Behavioral Modeling and Analysis of Servicesand Service Compositions

Aida Causevic Cristina Seceleanu Paul Pettersson
Malardalen Real-Time Research Centre (MRTC)
Malardalen University, Vasteras, Sweden
{ai da. delic, cristina.secel eanu, paul . pettersson}@rmh. se

Abstract but usually it is not straightforward to work out the exact
formal analysis model.

Service-oriented systems have recently emerged as Insight into the representation of a service function-
context-independent component-based systems. Unlikelity, enabled actions, resource annotations, and pessibl
components, services can be created, invoked, composediteractions with other services could be beneficial [7].
and destroyed at run-time. Consequently, all services For instance, it is good to distinguish between service
should have a way of advertising their capabilities to the executions that deliver the result within acceptable time,
entities that will use them, and service-oriented modeling while using existing resources efficiently, from those who
should cater for various kinds of service composition. have a slightly better response-time at the expense of

In this paper, we show how services can be formally using more resources. Hence, in order to fully understand
described by the resource-aware timed behavioral lan- the ways in which services evolve,srvice behavioral
guageREMES, which we extend with service-specific infor- descriptionis required. Such behavior is assumed to be
mation, such as type, capacity, time-to-serve, etc., ak welinternal to the service, and it is usually hidden from the
as boolean constraints on inputs, and output guarantees.Service user.

Assuming a Hoare-triple model of service correctness, we To meet the above demands, in this paper, concretely in
show how to check it by using the strongest postcondi-Section Ill, we extend the existing resource-aware, timed

tion semantics. To provide means for connectREMES hierarchical language BVES [15], recalled in Section II,
services, we propose a hierarchical language for service such that it becomes fit for service behavioral modeling.
composition, which allows for verifying the latter's cocte ~ In REMES, a service is modeled by an atomic or composite

ness. The approach is applied on an abstracted version ofmode which we enrich with attributes such as service
an intelligent shuttle system, for which we also compute type, capacity, time-to-serve etc., pre- and postconustio
resource-efficient behaviors, and energy-time trade-offs which are exposed at the mode’s interface. Exploiting the
by model-checking the system’s underlying Priced Timedpre-, postcondition annotations, we show how to check
Automata semantic representation. the service correctness by using Dijkstra’s and Scholten’s
strongest postcondition semantics [8].

Since services can be composed at run-time, analyzing
the correctness of a service in isolation does not suffice.
For example, consider a situation where there exists a
request from a user on an online train ticket purchase

Service-oriented systems (SOS) asssewicesas their service. To enable an online train ticket purchase, a set of
basic functional units, with capabilities of being pubésh functionally smaller services must be invoked, composed,
invoked, composed and destroyed at runtime. Services areand executed (e.gdisplay available trainsshow prices
loosely coupled and enjoy a higher level of independenceplace an ordey enter customer detailsheck credit card
from implementation specific attributes than components details confirm purchaseissue the tickét If, for some
do. reason, the services that check the credit card details and

An important problem is to ensure theality-of-service the one that issues the ticket would switch place, the com-
(QoS) that can be expected when deciding which serviceposed service would not provide the required functionality
to select out of a number of available services delivering To prevent this from happening, one should have means
similar functionality. Some of the existing SOS standards of checking the correctness of a service composition at
support formal analysis [3], [11]-[13] to ensure QoS, run-time.

|. Introduction

To address such needs, in Section IV, we proposea discrete action to be executed, the corresponding boolean

a hierarchical language for dynamic service composition
(HDCL) that allows creating new services, adding, delet-
ing services from lists, as well as connecting services
sequentially, or in parallel. We show how to prove the

guard, which prefixes the action body, must hold. Modes
may also be annotated withvariants which bound from
above the current mode’s delay/execution time. For a more
thorough description of the BMES model, we refer the

correctness of compositions by checking boolean relationsreader to [15].

between the involved services’ pre-, postconditions. Next

we apply the approach on an abstracted version of anB. Priced Timed Automata

intelligent shuttle system, for which we also compute
resource-efficient behaviors, and energy-time trade-offs
by model-checking the system’s underlying Priced Timed
Automata (recalled in Section Il) semantic representation

In Section VI, we compare to some of the relevant
related work, before concluding the paper in Section VII.

Il. Preliminaries
A. ReMESs modeling language

The REsource Model for Embedded Systems
REMES [15] is intended as a meaningful basis for

modeling and analysis of resource-constrained behavior.

of embedded systems. ERIES provides means for
modeling of both continuous (i.e., power) and discrete
resources (i.e., memory access to external devices)
REMES is a state-machine behavioral language that
supports hierarchical modeling, continuous time, and a
notion of explicit entry and exit points, making it fit for
component-based system modeling.

To enable formal analysis, HMES models can be
transformed into timed automata (TA) [1], or priced timed
automata (PTA) [2], depending on the analysis type.

The internal component behavior ireRES is given in
terms of modes that can be eitheiomic (do not contain
submode(s)), ocompositgcontain submode(s)). The data
transfer between modes is done throughdht interface
while the control is passed via tlentrol interface(i.e.,
entry and exit points). RMES assumedocal or global

In the following, we recall the model of priced (or
weighted) timed automata [2], [6], an extension of timed
automata [1] with prices/costs on both locations and tran-
sitions.

Let X be a finite set of clocks an#(X) the set of
formulas obtained as conjunctions of atomic constraints of
the formz > n, wherex € X, n € N, andx € {<, <, =
,>,>}. The elements oB(X) are calledcclock constraints
over X.

