
Online Handling of Firm Aperiodic Tasks in Time Triggered Systems

Damir Isović and Gerhard Fohler
Department of Computer Engineering, M¨alardalen University, Sweden

fdic,gfrg@mdh.se

Abstract

A number of industrial applications advocate the use of
time triggered approaches for reasons of predictability, cost,
product reuse, and maintenance. The rigid offline scheduling
schemes used for time triggered systems, however, do not
provide for flexibility. At runtime, aperiodic tasks can only
be included into the unused resources of the offline schedule,
supporting neither guarantees nor fast response times.

In this paper we present an algorithm for flexible hard
aperiodic task handling in offline scheduled systems: it pro-
vides an O(N) acceptance test to determine if a set of ape-
riodics can be feasibly included into the offline scheduled
tasks, and does not require runtime handling of resource
reservation for guaranteed tasks. Thus, it supports flexible
schemes for rejection and removal of aperiodic tasks, over-
load handling, and simple reclaiming of resources. As a
result, our algorithm provides for a combination of offline
scheduling and online hard aperiodic task handling.

1 Introduction

Time triggered real-time systems have been shown to be
appropriate for a variety of critical applications: they pro-
vide verifiable timing behavior and allow for distribution,
complex application structures, and general constraints, such
as precedence or end-to-end deadlines. Their benefits are,
however, limited for applications with not completely known
characteristics, such as arrival times. Including such non pe-
riodic tasks in the rigid offline schedules, as used for time
triggered systems, can be resource inefficient at best for
sporadic tasks, and impossible for aperiodics, i.e., without
knowledge of arrival times.

Real-world applications demand flexible handling of ape-
riodic tasks: efficient acceptance tests, resource reservation
if a task can be guaranteed, but also specific rejection strate-
gies for the negative case. Often, aperiodics are guaran-
teed on a first-come-first-serve basis, i.e., already guaranteed
tasks will be executed, and only newly arrived ones rejected,
implying that earlier arriving tasks are more important. In-
stead, the selection of which tasks to reject or remove should
be left to the designer, allowing values and importance as-

signed to tasks, not on their arrival times.
In this paper, we present methods for the flexible online

handling of firm aperiodic tasks based on offline constructed
schedules for time triggered systems. It is based on slot shift-
ing, [4], a method to combine offline and online scheduling
by utilizing unused resources. We provide an EDF based ac-
ceptance test ofO(N) to determine the feasible inclusion of
aperiodic tasks into the offline scheduled tasks. The algo-
rithm avoids explicit runtime handling of resource reserva-
tions for the guaranteed tasks and their impact on the offline
scheduled tasks. Therefore, flexible schemes for rejection
and removal of tasks and aperiodic overload handling can be
applied. The resources of tasks completed earlier can be re-
claimed for other aperiodic tasks without further provisions
or explicitly freeing them.

Aperiodic task handling has been studied extensively for
many scheduling schemes. Server based algorithms, for ex-
ample, have been presented for earliest deadline, e.g., [10],
and fixed priority systems, e.g., [9]. Example algorithms for
the selection of tasks to reject in overload situations have
been discussed in [3], [7],[2], [1]. These algorithms assume
control over all tasks in the system and do not take into ac-
count the impact of offline scheduled tasks. The algorithm
presented in [4] for guarantees of single firm aperiodic tasks
on offline schedules does not provide for removal of guaran-
teed tasks.

2 Offline Complexity Reduction

The rigid offline scheduling schemes used for time trig-
gered systems do not provide for flexibility. Including non
periodic tasks in the offline schedule can be impossible for
aperiodics, i.e., without any knowledge or restriction on ar-
rival times. At runtime, aperiodic tasks can only be included
into the unused resources of the offline schedule, supporting
neither guarantees nor short response times.

In this section, we briefly describe the slot shifting
method [4] which we use as a basis to combine offline and
online scheduling. It provides for the efficient handling of
aperiodic tasks on top of a distributed schedule with general
task constraints. Slot shifting extracts information about un-
used resources and leeway in an offline schedule and uses
this information to add tasks feasibly, i.e., without violating



requirements on the already scheduled tasks. A detailed de-
scription can be found in [4].

First, a standard offline scheduler, e.g., [8], or [5] creates
scheduling tables for the periodic tasks. It allocates tasks to
nodes and resolves precedence constraints by ordering task
executions.

