method can still
be used for this case, this type of query is clearly slower than the inter-
object queries. To evaluate the relative performance of our BVH also
for intra-object CD, a sorting-based CD method was also designed called
SWIPER. This method is an improvement of the well-known sweep-and-
prune CD method designed for n-body simulations [166, 22].

The efficiency of the proposed approaches has been demonstrated
in scenes with breakable models consisting of hundreds of thousands of
independently moving primitives. In the benchmarks, significant speed-
ups between 4.4–12.7 were observed for inter-object CD. For intra-object
CD, the observed speedups in our benchmark were between 0.3–54 using
the proposed dynamic BVH, and between 1.4–13.6 using SWIPER as
compared to the classical sweep-and-prune algorithm.

The main contributions of paper D are listed below:

– A novel object-space CD algorithm is presented which is appli-
cable for a broad category of deformable bodies including highly
dynamic breakable objects. Furthermore, the algorithm can easily
be combined with other BVH-based CD approaches to efficiently
support queries among a mix of rigid, modestly deformed, and
highly deformable models.

– A simple method is proposed to detect BVH degradation and to
perform localized reconstruction of currently active parts of the
BVHs. Furthermore, the remaining parts of the BVH are updated
using an adaptive refitting scheme running in linear time. By ex-
ploiting temporal coherence, the updated BVs correspond to the
currently active parts of the BVHs.

– To utilize temporal coherence also in the updating of BVHs for de-
forming meshes with fixed connectivity, the refitting scheme intro-
duced here can be used in place of the hybrid bottom-up/top-down
scheme presented in paper A.

– Clearly, the mechanisms for detecting BVH degradation and lo-
calized reconstruction are general techniques, and not limited to

46 Chapter 4. Contributions

BVH-based CD. Hence, the method introduced can with very small
adjustments be applicable for accelerating other types of queries
needed in, for example, view-frustum culling, occlusion culling,
picking, and ray tracing. The benefits of the general approach has
been confirmed by several other papers, which also utilize incre-
mental update techniques for BVHs for faster CD between fractur-
ing objects [94] and hierarchy restructuring for ray tracing highly
dynamic scenes [93, 77].

– An improved sweep-and-prune algorithm called SWIPER is pro-
posed for detecting self-intersections.

4.3 Collision Queries for Rigid Bodies

In rigid-body collision detection, precomputations can be utilized to a
much higher degree compared to scenes with shape-changing objects.
Thus, the BVH construction phase can involve more sophisticated heuris-
tics to produce higher quality hierarchy structures with tighter fitting
bounding volumes, which will lead to improved culling efficiency in search
queries.

It has been shown that the tightness of fit of the volumes in the BVHs
is essential to avoid explosive growth of the parameter Nv in the cost
function in Equation 3.1 in parallel close proximity situations. Certain
BV types, such as the sphere and AABB, fail to deliver the required
tightness of fit in such cases. Here we will consider two approaches
to achieve attractive tight fitting hierarchies: (i) construction of homo-
geneous BVHs by carefully choosing an appropriate BV type, and (ii)
designing heterogeneous BVHs for excellent tightness of fit.

4.3.1 Tight Fitting Hierarchies using Slab Cut Balls

In paper E, a BVH based on a novel type of enclosing volume is pro-
posed called the slab cut ball (SCB). In short, an SCB is a sphere that
has been cut by two parallel planes (a slab). An example is given in
Figure 2.2. The benefits of using this type of BV in the hierarchies are
threefold. It provides tight fitting volumes, efficient overlap tests, and
low storage requirements. As shown in the paper, this leads to highly
efficient collision queries for rigid bodies over a wide range of geometric
situations, from bodies well separated to bodies barely touching each

4.3 Collision Queries for Rigid Bodies 47

other, and bodies at deep interpenetration. The algorithm is very gen-
eral, since every input model can be a polygonal soup associated with a
rigid body transform, which means it is applicable in a broad range of
interactive graphics simulations.

The successful realization of the SCB tree relies on two fundamental
algorithms. First, given a point set with n vertices, efficient computation
of a tight fitting enclosing SCB is necessary. For this, a deterministic
O(n) algorithm is presented which finds both the required tight fitting
sphere and a belonging narrow slab. Second, a highly optimized BV-BV
intersection test is required. Therefore, a robust conservative overlap test
using less than 100 simple arithmetical operations (add, sub, mul), and
zero divisions, is also presented. The purpose of using a conservative test
rather than an exact version is to speed up the entire hierarchical collision
query [170]. Besides these fundamental algorithms, an appropriate and
robust tree building heuristic must be employed. For this, a traditional
O(n log n) top-down construction method is presented, which uses a very
efficient partitioning method inspired by quicksort [68].

The collision query between two polygonal soups is carried out by
traversing the corresponding SCB trees simultaneously according to the
pseudocode given in Figure 3.1. The proposed algorithm is very fast, ro-
bust and numerically stable. No divisions, square roots, or other poten-
tially problematic mathematical functions are used in the computations,
and unlike the OBBTree method [47], the traversal does not use cascad-
ing multiplication of transformation matrices during the recursion.

Interestingly, the OBB tree has been shown to have quadratic con-
vergence to underlying smoothly curved geometry, whereas sphere and
AABB trees only have linear convergence [23]. This gives a significant
performance advantage for OBBs in certain close proximity situations
such as those arising when fitting machine parts together in a virtual
assembly simulation. Since the arguments for the quadratic OBB con-
vergence, which concerns the relative change of diameter and width of
the BVs as a BVH is descended, also applies to the SCB volume, a sim-
ilar performance advantage is also expected for SCB trees. Indeed, the
experimental results obtained confirm this. In parallel close proximity
situations, the SCB tree is asymptotically faster than the sphere tree.

The SCB tree solution can also be regarded as an improvement over
the seminal OBB tree data structure, since it requires less storage and
it involves a faster BV-BV overlap test. Interestingly, from a theoretical
point of view, optimal SCBs can also be computed asymptotically faster

48 Chapter 4. Contributions

than minimum OBBs. Therefore, building an OBB tree with minimum
OBBs is a more complex operation than building a SCB tree with op-
timal SCBs.1 As shown by O’Rourke, the computation of a minimum
OBB can be made in O(n3) time [171], and it appears to be the asymp-
totically fastest method to date [134]. Therefore, OBB tree construction
would in this case be O(n3 log n). Using Gottschalk’s practical approach
for OBB fitting, however, results in an O(n log2 n) tree-building method,
given that the convex hull is computed in the OBB creation process, and
otherwise O(n log n) [23].

On the other hand, an enclosing SCB volume can be computed in
O(n3/2+ε) time using a minimum width slab algorithm [172]. In this
case, the computation of the slab in the SCB computation would domi-
nate the running time, since minimum spheres can be computed in deter-
ministic linear time. Accordingly, the construction of an SCB tree would
take O(n

3
2+ε log n) time. Computing the SCB tree using our practical

method, however, takes O(n log n) time using our worst case O(n) time
SCB fitting algorithm. In the asymptotical running times given here, it
has been assumed that the used tree-building method manages to par-
tition the primitives in each hierarchy level in linear time, and that the
produced trees have a logarithmic depth.

To summarize, the main contributions of paper E are as follows:

– The slab cut ball is introduced as a novel type of BV providing an
attractive balance between the computational cost of the overlap
test, tightness of fit, and storage cost.

– An efficient worst case O(n) algorithm for computing an enclosing
SCB of a point set is given.

– A practical and efficient top-down BVH construction method is
proposed with expected O(n log n) running time.

– A fast overlap test between two SCBs for use in collision detec-
tion traversals using less than 100 simple arithmetical operations
is given.

– The experimental evaluation of the performance of the SCB tree
for collision queries between pairs of polygonal models shows a

1By optimal, we here mean an SCB created as the intersection of two indepen-
dently determined volumes, i.e. the smallest bounding sphere and minimum width
slab.