Definition 1: A linearly Priced Timed Automaton
(PTA) over clocks X and actions Act is a tuple
(L,lo, E,I,P), whereL is a finite set of locationdy is
the initial location,E C L x B(X) x Act x P(X) x L
is the set of edged, : L — B(X) assigns invariants to
locations, andP : (LUFE) — N assigns prices (or costs) to
both locations and edges. In the casdlof), a,r,l') € E,
we write] “5" 1/,]

The semantics of a PTA is defined in terms of a timed
transition system over states of the foiifyu), wherel
is a location,u € R¥, and the initial state iglo,uo),
wherewu, assigned all clocks inX to 0. Intuitively, there
are two kinds of transitions: delay transitions and diseret
transitions. In delay transitions,

1u) 2 (ued)

the assignmeni@d is the result obtained by incrementing
all clocks of the automata with the delay amouhtand

p = P(l) xd is the cost of performing the delay. Discrete
transitions

(lu) = (U,)

variables that can be of types boolean, natural, integer,

array, or clock (continuous variable evolving at rate 1).
Each (sub)mode can be annotated with the correspond

correspond to taking an edgé%" I for which the guard
g is satisfied byu. The clock valuationu’ of the target

ing continuous resource usage, if any, modeled by thestate is obtained by modifying according to updates.

first derivative of the real-valued variables that denote
resources, and which evolve at positive integer rates.
The control flow is given by the set of directed lines
(i.e.,edge$ that connect the control points of (sub)modes.
REMES supportsdelay/timedactions anddiscreteactions.

The former describe the continuous behavior of the mode,

The costp = P((l,g,a,r,1")) is the price associated with
the edge.

A timed traces of a PTA is a sequence of alternating
delays and action transitions

az,p2
— ..

o = (lo,uo) “&* (I1,u1) R Ly un)

and their execution does not change the current mode; theand the cost of performing is 3", p;. For a given state
latter, discrete actions (represented as edge annotptions(Z,), the minimum cost of reaching, v) is the infimum

when fired, result in a mode change. The delay/timed

of the costs of the finite traces ending(inw). Dually, the

actions are not exposed in the model, but are constrainednaximum cost of reaching,) is the supremum of the

by the above mentioned differential equations. In order for

costs of the finite traces ending {h u).

A network of PTA A,||...||4, over X and Act is
defined as the parallel composition of PTA over X
and Act. Semantically, a network again describes a timed
transition system obtained from those components, by
requiring synchrony on delay transitions and requiring dis where:
crete transitions to synchronize on complementary actions
(i.e. a? is complementary ta!).

presented as follows:

Service ::=< Type, (no. of messages / time uhjt
Status, no. of time unitsPre, Post >,

Type
Status

€ {web service, database, network service, ...}
€ {passive, idle, active}

Such properties are also used to discaService: the
attributes are specified by an interested party and, based

o _on the specification, the service is retrieved or not.
In REMES, a service is represented by a mode (be it

[1. Behavioral modeling of servicesin REMES

atomic or composite). The service may have a spéeuoial

entry point, visited when the service first executes, and

where all variables are initialized. In order for a service t
be published and later discovered, a list of attributes lshou

A. Semantics of REMES services

The formal definition of a RMES service is a PTA
in which we deliberately replace the function that assigns

be exposed at the interface of & Res mode/service (see

Fig.1) costs to locations and edges with a function that assigns
ig.1).

resource usage values to modes and edgeEmeR.
Definition 2: A REMES service over clocks X is a tuple

(M, mg, E,I, Res), whereM is a finite set of modes,

my is the initial mode,E C M x B(X) x Act x 2% x M

Service

Service Attributes: Type, Capacity, TimetoServe, Status, Pre, Post

[Aomic mode 1| is the set of edged, : M — B(X) assigns invariants to
e modes, andRes : (M U E) — N assigns resource-usage
y<=b Ty —s values to both modes and edges. |
e We denote bydct the set of actions that assign values to

[Prelnit]
Init
[PreEntry]

Atomic mode 2

12’ =p,
y<=c

clockg and other variables. The semantics ofemvRs ser-
vice is given as dabeled timed transition system with
resources(LTTS), with discrete transitionghat result in
changing the current state, anelay transitionsthat do
not change the state but result in time progress. A run
of a REMES service is a path in the underlymg transition

y==c¢ {Post}

Entry Exit

. . . 1 'n.*
Figure 1. A service modeled in REMES system. Given a rug = so "o s1 > ... " s, where
s0,...,5, are states, anc’, ...,r"~! are the correspond-

The attributes depicted in Fig.1 have the following

- ing resource usage values per transition, respectiveljit
meaning:

accumulated resource-usage valuis; (§) = Z? Olrj

« service type - specifies whether the given service is a In order to support the dynamic nature of services, we
web service (i.e., weather report), a database servicehave extended the originaERIES [15] with constructs that
(i.e., ATM services), a network service, etc.; enable run-time operations on services (e.g. create,ejelet

 service capacity - specifies the service’s maximum compose service, etc.). The description of all operatiens i
ability to handle a given number of messages per time given in Section IV.
unit (i.e., the maximum service frequency));

« time-to-serve - specifies the worst-case time needed B. Correctness and interface refinement of
for a service to respond and serve a given requestREMES services
(e N);

