
Behavioral Modeling and Analysis of Services and Service Compositions

Aida Čaušević Cristina Seceleanu Paul Pettersson
Mälardalen Real-Time Research Centre (MRTC)

Mälardalen University, Västerås, Sweden
{aida.delic,cristina.seceleanu,paul.pettersson}@mdh.se

Abstract

Service-oriented systems have recently emerged as
context-independent component-based systems. Unlike
components, services can be created, invoked, composed,
and destroyed at run-time. Consequently, all services
should have a way of advertising their capabilities to the
entities that will use them, and service-oriented modeling
should cater for various kinds of service composition.

In this paper, we show how services can be formally
described by the resource-aware timed behavioral lan-
guageREMES, which we extend with service-specific infor-
mation, such as type, capacity, time-to-serve, etc., as well
as boolean constraints on inputs, and output guarantees.
Assuming a Hoare-triple model of service correctness, we
show how to check it by using the strongest postcondi-
tion semantics. To provide means for connectingREMES

services, we propose a hierarchical language for service
composition, which allows for verifying the latter’s correct-
ness. The approach is applied on an abstracted version of
an intelligent shuttle system, for which we also compute
resource-efficient behaviors, and energy-time trade-offs,
by model-checking the system’s underlying Priced Timed
Automata semantic representation.

I. Introduction

Service-oriented systems (SOS) assumeservicesas their
basic functional units, with capabilities of being published,
invoked, composed and destroyed at runtime. Services are
loosely coupled and enjoy a higher level of independence
from implementation specific attributes than components
do.

An important problem is to ensure thequality-of-service
(QoS) that can be expected when deciding which service
to select out of a number of available services delivering
similar functionality. Some of the existing SOS standards
support formal analysis [3], [11]–[13] to ensure QoS,

but usually it is not straightforward to work out the exact
formal analysis model.

Insight into the representation of a service function-
ality, enabled actions, resource annotations, and possible
interactions with other services could be beneficial [7].
For instance, it is good to distinguish between service
executions that deliver the result within acceptable time,
while using existing resources efficiently, from those who
have a slightly better response-time at the expense of
using more resources. Hence, in order to fully understand
the ways in which services evolve, aservice behavioral
description is required. Such behavior is assumed to be
internal to the service, and it is usually hidden from the
service user.

To meet the above demands, in this paper, concretely in
Section III, we extend the existing resource-aware, timed
hierarchical language REMES [15], recalled in Section II,
such that it becomes fit for service behavioral modeling.
In REMES, a service is modeled by an atomic or composite
mode, which we enrich with attributes such as service
type, capacity, time-to-serve etc., pre- and postconditions,
which are exposed at the mode’s interface. Exploiting the
pre-, postcondition annotations, we show how to check
the service correctness by using Dijkstra’s and Scholten’s
strongest postcondition semantics [8].

Since services can be composed at run-time, analyzing
the correctness of a service in isolation does not suffice.
For example, consider a situation where there exists a
request from a user on an online train ticket purchase
service. To enable an online train ticket purchase, a set of
functionally smaller services must be invoked, composed,
and executed (e.g.,display available trains, show prices,
place an order, enter customer details, check credit card
details, confirm purchase, issue the ticket). If, for some
reason, the services that check the credit card details and
the one that issues the ticket would switch place, the com-
posed service would not provide the required functionality.
To prevent this from happening, one should have means
of checking the correctness of a service composition at
run-time.

To address such needs, in Section IV, we propose
a hierarchical language for dynamic service composition
(HDCL) that allows creating new services, adding, delet-
ing services from lists, as well as connecting services
sequentially, or in parallel. We show how to prove the
correctness of compositions by checking boolean relations
between the involved services’ pre-, postconditions. Next,
we apply the approach on an abstracted version of an
intelligent shuttle system, for which we also compute
resource-efficient behaviors, and energy-time trade-offs,
by model-checking the system’s underlying Priced Timed
Automata (recalled in Section II) semantic representation.

In Section VI, we compare to some of the relevant
related work, before concluding the paper in Section VII.

II. Preliminaries

A. REMES modeling language

The REsource Model for Embedded Systems
REMES [15] is intended as a meaningful basis for
modeling and analysis of resource-constrained behavior
of embedded systems. REMES provides means for
modeling of both continuous (i.e., power) and discrete
resources (i.e., memory access to external devices).
REMES is a state-machine behavioral language that
supports hierarchical modeling, continuous time, and a
notion of explicit entry and exit points, making it fit for
component-based system modeling.

To enable formal analysis, REMES models can be
transformed into timed automata (TA) [1], or priced timed
automata (PTA) [2], depending on the analysis type.

The internal component behavior in REMES is given in
terms of modes that can be eitheratomic (do not contain
submode(s)), orcomposite(contain submode(s)). The data
transfer between modes is done through thedata interface,
while the control is passed via thecontrol interface(i.e.,
entry and exit points). REMES assumeslocal or global
variables that can be of types boolean, natural, integer,
array, or clock (continuous variable evolving at rate 1).

Each (sub)mode can be annotated with the correspond-
ing continuous resource usage, if any, modeled by the
first derivative of the real-valued variables that denote
resources, and which evolve at positive integer rates.

The control flow is given by the set of directed lines
(i.e., edges) that connect the control points of (sub)modes.
REMES supportsdelay/timedactions anddiscreteactions.
The former describe the continuous behavior of the mode,
and their execution does not change the current mode; the
latter, discrete actions (represented as edge annotations),
when fired, result in a mode change. The delay/timed
actions are not exposed in the model, but are constrained
by the above mentioned differential equations. In order for

a discrete action to be executed, the corresponding boolean
guard, which prefixes the action body, must hold. Modes
may also be annotated withinvariants, which bound from
above the current mode’s delay/execution time. For a more
thorough description of the REMES model, we refer the
reader to [15].

