
High Precision Response Time Analysis of Tasks with Precedence Chains

Saad Mubeen, Jukka Mäki-Turja and Mikael Sjödin
Mälardalen Real-Time Research Centre (MRTC)

Box 883, 721 23, Västerås, Sweden
saad.mubeen@mdh.se

Abstract—Response-Time Analysis (RTA) is a powerful,
mature and well established schedulability analysis technique
for real-time systems. In order to get better utilization of
system resources, RTA should not overestimate the response
time of tasks in the system. This paper addresses the problem
of losing system wide information about precedence chains
and overestimation found in response time of tasks when
current RTA is applied to a system where precedence chain
dependencies among tasks exist. We show that when there
are precedence chains with one activating event in a real-time
system, a task under analysis cannot experience Worst Case
Execution Time of all interfering tasks at the same time when
they all experience their maximum release jitter.

Keywords-Response-time analysis; Fixed priority scheduling;
Tasks with offsets; Real-time systems.

I. INTRODUCTION

Nowadays, the majority of electrical products are con-
trolled by an embedded computing system. Often, these
products interact with an environment in a timely manner
i.e. the embedded system is a real-time system. For such
a system, the desired and correct output is one which is
logically correct as well as delivered within a specified
time. Examples of real-time systems are found in many
domains such as automotive, aerospace, robotics, medical
equipments, production facilities etc. Some of the charac-
teristics of these systems are mix functionality with diverse
requirements on timing and dependability, operating in re-
source constrained environments and software reliability.

A large class of these embedded real-time systems is
safety critical and this means that system failure can result
in catastrophic consequences such as endangering human
life or the environment. System providers of safety-critical
systems are required to ensure that the system is safe. One
important activity in order to establish the safety of a real-
time system is to provide evidence that actions by the system
will be provided in a timely manner (e.g. each action will
be taken at a time that is appropriate to the environment
of the system). Thus it has become extremely important for
the system providers to predict the timing behavior of such
systems.

In order to provide evidence that each action in the
system will meet its deadline, a priori analysis techniques,
also known as schedulability analysis techniques, have been
developed by the research community. Tindell [1] developed
schedulability analysis for tasks with offsets and it was
further extended by Palencia and Gonzalez Harbour [2].
In [3], it is claimed that amongst the more traditional,
analytical, schedulability analysis techniques, the response-

time analysis of tasks with offsets (RTA) stands out as the
prime candidate because of its better precision and ability to
analyze quite complex system behaviors. In order to achieve
better utilization of resources, the response time calculated
by the RTA should not have overestimation.

In this paper we present a problem that we have identified
applying RTA [1], [2] to tasks with precedence chains. The
core of the problem is that when precedence chains among
tasks are modeled there is pessimism in the response times.
By assigning each task the local information of offset and
release jitter the system wide information about precedence
chains is lost. We illustrate this problem with an example in
Section III. We show that while considering the precedence
chain relations among tasks with one activating event, a
task under analysis cannot experience Worst Case Execution
Time (WCET) of all interfering tasks at the same time when
all the interfering tasks experience their maximum release
jitter delay. In order for RTA to be efficiently applicable
to industry, this pessimism must clearly be addressed since
precedence relations are a common type of inter-task depen-
dency and are widely used in industrial systems [3].

The rest of the paper is organized as follow: Section II
presents the existing RTA with offsets and the task model
used in this work. Section III discusses the research problem.
In Section IV we present a summary of work in progress.

II. RESPONSE TIME ANALYSIS

RTA [4], [5] is a powerful, mature and well established
schedulability analysis technique. It is a method to calculate
upper bounds on response times of tasks in real-time sys-
tems. In crux, RTA is used to perform a schedulability test
which means it checks whether or not tasks in the system
will satisfy their deadlines. RTA applies to systems where
tasks are scheduled with respect to their priorities and which
is the predominant scheduling technique used in real-time
operating systems today [3].

Liu and Layland [6] provided theoretical foundation for
analysis of fixed-priority scheduled systems. Since then
schedulability analysis of fixed-priority preemptive tasks has
been well developed. Joseph and Pandya published the first
RTA [7] for the simple task model presented by Liu and
Layland which assumes independent periodic tasks. Subse-
quently, the RTA has been applied and extended in a number
of ways by the research community. Moreover a number
of issues have been attacked and resolved by the real-
time research community such as lifting independent task
assumption, analysis of communication networks, analyzing
distributed systems, modeling of operating systems over-

heads, reducing pessimism from traditional RTA, making
RTA faster and tighter etc.