« service status - describes the current service status
(that is, passive (not invoked), idle, active);

In proving correctness properties of a singl&MES
service expressed in terms of a PTA, we resort to the
o service precondition - is a predicate (boolean) forward analysiswhich assumes computationsstfongest

(Pre = Prelnit vV PreEntry) that conditions the start postcondition®f automata, with respect to a given precon-

of service execution, that is, it must be true at the dition.

time a REMES service is invoked; Let us assume the Hoare tripléPre} Service {Post},

« service postcondition - is a predicate that must hold Pre, Post predicates, denoting thpartial correctness of

at the end of a RMES service execution. Service with respect to preconditiore and postcondi-

When publishing a RMES service, such information is tion Post. Introduced by Dijkstra and Scholten [8], the

strongest postcondition predicate transforn{arfunction Let us assume that a service, described byEmES
that maps predicates to predicates), in our case denotednode, is denoted byervice_name;, i € [1..n]; then, a
by sp.Service.Pre, holds in those final states for which service list, denoted bg list, is defined as follows:
there exists a computation controlled Bgrvice, which

belongs to the classinitially p” . Proving the Hoare triple, s_list = {service_names, ..., service_namen}
that is, the correctness of aeERES service, reduces then
to showing that In order to support run-time service manipulation, we

define a set of RMES interface operations presented be-
low. We denote by the set of service states, respectively,

holds. In the following, we will use the shortcut notation thatis, the current collection of variable values.

sp.Service.Pre = Post

Service.Pre for the strongest postcondition. « Create service:create servicename
The computation of the strongest postcondition of a create : Type x N x N x “passive” x (5 — bool)
PTA is subject to future work. However, we intend to build B ooy — servive mame

on the preliminary results of Badban et al. [5], who propose
an algorithm (called CIPM) that computes new invariants , Remove servicedel servicename
for timed automata control locations taking their origlpal -
defined invariants as well as the constraints imposed by
incoming state transitions into account. The algorithno als

prunes from the automaton the transitions that can never

del : service_name — NULL

« Create service listcreate slist

be taken. We plan to investigate a similar idea for PTA, in slist = List()
order to compute the strongest invariant of a service, and
consequently its strongest postcondition. o Delete service listdel s list

A service user, but also a developer of services, might del : s_list — NULL

need to replace a service with some better quality of
service one. It follows that one needs to be able to check « Add service to a listadd servicename slist
whether the new service still delivers the original func-

tions, while having better time-to-serve or resource-gsag 2dd : service_name X s_list — s_list U {sevice_name}

qualities. Verifying such a property reduces to proving _ _ _ _

refinement of services. « Remove service from the listtel servicename slist
Assuming two RMES services, Service;, Servicep,

over sets of state variables;, Yo, respectively, we say del : service_name x s_list — s_list — {service_name}

that Service, is a refinement ofService;, denoted by

Service, < Service;, iff: « lterate a servicewhile g do servicename od
{Prey} Service, {Posty} = {Pre;} Service; {Post; } while g do service_name od

This definition is consistent with the refinement calculus = (uX - if g THEN service_name; X ELSE skip fi)

[4], in the sense that either weakening the precondition or

strengthening the postcondition refines a service. Note that a new service list can be created by using

the constructorlist(), which holds list values of any
IV. Hierarchical language for dynamic service type. Sl_Jch a constru_ctor _enables th_e_ _creation of both
.- empty list and also list with some initial value (e.g.,
composition s_list = List : String({“Shuttle1}”)). Also, adding a
service to a list means, in this context, appending that
Service compositions may lead to complex systemsservice, that is, adding it at the end of the list. In-
of concurrently executing services. An important aspect serting a service in a list at a specific position;
of such systems is the correctness of their temporal andsert servicename glist i, is done by functioninsert :
resource-wise behavior. In the following, we propose an service_name x s_list x {1,...,s_list.length} —
extension to the BRMES language, which provides means s_list U {sevice_name}. Last but not least, the iterative
to define and support creation, deletion, and compositionconstruct (loop as long as booleaholds) is defined above
of fine-grained or coarser-grained services, applicable toas the least fixed point of the unfolding function.
different domains. We also investigate a formal way of = Most often, services can be perceived as independent
ensuring the correctness of the composition, based on theand distributed functional units, which can be composed
strongest postcondition semantics of services. to form new services. The systems that result out of service

composition have to be designed to fulfill requirements that
often evolve continuously and therefore require adaptatio
of the existing solutions.

Alongside the above operations, we also define a hi-
erarchical language that supports dynamievR s service
composition (HDCL), that is, facilitates modeling of nabte
sequential, parallel or synchronized services:

DCL
HDCL

(s_list, PROTOCOL, REQ)
((bCL*, PROTOCOL, REQ) T,
PROTOCOL, REQ) T ...)

