
Towards Simulative Environment for Early Development of Component-Based
Embedded Systems
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Abstract

As embedded systems become more and more complex
the significance of predictability grows. The particular pre-
dictability requirements of embedded systems, call for a de-
velopment framework equipped with tools and techniques
that will guide the design and selection of system software.
Simulation and verification are two complementary tech-
niques that play a valuable role in achieving software pre-
dictability already at early design stage. Simulation is scal-
able and can be very useful in debugging and validating the
system design. Moreover, it can be used as a supplement
to verification for visualizing diagnostic traces producedby
the verification tool and for rerunning counterexamples in
cases when the verification property is not satisfied.

In this paper we introduce an idea of a simulative envi-
ronment for early development of component-based embed-
ded systems. By using it, the designer can navigate and de-
bug the design and behavior of such systems at early stages
of the system lifecycle.

1 Introduction

As the complexity of embedded systems grows their de-
velopment becomes more and more difficult. An appeal-
ing approach to manage the embedded systems software
complexity, reduce time-to-market and decrease develop-
ment costs lies in the adoption of component-based devel-
opment [10]. The specific predictability demands of embed-
ded systems, require the designer to employ a framework
equipped with tools and techniques that can be applied to
deal with requirements such as dependability, timing, and
resource utilization, already at early-stage of development.
Modeling, simulation and verification play increasingly im-
portant roles in achieving predictability, since they can help
us to understand how systems function, validate the design

and verify some important properties.
Simulation validates the behavior of a system for one ex-

ecution path. Being relatively inexpensive in terms of exe-
cution time compared to verification, simulation is a valu-
able fault detection technique in early stages of system de-
velopment. In general, it can be used to quickly verify a
system prototype for desired properties and behavior and
it can contribute to our studying of system design alterna-
tives, in a controlled environment. Moreover, with simu-
lation one can explore system configurations that are dif-
ficult to physically construct, and observe interactions that
are difficult to capture in a live system. The ability of the
simulation can be applied as a complementary activity to
verification, which covers the exhaustive dynamic behav-
ior of the system. A simulator can be used for visualizing
diagnostic traces generated by the verification tool and for
replaying counterexamples in cases when the verification
property does not hold.

In this paper we introduce a simulative environment for
development of component-based embedded systems. The
simulative environment allows the designer to navigate the
behavior of possibly complex and multilayered systems
with respect to time and resource consumption and check
behavior compliance to resource constraints. Here, we use
the ProCom component model for describing the architec-
ture of our embedded systems [9]. Additionally, we use the
Remes dense-time state-based language [18] for modeling
resource-wise behavior of ProCom components. Our main
goal for the simulator is to be developer-friendly and usable
by system modelers, engineers and developers with no prior
knowledge of formal verification methodologies and tools.
Finally, our intent is to present this environment to the user
as a debugger with a familiar interface that will reduce the
user learning effort.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the ProCom component model and the asso-
ciated behavioral model Remes needed to comprehend the



rest of the work. Section 3 introduces our simulative en-
vironment and finally, Section 4 discusses our and related
approaches and concludes the paper.

2 Preliminaries

2.1 The ProCom component model

The ProCom component model [21] is designed to ad-
dress the key requirements and modeling issues coming
from the embedded system domain. In particular, ProCom
considers the need for the design of a complete system con-
sisting of both complex and distributed functionalities on
one hand, and small low-level control-based functionalities
on the other. Therefore, ProCom is a hierarchical compo-
nent model structured into two layers: ProSys and ProSave.
The upper layer, ProSys, serves for modeling a system as
a collection of active and distributivesubsystemsthat exe-
cute concurrently, and communicate by asynchronous mes-
sages sent and received at typed output and inputmessage
ports. The lower layer, ProSave, models the internal de-
sign of subsystems as interconnected passive components
with small functionality, whose communication is based on
the pipe-and-filter paradigm with an explicit separation be-
tween data- and control flow. The former is represented by
data ports, and the latter bytrigger ports. The functional-
ity of a ProSave component is captured by a set ofservices,
which may execute concurrently while sharing only data,
but no triggering. Components may be interconnected by
simple connections from output- to input ports or bycon-
nectorsthat provide detailed control over data- and control
flow. A ProSave component can be activated by a special
type of construct,clock.

The ProSys and ProSave layer can be related to each
other only in the lowest level of a ProSys hierarchy, where
a ProSys component can be modeled out of ProSave com-
ponents. For more details, see [9].

