
Implementation of Overrun and Skipping in
VxWorks

Mikael Åsberg, Moris Behnam and Thomas Nolte
MRTC/Mälardalen University

P.O. Box 883, SE-721 23 Västerås, Sweden
{mikael.asberg,moris.behnam,thomas.nolte}@mdh.se

Reinder J. Bril
Technische Universiteit Eindhoven (TU/e)

Den Dolech 2, 5612 AZ Eindhoven
The Netherlands

r.j.bril@tue.nl

Abstract—In this paper we present our work towards allowing
for dependence among partitions in the context of hierarchical
scheduling of software systems with real-time requirements, and
we present two techniques for cross-partition synchronization.
We have earlier developed a Hierarchical Scheduling Framework
(HSF) in VxWorks for independent real-time tasks, and in this
paper we extend the HSF implementation with capabilities of
synchronization between tasks resident in two different par-
titions. In particular, we have implemented the overrun and
skipping mechanisms in our modular scheduling framework.
Our framework has a key characteristic of being implemented
on top of the operating system, i.e., no modifications are made
to the kernel. Such a requirement enforce some restrictions on
what can be made with respect to the implementation. The
evaluation performed indicates that, under the restrictions of not
modifying the kernel, the skipping mechanism has a much lower
implementation overhead compared to the overrun mechanism1.

I. INTRODUCTION

Advanced operating system mechanisms such as hierarchi-
cal scheduling frameworks provide temporal and spatial isola-
tion through virtual platforms, thereby providing mechanisms
simplifying development of complex embedded software sys-
tems. Such a system can now be divided into several modules,
here denoted subsystems, each performing a specific well
defined function. Development and verification of subsystems
can ideally be performed independently (and concurrently) and
their seamless and effortless integration results in a correctly
functioning final product, both from a functional as well as
extra-functional point of view.

In recent years, support for temporal partitioning has been
developed for several operating systems. However, existing
implementations typically assume independence among soft-
ware applications executing in different partitions. We have
developed such a modular scheduling framework for Vx-
Works without modifying any of its kernel source code. Our
scheduling framework is implemented as a layer on top of
the kernel. Up until now, this scheduling framework required
that tasks executing in one subsystem must be independent of
tasks executing in other subsystems, i.e., no task-level syn-
chronization was allowed across subsystems. In this paper we
present our work on implementing synchronization protocols

1The work in this paper is supported by the Swedish Foundation for
Strategic Research (SSF), via the research programme PROGRESS.

for our hierarchical scheduling framework, allowing for task-
level synchronization across subsystems. We implemented the
synchronization protocols in VxWorks, however, they can
naturally be extended to other operating systems as well.
We are considering, in this paper, a two level hierarchical
scheduling framework (as shown in Figure 1) where both
the local and global schedulers schedule subsystems/tasks
according to the fixed priority preemptive scheduling (FPS)
policy.

The contributions of this paper are the descriptions of how
the skipping and overrun mechanisms are implemented in
the context of hierarchical scheduling without modifying the
kernel. The gain in not altering the kernel is that it does not
require any re-compilation, there is no need to maintain/apply
kernel modifications when the kernel is updated/replaced and
kernel stability is maintained. We have evaluated the two
approaches and results indicate that, given the restriction of
not being allowed to modify the kernel, the overhead of the
skipping mechanism is much lower than the overhead of the
overrun mechanism.

The outline of this paper is as follows: Section II gives an
overview of preliminaries simplifying the understanding of this
paper. Section III presents details concerning the implemen-
tation of the skipping and overrun mechanisms. Section IV
presents an evaluation of the two methods, Section V presents
related work, and finally Section VI concludes the paper
together with outlining some future work.

II. PRELIMINARIES

This section presents some preliminaries simplifying the
presentation of the rest of the paper. Here we give an overview
of our hierarchical scheduling framework (HSF) followed by
details concerning the stack resource policy (SRP) protocol
and the overrun and skipping mechanisms for synchronization,
in the context of hierarchical scheduling.

A. HSF

The Hierarchical Scheduling Framework (HSF) enables
hierarchical scheduling of tasks with real-time constraints.
In [1] we assume that tasks are periodic and independent,
and we use periodic servers to implement subsystems. The
HSF is implemented as a two layered scheduling framework

as illustrated in Figure 1, where the schedulers support FPS
and EDF scheduling.