The positive closure operator is used to express that

(s1.Pres, V s2.Pres,) = REQ

« Parallel composition with synchronization - we denote
by SYNC the set of preconditions of services that need
to synchronize their executions:

(s1 llsync s2)
£ (Pres,, Pres, € SYNC=(statuss, == statuss, == active))

Modeling the actual mechanism of synchronizingNfEs
modes is subject to future work. However, the usefulness of
the language is demonstrated by the following case-study.

one or more DCLs (dynamic composition languages) areV/, Example: An Autonomous shuttle system

needed to form an HDCL. ThPROTOCOLdefines the

way services are composed, that is, the type of binding We consider a simplified version of [10] developed

between services, as follows:

PROTOCOL

unary_operator service_name
| service,, binary_operator servicey,

The requiremenREQis a predicate X — Bool) that
can include both functional and extra-functional proper-
ties/constraints of the composition. It identifies the rieeql
attribute constraints, capability, characteristics, oaldy
of a system, such that it exhibits the value and utility re-

guested by the user. The above unary and binary operators

are defined as follows:

Unary_operator = exec — first

Binary_operator :: ; I | llsy~nc

Let us assume that two services, sy are invoked at

at University of Paderborn within the Railcab project,
to demonstrate behavioral modeling and composition of
services in RMES. The aim of project is to develop an
intelligent, flexible, cost and resource effective raised
transportation system which can be scheduled on-demand.
In our example we extract parts of behavior described
in [10] to show how services are created, invoked, com-
posed, and idled. We consider a system of three trains
that provides service of transportation to three different
locations. Each of the trains have an in advance defined
path to be followed as depicted in Fig. 2. During the
transport shuttles might meet at poihin Fig. 2 in which

they are forced to create a convoy. In order to enter the
convoy they have to respect given speed and acceleration
limit measured in pointA1, A2, and A3 as depicted in
Fig. 2, otherwise they may stop to let others that fulfil

some point in time, and their instances are placed in thethe given requirements join the convoy. After a convoy is

service list s;;5;. Also, we assume that;.Pre; is the
strongest postcondition of;, i € 1,2, w.r.t. precondition
Pre;. Then, the semantics of the unary and binary protocol

formed and has left, those that were stopped are allowed to
continue their journey to previously assigned destinaifion
sensor in poinC in Fig. 2 have sent signal that it is safe to

operators, as well as the correctness conditions for sucteontinue (i.e., the distance from the formed convoy is long

compositions are given as follows.

o Exec-first (specifies which service should be initially
executed in a composition) - below we formalize the
fact thats; should execute first, and only when it
finishes and establishes its postcondition, sergice
can become active:

statuss, == active
A statuss, == tdle
A Posts, = (statuss, == active)

Sequential composition - first, we give the semantics
of this composition, after which we show the correct-
ness condition:

(s1; s2).Pres,
(s2.(s1.Pres,) = Posts,)

s2.(s1.Pres;)
(Posts, = REQ)

A

Parallel composition'{s; || s2) correctness condi-
tion:

enough to avoid possible collisions). Each stop and start

increases consumption of power, and possibility to miss the

deadline that brings penalty in terms of increased cost. The
overall cost is accumulated based on resource consumption
and penalty or reward. We assume that one of the operating
shuttles is older than other two, i.e., consumes more of the

available resources to fulfill given requests.

After the destination point is being reached, shuttle is
free to go to idle state and wait for a new order. Above
described system is equipped with one central controller
as shown in Fig. 2 that based on a service description
provided with each shuttle decides when and which shuttle
to invoke.

A. Modeling the shuttle system in REMES

We model the internal behavior of the Autonomous
shuttle system services as modes Mg S. The composite

. (4

LN E

controller

Figure 2. An example overview.

modes ofShuttlel and Controllerl are depicted in Fig. 3
and Fig. 4 respectively. They consist of tatomicmodes

accelerates by 10 speed units in timee [7,10]. The
acceleration continues up to 70 speed units, after which
(i.e., Acceleration1, STOP, Destination, etc.), conditional the shuttle can either enter submazienvoy , or continue
connectorgC), anddiscrete actionge.g.,status1:= ready). to accelerate. If the shuttle joins a convoy together with
The modes communicate data between each other usingther shuttles it will start to accelerate until it reachiss i
the global variablesspeed;, status;, t;, andStatusConvoy. full speed, ¢peed; == 120). It will then start to slow down
Control interfaces are used to expose mode attributesin order to deattach from the convoy. The acceleration,
relevant for mode discovery. deacceleration, and deconvoying are done in the modes:
CAcceleration, CSlowDown, and DeConvoy, respectively.
Contollr If a shuttle fails to join a convoy, it is stopped in sub-
Comtollr Aot Network Sece 5,95 v, (sl — Ko/ o2 — e ettt — 11 (o 95 mode STOP until it is safe to continue alone. When the
‘ : signalStatusConvoy is reset tonotActive, a stopped shuttle
restarts and continues towards its destination point. én th
destination point, a shuttle can be rewarded or punished
(the predefined penalty in terms of cost is assigned),
depending on if the deadline is met or not.
The Controller mode sends an activation signal if all
shuttles are ready to start. For those shuttles that fuifél t
_ speed limitation, theController mode enables entrance to
ST the convoy. Later, the mode will deconvoy shuttles and,
when they reach final destination, tt@ontroller mode

CreateConvoy | [DeConvoy

Init/Entry) Cased
Label| &&
Label2

te<=95

SendToldle

Init Cased
int : Speed; StatusConvoy := active
const active = 1, notActive = 0, readyToidle = 0, CaseS
idle =0; tc>85
boolean : statusl, status2, status3, StatusConvoy; Case6

clock : te; endl = readyToidle || endl == readyToidle || end] == readyToidle

Casel Labell

status] == idle && status2 == idle && status3 ==idle tc:=0

Case2 Label2
rl=1|r2=1|nB=1 StatusConvoy := active
Case3 Label3

tc>14 StatusConvoy := notActive

sends them to the idle state. Execution of actions in
Shuttlel and Controller modes is controlled by thelock
variablest; andt..