4.3 Collision Queries for Rigid Bodies 49

significant performance advantage for SCB trees over sphere trees.
In addition, the SCB trees are also faster than the OBB trees in
the benchmarks.

4.3.2 Heterogeneous Bounding Volume Hierarchies

Since the tightness of fit of the volumes in a bounding volume hierarchy
can be dramatically improved by switching to heterogeneous or hybrid
bounding volume hierarchies, the development of high-quality automatic
construction methods of such tight hierarchies looks attractive. Unfor-
tunately, heterogeneous bounding volume hierarchies is an understudied
subject [173]. An early initial effort in ray tracing utilized a mix of
spheres, cylinders, and boxes as BV types [35]. Su et al. stored a list of
candidate bounding volumes in each non-leaf tree node.2 Then during
collision detection between two tree nodes, they adaptively chose the
type of intersection test to perform by selecting the BV-BV pair which
minimized a cost function [174]. In another approach, three different
types of sphere swept volumes (point swept sphere, line swept sphere
and rectangle swept sphere) are used as candidate volumes in the BVH
construction [61].

A powerful set of BV types to be used in hybrid BVHs could for
example include the AABB, OBB, sphere, and ellipsoid. For all these BV
types, practical O(n) methods exist to compute almost optimal enclosing
volumes. Obviously, by computing all these types of volumes for a given
subset of points during tree construction, the best shape can be chosen
and stored, while the other shapes are discarded. To determine the
best shape, a quality metric is needed, which is based on the size of
the volume (or area) in relation to the expected operation cost of the
required geometric operations.

The remaining problem, and by far the most difficult one, is the
construction of a high quality BVH structure with respect to all of the
possible bounding volume types. The design goal would be to find some
reasonably fast and useful heuristic producing significantly tighter fitting
hierarchies than corresponding homogenous BVHs.

Efficient ray intersection tests are available for all the above men-
tioned BV types [145, 53]. For collision detection, however, the num-
ber of overlap tests needed grows quadratically with the number of BV

2They mentioned AABB, OBB, cylinder, sphere, cone, and wedge as example
candidate BV types.

50 Chapter 4. Contributions

types. More specifically, if there are n BV types, the number of overlap
test routines, No, that have to be supported is

No = n +
n(n− 1)

2
=

n(n + 1)
2

. (4.1)

Thus, by for example limiting the number of BV types to the four previ-
ously mentioned shapes, it would be sufficient to implement 10 different
overlap tests. In this case, the following tests are needed: AABB-AABB,
OBB-OBB, sphere-sphere, ellipsoid-ellipsoid, AABB-OBB, AABB-sphere,
AABB-ellipsoid, OBB-sphere, OBB-ellipsoid, and sphere-ellipsoid.

Implementing the overlap tests AABB-AABB and sphere-sphere effi-
ciently is straightforward. Efficient methods for the overlap tests OBB-
OBB and ellipsoid-ellipsoid are also well known [47, 133]. For the AABB-
OBB overlap test, a simpler version of the OBB-OBB overlap test can
be utilized. For the sphere-ellipsoid overlap test, the ellipsoid-ellipsoid
test is applicable, since a sphere is a special case of an ellipsoid. Al-
ternatively, an iterative search method can be used to find the minimal
distance from the sphere centre to the ellipsoid, which is then compared
to the sphere radius [134]. Efficient algorithms for the remaining cases,
which have been developed in papers F and G, are presented next.

4.3.3 Sphere-Box Overlap Testing

In paper F, faster algorithms for the AABB-sphere and OBB-sphere
overlap tests are presented, which makes it more attractive to use a mix
of spheres, AABBs, and OBBs as bounding containers to speed up BVH-
based CD methods. As pointed out by Arvo, the distance from a point
p on the box to the centre c of the sphere is given by

d(p) =
√

(px − cx)2 + (py − cy)2 + (pz − cz)2. (4.2)

By finding the point that minimizes the distance d, we can compute
d2 and compare it to the squared radius of the sphere to get the over-
lap status. It is, however, sufficient to minimize each term under the
root expression independently, since each term is non-negative. This
observation leads to Arvo’s elegant AABB-sphere intersection test algo-
rithm [175].

In paper F, it is shown that Arvo’s method can be made faster by
adding early outs at appropriate places in the algorithm. The idea be-
hind the early outs can be described geometrically as follows: If the

4.3 Collision Queries for Rigid Bodies 51

bounds of the box are enlarged by the radius of the sphere along each
one of its principal axes, no intersection can possibly occur, if the cen-
tre of the sphere is outside this enlarged box. Note that this type of
quick rejection can be inserted in the algorithm as the original distance
calculations proceed, simply by adding a single conditional test per box
axis, without increasing the number of required arithmetic operations at
all. Alternatively, all the early outs can be executed first of all in the
beginning of the algorithm.

Finally, it is also shown that an implementation of Arvo’s method
based on a vectorized instruction set, such as Intel’s SIMD SSE, gives
opportunities for both branch and loop elimination, which results in even
faster execution time compared to the tested sequential methods.

The main contributions of paper F are summarized below:

– Arvo’s original sphere-AABB intersection test is improved by adding
early outs based on a simple geometric condition at appropriate
places in the algorithm.

– An efficient generalization of the algorithm for the sphere-OBB
case is also presented.

– Even faster vectorized versions of the sphere-AABB and sphere-
OBB algorithms are presented, which eliminates branches as well
as the entire loop over the axes of the box.

– It is shown that simple conservative overlap tests lead to even
faster execution times without introducing too many false posi-
tives. This type of test may improve performance further when
used in conjunction with hierarchical CD queries, which refine the
search results as needed by descending to more fine-grained levels.

– The algorithms work for spheres and boxes in n-dimensional space,
although the presentation only focuses on the three-dimensional
case.

4.3.4 Ellipsoid-Box Overlap Testing

In paper G, a novel algorithm for the ellipsoid–OBB overlap test is pro-
posed.3 This intersection test makes it more attractive to use a mix of

3It is straightforward to use the same test method for the ellipsoid-AABB test
too.

52 Chapter 4. Contributions

ellipsoids and OBBs as bounding boxes in a heterogeneous BVH. The
main idea is to transform the three-dimensional space in such a way that
the ellipsoid deforms into the unit sphere, which at the same time de-
forms the OBB to a parallelepiped. This is possible since, as shown in
the paper, this type of affine transformation is guaranteed to leave the in-
tersection status of the objects unaltered. After the transformation, the
calculation proceeds in the obtained simplified test space, which means
the overlap status can be determined rapidly by only using a constant
number of simple arithmetical operations and comparisons. Also, the
overlap test takes advantage of the regular shape of the parallelepiped
to eliminate unnecessary test cases. In addition, a simple early rejec-
tion test is proposed. All these techniques are expected to speed up
the overlap test significantly, which is also confirmed by the practical
experiments.

The main contributions of paper G are summarized below:

– A fast intersection test between arbitrarily oriented ellipsoids and
boxes is proposed.

– In particular, the algorithm can be used as a building block in a
future realization of a CD system using heterogeneous BVHs.

– The general idea of transforming the geometric objects to the
canonical sphere space of the ellipsoid is clearly applicable for de-
signing other rapid intersection tests involving ellipsoids, such as
ellipsoid-polygon and ellipsoid-polyhedron overlap tests.

Chapter 5

Conclusions

In this dissertation, various types of adaptive bounding volume hierar-
chies have been shown to be powerful tools to accelerate different types
of collision queries. The involved models have been polygonal meshes or
polygonal soups, and three main types of deformation have been con-
sidered for these models: (i) arbitrary vertex re-positioning for meshes
with static topology, (ii) specific bounded deformation which makes pos-
sible sub-linear refitting of a node’s BV independently of where in the
tree structure it is located, and (iii) independently deforming polygon
soups undergoing unstructured relative motion. Indeed, these deforma-
tion models cover a very broad set of geometric scenes that could be ex-
pected to appear in interactive graphics simulation. Thus, the proposed
methods for efficient collision queries are quite generally applicable.