B. Priced Timed Automata

In the following, we recall the model of priced (or
weighted) timed automata [2], [6], an extension of timed
automata [1] with prices/costs on both locations and tran-
sitions.

Let X be a finite set of clocks andB(X) the set of
formulas obtained as conjunctions of atomic constraints of
the formx ⊲⊳ n, wherex ∈ X , n ∈ N, and⊲⊳ ∈ {<,≤, =
,≥, >}. The elements ofB(X) are calledclock constraints
over X .

Definition 1: A linearly Priced Timed Automaton
(PTA) over clocks X and actions Act is a tuple
(L, l0, E, I, P), whereL is a finite set of locations,l0 is
the initial location,E ⊆ L × B(X) × Act × P(X) × L

is the set of edges,I : L → B(X) assigns invariants to
locations, andP : (L∪E) → N assigns prices (or costs) to
both locations and edges. In the case of(l, g, a, r, l′) ∈ E,
we write l

g,a,r
→ l′.

The semantics of a PTA is defined in terms of a timed
transition system over states of the form(l, u), where l

is a location,u ∈ RRX , and the initial state is(l0, u0),
whereu0 assigned all clocks inX to 0. Intuitively, there
are two kinds of transitions: delay transitions and discrete
transitions. In delay transitions,

(l, u)
d,p
→ (l, u ⊕ d)

the assignmentu⊕d is the result obtained by incrementing
all clocks of the automata with the delay amountd, and
p = P (l) ∗ d is the cost of performing the delay. Discrete
transitions

(l, u)
a,p
→ (l′, u′)

correspond to taking an edgel
g,a,r
→ l′ for which the guard

g is satisfied byu. The clock valuationu′ of the target
state is obtained by modifyingu according to updatesr.
The costp = P ((l, g, a, r, l′)) is the price associated with
the edge.

A timed traceσ of a PTA is a sequence of alternating
delays and action transitions

σ = (l0, u0)
a1,p1
→ (l1, u1)

a2,p2
→ . . .

an,pn

→ (ln, un)

and the cost of performingσ is
∑n

i=1 pi. For a given state
(l, u), the minimum cost of reaching(l, u) is the infimum
of the costs of the finite traces ending in(l, u). Dually, the
maximum cost of reaching(l, u) is the supremum of the
costs of the finite traces ending in(l, u).

A network of PTA A1|| . . . ||An over X and Act is
defined as the parallel composition ofn PTA over X

andAct. Semantically, a network again describes a timed
transition system obtained from those components, by
requiring synchrony on delay transitions and requiring dis-
crete transitions to synchronize on complementary actions
(i.e. a? is complementary toa!).

III. Behavioral modeling of services in REMES

In REMES, a service is represented by a mode (be it
atomic or composite). The service may have a specialInit
entry point, visited when the service first executes, and
where all variables are initialized. In order for a service to
be published and later discovered, a list of attributes should
be exposed at the interface of a REMES mode/service (see
Fig.1).

C

Init

Entry

Service

Atomic mode 1

Atomic mode 2

r1’ = n, r2’ = m,

 y <= b

x < = a d == vr3+=q

r2’ = p,

y <= c

Service Attributes: Type, Capacity, TimetoServe, Status, Pre, Post

[PreInit]

[PreEntry]

V

d >= v y == c

d := e Exit

{Post}

y == b

d := u

Figure 1. A service modeled in REMES

The attributes depicted in Fig.1 have the following
meaning:

• service type - specifies whether the given service is a
web service (i.e., weather report), a database service
(i.e., ATM services), a network service, etc.;

• service capacity - specifies the service’s maximum
ability to handle a given number of messages per time
unit (i.e., the maximum service frequency)(∈ N);

• time-to-serve - specifies the worst-case time needed
for a service to respond and serve a given request
(∈ N);

• service status - describes the current service status
(that is, passive (not invoked), idle, active);

• service precondition - is a predicate (boolean)
(Pre = PreInit ∨ PreEntry) that conditions the start
of service execution, that is, it must be true at the
time a REMES service is invoked;

• service postcondition - is a predicate that must hold
at the end of a REMES service execution.

When publishing a REMES service, such information is

presented as follows:

Service ::=< Type, (no. of messages / time unit),

Status, no. of time units, Pre, Post >,

where:

Type ∈ {web service, database,network service, . . .}
Status ∈ {passive, idle, active}

Such properties are also used to discoverService: the
attributes are specified by an interested party and, based
on the specification, the service is retrieved or not.

A. Semantics of REMES services

The formal definition of a REMES service is a PTA
in which we deliberately replace the function that assigns
costs to locations and edges with a function that assigns
resource usage values to modes and edges in REMES.

Definition 2: A REMES service over clocks X is a tuple
(M, m0, E, I, Res), whereM is a finite set of modesm,
m0 is the initial mode,E ⊆ M ×B(X)×Act× 2X ×M

is the set of edges,I : M → B(X) assigns invariants to
modes, andRes : (M ∪ E) → N assigns resource-usage
values to both modes and edges.