Global
scheduler

Subsystem (Server) Subsystem(Server) Subsystem (Server)

…

Local
scheduler

Local
scheduler

Local
scheduler

Task Task…Task Task…Task Task…

…

Fig. 1. HSF structure

Both schedulers (local and global) are activated periodically
according to task/server parameters and a one-shot timer is
used to trigger the schedulers. The next triggering (absolute)
time of the tasks/servers are stored in a Time Event Queue
(TEQ). The TEQ is essentially a priority queue, storing the
release times (in absolute values) of tasks/servers. The input
to the one-shot timer is a value derived by subtracting the
shortest time in the TEQs from the current absolute time
(since the timer input should be in relative time). Three TEQs
can be active at once, the TEQ holding server release times,
the current active servers TEQ for task release times and a
TEQ (with one node) holding the current active servers budget
expiration time. The current absolute time is updated only at
a scheduler invocation, i.e., when the one-shot timer is set, we
also set the absolute time equal to the next triggering time.
When the next event arrives, the current absolute time will
match the real time. It is important to note that if we would
like to invoke our scheduler before the event arrives, then
the current absolute time will not be correct. This fact needs
to be taken into account when implementing synchronization
protocols in our framework. The triggering of the global and
local schedulers are illustrated in Figure 2. The Handler is re-
sponsible for deriving the next triggering event (could be task
or server related). Depending on which kind of event, i.e., task
activation, server activation or budget expiration, the Handler
will either call the Global scheduler or the Local scheduler.
The Global scheduler will call Local scheduler in case of
server activation (there might be task activations that have not
been handled when the server was inactive). The VxWorks
scheduler is responsible for switching tasks in the case when
a task has finished its execution. The VxWorks scheduler will
be invoked after an interrupt handler has executed (i.e., after
Handler has finished), but only if there has been any change
to the ready queue that will affect the task scheduling.

All servers, that are ready, are added to a server ready
queue and the global scheduler always selects the highest
priority server to execute (depends also on the chosen global
scheduling algorithm). When a server is selected, all tasks that
are ready, and that belong to that subsystem, are added to the
VxWorks task ready queue and the highest priority ready task
is selected to execute.

Handler

Global scheduler

Local scheduler

(absolute) timex

xTEQ TEQ TEQmin

Budget expiration Server release Task release

VxWorks scheduler

Fig. 2. Scheduler triggering

B. Shared resources in HSF

The presented HSF allows for sharing of logical resources
between arbitrary tasks, located in arbitrary subsystems, in a
mutually exclusive manner. To access a resource, a task must
first lock the resource, and when the task no longer needs the
resource, it is unlocked. The time during which a task holds
a lock is called a critical section. For each logical resource,
at any time, only a single task may hold its lock. A resource
that is used by tasks in more than one subsystem is denoted a
global shared resource. A resource only used within a single
subsystem is denoted a local shared resource. In this paper,
both local and global shared resources are managed by the
SRP protocol. This protocol has the strength that it can be
used with different scheduling algorithms such as FPS and
EDF scheduling, which are supported by HSF at both global
and local scheduling level.

1) Stack resource policy (SRP): To be able to use SRP in a
HSF for synchronizing global shared resources, its associated
terms resource, system and subsystem ceilings are extended
as follows:
• Resource ceiling: Each global shared resource is asso-

ciated with two types of resource ceilings; an internal
resource ceiling for local scheduling and an external
resource ceiling for global scheduling. They are defined
as the priority of the highest priority task/subsystem that
access this resource.

• System/subsystem ceiling: The system/subsystem ceil-
ings are dynamic parameters that change during execu-
tion. The system/subsystem ceiling is equal to the highest
external/internal resource ceiling of a currently locked
resource in the system/subsystem.

Under SRP, a task τk can preempt the currently execut-
ing task τi (even inside a critical section) within the same
subsystem, only if the priority of τk is greater than its
corresponding subsystem ceiling. The same reasoning can be
made for subsystems from a global scheduling point of view.
The problem that SRP solves (synchronization of access to
shared resources without deadlock) can arise at two completely
different levels, due to that subsystems share resources and
because tasks (within a subsystem) share resources. That is
why SRP is needed at both local and global level, and also
the reason why a global resource has a local and global ceiling.