2.2 The Remes behavioral modeling lan-
guage

The REsource Model for Embedded Systems Remes [18]
is a dense time state-based behavioral modeling language,
which is primarily intended to provide a basis for capturing
resource-constrained and timing behavior of embedded sys-
tems. It introduces resources as first-class modeling entities
that are characterized by their discrete (e.g., memory, access
to external devices) or continuous (like energy) nature.

For formal analysis purposes, Remes models can be
transformed into timed automata (TA) [2], or priced timed
automata (PTA) [1], depending on the analysis type. We use
Remes for modeling and (when translated to TA or PTA) for

formally analyzing, the behavior of ProCom component-
based systems.

The internal behavior of an embedded component is de-
scribed by a Remesmodethat can be eitheratomic(does not
contain submodes), orcomposite(contains submode(s)).
The discrete control of a mode is captured by acontrol in-
terfacemade up ofentry- andexit points, whereas the data
transfer between modes is done through adata interface.
Similar to other languages, each Remes mode may contain
localorglobalvariables that can be of types integer, natural,
boolean, array, or clock.

Assuming that a component consumes resources, its
Remes mode can be annotated with the corresponding
resource-wise continuous behavior. The consumption is ex-
pressed by the first derivatives of the variables that denote
resources, and which evolve at positive integer rates.

The control flow is given byedges(i.e., a set of directed
lines) that connect the control points of (sub)modes. The
continuous behavior of a mode is captured bydelay/timed
actions and their execution does not change the current
mode. The discrete behavior is given by discrete actions
(represented as edge annotations), which execution changes
the mode. A discrete action can be executed only when
the corresponding booleanguard that prefixes the action
body holds. A Remes composite mode may containcon-
ditional connectorsthat enable nondeterministic selection
of one discrete outgoing action to be executed, out of many
possible ones. A mode may also be annotated withinvari-
ants that bound from above the current mode’s execution
time. For more details about the Remes model, we refer the
reader to [18].

3 An idea for a simulative environment

Starting from a given specification of a system
(architecture- , behavior- and platform specification) we
want to simulate the system behavior, with respect to timing
and resource utilization. In order to achieve this goal we
propose to build a simulator that would be able to accept
a model fed in by a developer and allow the user to track
the changes in component behavior, component activation
and resource utilization. Ideally the user interface should
be provided in a fashion that the user is comfortable with,
in order to avoid the resistance associated with “learning yet
another tool”.

3.1 The 2+1 view of a system

To prepare a specification of an embedded system, we
propose a three-fold view of the system. Architecture- and
behavior specification define the desired system, and the
third component - the platform specification, describes the
execution platform for the system. The first two models are
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Figure 1. Workflow steps involved in setting up the simulator

typically specified by the system designer, while the last one
comes from the platform designer and is a common artefact
shared between all systems or products based on the same
platform.

Architecture specification comprises of systems, compo-
nents and their connections conforming to the ProCom com-
ponent model, and the behavior specification of the system
is specified with Remesmodels, where each Remesmodel is
corresponding to a ProCom component.

Platform specification declares available platform re-
sources – CPU, available memory, energy consumption etc.,
within a platform profile. Once declared, resource con-
sumption is modeled within component behavior – the re-
sources are referenced as variables that cannot be read, only
incremented and decremented. Platform profile also speci-
fies constraints over resources. We propose to define con-
straints as minimum, maximum and average functions on
either concrete resource values or resource changes (differ-
ences), as defined by the following grammar:

rc F ( max | min | avg)

’(’ (resource| resource′) ’)’

( < | ≤ | = | ≥ | > ) value

For example, the platform profile can define the
constraints for CPU and memory resources such as:
max (CPU) < 200,max (mem) < 16384, to define mem-
ory size to 16 Ki units and CPU usage to 200 units (or
200% usage, assuming two available CPU cores). In case
of available energy the constraints could be: max (eng′) <
50,max (eng) < 15000, to limit usage peaks to 50 units,
with maximum total energy reserve of 15000 units. The
choice of operators max, min and avg allows tracking and
detecting peaks and spikes, as well as average resource us-

age.
To allow some degree of behavior parametrization, the

platform profile can also define values for constants de-
clared in Remes models. If a Remes model declares con-
stants with no values assigned, it is assumed that such
constants will finally be assigned values when a profile is
added. This allows component behavior to use platform-
dependant constants to declare resource usage, e.g. compo-
nent initialization overhead.