In the example, we make use of two resourqesver
andtime. Our assumption is that each acceleration and slow
down utilizes certain amount gower andtime. The con-

sumption is increased if shuttles are forced to stop and then
restart again. In order to carry out analysigEMESs-based
Autonomous shuttle system is translated to a network of
PTA. For more details regarding ERES models, we refer
the reader to [15].

Figure 4. The model of a controller given as
a REMESmode

Shuttlel and Shuttle3 have the same behavi@huttle2
is an older shuttle than the other two, therefore it requires B. Applying the hierarchical language
more time to start, accelerate, slow down, and its resource
consumption is slightly higher than for the other two. Due To illustrate the use of the hierarchical language for
to the space limitation, we will not show and describe in modeling service composition, depicted in Fig. 5, we recall
detail all modes, only oBhuttlel. the example description of Section V.

When Shuttlel is activated, the shuttle starts to accel- Through the declarative part, the needed services are
erate in submodeccelerationl. In each run, the shuttle introduced (lines 00-17 in Fig. 5). A service declaration

Shuttlel
Shuttle] Attributes : Network Service, 5, 290, idle, (t1 == 0 ASpeed] == 0), (td1 <=290)
Label8
Acceleration 1 ‘
[Acceleration3 |
< ne L Label | &&
Convoy Label 10
Casel
Labell Case5 &&Cased. Casel2
Labell Labell & Label5
CSlowDown
Case8
Label6
Init/Entryly_Labell5 7~ Case2 C Fase? && Casegl - 1! <f75701 ’
Labell && Label2 Init/Entry ~ Aabell ;‘r‘i;’: : SlowDown2
Label7, Casel3 P Exit
Labell1
DeC. If Casel3 then
Label3 && Label12
else Label3 && Labell3
Labjell &&
Label10
Traveling Alone Destination
If Case4 then Label3
else Labeld StatusConvoy == 1
Ceng’ ==2 [
time” == 1
Acceleration2 Casell
Labell &&
Case3 && C)\ Casel0 th==84 .
bell &&] eng' =2 Exit
Labell Init/Entry Labell e .
Label§ && | time’=1
Label14
SlowDownl
Case7
Init
const ready = 1, active = I, notActive = 0, Case6 Labell Label10
readyToidle =1, idle = 0 tl ==35 t1:=0 speedl +=20
int : speedl, rl; Case7 Label2 Labelll
boolean : StatusConvoy, status1, alonel,alone2 speed] == 120 rl =1 speedl :==5
alone3; Case8 Label3 Label12
clock : tl,tdl; t1 ==50 speedl =0 status] := idle, end1 :=idle, cost +=5
resource eng : Tc ; Case9 Label4 Label13
resource time : Te ; speed == 15 speed] := speed] status] := idle, end] := idle, cost += 10
Casel Casel0 Label5 Label14
status] == ready && speedl <= 80 StatusConvoy == notActive && alone2 ==0 && alone 3 ==0 speedl := 120 alonel := 1
Case2 Case 11 Lablel6 Labell5
speed] == 70 && StatusConvoy == notActive && t1 ==0 tl1 == 84 speedl := 15 status] := ready
Case3 Casel2 Label7
speed] > 70 tl ==56 rl:=0
Cased Casel3 Label8
StatusConvoy ==active tl == 55 && endl == readyToidle speed] +=10
Case5 Casel4 Label9
speed] < 120 tld <=290 alonel :=0

Figure 3. The model of a shuttlel given as a REMES service

contains service name, type, status, TimeToServe, preconfig. 5). Finally, the chosen services are composed by DCL.
dition and postcondition. The corresponding requirementi The list of services, employed protocol (type of service
matched against such attribute information, when choosingbinding), and DCL requirements are given as parameters.
a service. After the selection, the instances of the salecte Moreover, the language provides means to compose the
services are created (lines 18-20 in Fig. 5), and added toexisting DCLs with other services, thorugh HDCL, as
the service list using th@add command (lines 22-23 in shown in line 25 of Fig. 5. If not anymore needed, the

composition can be deleted. CentralController2. We have chosen to split the controller

The advantage of this language is that, after eachfunction into two parallel timed automata, where one
composition, one can check whether the given requirementautomata activates shuttles and synchronizes them into
is satisfied. The intention of this example is to show how a convoy, and the other idles shuttles when they reach
the language syntax looks, since the language does nothe final destination. The models &failCabl, Central-
have a tool support yet. Our intention is to eventually Controllerl and CentralController2 are shown in Fig. 6,
provide both user and developer with an automated wayFig. 7(a), and Fig. 7(b). Due to space limitations, the
of checking the services and their compositions againstother two automata (which are similar ®RailCabl) are

given requirements. The formalization of check conditions not shown.
is intended to be completely hidden from the user.

00 declare Shuttlel ::= <network service,

01

5,

The shuttles are modeled as PTA with locatiois,
Acceleration1, Convoy, ConvoyAcceleration, ConvoySlow-
Down, DeConvoy, SeparationPoint, STOP, Acceleration2,
SlowDown1, Acceleration3, SlowDown2, and Destination-

02 290, - _
03 idle, Reached. When all shuttles are in awlle locations, they

04 (t1 ==0 Aspeed ==0), receive a synchronization signal through the broadcast
05 (t1<=290)> channelactivateRC from CentralControllerl that activates

06 declare Shuttle2 ::= <network service, . . .