2) Mechanisms to handle budget expiry while executing
within a critical section: To bound the waiting time of tasks
from different subsystems that want to access the same shared

resource, subsystem budget expiration should be prevented
while locking a global shared resource. The following two
mechanisms can be used to solve this problem:
• The overrun mechanism: The problem of subsystem

budget expiry inside a critical section is handled by
adding extra resources to the budget of each subsystem
to prevent the budget expiration inside a critical section.
Hierarchical Stack Resource Policy (HSRP) [2] is based
on an overrun mechanism. HSRP stops task preemption
within the subsystem whenever a task is accessing a
global shared resource. SRP is used at the global level
to synchronize the execution of subsystems that have
tasks accessing global shared resources. Two versions
of overrun mechanisms have been presented; 1) with
payback; whenever overrun happens in a subsystem Ss,
the budget of the subsystem will, in its next execution
instant, be decreased by the amount of the overrun time.
2) without payback; no further actions will be taken after
the event of an overrun.

• The skipping mechanism: Skipping is another mecha-
nism that prevent a task from locking a shared resource
by skipping (postpone the locking of the resource) its
execution if its subsystem does not have enough remain-
ing budget at the time when the task tries to lock the
resource. Subsystem Integration and Resource Allocation
Policy (SIRAP) [3] is based on the skipping mechanism.
SIRAP uses the SRP protocol to synchronize the access
to global shared resources in both local and global
scheduling. SIRAP checks the remaining budget before
granting the access to the globally shared resources; if
there is sufficient remaining budget then the task enters
the critical section, and if there is insufficient remaining
budget, the local scheduler delays the critical section
entering of the job until the next subsystem budget
replenishment (assuming that the subsystem budget in the
next subsystem budget replenishment is enough to access
the global shared resource by the task). The delay is done
by blocking that task that want to access the resource (self
blocking) during the current server period and setting the
local ceiling equal to the value of internal resource ceiling
of the resource that that task wanted to access.

Scheduling analysis of both of these two mechanisms can
be found in [2] respectively [3].

III. IMPLEMENTATION

This section compares and discusses some issues related
to the implementation of the skipping and overrun mech-
anisms. These implementations are based on our previous
implementation of the Hierarchical Scheduling Framework
(HSF) [1] in the VxWorks operating system. To support
synchronization between tasks (or subsystems) when accessing
global shared resources, advances in the implementation of
VxWorks made since [1] does not include the implementation
of the SRP protocol, and SRP is used by both both skipping
and overrun mechanisms. Therefore, our implementation of
the SRP protocol is outlined below.

A. Local synchronization mechanism

Since both skipping and overrun depend on the synchroniza-
tion protocol SRP, which is not implemented in VxWorks, we
have implemented this protocol ourselves. The implementation
of SRP is part of our previous VxWorks implementation
(HSF), hence, this SRP implementation is adjusted to fit with
hierarchical scheduling. We added two queues to the server
TCB, see Figure 3. Whenever a task wants to access a locally
shared resource (within a subsystem), it calls a corresponding
SrpLock function (Figure 4). When the resource access is
finished, it must call SrpUnlock (Figure 5).

1: struct SERVER TCB {
2: // Resource queue, sorted by ceiling
3: queue SRP RESOURCES;
4: // Blocked tasks, sorted by priority/preempt. level
5: queue SRP TASK BLOCKED QUEUE;
6: / ∗ The rest of the server TCB ∗ /

Fig. 3. Data-structures used by SRP

1: void SrpLock (int local res id) {
2: InterruptDisable();
3: LocalResourceStackInsert(local res id); // Ceiling is updated
4: InterruptEnable();
5: }

Fig. 4. Lock function for SRP

1: void SrpUnlock (int local res id) {
2: InterruptDisable();
3: LocalResourceStackRemove(local res id); // Ceiling is updated
4: if (LocalCeilingHasChanged())
5: MoveTasksFromBlockedToReady(RunningServer);
6: NewTask = GetHighestPrioReadyTask();
7: if (RunningTask.ID 6= NewTask.ID)
8: RunningServer.LocalScheduler();
9: InterruptEnable();
10: }