Since the running times of the proposed algorithms have been in
focus, it is also worth noting that the improvements of the performance
of CPUs, from year to year, will not be great enough to make advanced
collision detection algorithms obsolete. In computer graphics, there is
a never-ending demand for larger and more complex simulations. In
many respects, the solutions and algorithms proposed here scale well
with scene complexity, and they may therefore be useful for simulation
applications for many years to come.

Although the computer graphics field has been in focus in this work,
it is also expected that the proposed approaches can be used in ap-
plications, or inspire improved methods, in other related fields such as
robotics, computational geometry, computational biology, and medical

53

54 Chapter 5. Conclusions

simulation.
Generalization of the proposed algorithms to work also for tetrahedral

meshes is straightforward. Curved surfaces can also be supported easily
by tessellation to polygons. However, this gives only an approximation
to the real surfaces. If higher accuracy is needed, some minor additions
such as supporting a fast overlap test between pairs of surface patches
and computation of bounding volumes covering these patches, should
suffice to generalize the hierarchical approaches to work also for models
with surface patches as geometric primitives.

The collision detection schemes proposed in papers A, B, D, and
E all have in common that the focus has been on performing efficient
collision queries between two models. If a hundred, or more, models
are included in a simulation, an efficient broad phase must be added to
these collision detection systems, whose purpose is to sort out all body
pairs out of n bodies that are potentially capable of colliding [176]. The
sweep-and-prune method for moving body simulation seems suitable for
this [126, 22]. For all three types of deformable models considered here,
and for the rigid body case as well, all that needs to be done to apply
this method is to first update or compute an AABB for the root node
in all the hierarchies. For example, in the case of morphing, the root
AABB is simply computed by blending the reference bounding volumes
they store, an extremely efficient operation. The computation of an
AABB covering an SCB can also be implemented as a simple constant
time operation. Besides the sweep-and-prune approach, uniform grid
and spatial hashing approaches are also good alternative data structures
for accelerating broad phase collision detection [177, 178, 19, 119].

The ultimate goal would of course be to design a single adaptive
bounding volume hierarchy capable of supporting all the above men-
tioned deformation models (and others) at the same time in an efficient
way. Interestingly, it can be noted that all four collision detection ap-
proaches, given in papers A, B, D, and E, are based on quite similar
bounding volume hierarchies and hierarchy traversals. Therefore, they
can easily be integrated into a very general collision query framework to
support simulations that include all three types of deformation models.

To realize such a framework, a specialized dual tree collision detec-
tion traversal must be implemented for each possible type of hierarchy
pair. The only two additional intersection tests that must be supported
between tree nodes to integrate our methods are the AABB-SCB and
OBB-SCB tests. Then collisions between all combinations of the differ-

55

ent types of the deformable models mentioned above, as well as rigid
models, can be efficiently tracked.

Other types of bounding volume trees can also be supported, given
that efficient intersection tests between tree nodes can be provided.
Therefore, a natural extension of the framework would be to integrate
OBB trees and sphere trees, primarily as an alternative way of represent-
ing rigid models. By permitting the use of different types of homogenous
hierarchies, it becomes possible to choose the most suitable BVH type
for each model, which can improve the tightness of fit and lead to better
performance.

The flexibility within a single BVH can be increased further by
switching to heterogeneous bounding volume hierarchies. The overlap
tests given in papers F and G add to the collection of required over-
lap tests to make collision queries using heterogeneous bounding volume
trees possible. It is here conjectured that this type of BVH will improve
rigid body collision detection significantly, as compared to correspond-
ing homogenous BVHs. However, this requires high-quality heuristics
for building superior tight-fitting hierarchies.

Given two heterogeneous bounding volume trees representing two
rigid models, an efficient dual hierarchy collision detection traversal, sim-
ilarly to the algorithm given in Figure 3.1, can for example be realized
by using the double dispatch technique [179] in a programming language
such as C++.1 In this way, the correct type of overlap test can be called
for each encountered node pair without adding branches in the code to
handle the different BV types during the traversal.

Paper C illustrates the usage of the proposed data structures for
a different type of collision query, i.e. between rays of light and the
geometric primitives of models. Although no experimental results have
been obtained for the other types of hierarchies (proposed in papers B,
D, and E) in the context of ray tracing, it is expected that these types of
hierarchies may be utilized for efficient ray tracing as well. Experiments
are of course needed to evaluate the data structures and for designing
improved versions that are found to be more suitable for ray tracing.
This is of great importance for extending the set of scenes which can be
used in interactive ray tracing.

1C++ supports single dispatch natively, i.e. dynamic binding of a message based
on the type of the receiver object.

56 Chapter 5. Conclusions

5.1 Future Work

Much further work remains to be done in the fields of spatial data struc-
tures and rigid and deformable body simulation. Certain directions in
which research relating to collision detection and interactive ray tracing
is desirable are described briefly below:

– The extension of the proposed collision detection methods to sup-
port efficient handling of self-intersections would be beneficial. This
is very important in certain applications. In cloth simulation,
for example, some interesting approaches have already been pub-
lished [180, 181, 182].

– The proposed collision detection methods are not designed to han-
dle situations where a single model is torn, cut, or broken, into sev-
eral widely separated parts. In such cases, the BVH of the model
probably needs to be broken into several independent BVHs as well,
which corresponds to the arising independent sub-models. There-
fore, further generalization of the algorithms to support breakable
bodies more efficiently is a subject worth more attention.

– In the field of bioinformatics and computational biology new spe-
cialized collision detection algorithms are needed. The simulation
of protein folding, for example, is becoming increasingly more im-
portant, but also computationally very challenging. Deforming
molecules are systems with many degrees of freedom and efficient
proximity detection is crucial. Therefore, the development of new
data structures and algorithms that are well suited for the simu-
lation of protein folding is needed. An example of an interesting
recent proposal is a graph data structure called deformable span-
ner [183].

– The design of a set of standardized benchmark scenes for collision
detection of deformable bodies would make fair comparisons be-
tween algorithms much easier. Such scenes must be designed with
care so that they include a broad spectrum of different and inter-
esting contact scenarios. So far, only a few initial efforts to propose
suitable standard benchmarks have been made [165].

– It has been shown that bounding volume hierarchies can be used for
interactive ray tracing [153]. However, new improved methods for

5.1 Future Work 57

reconstruction of bounding volume hierarchies are still needed to
make interactive rendering of highly complex and dynamic scenes
using BVHs a reachable goal [45, 93]. For example, it would be
interesting to study acceleration data structures for scenes with
millions of independently deforming primitives, including paral-
lelization of the construction and/or reconstruction phase. Several
recent papers present promising results in this direction [157, 20].

– For rigid bodies, a technique designated generalized front track-
ing has been suggested to utilize the temporal coherence that is
present in many types of simulations [114, 110]. It would perhaps
be interesting to examine this technique further in the context of
deformable body simulation. When using a node degree larger
than two, however, which is often the case when BVHs are used to
represent deformable objects, the hierarchies become flatter, which
decreases the potential benefits of using front tracking [51, 45].

– Bounding volume hierarchies of SCBs have been successfully used
for efficient CD [67]. It would also be worthwhile to study the ef-
fects of using the same, or similar, hierarchies to accelerate other
types of geometric queries such as view-frustum culling and ray
tracing. By also considering methods to update the hierarchies,
e.g. by deleting and inserting geometric primitives, as well as sup-
porting schemes for efficient volume refitting and lazy hierarchy
restructuring, efficient queries for deformable objects may be de-
veloped as well [45, 94].

– The SCB tree seems to be particularly suitable also for time-critical
CD [25]. In this case, approximate collision response can be com-
puted based on the encountered uncut sphere in each node as in
existing sphere tree approaches [106], or more interestingly, the
quite simple shape of the SCB itself can be used to design a more
accurate approximate collision response mechanism. Furthermore,
since significantly fewer BVs might be needed to reach a certain
tightness of fit compared to ball trees and AABB trees, this opens
promising opportunities for both time and memory critical BVH
solutions.