During development of a system in compliance to a spe-
cific platform profile, the profile can ideally be replaced
with another. Applying a new profile allows to check con-
formance with constraints of a different platform configura-
tion, or a different platform version.

3.2 Generating the intermediate model

In order to prepare the simulation, the architecture- and
behavior specifications are combined to form an integral
intermediate model of the system. The purpose of the
intermediate model is similar to that of object files ob-
tained by compiling the source code of a programming lan-
guage – it contains syntax-checked model information and
resolved variable references. As a part of this process,
expressions contained in component behaviors are trans-
lated to their corresponding abstract syntax trees and type-
checked. Intermediate model joins the architecture and be-
havior using predefined mappings between components and
behavior. Architecture and behavior are both copied to a
single model namespace with the addition of a platform
profile, forming a simulation specification. For example,
architecture-behavior mappings map Remes variables used
in Remes behavior models to input and output data ports of
a ProSave/ProSys component. Connections between such
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Figure 2. An example run of a simulator for Temperature Contr ol System

data ports are converted to variable renamings (mappings
between Remes variables in different behavior models) in
the intermediate model.

The intermediate model is the input model for the sim-
ulator, therefore it should be complete and well-defined –
references to unknown variables or type-invalid expressions
would make simulation impossible.

The process of generating the intermediate model should
be hidden from the user. Whenever an architecture- or be-
havior specification for a component changes, it’s corre-
sponding intermediate model should be automatically gen-
erated, simplified and checked. Figure 1 gives an overview
of the model translations needed to prepare for the sim-
ulation. Actors are represented with ellipses, processes
with white boxes, and artifacts with gray boxes. Platform-
and system specification are essentially separate design pro-
cesses. Platform designer specifies platform resources and
constraints through a platform profile. System designer
(possibly a team of engineers) is responsible for architec-
ture and behavior of the system and creates ProCom and
Remes models, respectively, to specify the two. An auto-
mated process transforms the three models (platform pro-
file, architecture- and behavior models) to an intermediate
model. Finally, system designer configures the simulation
process with a simulator model.

3.3 Code generation and simulation

To simulate the system, we have utilized code generation
from the intermediate model, using common model-to-text
transformation tools. Compared to interpreter, generated
code is simpler – the structure of the system is mirrored
in generated code, and the simulator core can manipulate
program objects directly, using language facilities, instead
of manipulating model elements using model API or reflec-
tion. The core simulator process was designed after the time
and action successor functions for timed automata [16]. As

mentioned before, an alternative to this approach would be
to perform the simulation using interpretation with a model
visitor.

The simulator is configured with its corresponding sim-
ulator model. The simulator model contains links to inter-
mediate model of a system, platform profile and, option-
ally, one or more simulator sensors. Sensors monitor data
points (Remes variables or component data ports) and record
value changes when triggered. Sensors can be triggered on
Remes variable change or on component trigger port activa-
tion. Data collected from sensors is displayed in the simu-
lator environment and stored for later analysis.

To show an example of a simulator run, we can look at
a temperature control system (TCS) [18]. TCS models a
cooling controller for a reactor system that has two cooling
rods which are used to absorb excessive reactor heat thus
maintaining reactor temperature within predefined bound-
aries. The primary purpose of the Remes behavior model of
the TCS system is to illustrate resource consumption (e.g.,
CPU, memory and energy) during TCS system lifetime.

Figure 2 illustrates changes in core and rod temperatures
and memory consumption for a sample run in both our sim-
ulator and the one in the Uppaal ∗ tool. Both simulators
were forced to follow the same execution trace when select-
ing transitions to perform. Slight differences in the results
can be noted for memory consumption at the very begin-
ning of the simulation. This is due to different resource
initialization strategies – TCS model in Uppaal performs
resource initialization at the time the components (Uppaal
processes) are activated, while our simulator adheres to the
Remes execution model and performs initialization the first
time a component is activated and its corresponding behav-
ior mode is entered.