A. Task Model With Offsets
This section describes the task model which we will use

in our work. This transactional task model, also known as a
task model with offsets, was developed by [1] and extended
by [2]. This task model can be viewed as state-of-the-art
task model for RTA in a sense that it can handle many
different and complex parameters with few constraints as
well as applied for different system models. Parameters used
to define the system are arbitrary deadlines, release jitter,
temporal dependencies through offsets, access to shared
resources etc. Furthermore this task model can be applied
to systems in which tasks suspend themselves or generally
to any system where tasks may have temporal dependencies
(offsets) among them. We will use the system model that is
formally described as follows:

Γ :={Γ1, . . . ,Γk}
Γi :=〈{τi1, . . . , τi|Γi|}, Ti〉
τij :=〈Cij , Oij , Dij , Jij , Bij , Pij〉

The system, Γ, consists of a set of k transactions Γ1, . . . ,Γk.
Each transaction Γi is activated by a periodic sequence of
events with period Ti. In the case of sporadic events, Ti is the
minimum inter-arrival time between two consecutive events.
In this model we consider that the activating events are
mutually independent i.e. phasing between them is arbitrary.
There are |Γi| tasks in a transaction Γi and each task may
not be activated until a certain time, called offset, elapses
after the arrival of the external event. By task activation we
mean that the task is released for execution.

We use τij to denote a task. The first subscript i, specifies
the transaction to which this task belongs and the second
subscript j denotes the number of the task within the
transaction. A task, τij , is defined by a worst case execution
time (Cij), an offset (Oij), a deadline (Dij), maximum
release jitter (Jij), maximum blocking from lower priority
tasks (Bij), and a priority (Pij). In this task model, there are
no restrictions placed on offset, deadline or jitter, i.e. they
can each be either smaller or greater than the period.

Figure 1. Relation between an event arrival, offset, jitter and task release.

The relation between event arrival, offset, jitter and task
release is graphically depicted in Fig. 1. It is obvious from
Fig. 1 that the offset (Oij) corresponds to the earliest
possible release of a task whereas the release jitter (Jij)
corresponds to latest possible release of the task. In other
words, after the event arrival, task τij is not released for
execution until its offset (Oij) has elapsed. The task release
may be further delayed by release jitter (maximally until
Oij + Jij) making its exact release uncertain. An example
transaction (Γi) out of many transactions in a system is
shown in Fig. 2. This transaction has two tasks i.e. τi1 and

τi2. The offset, release jitter, WCET of each task and period
of the activating sequence of events are also shown in Fig. 2.

Figure 2. An example transaction Γi.

B. Distributed Systems with Precedences
The task model presented in the above subsection can

be applied to e.g. distributed systems. Precedence relations
among tasks naturally exist in distributed systems. Hence
the original, and most widely adopted, application for task
model with offsets is to model precedence relations among
tasks in distributed systems [1], [2]. In this case, a transac-
tion represents a group of tasks, allocated to several nodes,
where every task has a precedence relation to previous task
in the transaction. End-to-end response times are calculated
over node and communication device boundaries by apply-
ing RTA to each node and also to the network to produce a
holistic schedulability analysis.

The precedence relation in distributed real-time systems is
modeled by means of dynamic offset [2] where the offset for
a task represents the earliest possible release of a task based
on how early the chain of preceding tasks are able to finish.
The jitter term represents the latest possible release time,
denoting the time instant where the chain of preceding tasks
are able to finish i.e. the response time of the immediate
predecessor of the task at hand.

Consider an example transaction with three tasks as shown
in Fig. 3. Since task τi1 is the first task to execute when
the corresponding event arrives, its offset and release jitter
is zero. The second task τi2 is activated only when τi1
completes. We assume that τi1 will finish no sooner than
5 time units after the event arrival. This may be due to the
interference from tasks belonging to other transactions in the
system. Therefore, τi2 will have an offset of 5 time units.
The latest time τi1 will finish is 7 which means that τi2 will
have a release jitter of (7-5) = 2 time units. Similar reasoning
applies to τi3. The three tasks in Fig. 3 are shown in such a
way that as if all of them suffer from their worst-case jitter.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 190 20

Oi2=5

Ci1=2 Ci3=3

Oi3=11

Ji2=2

Ci2=2

Ti =20

Ji3=5

Figure 3. Precedence relations in example transaction Γi.

C. Hybrid Scheduled Systems
Precedence chain relations among tasks, with single acti-

vating event, also exist in hybrid scheduled systems. These

systems are called hybrid because they use both static and
dynamic scheduling. In this subsection we describe the
system model used in a commercial system [8] that sup-
ports hybrid scheduling [9]. In this model the dynamically
scheduled tasks ”run in the background” of a static schedule.
The system model contains interrupts, static schedule and
dynamic tasks. They can be modeled in any priority order.
• Interrupts. There may be multiple interrupt levels,

i.e. an interrupt may be preempted by higher level
interrupts. Each interrupt is modeled as a transaction
with one single task having a period or minimum inter-
arrival time.