We denote byAct the set of actions that assign values to
clocks and other variables. The semantics of a REMES ser-
vice is given as alabeled timed transition system with
resources(LTTS), with discrete transitionsthat result in
changing the current state, anddelay transitionsthat do
not change the state but result in time progress. A run
of a REMES service is a path in the underlying transition

system. Given a runξ = s0
r0

→ s1
r1

→ . . .
rn−1

→ sn, where
s0, . . . , sn are states, andr0, . . . , rn−1 are the correspond-
ing resource usage values per transition, respectively, its ith

accumulated resource-usage value isResi(ξ) =
∑n−1

j=0 r
j
i .

In order to support the dynamic nature of services, we
have extended the original REMES [15] with constructs that
enable run-time operations on services (e.g. create, delete,
compose service, etc.). The description of all operations is
given in Section IV.

B. Correctness and interface refinement of
REMES services

In proving correctness properties of a single REMES

service expressed in terms of a PTA, we resort to the
forward analysis, which assumes computations ofstrongest
postconditionsof automata, with respect to a given precon-
dition.

Let us assume the Hoare triple,{Pre} Service {Post},
Pre, Post predicates, denoting thepartial correctness of
Service with respect to preconditionPre and postcondi-
tion Post. Introduced by Dijkstra and Scholten [8], the

strongest postcondition predicate transformer(a function
that maps predicates to predicates), in our case denoted
by sp.Service.Pre, holds in those final states for which
there exists a computation controlled byService, which
belongs to the class“ initially p” . Proving the Hoare triple,
that is, the correctness of a REMES service, reduces then
to showing that

sp.Service.Pre ⇒ Post

holds. In the following, we will use the shortcut notation
Service.Pre for the strongest postcondition.

The computation of the strongest postcondition of a
PTA is subject to future work. However, we intend to build
on the preliminary results of Badban et al. [5], who propose
an algorithm (called CIPM) that computes new invariants
for timed automata control locations taking their originally
defined invariants as well as the constraints imposed by
incoming state transitions into account. The algorithm also
prunes from the automaton the transitions that can never
be taken. We plan to investigate a similar idea for PTA, in
order to compute the strongest invariant of a service, and
consequently its strongest postcondition.

A service user, but also a developer of services, might
need to replace a service with some better quality of
service one. It follows that one needs to be able to check
whether the new service still delivers the original func-
tions, while having better time-to-serve or resource-usage
qualities. Verifying such a property reduces to proving
refinement of services.

Assuming two REMES services, Service1, Service2,
over sets of state variablesΣ1, Σ2, respectively, we say
that Service2 is a refinement ofService1, denoted by
Service2 � Service1, iff:

{Pre2} Service2 {Post2} ⇒ {Pre1} Service1 {Post1}

This definition is consistent with the refinement calculus
[4], in the sense that either weakening the precondition or
strengthening the postcondition refines a service.

IV. Hierarchical language for dynamic service
composition

Service compositions may lead to complex systems
of concurrently executing services. An important aspect
of such systems is the correctness of their temporal and
resource-wise behavior. In the following, we propose an
extension to the REMES language, which provides means
to define and support creation, deletion, and composition
of fine-grained or coarser-grained services, applicable to
different domains. We also investigate a formal way of
ensuring the correctness of the composition, based on the
strongest postcondition semantics of services.

Let us assume that a service, described by a REMES

mode, is denoted byservice namei, i ∈ [1..n]; then, a
service list, denoted bys list, is defined as follows:

s list ::= {service name1, ..., service namen}

In order to support run-time service manipulation, we
define a set of REMES interface operations presented be-
low. We denote byΣ the set of service states, respectively,
that is, the current collection of variable values.

• Create service:create servicename

create : Type × N × N × “passive′′ × (Σ → bool)
× (Σ → bool) → service name

• Remove service:del servicename

del : service name → NULL

• Create service list:create s list

s list = List()

• Delete service list:del s list

del : s list → NULL

• Add service to a list:add servicename slist

add : service name × s list → s list ∪ {sevice name}

• Remove service from the list:del servicename slist

del : service name × s list → s list − {service name}

• Iterate a service:while g do servicename od

while g do service name od

= (µX · if g THEN service name; X ELSE skip fi)

Note that a new service list can be created by using
the constructorlist(), which holds list values of any
type. Such a constructor enables the creation of both
empty list and also list with some initial value (e.g.,
s list = List : String({“Shuttle1}′′)). Also, adding a
service to a list means, in this context, appending that
service, that is, adding it at the end of the list. In-
serting a service in a list at a specific position,in-
sert servicename slist i, is done by functioninsert :
service name × s list × {1, . . . , s list.length} →
s list ∪ {sevice name}. Last but not least, the iterative
construct (loop as long as booleang holds) is defined above
as the least fixed point of the unfolding function.

Most often, services can be perceived as independent
and distributed functional units, which can be composed
to form new services. The systems that result out of service

composition have to be designed to fulfill requirements that
often evolve continuously and therefore require adaptation
of the existing solutions.

Alongside the above operations, we also define a hi-
erarchical language that supports dynamic REMES service
composition (HDCL), that is, facilitates modeling of nested
sequential, parallel or synchronized services:

DCL ::= (s list, PROTOCOL, REQ)

HDCL ::= (((DCL+, PROTOCOL, REQ) +,

PROTOCOL, REQ) + ...)