– It would be interesting to see how fast an exact SCB-SCB overlap
test can be made. Replacing the proposed conservative overlap

58 Chapter 5. Conclusions

test with an exact intersection test in collision queries using SCB
trees would improve the culling efficiency, but how would it affect
the overall performance?

– It is well known that the smallest enclosing ball can be constructed
in O(n) time [56], and that the minimum width slab can be com-
puted in O(n

3
2 +ε) time [172]. However, when considering the SCB

volume, which is the intersection volume of a ball and a slab, the
question arises how we can compute a minimum volume SCB. It
is clear that the intersection volume between the minimum width
slab and the minimum volume ball does not give the minimum SCB
in the general case. How to best compute the smallest volume SCB
enclosing a set of n points is therefore an interesting open problem.
A related problem is how to find the minimum SCB enclosing a set
of n balls. Furthermore, an algorithm to compute the smallest SCB
given n SCBs as input would be interesting in e.g. bottom-up con-
struction of SCB trees. Clearly, practical algorithms for computing
the minimum volume SCB in various contexts would increase the
attractiveness of using the SCB as a bounding container.

– It is expected that the development of an improved construction
method for SCB hierarchies would lead to significantly tighter fit-
ting levels of approximations. For example, by finding “islands” of
rather flat areas of a model in the construction process, the poly-
gons in such an area can be grouped under a node and enclosed by
a tight-fitting SCB.

– How to create high-quality heterogeneous bounding volume hier-
archies is an understudied subject. In general, this type of BVH
would significantly improve the tightness of fit of the approximat-
ing levels in the tree, and thus, potentially lead to a major break-
through for BVH-accelerated spatial queries.

– The majority of the collision detection algorithms focus on polygon
meshes or soups. Generalizing the presented CD methods to also
handle other representations of the models efficiently, for example,
point clouds [184], tetrahedral meshes, and higher order surfaces,
would be possible. Besides making the methods more generally
applicable, this may also lead to new general insights on BVH-
based collision detection.

5.1 Future Work 59

– With the advent of multi-core CPUs and modern programmable
GPUs, the development of new parallel CD methods, based on
BVHs, grids [118], or any other suitable data structure seems very
attractive.

– Currently, the architectures used in graphics hardware are evolv-
ing rapidly. The graphics processing unit (GPU) is more and
more being turned into a highly parallel general computation unit.
This means that the traditional clear distinction between CPUs
and GPUs is getting blurred [185]. Consequently, using the GPU
to speed up tasks such as global illumination, collision detection,
physics, and artificial intelligence is getting more attractive, and
this is a research area that definitely needs more attention [186].

Hopefully, the contributions put forward in this thesis have provided
some interesting answers to the question: How can efficient collision
queries using adaptive bounding volume hierarchies be realized? Indeed,
collision detection is a broad and exciting area, with many opportunities
for stimulating research and further progress. Now, when the introduc-
tion of new massively parallel architectures for desktop computers lies
right before us, the future for improved geometric queries in collision
detection and rendering looks very promising!

Bibliography

[1] Computing curricula 2001. Journal on Educational Resources in
Computing (JERIC), 1(3), 2001.

[2] Tomas Akenine-Möller and Eric Haines. Real-Time Rendering, 2nd
Edition. A K Peters, 2002.

[3] Hanan Samet. Foundations of Multidimensional and Metric Data
Structures. Morgan Kaufmann, 2006.

[4] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On visible
surface generation by a priori tree structures. In SIGGRAPH ’80:
Proceedings of the 7th Annual Conference on Computer Graphics
and Interactive Techniques, pages 124–133, 1980.

[5] Bruce Naylor, John Amanatides, and William Thibault. Merging
BSP trees yields polyhedral set operations. In Proceedings of the
17th Annual Conference on Computer Graphics and Interactive
Techniques, pages 115–124. ACM Press, 1990.

[6] Jr. George Vaněček. Brep-index: a multidimensional space parti-
tioning tree. In SMA ’91: Proceedings of the First ACM Sympo-
sium on Solid Modeling Foundations and CAD/CAM Applications,
pages 35–44, New York, NY, USA, 1991.

[7] W. Bouma and Jr. G. Vanecek. Collision detection and analy-
sis in a physical based simulation. In Eurographics Workshop on
Animation and Simulation, pages 191–203, 1991.

[8] Jon Louis Bentley. Multidimensional binary search trees used for
associative searching. Communications of the ACM, 18(9):509–
517, 1975.

61

62 Bibliography

[9] M. Held, J. T. Klosowski, and J. S. B. Mitchell. Evaluation of col-
lision detection methods for virtual reality fly-throughs. In Pro-
ceedings of the Seventh Canadian Conference on Computational
Geometry, pages 205–210, 1995.

[10] Raphael Finkel and Jon Louis Bentley. Quad trees: A data struc-
ture for retrieval on composite keys. Acta Informatica, 4(1), 1974.

[11] Hanan Samet. The quadtree and related hierarchical data struc-
tures. ACM Computing Surveys, 16(2):187–260, 1984.

[12] Hanan Samet and Robert E. Webber. Hierarchical data structures
and algorithms for computer graphics. Part I: Fundamentals. IEEE
Computer Graphics and Applications, 8(3):48–68, 1988.

[13] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry: Algorithms and Applica-
tions, 2nd Edition. Springer-Verlag, 1997.

[14] Hanan Samet and Robert E. Webber. Hierarchical data structures
and algorithms for computer graphics. Part II: Applications. IEEE
Computer Graphics and Applications, 8(4):59–75, 1988.

[15] K. Klimaszewski and T. Sederberg. Faster ray tracing using adap-
tive grids. IEEE Computer Graphics and Applications, 17:42–51,
1997.

[16] Thiago Ize, Peter Shirley, and Steven G. Parker. Grid creation
strategies for efficient ray tracing. In IEEE Symposium on Inter-
active Ray Tracing, pages 27–32, 2007.

[17] A. Fujimoto, T. Tanaka, and K. Iwata. ARTS: Accelerated ray-
tracing system. IEEE Computer Graphics and Applications, 6:16–
26, 1986.

[18] V. Akman, W. R. Franklin, M. Kankanhalli, and
C. Narayanaswmi. Geometric computing and uniform grid
technique. Computer Aided Design, 21(7):410–420, 1989.

[19] M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, and
M. Gross. Optimized spatial hashing for collision detection of de-
formable objects. In Proceedings of Vision, Modeling and Visual-
ization, pages 47–54, November 2003.

Bibliography 63

[20] Ares Lagae and Philip Dutré. Compact, fast and robust grids for
ray tracing. In Eurographics Symposium on Rendering, 2008.

[21] Philip M. Hubbard. Collision detection for interactive graphics
applications. IEEE Transactions on Visualization and Computer
Graphics, 1(3):218–230, 1995.

[22] Jonathan D. Cohen, Ming C. Lin, Dinesh Manocha, and Madhav
Ponamgi. I-COLLIDE: an interactive and exact collision detec-
tion system for large-scale environments. In Proceedings of the
1995 Symposium on Interactive 3D Graphics, pages 189–196. ACM
Press, 1995.

[23] Stefan Gottschalk. Collision Queries using Oriented Bounding
Boxes. PhD thesis, Department of Computer Science, University
of North Carolina at Chapel Hill, 2000.

[24] S. Cameron. Collision detection by four-dimensional intersection
testing. IEEE Transactions on Robotics and Animation, 6(3):291–
302, 1990.

[25] Philip M. Hubbard. Collision Detection for Interactive Graphics.
PhD thesis, Department of Computer Science, Brown University,
March 1995.

[26] Daniel S. Coming and Oliver G. Staadt. Velocity-aligned discrete
oriented polytopes for dynamic collision detection. IEEE Transac-
tions on Visualization and Computer Graphics, 14(1):1–12, 2008.