The main benefit of simulating the TCS system is the
ability of the simulator to track changes for each resource

∗For more information on Uppaal , please visithttp://uppaal.com/



Table 1. Mapping between common debugger objects and ProCom/Remes objects
Debugger object ProCom/Remes object Comment

Process System Container of execution for all objects
Thread Active subsystem (ProSys) Basic unit of parallel execution

Stack frame (method) Component (in a hierarchy of components)Unit of (hierarchical) sequential execution
Current instruction pointer Active mode of component behavior Smallest unit of execution

Variable Mode variables Variables and resources

separately. The current implementation of Uppaal Cora †

is somewhat limited – model checking or simulation can be
performed over a single monotonically rising cost variable,
with occasional errors in the simulator. To track resource
changes on Figure 2 we have manually tracked memory re-
source change using Uppaal and its simulator. Note that in
Uppaal Cora all resources need to be combined to a sin-
gle cost variable. This approach does not allow to track
each resource separately. Therefore, we have used the Up-
paal simulator to track memory changes for comparison
with our simulator. The downside of this approach is that
only discrete model transitions can update resources, as Up-
paal cannot model continuous variable change. However,
in the sample TCS system memory resource consumption is
not affected by delay transitions but only discrete transitions
of the automata.

3.4 Simulative environment from a user’s
perspective

Our main goal for the user interface is to reuse the ex-
isting UI as much as possible, and reduce the effort needed
to use the simulator facilities. With this in mind, we pro-
pose to integrate the simulator with a well-known IDE plat-
form, similar to what was done with SaveIDE [19] (Eclipse-
based) and Uppaal Port [22], but reuse the platform even
further and present the simulator as a debugger.

Figure 3 illustrates the user’s perspective. Architecture
and behavior models are created using graphical editors,
as seen on the left. These models are then automatically
translated into their intermediate model counterparts (inthe
middle). Platform profile (top right) is linked with the two
using a simulator configuration model (middle right) which
is used to generate the simulator classes (bottom right). The
intermediate model consists of several submodels, as both
architecture and behavior models can be split over several
submodels, e.g. for each component in the system.

Users accustomed to modern IDEs are also familiar with
the concept of debuggers – every programming language
comes with one, and users are familiar with core debugging
concepts. Debuggers deal with objects that model execu-
tion elements like processes, threads, stack frames, current

†For details, visithttp://www.cs.aau.dk/˜behrmann/cora/

instruction pointers and variables, and features of modern
IDEs are built to support manipulation of these objects. In a
system modeled by ProCom and Remes we can distinguish
active elements such as subsystems, components and modes
of behavior that have some similarity to traditional execu-
tion elements. An example of relation between some com-
mon debugger objects and ProCom/Remes objects is given
in Table 1. During simulation, we can manipulate these ob-
jects in the same fashion as during debugging of a program
process – pause execution, switch between active elements,
inspect current state and so on.

In this way we can reuse metaphors of threads, stack
frames and current instruction pointers to follow the ac-
tive model elements (subsystems, components and modes).
Mode variables correspond to debug variables. This allows
the user to navigate possibly complex and multilayered sys-
tem through both its architecture and behavior in a familiar
fashion – as debugging equally complex structures defined
in traditional programming languages. It is our hope that
this approach will increase the appeal of the simulative en-
vironment to a wider audience.

During debugging, the user needs to be able to navigate
the system model(s). To enable this, the simulative environ-
ment needs to be integrated with the development environ-
ment for ProCom – the Progress-IDE [13, 20]. Progress-
IDE is built on Eclipse Platform [12] which provides rich
editors and a Debug platform among other facilities. The
environment is component-centric, and system and compo-
nent structure are modeled in ProCom. Work on support for
behavior modeling with Remes, simulator-debugger inter-
face and automating tasks required to generate intermediate
models is in progress.

4 Discussion

4.1 Assumptions

There are several assumptions (or limitations) built into
the simulation process, which we list in the following.
Static architecture specification– the architecture specifi-
cation is implied to be static. Although ProCom compo-
nent model doesn’t explicitly prohibit dynamic reconfigu-
ration of components and their connections, the simulation
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assumes that components cannot migrate to different under-
lying hardware resources or change connections.
Simplified view of system runtime environment– processing
elements such as CPUs are described by their processing
speed/rate in a simple resource model. This is a simplifica-
tion as modern CPUs cannot be characterized with just their
clock frequency when many parameters such as processor
architecture, cores, cache, pipelining, instruction dispatch
and general platform architecture come into play. To some
extent this assumption originates in Remes, with an intent
that behavior models stay platform-independent.
Limited support for concurrency– execution parallelism in
target hardware platform and concrete component alloca-
tion to hardware nodes is not taken into consideration. It is
instead left for analysis in later system design stages when
deployment/allocation models are introduced.