The scheduling tables list fixed start- and end times of
task executions, eliminating all flexibility. The only assign-
ments fixed by the specification of the tasks’ feasibility, how-
ever, are the initiating and concluding tasks in the prece-
dence graph, and, as we assume message transmission times
to be fixed here, tasks sending or receiving inter-node mes-
sages. These are the only fixed start-times and deadlines, all
others are calculated recursively during offline preparations.
The execution of all other tasks may vary within the prece-
dence order, i.e., they can be shifted.

The deadlines of tasks are then sorted for each node and
the schedule is divided into a set ofdisjoint execution inter-
vals for each node. Spare capacities are defined for these
intervals.

Each deadline calculated for a task defines the end of an
interval Ii, end(Ii). Several tasks with the same deadline
constitute one interval. The spare capacities of an intervalI i
are calculated as given in formula 1:

sc(Ii) = jIij �
X
T2Ii

MAXT (T ) +min(sc(Ii+1); 0) (1)

The length ofIi minus the sum of the activities assigned to
it is the amount of idle times in that interval. These have
to be decreased by the amount “lent” to subsequent inter-
vals: Tasks may execute in intervals prior to the one they
are assigned to. Then they “borrow” spare capacity from the
“earlier” interval.

After determination of intervals and spare capacities, the
offline preparations are completed and the amount and loca-
tion of unused resources is available for online use.

Online scheduling is performed locally for each node. If
the spare capacities of the current intervalsc(Ic) > 0, EDF
is applied on the set of ready tasks.sc(Ic) = 0 indicates
that a guaranteed task has to be executed or else a deadline
violation in the task set will occur. Soft aperiodic tasks, i.e.,
without deadline, can be executed immediately ifsc(Ic) >
0. After each scheduling decision, the spare capacities of the
affected intervals are updated.

3 Motivation and Approach

Guaranteeing and handling of firm aperiodic tasks in-
volves three steps:
Acceptance test: Upon arrival of a firm aperiodic task, a test
determines whether there are enough resources available to
include it feasibly with respect to static and previously guar-
anteed aperiodic tasks.

Reservation of resources: If the task can be accepted, it
is guaranteed by providing a mechanism which ensures that
the resources it requires will be available for its execution.
This can be achieved, e.g., by removing these resources from
the available ones, or by ensuring that subsequent guarantees
will not remove them. Note that acceptance test and guaran-
tee can be separated.
Rejection strategy: A failed acceptance test indicates an
overload situation. Consequently, a rejection strategy is re-
quired, which determines which task or tasks – out of all
guaranteed or newly arrived tasks – to reject or abort.

3.1 Shortcommings of Previous Version

The original version of slot shifting provides an online
guarantee algorithm ofO(N) as well: upon arrival of a firm
aperiodic taskA, the spare capacities up to its deadline are
summed up and compared to the execution time demand. If
A is accepted, the spare capacities and intervals are recal-
culated taking into account that resources needed forA are
not available for other tasks. If the deadline of taskA does
not overlap with one of offline calculated intervals, then the
interval that containsdl(A) needs to be split. However, we
want to avoid the creation of new intervals, in order to keep
the online mechanism as simple as possible. While this al-
gorithm guarantees single aperiodics, it has limited flexibil-
ity: only the task currently tested is possibly rejected; once
guaranteed, aperiodics will execute. Changes in the set of
guaranteed tasks require costly deletion of intervals, recal-
culation of spare capacities, and new guarantees.

3.2 Basic Idea

The new method presented here separates acceptance and
guarantee. It eliminates the online modificiation of inter-
vals and spare capacities and thus allows rejection strategies
over the entire aperiodic task set. The basic idea behind the
method is based on standard earliest deadline first guaran-
tee, but sets it to work on top of the offline schedule: EDF
is based on having full availability of the CPU; we have to
consider interference from offline scheduled tasks and per-
tain their feasibility.

4 Algorithm Description

LetGt1 be a set of guaranteed firm aperiodic tasks at time
t1, i.e.,Gt1 = fFi j ct1(Fi) � 0^t1 < dl(Fi) � dl(Fi+1)g,
wherect1(Fi) denotes the remaining execution time of task
Fi at timet1, anddl(Fi) the absolute deadline. Tasks inGt1
are ordered by increasing deadlines, each later thant.

Now assume a new firm aperiodic taskA arrives at time
t2. From timet1 to t2, some tasks inGt1 could have executed
up tot2, which is reflected as follows:

� fF1; :::; Fk�1g – tasks completed by timet2.



� Fk – task currently ready to run, according to EDF. It
may have executed partially , so we need only to con-
sider its remaining execution time,ct2(Fk) � c(Fk).

� fFk+1; :::; Fng – not yet started tasks that need to exe-
cute fully,ct2(Fk) = c(Fk).