Fig. 5. Unlock function for SRP

Lines (3, 5, 8) in Figure 5 are specific to each server,
since they have their own task ready-, blocked- and resource-
queue (stack), and a local scheduler. The same goes for line
(3) in Figure 4. Note that SrpUnlock is executed at task-
level (user-mode). Hence, we start the local scheduler by
generating an interrupt that is connected to it. When our
local scheduler (which is part of an interrupt handler) has
finished, the VxWorks scheduler will be triggered if a context
switch should occur. This is illustrated in Figure 6, where we
use the VxWorks system call sysBusIntGen to generate
an interrupt which will trigger the corresponding connected
handler, which in this case is our local scheduler.

task

SrpUnlock

LocalScheduler

sysBusIntGen

VxWorks scheduler

Int
err

up
t c

on
tex

t

 Us

er
mo

de

Fig. 6. Local scheduler invocation

The only modification made in our local scheduler is that
it compares the local system ceiling against the task priority,
before releasing a task (putting it in the task ready queue).

B. Global synchronization mechanisms

It is important to note that from the user perspective, there
is no difference when locking a local or global resource, since
all global resources are mapped to one corresponding local
resource. When calling a lock function that implements a
global synchronization protocol (i.e., overrun or skipping), the
only information needed is the local resource ID. From this,
we can derive the global resource ID. Hence, the global syn-
chronization protocol calls the local synchronization protocol
(i.e., SRP in this case), and, it also implements the global
synchronization strategy, i.e., skipping or overrun in this case.
Both of them need to use a local synchronization protocol,
other than that, skipping is the only protocol of the two that
need direct access to the local system, i.e., the local scheduler.
The reason for this is covered in section III-E.

To support the synchronization mechanisms, additional
queues are required in the system level (resource queue and
blocked queue) to save all global resources that are in use,
and to save the blocked servers. Similar queues are required
for each subsystem (covered in section III-A) to save the local
resources that are in use within the subsystem, and to save the
blocked tasks. The resource queues are sorted, by the resource
ceilings, hence, the first node represents the system ceiling
(there is one (local) system ceiling per server and one (global)
system ceiling). The resource queues are mapped as outlined
in Figure 7.

7 5 4 2 19

23 19 11

9

23

Local system ceiling

Global system ceiling

Local resource queue

Global resource queue

A global resource
also represent a
local resource

Fig. 7. Resource queue mapping

When a task wants to access a global shared resource, it
uses the lock function, and when the task wants to release the
resource, it calls the function unlock. The implementation
of lock and unlock depends on the type of synchroniza-
tion approach (overrun or skipping). In general, lock and
unlock change some parameters that are used by the sched-
uler, e.g., system/subsystem ceiling, server/task ready queue,
and server/task blocked queue. When a server/task is activated,
the local/global schedulers checks weather the server/task has
a higher priority than the current system/subsystem ceiling. If
yes, then the server/task is added to the ready queue, otherwise
the server/task will be added to the blocked queue. When the
unlock function is called, all tasks and servers that were
blocked, by the currently released shared resource, should be
moved from the server/task blocked queue to the ready queue,
and then the scheduler should be called to reschedule the
subsystems and tasks. For this reason, it is very important that
the lock/unlock functions should have mutual exclusion
with respect to the scheduler, to protect the shared data-
structures. In this implementation, interrupt disable in the
lock/unlock function has been used to protect shared data-
structures, noting that the interrupt disable time should be very
short.

Since the scheduler can be triggered by the unlock func-
tions (unlike the implementation in [1]), the current absolute
time for this event should be calculated by subtracting a current
timestamp value with the timestamp from the latest scheduler
invocation and adding this value to the latest evaluated ab-
solute time. The difference in time between the real current
absolute time and the calculated one is the drift caused by
both the skipping and overrun mechanisms. More of this is
discussed in the next section.

C. Time drift

Budgets and time-triggered periodic tasks are implemented
using a one-shot timer [1], which may give rise to relative jitter
[4] due to inaccuracies caused by time calculations, setting
the timer, and activities that temporarily disable interrupts.
Relative jitter (or drift) may give rise to severe problems
whenever the behavior of the system needs to remain syn-
chronized with its environment. In the implementation used
in this paper, such explicit synchronization requirements is
not assumed, however. Implementation induced relative jitter
can therefore be accommodated in the analysis as long as the
jitter can be bound. By assuming a maximum relative jitter for
every time the timer is set, and a maximum number of times
the timer is set for a given interval, the relative jitter can be
bound for periods of both budgets and time-triggered tasks
and for capacities of budgets. Now the worst-case analysis
can be adapted by making worst-case assumptions, i.e., by
using (a) maximal inter-arrival times for periods and minimal
capacities for budgets and (b) minimal-inter-arrival times (and
worst-case computation times) of tasks. For the two types of
synchronization protocols discussed in this paper, i.e., overrun
with (or without) payback and skipping, the impact of relative
jitter is similar.