• A static cyclic schedule. A schedule of a set of
periodic tasks (functions), each task with a known
WCET, is constructed off-line. The length (duration)
of the schedule is equal to the least common multiple
of all statically scheduled function periods. The static
schedule is modeled as one transaction where offsets
represent the time instant where tasks are released ac-
cording to the static schedule. When the whole schedule
has been executed the schedule is restarted from the
beginning. It is assumed that the schedule is valid even
if its functions are preempted by interrupts.

• A set dynamically dispatched tasks. These tasks are
scheduled by a fixed priority preemptive scheduler.
They are assumed to be periodic or to have known
minimum inter-arrival time. They execute in the time
slots available between interrupts and statically sched-
uled functions.

We illustrate this model with an example. Fig. 4 shows a
static cyclic schedule of length 20, with 4 functions released
at times 0, 5, 10 and 15 with WCETs 4, 1, 1 and 3
respectively. Thus this static cyclic schedule is modeled as a
single transaction, activated at the start of the schedule, with
four tasks having precedence chain relations shown from
lower relaease time to higher as in Fig. 4.

0 2015105
Figure 4. Example of static cyclic schedule

0 2015105

Interrupt

Static Schedule

Dynamic Task

Execution Pattern

A
rr

iv
al

s
an

d
E

xe
cu

tio
n

T
im

es

Figure 5. Example execution scenario

An example execution scenario is shown in Fig. 5 when
schedule from Fig. 4 is executed with one interfering in-
terrupt source and one dynamically scheduled task (two

instances of that task are activated). In this example, we
assume the following priority order:
P(Interrupts) > P(Static Schedule) > P(Dynamic Tasks)

It is very important for such systems that the precedence
chain relations are preserved.

III. RESEARCH PROBLEM

A problem we have identified is that modeling and
analysis of precedence chain relations among tasks, with
single activating event, with current RTA results in the loss
of system wide information about precedence chains and
overestimation in calculated response-time. We illustrate this
problem with an example in the next subsection.

A. Illustrative Example

Consider a transaction with three tasks i.e. τi1, τi2 and τi3.
These tasks have precedence relations among them such that
τi1 precedes τi2 and τi2 precedes τi3.

Γi := 〈{τi1, τi2, τi3}, Ti = 100〉
Ci1 = Ci2 = Ci3 = 20
Pi1 > Pi2 > Pi3

Also consider a low priority task τk1 with WCET, Ck1 = 30.
This will be the task under analysis and we are interested
in calculating its worst-case response time. We assume that
there are no more tasks in the system.

We further assume that the best-case execution time of
these tasks is very small and hence, the jitter for a task is
approximately equal to the response time of its predecessor.
In other words, since jitter represents uncertainty in a task’s
release, the difference between best and worst-case response
time of a preceding task becomes the successor’s release
jitter. Let us denote the response time of a task j belonging
to transaction i by Rij . Since task τi1 is the highest priority
task in the system, its release jitter is zero. Release jitter
of the three higher priority tasks (compared to task under
analysis) is given as follows:

Ji1 = 0 ⇒ Ri1 = 20 ⇒
Ji2 = 20 ⇒ Ri2 = 40 ⇒ Ji3 = 40

Hence, the release jitter of task τi2 is inherited from the
response time of task τi1. Similarly, the release jitter of task
τi3 is equal to the response time of task τi2. The release
jitter term means that a task that is released periodically
may sometimes be delayed at most with its jitter term. This
has an impact when considering the response time of task
τk1 where the interference of each higher priority task is
considered separately.

According to the RTA developed in [2], the maximum
busy period for the low priority task τk1 occurs when the
activations of higher priority tasks occurring (i) before or
at the critical instant are delayed by the amount of jitter
such that they all occur at the critical instant and, (ii) after
the critical instant experience zero jitter. Furthermore, the
task of transaction Γi coinciding with the critical instant
experiences its worst-case jitter delay. The critical instant is
defined in [1]. Therefore, in this example, the worst case

interference τi3 imposes on τk1 is when it first suffers its
worst-case jitter and subsequent releases occur with no jitter.
The resulting scenario is shown in Fig. 6.

0 20 806040 160140120100

τi1 τk1τi1τi2τi3τi3τi2

τi3τi3 100 time units

-40 -20

τi1,τk1τi2
τi2 τi1

Rk1 = 150 time units

Figure 6. Correlated WCETs with current RTA

The above discussion implies that the worst-case inter-
ference occurs when a task is released , experiences its
worst-case release jitter, coincides with the release of the
task under analysis, and finally is released again after period
time units (100 in this example) has elapsed from the
previous release. This fact is highlighted for τi3 in Fig. 6.
Similar reasoning applies to τi2. By applying RTA [1], [2]
the response time of task τk1 i.e. Rk1 becomes 150 time
units as shown in Fig. 6. The reason for this is that it
is assumed that all tasks experience their worst-case jitter
and WCET simultaneously and independently. Moreover, it
is also evident from the figure that the precedence chain
relations among tasks are not preserved.