So, when guaranteeingA at time t2, we need not con-
sider already completed tasks, but onlyGt2 � Gt1 ; Gt2 =
fFk; Fk+1; :::Fng. TaskA is accepted if the setG 0 = Gt2[A
is feasible, considering the offline tasks.

4.1 Acceptance Test for a Set of Aperiodic Tasks

Offline scheduled tasks are guaranteed to complete be-
fore their deadlines. Aperiodic tasks use unused resources in
the offline schedule. The amount and location of available
resources are represented as intervals and spare capacities.

LetF = fF1; F2; :::; Fng be a set of firm aperiodic tasks
that need to be scheduled together with the offline tasks. We
accept it if each task inF is guaranteed to complete before
its deadline, i.e., the following must hold:

8i; 1 � i � n : c(Fi) �

�
sc[t; dl(F1)] , i = 1
sc[ft(Fi�1); dl(Fi)] , i > 1

where t is current time and notationsc[t1; t2] means the
spare capacity from timet1 to time t2. Otherwise, we need
to reject some task(s).

Note that the spare capacities are not distributed in a uni-
form way throughout the schedule. Rather, as described in
2, the schedule is divided into intervals, each with an indi-
vidual value of spare capacity. Consequently, the amount of
spare capacity in a window depends on the position of that
window in the schedule.

The finishing time of a firm aperiodic taskFi is calcu-
lated with respect to the finishing time of the previous task,
Fi�1. Without any offline tasks, it is calculated the same as
in EDF algorithm i.e.,ft(Fi) = ft(Fi�1) + c(Fi). Since
we guarantee firm aperiodic tasks on the top of an offline
schedule, we need to consider the feasibility of offline tasks.
This extends the formula above with a new term that reflects
the amount of resources reserved for offline tasks in a certain
time interval,R[t1; t2]:

ft(Fi) = ct(Fi)+

�
t+ R[t; ft(F1)] , i = 1
ft(Fi�1)+R[ft(Fi�1); ft(Fi)] , i > 1

We can accessR[t1; t2] via spare capacities and intervals at
runtime asR[t1; t2] = (t2 � t1) � sc[t1; t2]. Sinceft(Fi)
appears on both sides of the equation, a simple solution is not
possible. Rather, we present an algorithm for computation
of finishing times of firm aperiodic tasks with complexity of
O(N), which is further discussed in next subsection.

4.2 Pseudo Code

Here is the pseudo code for the acceptance test and algo-
rithm for finishing time calculation:

ft = getF inishingT ime(max(ft(Ai�1); t); c(Ai);
/* chech if acceptingAi causes any of previously
guaranteed firm aperiodic tasks to miss its deadline */
if(ft � dl(Ai))

for(j = i+ 1; j < n; j ++)

ft = getF inishingT ime(ft; crem(Gj));
if(ft > dl(Gj))) not feasible!

insert(A;G);
else rejectA;

getF inishingT ime(ftp; crem)

/* determineft by “filling up”
free slots until thecrem is exhausted. */
screm = start(Ic) + sc(Ic)� ftp;
while (crem > screm)

if(screm (Ic) > 0)

crem = crem � screm;
c++;
ftp = start(Ic)

screm = sc(Ic);
return(ftp + crem);

The complexity of algorithm above isO(N), because we
go through all tasks only once, and calculate their finishing
times on the way, as depicted bellow.

fti fti+1 fti+2 fti+3

Ik Ik+1 Ik+2 Ik+3

while while while

Ti+1 Ti+2 Ti+3 Ti+4for

The for-loop picks a task and start thewhile-loop, which
calculates its finishing time by going through the intervals.
We do not have any nested loops, and we always continue
forward.

4.3 Resource Reservation

The method presented here reserves resources implicitly,
by only accepting a new task if it can be guaranteedtogether
with all previously guaranteed ones. Consequently, removal
of guaranteed tasks and changes in the set of tasks can be
handled efficiently.

4.4 Rejection Strategies and Overload Handling

Our method allows for easy changes in the set of guaran-
teed tasks and thus supports rejection strategies and overload
handling mechanisms. It allows a new set of candidates to be



submitted to the acceptance test and does not require modi-
fications to the reserved resources for guaranteed tasks. We
are currently investigating the application of overload han-
dling schemes, such as presented in [3], [1].

4.5 Resource Reclaiming

Should aperiodic tasks use less resources than expressed
in worst case parameters, our method directly reclaims these
without recalculation of available resources. Rather, the next
time the acceptance test is performed, the fact that a task has
an earlier finishing time is considered in the calculations.