D. Overrun mechanism implementation

Besides the data-structures needed for keeping track of
global system ceiling, line (1) in Figure 8, and the queue of
blocked servers, line (2) in Figure 8, overrun also need data-
structures to keep track of when an overrun has occurred, line
(5,7) in Figure 8.

1: queue GLOBAL RESOURCES; // Used by Overrun
2: queue SERVER BLOCKED QUEUE; // Used by Overrun
3: struct SERVER TCB {
4: // Nr of global resources that are locked
5: char nr global resources locked;
6: // F lag for keeping track if an overrun has occurred
7: char overrun;
8: / ∗ The rest of the server TCB ∗ /

Fig. 8. Data-structures used by Overrun

Figure 9 shows the OverrunLock function for the overrun
mechanism. The resource that is accessed is inserted in both
the global and local resource queue which are sorted by the
node’s resource ceilings.

1: void OverrunLock (int local res id) {
2: SrpLock(local res id);
3: InterruptDisable();
4: GlobalResourceStackInsert(local res id); // Ceiling is updated
5: RunningServer.nr global resources locked++;
6: InterruptEnable();
7: }

Fig. 9. Lock function for Overrun

In line (5) in Figure 9, the function increment
RunningServer.nr_global_resources_locked
by one, which indicate the number of shared resources that
are in use. This is important for the scheduler so it does
not terminate the server execution at the budget expiration.
When the budget of a server expires, the scheduler checks
this value. If it is greater than 0 then it does not remove the
server from the server ready queue and it sets the budget
expiration event equal to Xs, which means that the server
is overrunning its budget (i.e., there will not be a scheduler
event until OverrunUnlock is called). Also, the scheduler
indicates that the server is in overrun state by setting the
overrun flag, line (7) in Figure 8, to true. Otherwise, the
scheduler removes the server from the server ready queue.

Figure 10 shows the OverrunUnlock function. In this
function, the released resource is removed from both the local
and global resource queues and the system and subsystem
ceilings are updated, which may decrease them. If the sys-
tem/subsystem ceiling is decreased, the function checks if
there are servers/tasks in the blocked queue that are blocked
by this shared resource. It will move them to the server/task
ready queues, depending on their preemption levels and the
system/subsystem ceilings. In line (9) in Figure 10, the func-
tion checks if it should call the global scheduler, and there

1: void OverrunUnlock (int local res id) {
2: SrpUnlock(local res id);
3: InterruptDisable();
4: GlobalResourceStackRemove(local res id); // Ceiling is updated
5: if (GlobalCeilingHasChanged())
6: MoveServersFromBlockedToReady();
7: RunningServer.nr global resources locked–;
8: NewServer = GetHighestPrioReadyServer();
9: if ((RunningServer.overrun == TRUE &&
10: RunningServer.nr global resources locked == 0) ‖
11: RunningServer.ID 6= NewServer.ID)
12: GlobalScheduler();
13: InterruptEnable();
14: }

Fig. 10. Unlock function for Overrun

are two cases to do this. The first case is when the server was
in overrun state, then it should be removed from the ready
queue. The second case is if the server, after releasing the
resource, is not the highest priority server, then it will be
preempted by another server. The global scheduler will be
invoked through the sysBusIntGen system call, similar to
the local scheduler in the SRP implementation. The reason is
that there will be a task switch (so the VxWorks scheduler
needs to be invoked), and of course also a server switch,
but this can be handled without the help of the VxWorks
scheduler. The global/local scheduler (in HSF) must have
knowledge about the current absolute time in order to set the
next scheduling event, so this time must be derived before
calling the scheduler.

At every new subsystem activation, the server checks if there
has been an overrun in its previous instance. If so, this overrun
time length is subtracted from the servers budget, in the case of
using overrun with payback mechanism. The global scheduler
measures the overrun time when it is called, in response to
budget expiration, and when it is called in response to the
unlock function. If the other version of overrun is used (ONP),
then the budget of the subsystem does not change.

On all server activations, the preemption level of each server
is checked against current system ceiling. If the preemption
level is lower than ceiling, then the server is inserted in the
blocked queue.