4.2 Simulation strategy

In section 3.1 we introduced platform resource usage as
incrementing and decrementing referenced resources (that
behave as scalar variables). The simulator actually manip-
ulates resources as intervals with open or closed bounds
(endpoints). When a discrete transition and its correspond-
ing action is performed, it can increment or decrement the
resource variable – in effect, translating the resource inter-
val by a specified amount. When a delay transition is per-
formed, the resource update is calculated depending on the
duration of the transition – in effect, arbitrarily changing the
resource interval bounds. Resource updates therefore de-

pend on the timed execution of model, as described in [18].

Simulation is performed in steps guided by minimum
time intervals for next discrete transition, similar to global
execution strategy described in [3]. In essence, the list of
active modes and possible transitions is traversed to calcu-
late time intervals till next discrete transition. From thelist
of intervals, a minimum interval is selected, time is let pass
within this interval and the system state is updated accord-
ingly. Transition prioritization and selection (perhaps on
user intervention) can easily be performed during mode list
traversal in each round.

4.3 Trace visualization

Simulator can be used to visualize traces generated by
the verification tools and inspect counterexample states in
detail. Our approach of presenting the simulator as a de-
bugger can easily be adapted to this purpose – the process
of transition selection for the next simulation round should
be guided by the generated diagnostic trace, instead of usual
selection rules. When following a trace, the designer can
monitor state change, and in any moment divert from the
generated trace to investigate a different dynamic execution
path. In combination with model-checkers for verification,
a proposed tool could be used for both quick prototyping at
an early system design stage, and system verification of a
complete system model.



4.4 Partially-specified systems

An interesting topic for further consideration is the pos-
sibility to simulate and analyze partially-specified systems.
To illustrate, imagine a system designer working on an early
system design. She has specified overall structure, but has
yet to define behavior specifics of each component. How-
ever, when designing for a concrete platform, some details
(e.g. component overhead resource consumption) are al-
ready known as they are dictated by the platform. With
this in mind, it should be possible to simulate the early sys-
tem model based ondefaultcomponent behaviors provided
within platform profile. We intend to extend the platform
profile with the description of default behaviors for com-
ponents, the support for this in Remes remains a topic for
discussion.

4.5 Related approaches

Several approaches, based on simulation models de-
rived from UML diagrams, have beed suggested. Extended
UML can be used to specify system models directly, and
de Miguel et al. [11] propose extensions (with UML pro-
files) to express temporal requirements and resource usage.
Annotated diagrams are then automatically transformed to
scheduling and simulation models using Analysis- and Sim-
ulation Model Generators, respectively. Similar to our ap-
proach, application element models are transformed to sim-
ulation submodels which are combined to form an inte-
grated simulation model. A second approach, proposed by
Arief and Spiers [6] uses UML to specify system details
needed for simulation with a process-oriented simulation
model. System simulation is built using a predefined Java-
based Simulation Modeling Language (SimML) framework
with key elements such as components, processes, queues
and messages.

Balsamo and Marzolla in [7, 15] propose a similar tool
for simulation of performance for process-oriented systems.
Annotated UML diagrams, such as Use Case, Activity and
Deployment diagrams, are used to describe system perfor-
mance parameters. UML model elements are closely re-
lated those of the simulator, and simulator structure and be-
havior closely follow the structure and behavior of the UML
model. A discrete-event simulation model is automatically
extracted from the diagrams, and simulation results are re-
ported back as tagged values in diagrams.

A notable approach is that of Palladio Component Model
(PCM) [8, 17]. PCM describes component-based systems
with structure, behavior, allocation and usage models and
derives a simulation model from them. PCM can model re-
source demands of discrete component actions and provide
statistical results, such as processing rate, throughput and
response time per component. Simulation workload is gen-

erated using domain-specific experts’ knowledge contained
in the usage model. A development and analysis environ-
ment is provided.

When discussing embedded systems, we should not for-
get to consider approaches using Matlab and Simulink, as
these tools have established themselves as standard tools for
embedded system design and analysis. COMDES [4, 5, 14]
is a framework for hard real-time distributed control sys-
tems that uses actor diagrams representing subsystems and
signals exchanged between them, and state-machines or
functional block diagrams to specify behavior. COMDES
translates the model to Simulink for simulation.
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