5 Example

Let G3 = fF1(3; 10); F2(2; 18); F3(1; 19)g be the set of
previously guaranteed but not completed firm aperiodic tasks
at current timet = 3, where the first parameter is the remain-
ing execution time, the second absolute deadline. Tasks inG3
are ordered by increasing deadlines and they will execute in
the first available slots, in EDF order.

At time t = 3 we have the execution scenario of both
offline scheduled tasks (the shaded boxes) and guaranteed
aperiodic tasks fromG3 as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I1 I2 I3 I4

F1 F1 F2 F2 F3

Now assume a firm aperiodic taskA(4; 16) arrives att =
3. We perform the online guarantee algorithm:

1. TaskF1 has earlier deadline thanA, soF1’s position in
the setG3 remains unchanged, i.e., beforeA.

2. TaskF2 has a deadline after the deadline ofA, which
means that theA should execute beforeF2. We
check ifA can complete before its deadline:ftA =
getFT (ftF1 ; c(A)) = 15 < 16) yes!

3. Now we must check if accepting taskA will cause any
of other guaranteed firm aperiodic tasks (F2, F3) to
miss their deadlines. We calculate their finishing times:
ftF2 = 17 < 18, ftF3 = 19 � 19. BothF2 andF3 can
complete before their deadlines, which means that the
new taskA can be guaranteed and therefore inserted in
the set of guaranteed firm aperiodic tasksG3:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

I1 I2 I3 I4

F1 F1 A A A F2 F3

6 Summary and Outlook

In this paper we presented an algorithm for the flexible
handling of firm aperiodic tasks in offline scheduled systems.

It is based on slot shifting, a method to combine offline and
online scheduling methods.

First, a standard offline scheduler constructs a schedule,
resolving complex task constraints such as precedence, dis-
tribution, and end-to-end deadlines. This is then analyzed
for unused resources and leeway in task executions. The
run-time scheduler uses this information to handle aperiodic
tasks, shifting other task executions (”slots”) to reduce re-
sponse times without affecting feasibility. We provided an
O(N) acceptance test for a set of aperiodic tasks on the of-
fline schedule and guarantee tasks without explicit reserva-
tion of resources. Our method supports flexible, value based
selections of tasks to reject or remove in overload situations,
and simple resource reclaiming.

While the current algorithm enables the rejection and re-
moval of tasks, it does not address the issue of selection. We
are investigating into providing a number of overload han-
dling strategies, e.g., [3], [1].

In a previous paper [6], we presented an offline test for
sporadic tasks based on worst case arrival assumptions. It
cannot utilize less frequent arrivals for firm aperiodic tasks
since the runtime overheads to reflect the continuous changes
in resource availability are prohibitively high. We are look-
ing into applying the algorithm presented here to handle spo-
radic tasks at runtime.

References

[1] S. A. Aldarmi and A. Burns. Dynamic value-density for
scheduling real-time systems. InProceedings 11th Euromi-
cro Conference on Real-Time Systems, Dec 1999.

[2] S. Baruah, G. Koren, D. Mao, and B. Mishra. On the com-
petitiveness of on-line real-time task scheduling.Real- Time
Systems, 2(4), June 1992.

[3] G. Buttazzo and J. Stankovic.Adding Robustness in Dynamic
Preemptive Scheduling. Kluwer Academic Publishers, 1995.

[4] G. Fohler. Joint scheduling of distributed complex periodic
and hard aperiodic tasks in statically scheduled systems. In
Proc. 16th Real-time Systems Symposium, Pisa, Italy, 1995.

[5] G. Fohler and C. Koza. Heuristic scheduling for distributed
real-time systems. Technical Report 6/98, Institut f¨ur Tech-
nische Informatik, Technische Universit¨at Wien, April 1989.

[6] D. Isovic and G. Fohler. Handling sporadic tasks in off-line
scheduled distributed hard real-time systems.Proc. of 11th
EUROMICRO conf. on RT systems, York, UK, June 1999.

[7] G. Koren and D. Shasha. Skip-over: Algorithms and com-
plexity for overloaded systems that allow skips. InProceed-
ings of the Real-Time Systems Symposium, Dec. 1992.

[8] K. Ramamritham. Allocation and scheduling of complex pe-
riodic tasks. In10th Int. Conf. on Distributed Computing
Systems, 1990.

[9] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task schedul-
ing for hard-real-time systems.Real- Time Systems, 1, July
1989.

[10] M. Spuri and G. Buttazzo. Efficient aperiodic service under
earliest deadline scheduling. InProceedings of the Real-Time
Systems Symposium, Dec. 1994.