E. Skipping mechanism implementation

The skipping implementation uses the same data-structures
as overrun for keeping track of system ceiling and blocked
servers. What is further needed, in order to implement skip-
ping, is a simple FIFO (First In First Out) queue for tasks,
line (8) in Figure 11. Also, a post in the VxWorks task TCB
is needed, line (2) in Figure 11. According to the SIRAP
protocol, the time length of the critical section must be known
(and therefore also stored) so that it can be compared against
the remaining budget, in order to prevent the budget from over-
running. One disadvantage with our current implementation is
that we only allow maximum one shared global resource per
task. This implementation can easily be extended to support

more than one global resource per task, by adding more data-
structures to store the locking times of the resources.

1: / ∗ The rest of struct WIND TCB (V xWorks TCB) ∗ /
2: int spare4; // We keep resource locking time here
3: };
4: queue GLOBAL RESOURCES; // Used by Skipping
5: queue SERVER BLOCKED QUEUE; // Used by Skipping
6: struct SERVER TCB {
7: // Used by Skipping to queue tasks during self -blocking
8: queue TASK FIFO QUEUE;
9: / ∗ The rest of the server TCB ∗ /

Fig. 11. Data-structures used by Skipping

When calling the SkippingLock function (Figure (12), it
checks if the remaining budget is enough to lock and release
the shared resource before the budget expires (line (4) in
Figure (12)). If the remaining budget is sufficient, then the
resource will be inserted in both the global and local resource
queue, similar to the overrun mechanism mentioned earlier. If
the remaining budget is not sufficient, then the resource will
be inserted in the local resource queue and the local system
ceiling is updated, finally, the task is suspended in line (12)
in Figure (12). Note that the rest of the function, lines (13-
17), will not be executed until this task is moved to the ready
queue. When the task is executed next time, it will continue
from line (13) and insert the shared resource (line (14)) in the
global resource queue, then update the global system ceiling
and finally start executing in the critical section. Whenever a
server starts to execute, after it has been released, its local
scheduler checks if there are tasks that are suspended (by
checking the TASK_FIFO_QUEUE), if any, it moves them (in
FIFO order) to the ready queue. In this way, skipping affects
the local scheduler while overrun does not.

1: void SkippingLock (local res id) {
2: InterruptDisable();
3: RemainBudget = CalcRemainBudget(RunningServer);
4: if (RemainBudget ≥ RunningTask.spare4) {
5: GlobalResourceStackInsert(local res id); // Ceiling is updated
6: SrpLock(local res id);
7: }
8: else { // Budget is not enough, block the task
9: SrpLock(local res id);
10: BlockedQueueInsert(RunningTask);
11: InterruptEnable();
12: TaskSuspend(RunningTask); // This call will block...
13: InterruptDisable(); // ...cont. here when task is awakened
14: GlobalResourceStackInsert(local res id); // Ceiling is updated
15: }
16: InterruptEnable();
17: }

Fig. 12. Lock function for Skipping

The SkippingUnlock function is similar to the
OverrunUnlock function (Figure 10), but with two differ-
ences. The first one is that skipping does not need to keep
count of the number of locked global resources, and second,

skipping will call the scheduler only if there is a server in
the ready queue that has higher priority than the currently
running server. In case of nested critical sections, the task call
SkippingLock/SkippingUnlock functions only when
it access and release the outermost shared resource, and the
ceiling of the outermost shared resource equals to the highest
ceiling of the nested shared resources.

1: void SkippingUnlock (int local res id) {
2: SrpUnlock(local res id);
3: InterruptDisable();
4: GlobalResourceStackRemove(local res id); // Ceiling is updated
5: if (GlobalCeilingHasChanged())
6: MoveServersFromBlockedToReady();
7: NewServer = GetHighestPrioReadyServer();
8: if (RunningServer.ID != NewServer.ID)
9: GlobalScheduler();
10: InterruptEnable();
11: }

Fig. 13. Unlock function for Skipping

If the global system ceiling has changed then the servers, for
which preemption level is higher than global system ceiling,
are put in the server ready queue. If the new global system
ceiling causes a higher priority server to be inserted in the
ready queue, then current running server is removed, and the
global scheduler is called.