07 7, them. At the same time, boolean varialsiatus; is set

08 300, to true, indicating that the shuttle is active. The acceler-
09 idle, ation is performed through several iterations in location
10 (2==0 Aspeed ==0), Accelerationl. In each iteration, the shuttles accelerate 10
11 (2<=300)>

12 declare Shuttle3 ::
13

= <network service,

5,

speed units within the time bounds< ¢; < 10. The
speed information is kept in the bound integer variable

14 290, RCspeed;. Shuttles that are at the same time in location
}Z ldslei—()/\ o Acceleration1, and have exactly 70 in speed, are allowed
0 &;290):1”6 =0 to form a convoy and continue together until thepara-

18 create Shuttlel
19 create Shuttle2
20 create Shuttle3

21 create list Convoy

22 add Shuttlel list Convoy

23 add Shuttle2 list Convoy

24 DCL_Convoy ::= (list_Convoy, ; , t<=300)

25 HDCL_Convoy ::= ((DCL_Convoy, Shuttle3), | |, t<= 300)

26 check ((Shuttle2.(Shuttlel.(tl == 0 A\ speed == 0)))
A(t=tlV t==12)) => (t<=300)

27 check ((Shuttle3.(t3 == 0 N\ speed == 0)) N\ (t == (3))
=> (t <=300)

28 del HDCL_Convoy

Figure 5. An illustration of the REMES lan-

guage

C. A PTA model of the shuttle system

We have analyzed the Autonomous shuttle system as
a network of five PTA in WPAAL CORA!. The automata,
denoted aRailCabl, RailCab2, andRailCab3, are offering
services of transportation to predefined destinations, and
are being controlled by the PTAentralControllerl and

1For more information about the RIPAAL CORA tool, visit the web

page www.uppaal.org/cora.

tionPoint. The boolean variable; is true when a shuttle
joins a convoy and reset to false whenever it leaves a
convoy. While being in a convoy, shuttles are controlled
and synchronized byentralControllerl through the two
broadcast channelSynConvoyl and SynConvoy2. After
leaving a convoy in locatioseparationPoint, each shuttle

is continuing towards its predefined destination point.
Synchronization channelglel, idle2, andidle3 are sent

to CentralController2 when shuttles are ready to go to the
idle state.

A shuttle that has speed greater than 70 must proceed
alone towards the destination point. Before continuing, th
function ConvoyCheck;(StatusConvoy) is used to reset the
speed of the shuttle (to enable stopping in locagaoP)
and to check whether a convoy exists at that moment
(boolean variablestatusConvoy set to 1 indicates that a
convoy exists on the track). Variab&atusConvoy is used
to avoid the possible collision between the convoy and the
remaining shuttle(s). In case the track is empty, a shuttle
is allowed to continue alone without stopping.

Before entering locationdle, it is checked whether
a shuttle has reachddeestinationReached point or not,
within the given deadline. The clock variabig is used
to keep track of time duration of reaching the final desti-
nation. Depending on the value @, a shuttle can receive
a reward (i.e., destination reached within given deadline)
or penalties (i.e., the deadline is missed).

Recall thatRailCab2 is assumed to be an older shuttle.

Convo Acceleratlonu:35
Y RCspeed1=120,t1=0

(t1<=35)&&(cost’==2*wpow+wtime

ConvoySlowDown

(t1<=50)&&(cost’'==wpow+wtime)

RCspeed1<=80&&t1>=7
RCspeed1+=10,t1=0 SynConvoy1?

t1=0

t1==50
Idle — — —
activateRC? RCspeed1==70 && StatusConvoy==notActive && t1==0 convo
statusl=ready, “\ Accelerationl rl=1, t1=0 Yy DeC
t1=0, td1=0 , eConvoy
(t1<=10)&&(cost'==2*wpow+wtime)
td1<=290 (RCspeed1p70) SynConvoy2?
11=0, iy
idle1! ConvoyChéck1(StatusConvoy) fll(igpeedl—ls,
idlel! RCspeed1=0,cost+=5, - .
status1=idle,end1=idle cost'==5'wpow-+wtime
RCspeetkl=0,cost+=10, STOP

statusl=idhendl=idle, n1¥1 912
StatusConvoy==notActive&&(alone2==0 && alone3==0)
alonel=1,RCspeed1+=10,

t1=0
— SlowDown1l t1==50
DestinationReached Acceleration? t1==84 W\ alone1=0. RCspeed1=15 jUSeparatloanm
RCspeed1=120, Ny
(t1<=84)&&(cost'==2*wpow+wtimgl=0 (t1<=50)&& (Cost'==wpow+wtime)
RCspeed1+=20,t1=0
t1==55
endl=readyToidle,
R 1=!
Cspeedi=5 SlowDown2 =56
Acceleration3
A RCspeed1=120, t1=0
(t1<=55)&&(cost'==wpow-+wtime) (t1<=56)&&(cost'==2*wpow-+wtime)

Figure 6. The model of a shuttle given as a PTA

activateRC!
status1==idle && st atus2==idle && status3==idle

v (end1==readyToidlellend2==readyToidle|lend3==readyToidle)
tc=0 g1? tc<=15
(r1==1 | r2==1]| r3==1) t>14 DeConvay Start SendToldle

17
2 —(__SynConvoy1! . gt
StanC) N\ E—ausco nvoy=active, fe<=95 O =

tc=0
CreateConvoy € end3==readyToidle
idle3?

end2==readyToidle

SynConvoy?2! tc>85 idle2?