[27] Jen-Duo Liu, Ming-Tat Ko, and Reui-Chuan Chang. Collision
avoidance in cloth animation. The Visual Computer, 12:234–243,
1996.

[28] Ming C. Lin and Dinesh Manocha. Collision detection. In Jacob E.
Goodman and Joseph O’Rourke, editors, Handbook of Discrete and
Computational Geometry, pages 787–807. Chapman & Hall, 2004.

[29] Liangjun Zhang, Xin Huang, Young J. Kim, and Dinesh Manocha.
D-plan: Efficient collision-free path computation for part re-
moval and disassembly. Computer Aided Design and Applications,
5(6):774–786, 2008.

64 Bibliography

[30] An Nguyen. Implicit Bounding Volumes and Bounding Volume
Hierarchies. PhD thesis, Stanford University, 2006.

[31] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms, 2nd Edition. MIT Press,
2000.

[32] Gill Barequet, Bernard Chazelle, Leonidas J. Guibas, Joseph S. B.
Mitchell, and Ayellet Tal. BOXTREE: A hierarchical representa-
tion for surfaces in 3D. Computer Graphics Forum, 15(3):387–396,
August 1996.

[33] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Pa-
padopoulos, and Yannis Theodoridis. R-trees have grown every-
where. Technical report, 2003.

[34] Lars Arge, Mark de Berg, and Herman Haverkort. Cache-oblivious
R-trees. In SCG ’05: Proceedings of the Twenty-first Annual Sym-
posium on Computational Geometry, pages 170–179, New York,
NY, USA, 2005. ACM.

[35] Hank Weghorst, Gary Hooper, and Donald P. Greenberg. Im-
proved computational methods for ray tracing. ACM Transanc-
tions on Graphics, 3(1):52–69, 1984.

[36] S. Quinlan. Efficient distance computation between non-convex ob-
jects. In Proceedings of IEEE International Conference on Robotics
and Automation, pages 3324–3329, 1994.

[37] I. J. Palmer and R. L. Grimsdale. Collision detection for anima-
tion using sphere-trees. Computer Graphics Forum, 14(2):105–116,
1995.

[38] Philip M. Hubbard. Approximating polyhedra with spheres for
time-critical collision detection. ACM Transactions on Graphics
(TOG), 15(3):179–210, 1996.

[39] Ladislav Kavan and Jiri Zara. Fast collision detection for skeletally
deformable models. Computer Graphics Forum, 24(3):363–372,
2005.

Bibliography 65

[40] Cesar Mendoza and Carol O’Sullivan. Interruptible collision detec-
tion for deformable objects. Computers & Graphics, 30(2):432–438,
2006.

[41] Thanh Giang and Carol O’Sullivan. Approximate collision re-
sponse using closest feature maps. Computers & Graphics,
30(2):423–431, 2006.

[42] Robert Webb and Mike Gigante. Using dynamic bounding vol-
ume hierarchies to improve efficiency of rigid body simulations.
In Proceedings of the 10th International Conference of the Com-
puter Graphics Society on Visual computing: Integrating Computer
Graphics with Computer Vision, pages 825–842. Springer-Verlag
New York, Inc., 1992.

[43] Gino van den Bergen. Efficient collision detection of complex de-
formable models using AABB trees. journal of graphics tools,
2(4):1–14, 1997.

[44] Thomas Larsson and Tomas Akenine-Möller. Collision detection
for continuously deforming bodies. In Eurographics Conference
2001, Short Presentations, pages 325–333, September 2001.

[45] Thomas Larsson and Tomas Akenine-Möller. A dynamic bounding
volume hierarchy for generalized collision detection. Computers &
Graphics, 30(2):451–460, 2006.

[46] Ingo Wald, Solomon Boulos, and Peter Shirley. Ray tracing de-
formable scenes using dynamic bounding volume hierarchies. ACM
Transactions on Graphics, 26(1), 2007.

[47] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: a hierarchi-
cal structure for rapid interference detection. In SIGGRAPH ’96:
Proceedings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques, pages 171–180, 1996.

[48] S. Redon, A. Kheddary, and S. Coquillart. Fast continuous colli-
sion detection between rigid bodies. Computer Graphics Forum,
21(3):279–288, September 2002.

66 Bibliography

[49] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and
K. Zikan. Efficient collision detection using bounding volume hier-
archies of k-DOPs. IEEE Transactions on Visualization and Com-
puter Graphics, 4(1):21–36, 1998.

[50] G. Zachmann. Rapid collision detection by dynamically aligned
DOP-trees. In Proceedings of the IEEE Virtual Reality Annual
International Symposium, pages 90–97, March 1998.

[51] J. Mezger, S. Kimmerle, and O. Etzmuss. Hierarchical techniques
in collision detection for cloth animation. Journal of WSCG,
11:322–329, 2003.

[52] Christer Ericson. Real-Time Collision Detection. Morgan Kauf-
mann, 2005.

[53] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. Real-Time
Rendering, 3rd Edition. A K Peters, 2008.

[54] Thomas Larsson. Fast and tight fitting bounding spheres. In
Proceedings of The Annual SIGRAD Conference, pages 27–30.
Linköping University Electronic Press, November 2008.

[55] Nimrod Megiddo. Linear-time algorithms for linear programming
in R3 and related problems. SIAM Journal on Computing, 12:759–
776, 1983.

[56] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In
H. Maurer, editor, New Results and Trends in Computer Science,
Lecture Notes in Computer Science 555, pages 359–370. Springer,
1991.

[57] Bernd Gärtner. Fast and robust smallest enclosing balls. In ESA
’99: Proceedings of the 7th Annual European Symposium on Algo-
rithms, pages 325–338. Springer-Verlag, 1999.

[58] Yi-King Choi, Jung-Woo Chang, Wenping Wang, Myung-Soo Kim,
and Gershon Elber. Real-time continuous collision detection for
moving ellipsoids under affine deformation. Technical report, HKU
CS Tech Report TR-2006-02, 2006.

Bibliography 67

[59] Lin Lu, Yi-King Choi, Wenping Wang, and Myung-Soo Kim. Vari-
ational 3D shape segmentation for bounding volume computation.
Computer Graphics Forum, 26(3):329–338, 2007.

[60] Sergey Bereg. Cylindrical hierarchy for deforming necklaces. In-
ternational Journal of Computational Geometry & Applications,
14(1-2):3–17, 2004.

[61] Eric Larsen, Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha.
Fast proximity queries with swept sphere volumes. Technical re-
port, Department of Computer Science, University of North Car-
olina at Chapel Hill, 1999.

[62] Eric Larsen, Stefan Gottschalk, Ming C. Lin, and Dinesh Manocha.
Fast distance queries with rectangular swept sphere volumes. In
Proceedings of IEEE International Conference on Robotics and Au-
tomation, pages 3719–3726, 2000.

[63] Taosong He. Fast collision detection using QuOSPO trees. In
Proceedings of the 1999 symposium on Interactive 3D graphics,
pages 55–62, 1999.

[64] Norio Katayama and Shin’ichi Satoh. The SR-tree: an index struc-
ture for high-dimensional nearest neighbor queries. In SIGMOD
’97: Proceedings of the 1997 ACM SIGMOD International Con-
ference on Management of Data, pages 369–380, 1997.

[65] Shankar Krishnan, Amol Pattekar, Ming C. Lin, and Dinesh
Manocha. Spherical shell: a higher order bounding volume for fast
proximity queries. In WAFR ’98: Proceedings of the Third Work-
shop on the Algorithmic Foundations of Robotics on Robotics: the
Algorithmic Perspective, pages 177–190, 1998.

[66] Leonidas J. Guibas, An Nguyen, and Li Zhang. Zonotopes as
bounding volumes. In SODA ’03: Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages
803–812, 2003.

[67] Thomas Larsson and Tomas Akenine-Möller. Bounding volume hi-
erarchies of slab cut balls. Technical report, Mälardalen University,
June 2008.