IV. EVALUATION

In order to compare the runtime overhead of both synchro-
nization mechanisms, we generated 8 systems according to
the setup illustrated in Figure 14. In this setup, a system Si

contains 5 servers with 8 tasks each, and each system has 2
global resources (2-6 tasks will access the global resources).
We monitored both skipping and overrun with payback.

System Si

Server Server Server Server Server1 2 3 4 5
Task Task Task Task Task Task Task Task1 2 3 4 5 6 7 8

2-6 tasks access 2 shared global resources

R R1 2
Fig. 14. Experimental setup

The metrics we used are the number of calls to the cor-
responding lock and unlock functions as well as the number
of calls to the scheduler. The measurements were recorded
in 600 time units (tu), and the range of tasks periods were
scaled from 40 to 100 tu and the range of subsystem periods
were 5-20 tu (we scaled the periods of subsystem and tasks in
order to remove the effect of scheduling overhead). The task
utilization was set to 15% per system.

Protocol System
S1 S2 S3 S4 S5 S6 S7 S8 S1 S2 S3 S4 S5 S6 S7 S8

calls to lock/unlock # calls to Scheduler
Skipping 306 335 248 275 181 224 202 236 8 5 7 4 5 5 10 6
Overrun 304 335 247 275 181 225 203 236 47 13 40 16 36 17 30 25

TABLE I
EXPERIMENTAL RESULTS

Table I shows the results of running systems S1 to S8. Each
of these systems (Si) had different task/server parameters,
different amount of resources and different resource users
(depending on the generation of the systems). It is clear that
the number of scheduler calls under the skipping mechanism is
lower compared to using the overrun mechanism, which makes
the runtime overhead for the skipping mechanism lower than
the corresponding overhead when using the overrun mech-
anism. The difference between the corresponding unlock
functions under skipping and under overrun is also the reason
why the number of calls to the scheduler differs. For the
overrun mechanism, the unlock function calls to the scheduler
when the server unlocks the shared resource after overrun,
while there is no such case in skipping, i.e., there is a higher
risk that the scheduler is called in overrun, than in skipping
(since there is two cases in overrun and one case in skipping).
This explains the recorded results with respect to the number
of scheduler calls.

V. RELATED WORK

Related work in the area of hierarchical scheduling origi-
nated in open systems [5] in the late 1990’s, and it has been
receiving an increasing research attention [6], [5], [7], [8], [9],
[10], [11], [12]. However, the main focus of the research was
on the schedulability analysis of independent tasks, and not
much work has been conducted on the implementation of the
proposed theories.

Among the few implementation work, Kim et al. [13]
propose the SPIRIT uKernel that is based on a two-level
hierarchical scheduling framework simplifying integration of
real-time applications. The SPIRIT uKernel provides a separa-
tion between real-time applications by using partitions. Each
partition executes an application, and uses the Fixed Priority
Scheduling (FPS) policy as a local scheduler to schedule the
application’s tasks. An off-line scheduler (timetable) is used
to schedule the partitions (the applications) on a global level.
Each partition provides kernel services for its application and
the execution is in user mode to provide stronger protection.
Parkinson [14] uses the same principle and describes the
VxWorks 653 operating system which was designed to support
ARINC653. The architecture of VxWorks 653 is based on
partitions, where a Module OS provides global resource and
scheduling for partitions and a Partition OS implemented using
VxWorks microkernel provides scheduling for application
tasks.

The work presented in this paper differs from the above
last two works in the sense that it implements a hierarchi-

cal scheduling framework in a commercial operating system
without changing the OS kernel.

The implementation of a HSF in VxWorks without changing
the kernel has been presented in [1] assuming the tasks are
independent. In this paper, we extend this implementation by
enabling sharing of logical resources among tasks located in
the same and/or different subsystem(s). More recently, [15]
implemented a two-level fixed priority scheduled HSF based
on a timed event management system in the commercial real-
time operating system µC/OS-II, however, the implementation
is based on changing the kernel of the operating system, unlike
the implementation in this paper.

In order to allow for dependencies among tasks, many
theoretical works on synchronization protocols have been
introduced for arbitrating accesses to shared logical resources,
addressing the priority inversion problem, e.g., the Stack
Resource Policy (SRP) [16]. For usage in a HSF, additional
protocols have been proposed, e.g., the Hierarchical Stack
Resource Policy (HSRP) [2], the Subsystem Integration and
Resource Allocation Policy (SIRAP) [3], and the Bounded-
delay Resource Open Environment (BROE) [17] protocols.
The work in this paper concerns the former two, targeting
systems implementing FPPS schedulers.