The positive closure operator is used to express that
one or more DCLs (dynamic composition languages) are
needed to form an HDCL. ThePROTOCOLdefines the
way services are composed, that is, the type of binding
between services, as follows:

PROTOCOL ::= unary operator service name

| servicem binary operator servicen

The requirementREQ is a predicate (Σ → Bool) that
can include both functional and extra-functional proper-
ties/constraints of the composition. It identifies the required
attribute constraints, capability, characteristics, or quality
of a system, such that it exhibits the value and utility re-
quested by the user. The above unary and binary operators
are defined as follows:

Unary operator ::= exec − first
Binary operator ::= ; | ‖ | ‖SY NC

Let us assume that two servicess1, s2 are invoked at
some point in time, and their instances are placed in the
service list slist. Also, we assume thatsi.P rei is the
strongest postcondition ofsi, i ∈ 1, 2, w.r.t. precondition
Prei. Then, the semantics of the unary and binary protocol
operators, as well as the correctness conditions for such
compositions are given as follows.

• Exec-first (specifies which service should be initially
executed in a composition) - below we formalize the
fact that s1 should execute first, and only when it
finishes and establishes its postcondition, services2

can become active:

statuss1
== active

∧ statuss2
== idle

∧ Posts1
⇒ (statuss2

== active)

• Sequential composition - first, we give the semantics
of this composition, after which we show the correct-
ness condition:

(s1 ; s2).P res1
== s2.(s1.P res1

)
(s2.(s1.P res1

) ⇒ Posts2
) ∧ (Posts2

⇒ REQ)

• Parallel composition’s(s1 ‖ s2) correctness condi-
tion:

(s1.P res1
∨ s2.P res2

) ⇒ REQ

• Parallel composition with synchronization - we denote
by SYNC the set of preconditions of services that need
to synchronize their executions:

(s1 ‖SY NC s2)

, (Pres1
, P res2

∈ SYNC⇒ (statuss1
== statuss2

== active))

Modeling the actual mechanism of synchronizing REMES

modes is subject to future work. However, the usefulness of
the language is demonstrated by the following case-study.

V. Example: An Autonomous shuttle system

We consider a simplified version of [10] developed
at University of Paderborn within the Railcab project,
to demonstrate behavioral modeling and composition of
services in REMES. The aim of project is to develop an
intelligent, flexible, cost and resource effective rail-based
transportation system which can be scheduled on-demand.
In our example we extract parts of behavior described
in [10] to show how services are created, invoked, com-
posed, and idled. We consider a system of three trains
that provides service of transportation to three different
locations. Each of the trains have an in advance defined
path to be followed as depicted in Fig. 2. During the
transport shuttles might meet at pointB in Fig. 2 in which
they are forced to create a convoy. In order to enter the
convoy they have to respect given speed and acceleration
limit measured in pointsA1, A2, and A3 as depicted in
Fig. 2, otherwise they may stop to let others that fulfil
the given requirements join the convoy. After a convoy is
formed and has left, those that were stopped are allowed to
continue their journey to previously assigned destinationif
sensor in pointC in Fig. 2 have sent signal that it is safe to
continue (i.e., the distance from the formed convoy is long
enough to avoid possible collisions). Each stop and start
increases consumption of power, and possibility to miss the
deadline that brings penalty in terms of increased cost. The
overall cost is accumulated based on resource consumption
and penalty or reward. We assume that one of the operating
shuttles is older than other two, i.e., consumes more of the
available resources to fulfill given requests.

After the destination point is being reached, shuttle is
free to go to idle state and wait for a new order. Above
described system is equipped with one central controller
as shown in Fig. 2 that based on a service description
provided with each shuttle decides when and which shuttle
to invoke.

A. Modeling the shuttle system in REMES

We model the internal behavior of the Autonomous
shuttle system services as modes in REMES. The composite

A3

A2

A1

B C D

train1

train2

train3

controller

E

F

G

Figure 2. An example overview.

modes ofShuttle1 and Controller1 are depicted in Fig. 3
and Fig. 4 respectively. They consist of theatomicmodes
(i.e., Acceleration1, STOP, Destination, etc.), conditional
connectors(C), anddiscrete actions(e.g.,status1:= ready).
The modes communicate data between each other using
the global variables:speedi, statusi, ti, andStatusConvoy.
Control interfaces are used to expose mode attributes
relevant for mode discovery.

Exit

Controller

Init/Entry

ShuttlesActive

Init

int : Speed;

const active = 1, notActive = 0, readyToidle = 0,

 idle = 0;

boolean : status1, status2, status3, StatusConvoy;

clock : tc;

Case1

status1 == idle && status2 == idle && status3 == idle

Case2

r1 == 1 || r2 == 1 || r3 == 1

Case3

tc > 14

Controller Attributes : Network Service, 5, 95, active, (status1 == idle status2 == idle status3 == idle), (tc <= 95)

C

SendToIdle

PreConvoy CreateConvoy DeConvoy

Case1

Label1

Case2

Label1
tc <= 15 Case3 Case4

Label1 &&

Label2

tc <= 95

Case4

StatusConvoy := active

Case5

tc > 85

Case6

end1 == readyToidle || end1 == readyToidle || end1 == readyToidle

Label1

tc := 0

Label2

StatusConvoy := active

Label3

StatusConvoy := notActive

Case5

Case6

Label3

V V

Figure 4. The model of a controller given as
a REMES mode

Shuttle1 andShuttle3 have the same behavior.Shuttle2
is an older shuttle than the other two, therefore it requires
more time to start, accelerate, slow down, and its resource
consumption is slightly higher than for the other two. Due
to the space limitation, we will not show and describe in
detail all modes, only ofShuttle1.