However, in order for the task τk1 to really experience its
worst-case release jitter, τi2 and τi3 would have to execute
for almost zero time units and hence τk1 cannot experience
both WCET of all three tasks and at the same time they
all experience their maximum release jitter delay. In reality
the task τk1 can only be interfered by each task at most
once and hence the worst-case response time of task τk1 in
reality cannot exceed 90 time units as shown in Fig. 7. The
figure also shows that the information of precedence chain
relations among tasks is also preserved.

0 20 806040 160140120100

τi1 τk1τi3τi2

τi3τi3

Rk1 = 90 time units

-40 -20

τi1,τk1τi2

τi3τi2τi1

τi2τi1

Figure 7. Correlated WCETs without overestimated RTA

B. Pessimistic Modeling and Analysis of Tasks with Prece-
dence Relations

We see from the above example that when current RTA
is applied to task with precedence chain relations among
them, with single activating event, there is pessimism in
the calculated response- time. The essence of the problem
is that precedence chain relations are modeled with jitter
and in RTA each task has its own local jitter without
preserving information about precedence chains. We show
that while considering such systems, a task under analysis
cannot experience WCET of all interfering tasks at the
same time when all the interfering tasks experience their
maximum release jitter delay. Moreover, when systems with
such task models are analyzed then system wide information
on precedence chains is lost.

It should be noted that this problem is not as apparent
in distributed systems as in single processor systems. As an

example, consider a distributed system in which each task
runs on a separate processor and the tasks have precedence
chain relations among them. Hence, it is possible that a task
under analysis can experience WCET and worst-case jitter
from all interfering tasks simultaneously. But the precedence
chain relations among the tasks should be preserved. We
identified this problem only in single processor systems
having tasks with precedence chain relations, with single
activating event, as discussed in Section II-C. In order for
RTA to be efficiently applicable in commercial systems, this
pessimism must clearly be addressed since precedence chain
relations are a common type of inter-task dependency and
are widely used in industrial systems. Therefore, there is
a need to develop high precision RTA by extending the
existing RTA [1], [2] for real-time systems having tasks with
precedence chains.

IV. SUMMARY

In this paper we presented the problem of overestimation
in the calculated response-time and loss of precedence chain
information among tasks when RTA is applied to tasks
with precedence chains. We illustrated this problem with an
example. We also discussed the systems in which precedence
chains among tasks exist and which can be affected by this
problem. Moreover, we have shown that while considering
the precedence chain relations among tasks, a task under
analysis cannot experience WCET of all interfering tasks at
the same time when all the interfering tasks experience their
maximum release jitter delay. Currently we are working on
this problem and trying to extend RTA to enable it to analyze
such systems without overestimation while preserving the
precedence chain relations.

ACKNOWLEDGEMENT

This work is supported by Swedish Knowledge Founda-
tion (KKS) within the project EEMDEF.

REFERENCES

[1] K. W. Tindell, “Using offset information to analyse static priority pre-
emptively scheduled task sets,” Dept. of Computer Science, University
of York, Tech. Rep. YCS 182, 1992.

[2] J. Palencia and M. G. Harbour, “Schedulability analysis for tasks
with static and dynamic offsets,” Real-Time Systems Symposium, IEEE
International, vol. 0, p. 26, 1998.

[3] M. Nolin, J. Mäki-Turja, and K. Hänninen, “Achieving industrial
strength timing predictions of embedded system behavior,” in ESA,
2008, pp. 173–178.

[4] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, “Fixed
priority pre-emptive scheduling:an historic perspective,” Real-Time
Systems, vol. 8, no. 2/3, pp. 173–198, 1995.

[5] L. Sha, T. Abdelzaher, K.-E. A. rzén, A. Cervin, T. P. Baker, A. Burns,
G. Buttazzo, M. Caccamo, J. P. Lehoczky, and A. K. Mok, “Real
time scheduling theory: A historical perspective,” Real-Time Systems,
vol. 28, no. 2/3, pp. 101–155, November/December 2004.

[6] C. Liu and J. Layland, “Scheduling algorithms for multi-programming
in a hard-real-time environment,” ACM, vol. 20, no. 1, pp. 46–61, 1973.

[7] M. Joseph and P. Pandya, “Finding response times in a real-time
system,” The Computer Journal (British Computer Society), vol. 29,
no. 5, pp. 390–395, October 1986.

[8] “Arcticus Systems,” http://www.arcticussystems.com.
[9] J. Mäki-Turja, K. Hänninen, and M. Nolin, “Efficient development of

real-time systems using hybrid scheduling,” in International Confer-
ence on Embedded Systems and Applications, June 2005.