VI. CONCLUSION

In this paper we have presented our work on implement-
ing synchronization protocols for hierarchical scheduling of
tasks without doing any modification to the operating system
kernel. We have presented two techniques for synchroniza-
tion; overrun and skipping, and we have implemented the
two techniques in our hierarchical scheduling framework for
VxWorks [1]. The evaluation of these two techniques indicates
that, when the synchronization protocol is implemented, skip-
ping requires far less overhead when compared to the overrun
mechanism.

Future work includes management of memory and interrupts
towards a complete operating system virtualizer implemented
as a layer on top of an arbitrary operating system kernel.

REFERENCES

[1] M. Behnam, T. Nolte, I. Shin, M. Åsberg, and R. J. Bril, “Towards
hierarchical scheduling on top of VxWorks,” in Proceedings of the
International Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT’08), July 2008, pp. 63–72.

[2] R. I. Davis and A. Burns, “Resource sharing in hierarchical fixed priority
pre-emptive systems,” in Proceedings of the IEEE International Real-
Time Systems Symposium (RTSS’06), December 2006, pp. 257–267.

[3] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A synchronization
protocol for hierarchical resource sharing in real-time open systems,”
in Proceedings of the ACM and IEEE International Conference on
Embedded Software (EMSOFT’07), October 2007, pp. 278–288.

[4] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González Harbour, A
Practitioner’s Handbook for Real-Time Analysis: Guide to Rate Mono-
tonic Analysis for Real-Time Systems. Kluwer Academic Publishers,
1993.

[5] Z. Deng and J.-S. Liu, “Scheduling real-time applications in an open en-
vironment,” in 18th IEEE Int. Real-Time Systems Symposium (RTSS’97),
Dec. 1997.

[6] R. I. Davis and A. Burns, “Hierarchical fixed priority pre-emptive
scheduling,” in RTSS’05, December 2005, pp. 389–398.

[7] X. Feng and A. Mok, “A model of hierarchical real-time virtual
resources,” in 23th IEEE Int. Real-Time Systems Symposium (RTSS’02),
Dec. 2002.

[8] T.-W. Kuo and C.-H. Li, “A fixed-priority-driven open environment for
real-time applications,” in 20th IEEE International Real-Time Systems
Symposium (RTSS’99), Dec. 1999.

[9] G. Lipari and S. K. Baruah, “Efficient scheduling of real-time multi-task
applications in dynamic systems,” in 6th IEEE Real-Time Technology
and Applications Symposium (RTAS’00), May-Jun. 2000.

[10] G. Lipari and E. Bini, “Resource partitioning among real-time ap-
plications,” in 15th Euromicro Conference on Real-Time Systems
(ECRTS’03), Jul. 2003.

[11] S. Matic and T. A. Henzinger, “Trading end-to-end latency for com-
posability,” in 26th IEEE International Real-Time Systems Sympo-
sium(RTSS’05), December 2005, pp. 99–110.

[12] I. Shin and I. Lee, “Periodic resource model for compositional real-time
guarantees,” in 24th IEEE International Real-Time Systems Symposium
(RTSS’03), Dec. 2003.

[13] D. Kim, Y. Lee, and M. Younis, “Spirit-ukernel for strongly partitioned
real-time systems,” in Proc. 7th International Conference on Real-Time
Computing Systems and Applications (RTCSA 2000), 2000.

[14] L. K. P. Parkinson, “Safety critical software development for
integrated modular avionics,” in Wind River white paper. URL
http://www.windriver.com/whitepapers/, 2007.

[15] M. M. H. P. van den Heuvel, M. Holenderski, W. Cools, R. J. Bril, and
J. J. Lukkien, “Virtual timers in hierarchical real-time systems,” Proc.
WiP session of the RTSS, pp. 37–40, Dec. 2009.

[16] T. P. Baker, “Stack-based scheduling of realtime processes,” Real-Time
Systems, vol. 3, no. 1, pp. 67–99, March 1991.

[17] N. Fisher, M. Bertogna, and S. Baruah, “The design of an edf-
scheduled resource-sharing open environment,” in Proceedings of the
28th IEEE International Real-Time Systems Symposium (RTSS’07),
December 2007, pp. 83–92.