When Shuttle1 is activated, the shuttle starts to accel-
erate in submodeAcceleration1. In each run, the shuttle

accelerates by 10 speed units in timet1 ∈ [7, 10]. The
acceleration continues up to 70 speed units, after which
the shuttle can either enter submodeConvoy , or continue
to accelerate. If the shuttle joins a convoy together with
other shuttles it will start to accelerate until it reaches its
full speed, (speed1 == 120). It will then start to slow down
in order to deattach from the convoy. The acceleration,
deacceleration, and deconvoying are done in the modes:
CAcceleration, CSlowDown, and DeConvoy, respectively.
If a shuttle fails to join a convoy, it is stopped in sub-
modeSTOP until it is safe to continue alone. When the
signalStatusConvoy is reset tonotActive, a stopped shuttle
restarts and continues towards its destination point. In the
destination point, a shuttle can be rewarded or punished
(the predefined penalty in terms of cost is assigned),
depending on if the deadline is met or not.

The Controller mode sends an activation signal if all
shuttles are ready to start. For those shuttles that fulfill the
speed limitation, theController mode enables entrance to
the convoy. Later, the mode will deconvoy shuttles and,
when they reach final destination, theController mode
sends them to the idle state. Execution of actions in
Shuttle1 and Controller modes is controlled by theclock
variablest1 and tc.

In the example, we make use of two resources:power
andtime. Our assumption is that each acceleration and slow
down utilizes certain amount ofpower and time. The con-
sumption is increased if shuttles are forced to stop and then
restart again. In order to carry out analysis, REMES-based
Autonomous shuttle system is translated to a network of
PTA. For more details regarding REMES models, we refer
the reader to [15].

B. Applying the hierarchical language

To illustrate the use of the hierarchical language for
modeling service composition, depicted in Fig. 5, we recall
the example description of Section V.

Through the declarative part, the needed services are
introduced (lines 00-17 in Fig. 5). A service declaration

 Init/Entry

Acceleration 1

CAcceleration

Exit

Init

const ready = 1, active = 1, notActive = 0,

 readyToidle =1, idle = 0

int : speed1, r1;

boolean : StatusConvoy, status1, alone1,alone2

 alone3;

clock : t1, td1;

resource eng : T ;

resource time : T ;

Case1

status1 == ready && speed1 <= 80

Case2

speed1 == 70 && StatusConvoy == notActive && t1 == 0

Case3

speed1 > 70

Case4

StatusConvoy ==active

Case5

speed1 < 120

7 <= t1 <= 10

eng’ == 2

time’ == 1

C

Shuttle1

Shuttle1 Attributes : Network Service, 5, 290, idle, (t1 == 0 Speed1 == 0), (td1 <= 290)

DeConvoy

t1 <= 35

eng’ == 2

time’ == 1

c

c

C

CSlowDown

t1 <= 50

eng’ == 1

time’ == 1

Convoy

 Init/Entry

Exit

C

Traveling Alone

Init/Entry
Exit

DeConvoy

CAcceleration

t1 <= 35

eng’ == 2

time’ == 1

Acceleration2

t1 <= 84

eng’ == 2

time’ == 1

STOP

StatusConvoy == 1

eng’ == 2

time’ == 1

SlowDown1

t1 <= 50

eng’ == 1

time’ == 1

 t1 <= 56

eng’ == 2

time’ == 1

Acceleration3

 t1 <= 55

eng’ == 1

time’ == 1

SlowDown2

Destination

Case6

t1 == 35

Case7

speed1 == 120

Case8

t1 ==50

Case9

speed == 15

Case10

StatusConvoy == notActive && alone2 ==0 && alone 3 == 0

Case 11

t1 == 84

Case12

t1 == 56

Case13

t1 == 55 && end1 == readyToidle

Case14

t1d <= 290

Case1

Label1

Case2

Label1 && Label2

Case3 &&

Label1

Case5 &&Case4

Label1 Case6

Label1 &&

Label5

Case7 && Case4

Label1

Case8

Label6

Case9

Label7

Case10

Label1 &&

Label8 &&

Label14

Case8

Label6 &&

Label9

Case11

Label1 &&

Label5

Case7

If Case4 then Label3

else Label4

Label1 &&

Label10

Label1 &&

Label10

Case12

Label1 && Label5

Case13

Label11

If Case13 then

Label3 && Label12

else Label3 && Label13

Label8

Label15

Label1

t1:=0

Label2

r1 :=1

Label3

speed1 := 0

Label4

speed1 := speed1

Label5

speed1 := 120

Lablel6

speed1 := 15

Label7

r1 := 0

Label8

speed1 +=10

Label9

alone1 := 0

Label10

speed1 += 20

Label11

speed1 := 5

Label12

status1 := idle, end1 := idle, cost += 5

Label13

status1 := idle, end1 := idle, cost += 10

Label14

alone1 := 1

Label15

status1 := ready

c

c

V

Figure 3. The model of a shuttle1 given as a REMES service

contains service name, type, status, TimeToServe, precon-
dition and postcondition. The corresponding requirement is
matched against such attribute information, when choosing
a service. After the selection, the instances of the selected
services are created (lines 18-20 in Fig. 5), and added to
the service list using theadd command (lines 22-23 in

Fig. 5). Finally, the chosen services are composed by DCL.
The list of services, employed protocol (type of service
binding), and DCL requirements are given as parameters.
Moreover, the language provides means to compose the
existing DCLs with other services, thorugh HDCL, as
shown in line 25 of Fig. 5. If not anymore needed, the

composition can be deleted.
The advantage of this language is that, after each

composition, one can check whether the given requirement
is satisfied. The intention of this example is to show how
the language syntax looks, since the language does not
have a tool support yet. Our intention is to eventually
provide both user and developer with an automated way
of checking the services and their compositions against
given requirements. The formalization of check conditions
is intended to be completely hidden from the user.