68 Bibliography

[68] C. A. R. Hoare. Quicksort. The Computer Journal, 5(1):10–15,
1962.

[69] Bruce Walter, Kavita Bala, Milind Kulkarni, and Keshav Pingali.
Fast agglomerative clustering for rendering. In IEEE Symposium
on Interactive Ray Tracing, 2008.

[70] Rui Xu and Donald Wunsch. Survey of clustering algorithms.
IEEE Transactions on Neural Networks, 16(3):101–108, 2005.

[71] Jiri Skala and Ivana Kolingerova. Clustering geometric data
streams. In Proceedings of The Annual SIGRAD Conference, pages
17–23. Linköping University Electronic Press, November 2007.

[72] Kerawit Somchaipeng, Kenny Erleben, and Jon Sporring. A multi-
scale singularity bounding volume hierarchy. In Proceedings of
International Conferences in Central Europe on Computer Graph-
ics, Visualization and Computer Vision (WSCG), pages 179–186,
2005.

[73] Kerawit Somchaipeng. Multi-Scale Singularity Trees. PhD thesis,
The Department of Computer Science, University of Copenhagen,
Denmark, 2006.

[74] Stephen M. Omohundro. Five balltree construction algorithms.
Technical Report 89-063, International Computer Science Insti-
tute, Berkeley, California, November 1989.

[75] Jeffrey Goldsmith and John Salmon. Automatic creation of object
hierarchies for ray tracing. IEEE Computer Graphics and Appli-
cations, 7(5):14–20, May 1987.

[76] Jörg Haber, Marc Stamminger, and Hans-Peter Seidel. Enhanced
automatic creation of multi-purpose object hierarchies. In Pro-
ceedings of the 8th Pacific Conference on Computer Graphics and
Applications, pages 52–61, 2000.

[77] Martin Eisemann, Thorsten Grosch, Marcus Magnor, and Stefan
Müller. Automatic creation of object hierarchies for ray tracing of
dynamic scenes. In WSCG Short Papers Proceedings, 2007.

Bibliography 69

[78] G. Adelson-Velskii and E. M. Landis. An algorithm for the orga-
nization of information. In Proceedings of the USSR Academy of
Sciences, pages 263–266, 1962.

[79] Michael T. Goodrich and Roberto Tamassia. Algorithm Design:
Foundations, Analysis, and Internet Examples. John Wiley &
Sons, Inc., 2002.

[80] Leo J. Guibas and Robert Sedgewick. A dichromatic framework
for balanced trees. In 19th Annual Symposium on Foundations of
Computer Science, pages 8–21, October 1978.

[81] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting
binary search trees. Journal of the Association for Computing
Machinery, 32(3):652–686, 1985.

[82] Manfred Ernst and Gunther Greiner. Early split clipping for
bounding volume hierarchies. In IEEE Symposium on Interactive
Ray Tracing, pages 73–78, 2007.

[83] Pankaj Agarwal, Leonidas Guibas, An Nguyen, Daniel Russel, and
Li Zhang. Collision detection for deforming necklaces. Computa-
tional Geometry Theory and Applications, 28(2-3):137–163, 2004.

[84] J. Brown, S. Sorkin, C. Bruyns, and J. Latombe. Real-time simu-
lation of deformable objects: Tools and application. In Proceedings
of Computer Animation, November 2001.

[85] Doug L. James and Dinesh K. Pai. BD-tree: Output-sensitive col-
lision detection for reduced deformable models. ACM Transactions
on Graphics, 23(3):393–398, 2004.

[86] J. Mahovsky and B. Wyvill. Memory-conserving bounding volume
hierarchies with coherent ray tracing. Computer Graphics Forum,
25(2):173–182, 2006.

[87] David Cline, Kevin Steele, and Parris Egbert. Lightweight bound-
ing volumes for ray tracing. journal of graphics tools, 11(4):61–71,
2006.

[88] Sung-Eui Yoon and Dinesh Manocha. Cache-efficient layouts
of bounding volume hierarchies. Computer Graphics Forum,
25(3):507–516, 2006.

70 Bibliography

[89] Herman J. Haverkort, Mark de Berg, and Joachim Gudmundsson.
Box-trees for collision checking in industrial installations. In SCG
’02: Proceedings of the Eighteenth Annual Symposium on Compu-
tational geometry, pages 53–62, 2002.

[90] Paul S. Strauss and Rikk Carey. An object-oriented 3D graphics
toolkit. In SIGGRAPH ’92: Proceedings of the 19th Annual Con-
ference on Computer Graphics and Interactive Techniques, pages
341–349. ACM Press, 1992.

[91] John Rohlf and James Helman. IRIS performer: a high perfor-
mance multiprocessing toolkit for real-time 3D graphics. In SIG-
GRAPH ’94: Proceedings of the 21st Annual Conference on Com-
puter Graphics and Interactive Techniques, pages 381–394. ACM
Press, 1994.

[92] Thomas Larsson and Tomas Akenine-Möller. Efficient collision
detection for models deformed by morphing. The Visual Computer,
19:164–174, 2003.

[93] Sung-Eui Yoon, Sean Curtis, and Dinesh Manocha. Ray tracing
dynamic scenes using selective restructuring. In Eurographics Sym-
posium on Rendering, 2007.

[94] Otaduy, O. Chassot, D. Steinemann, and M. Gross. Balanced
hierarchies for collision detection between fracturing objects. In
IEEE Virtual Reality Conference, pages 83–90, 2007.

[95] Sigal Ar, Bernard Chazelle, and Ayellet Tal. Self-customized BSP
trees for collision detection. Computational Geomtery: Theory and
Applications, 15(1-3):91–102, 2000.

[96] Sigal Ar, Gil Montag, and Ayellet Tal. Deferred, self-organizing
BSP trees. Computer Graphics Forum, 21(3):269–278, 2002.

[97] T. Ulrich. Loose octress. In Mark DeLoura, editor, Game Pro-
gramming Gems, pages 444–453. Charles River Media, 2000.

[98] M.C. Lin and S. Gottschalk. Collision detection between geometric
models: A survey. In Proceedings of IMA, Conference of Mathe-
matics of Surfaces, pages 602–608, 1998.

Bibliography 71

[99] P. Jiménez, F. Thomas, and C. Torras. 3D collision detection: a
survey. Computers & Graphics, 25:269–285, 2001.

[100] Carol O’Sullivan, John Dingliana, Fabio Ganovelli, and Gareth
Bradshaw. T6: Collision handling for virtual environments. In
Eurographics 2001 Tutorial Proceedings, 2001.

[101] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann,
L. Raghupathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-
Thalmann, W. Strasser, and P. Volino. Collision detection for de-
formable objects. Computer Graphics Forum, 24(1):61–81, 2005.

[102] Zhigeng Pan, Weiwei Xu, Jin Huang, Mingmin Zhang, and Jiaoy-
ing Shi. Easybowling: a small bowling machine based on virtual
simulation. Computers & Graphics, 27:231–238, 2003.

[103] Kristian Yrjölä and Thomas Larsson. Real-time generation of
plausible surface waves. In Proceedings of The Annual SIGRAD
Conference, pages 11–16. Linköping University Electronic Press,
November 2007.

[104] E. Arbabi, R. Boulic, and D. Thalmann. A fast method for finding
range of motion in the human joints. In Engineering in Medicine
and Biology Society, pages 5079–5082, 2007.

[105] Matthew Moore and Jane Wilhelms. Collision detection and re-
sponse for computer animation. In Proceedings of the 15th Annual
Conference on Computer Graphics and Interactive Techniques,
pages 289–298. ACM Press, 1988.

[106] John Dingliana and Carol O’Sullivan. Graceful degradation of col-
lision handling in physically based animation. Computer Graphics
Forum, 19(3):239–248, 2000.