StatusConvoy=notActive end1==readyToidle
idle1?

(a) (®)

Figure 7. The model of a controller given as two parallel PTAs

The model of this shuttle differs from other two in terms reached their destination point (e.gnd;, == readyToidle).
of time needed to accelerate/slow down, and resourceThe synchronization channeidle; are used between the
consumption while being active. shuttles and th€entralController2.
The PTA ofCentralControllerl has four locationsStart,
PreConvoy, CreateConvoy, andDeConvoy. When all shut- D. Formal analysis of the PTA model
tles are in their idle statesCentralControllerl activates
them by broadcasting signaltivateRC. Whenever any We consider power to be the most critical resource in
of the shuttles sets the boolean variahléo 1, Central- our system, since each shuttle operates on batteries with
Controller moves toPreConvoy location, where it stays limited capacity. We have also taken timing properties into
for 15 time units, to allow for other shuttle(s) to fulfill consideration since each shuttle has a predefined deadline
the speed requirement and join the convoy. The broadcasto meet. The total cost of resource consumption is further
synchronization channebsynConvoyl is used to enable influenced by the individual weight of the resource and the
convoy creation. IleConvoy location, the controller stays consumed resource on the transitions and locations. In our
86 to 95 time units to wait for the shuttles in the convoy to example, the total cost function is defined as:
complete the decomposition. In order to deconvoy them,
the broadcast synchronization changghConvoy? is sent,
and boolean variabl8tatusConvoy is reset to not active. where wpow = 3, wtime =1, and cpp,, and cime are
The PTA of CentralController2 is responsible for send- the accumulated consumed amounts of power and time,
ing the shuttles to their idle state whenever they have respectively.

Ctot = WPOW X Cpow + WEIME X Ceime Q)

Using UppPAAL CORA we were able to analyze the The best scenario, the most resource saving scenario is
minimum cost reachability problem, that is, to compute the case in which all shuttles join the convoy and decrease
the lowest cost of satisfying a given reachability property the amount of resources utilized. The fact that a shuttle
and a witness trace. During our analysis, we start with joins the convoy implies that the overall time will be
validating the system by checking that a shuttle that startskept within the given bound, and the shuttle will meet its
to accelerate is guaranteed to reach its final destination. deadline. The second best case is when two shuttles with
AG (Shuttle;. Acceleration] —> the same abil?ties and resource ponsumptionsjoin a convoy

AF (Shuttle; DestinationReached)) and meet .the|r res_peqtlve dea(_jlmes, while the third ghuttl
has to wait and miss its deadline. The overall system cost
We also check that the system is deadlock fre® not is increased due to obligatory stop and restart for shuttles
deadlock, implying that no shuttle will ever be blocked that do not join the convoy. As expected, the cost increases
by any other shuttle(s), in its attempt to reach the final with the increase in the number of shuttles that do not join
destination. In terms of safety properties, we check thatthe convoy, since additional time is consumed and given
no shuttle will enter the convoy with speed other than 70 deadlines are missed. The highest cost is obtained in case
speed units, and that a shuttle that is stopped due to noll shuttles overspeed or underspeed, and do not meet the
fulfilling the speed limit will never start before it gets the requirements to join the convoy. The main additional cost
signal to proceed. To illustrate the technique we specify increase in this case is the penalty that each shuttle eseiv
the above safety properties in thepRhAL property because of the missed deadline.
specification language — a subset of Timed Computational
Tree Logic (TCTL).

AG not(Shuttle;.speed > 70 and Shuttle;.Convoy)

AG ((Convoy == 1) = Shuttle;.STOP) Based on the level of details that are provided through
where variableshuttle;.speed represents the speed of shut- the behavioral description, all approaches related to ser-
tlesi € {1,2,3}, Shuttle;.Convoy andShuttle;. STOP (convoy ~ Vices and SOS can be in principle divided into three

entry point and shuttle stop point, respectively) denote 9rOUPS.

locations that the shuttliec {1,2,3} visits while operating Code-level behavioral description approaches are
on tracks. mostly based on XML language (e.g., BPEL, WS-CDL).

We check the cost of the system based on variousBPEL [3] is an orchestration language whose behavioral
scenarios, e.g., all shuttles join a convoy, only two are desc_ription includes a sequence of_ project activities; cor
in convoy, or all shuttles operate on their own, separately. €lation of messages and process instances, and recovery

Additionally, we check cases in which shuttles miss the behavior in case of failures and exceptional conditions.

predefined deadline, respectively. Table | shows the cost fo APProaches like BPEL are useful when services are in-
tended to serve a particular model or when the access

to the service implementation exists. The drawback of

V1. Discussion and related work

Sce- | s1| 521 s3 mSiShsuetgetshe Coste | Costy, such approaches is the lack of formal analysis support,
nario deadline which forces the designer/developer to master not only
1 I T s 0 5107 5107 the specification and _modeling processes, but also the
5 " - " 1 5312 5127 technlques for translating models into a suitable analysis
environment.
3. + : + i 5504 5259 When compared to the above group, BPMN [12] can
7 - " - 5 Z901 EA11 be_ seen as a higher-level language. It rellies on a process-
5' - - - 5 5709 =i7a oriented approach, and supports a graphical represamtatio
') i . to be used by both designers and analysts. The lack of a
formal behavioral description makes it not suitable for a
6. _ _ _ 3 7106 | 5626 detailed analysis as the ones supported ey Rs.