00 declare Shuttle1 ::= <network service,

01 5,

02 290,

03 idle,

04 (t1 == 0 speed ==0),

05 (t1<=290)>

06 declare Shuttle2 ::= <network service,

07 7,

08 300,

09 idle,

10 (t2 == 0 speed ==0),

11 (t2<=300)>

12 declare Shuttle3 ::= <network service,

13 5,

14 290,

15 idle,

16 (t3 == 0 speed ==0),

17 (t3<=290)>

18 create Shuttle1

19 create Shuttle2

20 create Shuttle3

21 create list_Convoy

22 add Shuttle1 list_Convoy

23 add Shuttle2 list_Convoy

24 DCL_Convoy ::= (list_Convoy, ; , t<= 300)

25 HDCL_Convoy ::= ((DCL_Convoy, Shuttle3), | |, t<= 300)

26 check ((Shuttle2.(Shuttle1.(t1 == 0 speed == 0)))

 (t == t1 V t == t2)) => (t <= 300)

27 check ((Shuttle3.(t3 == 0 speed == 0)) (t == t3))

 => (t <= 300)

28 del HDCL_Convoy

V

V

V

V

V

V

V

Figure 5. An illustration of the REMES lan-
guage

C. A PTA model of the shuttle system

We have analyzed the Autonomous shuttle system as
a network of five PTA in UPPAAL CORA1. The automata,
denoted asRailCab1, RailCab2, andRailCab3, are offering
services of transportation to predefined destinations, and
are being controlled by the PTACentralController1 and

1For more information about the UPPAAL CORA tool, visit the web
page www.uppaal.org/cora.

CentralController2. We have chosen to split the controller
function into two parallel timed automata, where one
automata activates shuttles and synchronizes them into
a convoy, and the other idles shuttles when they reach
the final destination. The models ofRailCab1, Central-
Controller1 and CentralController2 are shown in Fig. 6,
Fig. 7(a), and Fig. 7(b). Due to space limitations, the
other two automata (which are similar toRailCab1) are
not shown.

The shuttles are modeled as PTA with locations:Idle,
Acceleration1, Convoy, ConvoyAcceleration, ConvoySlow-
Down, DeConvoy, SeparationPoint, STOP, Acceleration2,
SlowDown1, Acceleration3, SlowDown2, and Destination-
Reached. When all shuttles are in anIdle locations, they
receive a synchronization signal through the broadcast
channelactivateRC from CentralController1 that activates
them. At the same time, boolean variablestatusi is set
to true, indicating that the shuttle is active. The acceler-
ation is performed through several iterations in location
Acceleration1. In each iteration, the shuttles accelerate 10
speed units within the time bounds7 ≤ ti ≤ 10. The
speed information is kept in the bound integer variable
RCspeedi. Shuttles that are at the same time in location
Acceleration1, and have exactly 70 in speed, are allowed
to form a convoy and continue together until theSepara-
tionPoint. The boolean variableri is true when a shuttle
joins a convoy and reset to false whenever it leaves a
convoy. While being in a convoy, shuttles are controlled
and synchronized byCentralController1 through the two
broadcast channelsSynConvoy1 and SynConvoy2. After
leaving a convoy in locationSeparationPoint, each shuttle
is continuing towards its predefined destination point.
Synchronization channelsidle1, idle2, and idle3 are sent
to CentralController2 when shuttles are ready to go to the
idle state.

A shuttle that has speed greater than 70 must proceed
alone towards the destination point. Before continuing, the
function ConvoyChecki(StatusConvoy) is used to reset the
speed of the shuttle (to enable stopping in locationSTOP)
and to check whether a convoy exists at that moment
(boolean variableStatusConvoy set to 1 indicates that a
convoy exists on the track). VariableStatusConvoy is used
to avoid the possible collision between the convoy and the
remaining shuttle(s). In case the track is empty, a shuttle
is allowed to continue alone without stopping.

Before entering locationIdle, it is checked whether
a shuttle has reachedDeestinationReached point or not,
within the given deadline. The clock variabletdi is used
to keep track of time duration of reaching the final desti-
nation. Depending on the value oftdi, a shuttle can receive
a reward (i.e., destination reached within given deadline)
or penalties (i.e., the deadline is missed).

Recall thatRailCab2 is assumed to be an older shuttle.

ConvoyAcceleration

(t1<=35)&&(cost’==2*wpow+wtime)

DeConvoy
Convoy

ConvoySlowDown

(t1<=50)&&(cost’==wpow+wtime)

DestinationReached

SlowDown2

(t1<=55)&&(cost’==wpow+wtime)

Acceleration3

(t1<=56)&&(cost’==2*wpow+wtime)

SeparationPointSlowDown1

(t1<=50)&&(cost’==wpow+wtime)

Acceleration2

(t1<=84)&&(cost’==2*wpow+wtime)

STOP
cost’==5*wpow+wtime

Acceleration1

(t1<=10)&&(cost’==2*wpow+wtime)

Idle

t1==35
RCspeed1=120,t1=0

t1==50

td1>290
idle1!

RCspeed1=0,cost+=10,
status1=idle,end1=idle, n1=1

RCspeed1==70 && StatusConvoy==notActive && t1==0

r1=1, t1=0

SynConvoy2?
RCspeed1=15,
r1=0

SynConvoy1?
t1=0

td1<=290

idle1!