[107] E. G. Gillbert, D. W. Johnson, and S. S. Keerthi. A fast proce-
dure for computing the distance between complex objects in three-
dimensional space. IEEE Journal of Robotics and Automation,
4(2):193–203, 1988.

[108] S. Cameron. Enhancing GJK: Computing minimum penetration
distances between convex polyhedra. In Proceedings of the Interna-
tional Conference on Robotics and Automation, pages 3112–3117,
1997.

72 Bibliography

[109] Brian Mirtich. V-clip: fast and robust polyhedral collision de-
tection. ACM Transactions on Graphics (TOG), 17(3):177–208,
1998.

[110] Stephan A. Ehmann and Ming C. Lin. Accurate and fast proxim-
ity queries between polyhedra using convex surface decomposition.
Computer Graphics Forum, 20(3):500–510, September 2001.

[111] G. Zachmann and W. Felger. The boxtree: Enabling real-time and
exact collision detection of arbitrary polyhedra. In First Workshop
on Simulation and Interaction in Virtual Environments, pages
104–113, 1995.

[112] Juan Jose Jimenez, Francisco R. Feito, Rafael J. Segura, and Car-
los J. Ogayar. Particle oriented collision detection using simplicial
coverings and tetra-trees. Computer Graphics Forum, 25(1):53–68,
2006.

[113] James T. Klosowski. Efficient Collision Detection for Interactive
3D Graphics and Virtual Environments. PhD thesis, State Uni-
versity of New York at Stony Brook, May 1998.

[114] Tsai-Yen Li and Jin-Shin Chen. Incremental 3D collision detection
with hierarchical data structures. In Proceedings of the ACM Sym-
posium on Virtual Reality Software and Technology, pages 139–144.
ACM Press, November 1998.

[115] Gabriel Zachmann and René Weller. Kinetic bounding volume
hierarchies for deformable objects. In ACM International Confer-
ence on Virtual Reality Continuum and Its Applications (VRCIA),
Hong Kong, China, June 2006.

[116] A. Smith, Y. Kitamura, H. Takemura, and F. Kishino. A simple
and efficient method for accurate collision detection among de-
formable polyhedral objects in arbitrary motion. In Proceedings of
the IEEE Virtual Reality Annual International Symposium, pages
136–145, 1995.

[117] F. Ganovelli, J. Dingliana, and C. O’Sullivan. Buckettree: Im-
proving collision detection between deformable objects. In Spring
Conference in Computer Graphics (SCCG2000), pages 156–163,
2000.

Bibliography 73

[118] W. R. Franklin, N. Chandrasekhar, M. Kankanhalli, M. Seshan,
and V. Akman. Efficiency of uniform grids for intersection detec-
tion on serial and parallel machines. In New Trends in Computer
Graphics (Proc. Computer Graphics International), pages 27–32,
1988.

[119] Mathias Eitz and Gu Lixu. Hierarchical spatial hashing for real-
time collision detection. In SMI ’07: Proceedings of the IEEE In-
ternational Conference on Shape Modeling and Applications, pages
61–70. IEEE Computer Society, 2007.

[120] Naga K. Govindaraju, Stephane Redon, Ming C. Lin, and Dinesh
Manocha. Cullide: interactive collision detection between complex
models in large environments using graphics hardware. In Proceed-
ings of the ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, pages 25–32. Eurographics Association, 2003.

[121] Naga K. Govindaraju, Ming C. Lin, and Dinesh Manocha. Quick-
cullide: Fast inter- and intra-object collision culling using graphics
hardware. In IEEE VR, 2005.

[122] Alexander Gress, Michael Guthe, and Reinhard Klein. GPU-based
collision detection for deformable parameterized surfaces. Com-
puter Graphics Forum, 25(3):497–506, 2006.

[123] Naga K. Govindaraju, Ming C. Lin, and Dinesh Manocha. Fast
and reliable collision culling using graphics hardware. IEEE Trans-
actions on Visualization and Computer Graphics, 12(2):143–154,
2006.

[124] Brian Von Herzen, Alan H. Barr, and Harold R. Zatz. Geometric
collisions for time-dependent parametric surfaces. In Proceedings of
the 17th Annual Conference on Computer graphics and Interactive
Techniques, pages 39–48. ACM Press, 1990.

[125] David Baraff. Curved surfaces and coherence for non-penetrating
rigid body simulation. In Proceedings of the 17th Annual Con-
ference on Computer graphics and Interactive Techniques, pages
19–28. ACM Press, 1990.

74 Bibliography

[126] David Baraff and Andrew Witkin. Dynamic simulation of non-
penetrating flexible bodies. In Proceedings of the 19th Annual Con-
ference on Computer Graphics and Interactive Techniques, pages
303–308. ACM Press, 1992.

[127] Pascal Volino, Martin Courchesne, and Nadia Magnenat Thal-
mann. Versatile and efficient techniques for simulating cloth and
other deformable objects. In Proceedings of the 22nd Annual Con-
ference on Computer Graphics and Interactive Techniques, pages
137–144. ACM Press, 1995.

[128] T. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast cloth anima-
tion on walking avatars. Computer Graphics Forum, 20(3):261–
267, 2001.

[129] J. Lombardo, M. Cani, and F. Neyret. Real-time collision detection
for virtual surgery. In Proceedings of Computer Animation, pages
33–39, 1999.

[130] S. Cotin, H. Delingette, and N. Ayache. Real-time elastic defor-
mation of soft tissues for surgery simulation. IEEE Transactions
on Visualization and Computer Graphics, 5(1):62–73, 1999.

[131] René Weller and Gabriel Zachmann. Kinetic separation lists for
continuous collision detection of deformable objects. In Third
Workshop in Virtual Reality Interactions and Physical Simulation,
2006.

[132] Sean Curtis, Rasmus Tamstorf, and Dinesh Manocha. Fast
collision detection for deformable models using representative-
triangles. In SI3D ’08: Proceedings of the 2008 Symposium on
Interactive 3D Graphics and Games, pages 61–69, 2008.

[133] Wenping Wang, Jiaye Wang, and Myung-Soo Kim. An algebraic
condition for the separation of two ellipsoids. Computer Aided
Geometric Design, 18(6):531–539, 2001.

[134] Philip Schneider and David H. Eberly. Geometric Tools for Com-
puter Graphics. Morgan Kaufmann, 2002.

[135] Thomas Larsson. An efficient ellipsoid-OBB intersection test. jour-
nal of graphics tools, 13(1):31–43, 2008.

Bibliography 75

[136] Jeff Erickson. Local polyhedra and geometric graphs. Computa-
tional Geomtery: Theory and Applications, 31:101–125, 2005.

[137] Subhash Suri, Philip M. Hubbard, and John F. Hughes. Analyz-
ing bounding boxes for object intersection. ACM Transactions on
Graphics (TOG), 18(3):257–277, 1999.

[138] Jan Klein and Gabriel Zachmann. The expected running time of
hierarchical collision detection. In SIGGRAPH ’05: ACM SIG-
GRAPH 2005 Posters, page 117, 2005.

[139] Rene Weller, Jan Klein, and Gabriel Zachmann. A model for the
expected running time of collision detection using AABB trees. In
Proceedings of the 12th Eurographics Symposium on Virtual Envi-
ronments, pages 11–17, May 2006.

[140] Arthur Appel. Some techniques for shading machine renderings of
solids. In Proceedings of the Spring Joint Computer Conference,
pages 37–45, 1968.

[141] Turner Whitted. An improved illumination model for shaded dis-
play. Communications of the ACM, 23(6):343–349, 1980.

[142] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics: Principles and Practice, 2nd Edi-
tion. Addison-Wesley, 1996.

[143] Alan Watt. 3D Computer Graphics, 3rd Edition. Addison-Wesley,
2000.

[144] Edward Angel. Interactive Computer Graphics: A Top-Down Ap-
proach Using OpenGL, 5th Edition. Addison-Wesley, 2008.

[145] Andrew Glassner. An Introduction to Ray Tracing. Academic
Press, 1989.