The third group includes approaches with formal
background. Rychly describes the service behavior as a
component-based system for dynamic architectures [14].
The specification of services, their behavior, and hierar-
different shuttle (S1, S2, S3) interaction scenarios. Tdst ¢ chical composition are formalized within the-calculus.
is given for an arbitrary trace (some tracgost,.), and Similar to our approach, this work emphasizes the behavior
also for the best trac&pst,;) with the minimum possible in terms of interfaces, (sub)service communication, and
system cost. We have identified six different scenarios. bindings, while we also cater for service descriptions

Table I. Cost for different shuttle interaction
scenarios

including timing and resource annotations. Foster et al. [5] B. Badban, S. Leue, and J.-G. Smaus, “Automated preglicat

present an approach for modeling and analysis of web
service compositions [9]. The approach takes BPEL4WS

service specification, and translates it into Finite State [6]
Processes (FSP), and Labeled Transition Systems (LTS),
for analysis purposes. The authors argue that the resource

constraints of a system should not be omitted, but they
are mainly dealing with safety and liveness violation, due
to resource constraints, whereas we additionally focus on

optimal resource consumption and trade-off analysis.

VI1I. Conclusions

In this paper, we have presented an approach for for-

(7]

mal service description by extending the resource-aware

timed behavioral languagesRIES. Attributes such as type,

time-to-serve, capacity, etc., together with preconditio

and postcondition are added tERES to enable service

(8]

discovery, as well as service interaction. We have chosen [g]
to use Hoare triples and a strongest postcondition seman-
tics to prove service correctness. We have also proposed

a hierarchical language for service composition, which
allows for the verification of, e.g., service composition

correctness. The approach is demonstrated on a simplified

version of an intelligent shuttle system, for which we

have computed resource consumptions, and shown energy0]

time trade-off analysis. As a first partial validation of

the proposed approach, we find the results of the case

study very encouraging. As future work, we will look into

the algorithmic computation of strongest postconditions
of priced timed automata, inspired by preliminary results

for strongest postcondition computation for ordinary time

automata. Also, we intend to model and formalize synchro-

nization of REMES modes.

References

[1] R. Alur and D. L. Dill, “A theory of timed
automata,” Theoretical Computer Sciencevol. 126,
no. 2, pp. 183-235, 1994. [Online]. Available:

citeseer.nj.nec.com/alur94theory.html

[2] R. Alur, “Optimal paths in weighted timed automata,” in
In HSCCO1: Hybrid Systems: Computation and Control
Springer, 2001, pp. 49-62.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-

ovic, and S. Weerawaran&PEL4WS, Business Process

Execution Language for Web Services Version 1BM,
2003.

[4] R. J. R. Back and J. von WrighRefinement Calculus: A
Systematic Introduction Springer—Verlag, 1998.

[11]

[12]

[13]

[14]

[15]

abstraction for real-time modelsEPTCS vol. 10, p. 36,
2009. [Online]. Available: doi:10.4204/EPTCS.10.3

G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Petters
son, J. Romijn, and F. Vaandrager, “Minimum-Cost Reacha-
bility for Priced Timed Automata,” ifProceedings of the 4th
International Workshop on Hybris Systems: Computation
and Contro] ser. Lecture Notes in Computer Sciences,
M. D. D. Benedetto and A. Sangiovanni-Vincentelli, Eds.,
no. 2034. Springer-Verlag, 2001, pp. 147-161.

A. Causevic and A. Vulgarakis, “Towards a unified behav-
ioral model for component-based and service-oriented sys-
tems,” in2nd IEEE International Workshop on Component-
Based Design of Resource-Constrained Systems (CORCS
2009) IEEE Computer Society Press, July 2009.

E. W. Dijkstra and C. S. Scholtef®redicate calculus and
program semantics New York, NY, USA: Springer-Verlag
New York, Inc., 1990.

H. Foster, W. Emmerich, J. Kramer, J. Magee, D. Rosen-
blum, and S. Uchitel, “Model checking service composi-
tions under resource constraints,” HSEC-FSE '07: Pro-
ceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering
New York, NY, USA: ACM, 2007, pp. 225-234.

H. Giese and F. Klein, “Autonomous shuttle system case
study,” in Scenarios: Models, Transformations and Tools
2003, pp. 90-94.

N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher,
Y. Lafon, and C. Barreto, “Web services choreogra-
phy description language version 1.0,” World Wide Web
Consortium, Candidate Recommendation CR-ws-cdI-10-
20051109, November 2005.

Business Process Modeling Notation (BPMN) version
1.1, Object Management Group (OMG), January 2008.
[Online]. Available: http://www.omg.org/spec/BPMN/1.1

D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara,
M. Stollberg, A. Polleres, C. Feier, C. Bussler, and
D. Fensel, “Web service modeling ontologypplied On-
tology, vol. 1, no. 1, pp. 77-106, 2005.

M. Rychl, “Behavioural modeling of services: from sia-
oriented architecture to component-based systemS3dft-
ware Engineering Techniques in ProgresdNroclaw Uni-
versity of Technology, 2008, pp. 13-27.

C. Seceleanu, A. Vulgarakis, and P. Pettersson, “Remes
A resource model for embedded systems,”linProc. of

the 14th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS 2009)EEE
Computer Society, June 2009.