RCspeed1=0,cost+=5,
status1=idle,end1=idle

t1==55
end1=readyToidle,
RCspeed1=5

t1==56

RCspeed1=120, t1=0

RCspeed1+=20,t1=0

t1==50
alone1=0, RCspeed1=15t1==84

RCspeed1=120,
t1=0

StatusConvoy==notActive&&(alone2==0 && alone3==0)
g1?

alone1=1,RCspeed1+=10,
t1=0

(RCspeed1>70)
t1=0,
ConvoyCheck1(StatusConvoy)

RCspeed1<=80&&t1>=7
RCspeed1+=10,t1=0

activateRC?
status1=ready,
t1=0, td1=0

Figure 6. The model of a shuttle given as a PTA

CreateConvoy

tc<=15
DeConvoy

tc<=95
Start

tc>14(r1==1 || r2==1 || r3==1)
g1?tc=0

tc>85SynConvoy2!

StatusConvoy=notActive

SynConvoy1!
StatusConvoy=active,
tc=0

status1==idle && st atus2==idle && status3==idle
activateRC!

tc=0
SendToIdleStart

end1==readyToidle
idle1?

end2==readyToidle
idle2?

end3==readyToidle
idle3?

(end1==readyToidle||end2==readyToidle||end3==readyToidle)

g1?

(a) (b)

Figure 7. The model of a controller given as two parallel PTAs

The model of this shuttle differs from other two in terms
of time needed to accelerate/slow down, and resource
consumption while being active.

The PTA ofCentralController1 has four locations:Start,
PreConvoy, CreateConvoy, andDeConvoy. When all shut-
tles are in their idle states,CentralController1 activates
them by broadcasting signalactivateRC. Whenever any
of the shuttles sets the boolean variableri to 1, Central-
Controller moves toPreConvoy location, where it stays
for 15 time units, to allow for other shuttle(s) to fulfill
the speed requirement and join the convoy. The broadcast
synchronization channelSynConvoy1 is used to enable
convoy creation. InDeConvoy location, the controller stays
86 to 95 time units to wait for the shuttles in the convoy to
complete the decomposition. In order to deconvoy them,
the broadcast synchronization channelSynConvoy2 is sent,
and boolean variableStatusConvoy is reset to not active.

The PTA ofCentralController2 is responsible for send-
ing the shuttles to their idle state whenever they have

reached their destination point (e.g.,endi == readyToidle).
The synchronization channelsidlei are used between the
shuttles and theCentralController2.

D. Formal analysis of the PTA model

We consider power to be the most critical resource in
our system, since each shuttle operates on batteries with
limited capacity. We have also taken timing properties into
consideration since each shuttle has a predefined deadline
to meet. The total cost of resource consumption is further
influenced by the individual weight of the resource and the
consumed resource on the transitions and locations. In our
example, the total cost function is defined as:

ctot = wpow × cpow + wtime × ctime (1)

where wpow = 3, wtime =1, and cpow and ctime are
the accumulated consumed amounts of power and time,
respectively.

Using UPPAAL CORA we were able to analyze the
minimum cost reachability problem, that is, to compute
the lowest cost of satisfying a given reachability property,
and a witness trace. During our analysis, we start with
validating the system by checking that a shuttle that starts
to accelerate is guaranteed to reach its final destination.

AG (Shuttlei.Acceleration1 =⇒
AF (Shuttlei.DestinationReached))

We also check that the system is deadlock freeAG not
deadlock, implying that no shuttle will ever be blocked
by any other shuttle(s), in its attempt to reach the final
destination. In terms of safety properties, we check that
no shuttle will enter the convoy with speed other than 70
speed units, and that a shuttle that is stopped due to not
fulfilling the speed limit will never start before it gets the
signal to proceed. To illustrate the technique we specify
the above safety properties in the UPPAAL property
specification language — a subset of Timed Computational
Tree Logic (TCTL).

AG not(Shuttlei.speed > 70 and Shuttlei.Convoy)
AG ((Convoy == 1) ⇒ Shuttlei.STOP)

where variableShuttlei.speed represents the speed of shut-
tlesi ∈ {1,2,3}, Shuttlei.Convoy andShuttlei.STOP (convoy
entry point and shuttle stop point, respectively) denote
locations that the shuttlei ∈ {1,2,3} visits while operating
on tracks.

We check the cost of the system based on various
scenarios, e.g., all shuttles join a convoy, only two are
in convoy, or all shuttles operate on their own, separately.
Additionally, we check cases in which shuttles miss the
predefined deadline, respectively. Table I shows the cost for

Shuttles
Sce- S1 S2 S3 missed the Costst Costbt
nario deadline

1. + + + 0 5107 5107
2. + - + 1 5312 5122
3. + + - 1 5504 5259

- + + 1
4. - + - 2 5901 5411
5. + - - 2 6709 5474

- - +
6. - - - 3 7106 5626

Table I. Cost for different shuttle interaction
scenarios

different shuttle (S1, S2, S3) interaction scenarios. The cost
is given for an arbitrary trace (some trace,Costst), and
also for the best trace (Costbt) with the minimum possible
system cost. We have identified six different scenarios.

The best scenario, the most resource saving scenario is
the case in which all shuttles join the convoy and decrease
the amount of resources utilized. The fact that a shuttle
joins the convoy implies that the overall time will be
kept within the given bound, and the shuttle will meet its
deadline. The second best case is when two shuttles with
the same abilities and resource consumptions join a convoy
and meet their respective deadlines, while the third shuttle
has to wait and miss its deadline. The overall system cost
is increased due to obligatory stop and restart for shuttles
that do not join the convoy. As expected, the cost increases
with the increase in the number of shuttles that do not join
the convoy, since additional time is consumed and given
deadlines are missed. The highest cost is obtained in case
all shuttles overspeed or underspeed, and do not meet the
requirements to join the convoy. The main additional cost
increase in this case is the penalty that each shuttle receives
because of the missed deadline.