[146] Peter Shirley. Realistic Ray Tracing. A K Peters, 2000.

[147] Peter Shirley. Realistic Ray Tracing, 2nd Edition. A K Peters,
2003.

[148] Kevin Suffern. Ray Tracing from the Ground Up. A K Peters,
2007.

76 Bibliography

[149] Steven Parker, William Martin, Peter-Pike J. Sloan, Peter Shirley,
Brian Smits, and Charles Hansen. Interactive ray tracing. In
Proceedings of the 1999 Symposium on Interactive 3D Graphics,
pages 119–126. ACM Press, 1999.

[150] Ingo Wald and Philipp Slusallek. State of the art in interactive ray
tracing. In State of the Art Reports, Eurographics 2001, September
2001.

[151] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wag-
ner. Interactive rendering with coherent ray tracing. Computer
Graphics Forum, 20(3):153–164, 2001.

[152] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-
level ray tracing algorithm. ACM Transanctions on Graphics,
24(3):1176–1185, 2005.

[153] Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and
Steven G. Parker. Ray tracing animated scenes using coherent
grid traversal. ACM Transanctions on Graphics, 25(3):485–493,
2006.

[154] Ingo Wald, Thomas Kollig, Carsten Benthin, Alexander Keller,
and Philipp Slusallek. Interactive global illumination using fast
ray tracing. In Eurographics Workshop on Rendering, 2002.

[155] E. Reinhard, B. Smits, and C. Hansen. Dynamic acceleration struc-
tures for interactive ray tracing. In Proceedings of the 11th Euro-
graphics Workshop on Rendering, pages 299–306, 2000.

[156] Maxim Shevtsov, Alexei Soupikov, and Alexander Kapustin.
Highly parallel fast KD-tree construction for interactive ray trac-
ing of dynamic scenes. Computer Graphics Forum, 26(3):395–404,
2007.

[157] Ingo Wald, Thiago Ize, and Steven G. Parker. Fast, parallel,
and asynchronous construction of BVHs for ray tracing animated
scenes. Computers & Graphics, 32(1):3–13, 2008.

[158] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Han-
rahan. Ray tracing on programmable graphics hardware. ACM
Transactions on Graphics (TOG), 21(3):703–712, 2002.

Bibliography 77

[159] David Roger, Ulf Assarsson, and Nicolas Holzschuch. Whitted ray-
tracing for dynamic scenes using a ray-space hierarchy on the GPU.
In Rendering Techniques 2007 (Proceedings of the Eurographics
Symposium on Rendering), pages 99–110, 2007.

[160] Thomas Larsson and Tomas Akenine-Möller. Strategies for bound-
ing volume hierarchy updates for ray tracing of deformable mod-
els. Technical Report MDH-MRTC-92/2003-1-SE, Department of
Computer Science and Engineering, Mälardalen University, Febru-
ary 2003.

[161] C. Lauterbach, Sung-Eui Yoon, David Tuft, and Dinesh Manocha.
RT-DEFORM: Interactive ray tracing of dynamic scenes using
BVHs. In IEEE Symposium on Interactive Ray Tracing, pages
39–46, 2006.

[162] Carsten Wächter and Alexander Keller. Instant ray tracing: The
bounding interval hierarchy. In Eurographics Symposium on Ren-
dering, pages 139–149, 2006.

[163] Miguel R. Zuniga and Jeffrey K. Uhlmann. Ray queries with
wide object isolation and the DE-Tree. journal of graphics tools,
11(3):27–45, 2006.

[164] Sven Woop, Gerd Marmitt, and Philipp Slusallek. B-KD trees
for hardware accelerated ray tracing of dynamic scenes. In GH
’06: Proceedings of the 21st ACM SIGGRAPH/EUROGRAPHICS
Symposium on Graphics Hardware, pages 67–77, 2006.

[165] Sven Trenkel, René Weller, and Gabriel Zachmann. A benchmark-
ing suite for static collision detection algorithms. In International
Conference in Central Europe on Computer Graphics, Visualiza-
tion and Computer Vision (WSCG), Plzen, Czech Republic, 2007.

[166] David Baraff. Dynamic Simulation of Non-Penetrating Rigid Bod-
ies. PhD thesis, Cornell University, 1992.

[167] Ladislav Kavan, Carol O’Sullivan, and Jǐŕı Žára. Efficient collision
detection for spherical blend skinning. In GRAPHITE ’06: Pro-
ceedings of the 4th International Conference on Computer Graph-
ics and Interactive Techniques in Australasia and Southeast Asia,
pages 147–156, 2006.

78 Bibliography

[168] Jonas Spillmann, Markus Becker, and Matthias Teschner. Effi-
cient updates of bounding sphere hierarchies for geometrically de-
formable models. Journal of Visual Communication and Image
Representation, 18(2):101–108, 2007.

[169] Miguel A. Otaduy, Daniel Germann, Stephane Redon, and Markus
Gross. Adaptive deformations with fast tight bounds. In SCA ’07:
Proceedings of the 2007 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, pages 181–190, 2007.

[170] Thomas Larsson, Tomas Akenine-Möller, and Eric Lengyel. On
faster sphere-box overlap testing. journal of graphics tools, 12(1):3–
8, 2007.

[171] Joseph O’Rourke. Finding minimal enclosing boxes. International
Journal of Computer and Information Sciences, 14(3):183–199,
June 1985.

[172] Pankaj K. Agarwal and Micha Sharir. Efficient randomized al-
gorithms for some geometric optimization problems. Discrete &
Computational Geometry, 16(4):317–337, 1996.

[173] Kenny Erleben. An introduction to approximating heterogeneous
bounding volume hierarchies. Technical report, Department of
Computer Science, University of Copenhagen, 2002.

[174] Chuan-Jun Su, Lin Fu-Hua, and Xiao ke Zhang. An efficient col-
lision detection methodology for virtual assembly. In IEEE In-
ternational Conference on Systems, Man, and Cybernetics, pages
360–365, Oct 1998.

[175] James Arvo. A simple method for box-sphere intersection test-
ing. In Andrew Glassner, editor, Graphics Gems, pages 335–339.
Academic Press Professional, Inc., San Diego, CA, USA, 1990.

[176] Philip M. Hubbard. Interactive collision detection. In Proceed-
ings of IEEE Symposium on Research Frontiers in Virtual Reality,
pages 24–31, 1993.

[177] M. H. Overmars. Point location in fat subdivisions. Information
Processing Letters, 44:261–265, 1992.

[178] B. Mirtich. Efficient algorithms for two-phase collision detection.
In Practical Motion Planning in Robotics: Current Approaches and
Future Directions, pages 203–223, 1998.

[179] Daniel H. H. Ingalls. A simple technique for handling multiple
polymorphism. ACM SIGPLAN Notices, 21(11):347–349, 1986.

[180] P. Volino and Nadia Magnenat Thalmann. Efficient self-collision
detection on smoothly discretized surface animations using geo-
metrical shape regularity. Computer Graphics Forum, 13(3):155–
166, 1994.

[181] Robert Bridson, Ronald Fedkiw, and John Anderson. Robust
treatment of collisions, contact and friction for cloth animation.
ACM Transactions on Graphics (TOG), 21(3):594–603, 2002.

[182] David Baraff, Andrew Witkin, and Michael Kass. Untangling
cloth. ACM Transactions on Graphics (TOG), 22(3):862–870,
2003.

[183] Jie Gao, Leonidas J. Guibas, and An Nguyen. Deformable spanners
and applications. In SCG ’04: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, pages 190–199, 2004.

[184] Jan Klein and Gabriel Zachmann. Point cloud collision detection.
Computer Graphics Forum, 23(3):567–576, 2004.

[185] Kayvon Fatahalian and Mike Houston. GPUs: a closer look.
Queue, 6(2):18–28, 2008.

[186] William Mark. Future graphics architectures. Queue, 6(2):54–64,
2008.

II

Included Papers

81

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