VI. Discussion and related work

Based on the level of details that are provided through
the behavioral description, all approaches related to ser-
vices and SOS can be in principle divided into three
groups.

Code-level behavioral description approaches are
mostly based on XML language (e.g., BPEL, WS-CDL).
BPEL [3] is an orchestration language whose behavioral
description includes a sequence of project activities, cor-
relation of messages and process instances, and recovery
behavior in case of failures and exceptional conditions.
Approaches like BPEL are useful when services are in-
tended to serve a particular model or when the access
to the service implementation exists. The drawback of
such approaches is the lack of formal analysis support,
which forces the designer/developer to master not only
the specification and modeling processes, but also the
techniques for translating models into a suitable analysis
environment.

When compared to the above group, BPMN [12] can
be seen as a higher-level language. It relies on a process-
oriented approach, and supports a graphical representation
to be used by both designers and analysts. The lack of a
formal behavioral description makes it not suitable for a
detailed analysis as the ones supported by REMES.

The third group includes approaches with formal
background. Rychlý describes the service behavior as a
component-based system for dynamic architectures [14].
The specification of services, their behavior, and hierar-
chical composition are formalized within theπ-calculus.
Similar to our approach, this work emphasizes the behavior
in terms of interfaces, (sub)service communication, and
bindings, while we also cater for service descriptions

including timing and resource annotations. Foster et al.
present an approach for modeling and analysis of web
service compositions [9]. The approach takes BPEL4WS
service specification, and translates it into Finite State
Processes (FSP), and Labeled Transition Systems (LTS),
for analysis purposes. The authors argue that the resource
constraints of a system should not be omitted, but they
are mainly dealing with safety and liveness violation, due
to resource constraints, whereas we additionally focus on
optimal resource consumption and trade-off analysis.

VII. Conclusions

In this paper, we have presented an approach for for-
mal service description by extending the resource-aware
timed behavioral language REMES. Attributes such as type,
time-to-serve, capacity, etc., together with precondition
and postcondition are added to REMES to enable service
discovery, as well as service interaction. We have chosen
to use Hoare triples and a strongest postcondition seman-
tics to prove service correctness. We have also proposed
a hierarchical language for service composition, which
allows for the verification of, e.g., service composition
correctness. The approach is demonstrated on a simplified
version of an intelligent shuttle system, for which we
have computed resource consumptions, and shown energy-
time trade-off analysis. As a first partial validation of
the proposed approach, we find the results of the case
study very encouraging. As future work, we will look into
the algorithmic computation of strongest postconditions
of priced timed automata, inspired by preliminary results
for strongest postcondition computation for ordinary timed
automata. Also, we intend to model and formalize synchro-
nization of REMES modes.

References

[1] R. Alur and D. L. Dill, “A theory of timed
automata,” Theoretical Computer Science, vol. 126,
no. 2, pp. 183–235, 1994. [Online]. Available:
citeseer.nj.nec.com/alur94theory.html

[2] R. Alur, “Optimal paths in weighted timed automata,” in
In HSCC01: Hybrid Systems: Computation and Control.
Springer, 2001, pp. 49–62.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana,BPEL4WS, Business Process
Execution Language for Web Services Version 1.1, IBM,
2003.

[4] R. J. R. Back and J. von Wright,Refinement Calculus: A
Systematic Introduction. Springer–Verlag, 1998.

[5] B. Badban, S. Leue, and J.-G. Smaus, “Automated predicate
abstraction for real-time models,”EPTCS, vol. 10, p. 36,
2009. [Online]. Available: doi:10.4204/EPTCS.10.3

[6] G. Behrmann, A. Fehnker, T. Hune, K. G. Larsen, P. Petters-
son, J. Romijn, and F. Vaandrager, “Minimum-Cost Reacha-
bility for Priced Timed Automata,” inProceedings of the 4th
International Workshop on Hybris Systems: Computation
and Control, ser. Lecture Notes in Computer Sciences,
M. D. D. Benedetto and A. Sangiovanni-Vincentelli, Eds.,
no. 2034. Springer–Verlag, 2001, pp. 147–161.

[7] A. Causevic and A. Vulgarakis, “Towards a unified behav-
ioral model for component-based and service-oriented sys-
tems,” in2nd IEEE International Workshop on Component-
Based Design of Resource-Constrained Systems (CORCS
2009). IEEE Computer Society Press, July 2009.

[8] E. W. Dijkstra and C. S. Scholten,Predicate calculus and
program semantics. New York, NY, USA: Springer-Verlag
New York, Inc., 1990.

[9] H. Foster, W. Emmerich, J. Kramer, J. Magee, D. Rosen-
blum, and S. Uchitel, “Model checking service composi-
tions under resource constraints,” inESEC-FSE ’07: Pro-
ceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering.
New York, NY, USA: ACM, 2007, pp. 225–234.

[10] H. Giese and F. Klein, “Autonomous shuttle system case
study,” in Scenarios: Models, Transformations and Tools,
2003, pp. 90–94.

[11] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher,
Y. Lafon, and C. Barreto, “Web services choreogra-
phy description language version 1.0,” World Wide Web
Consortium, Candidate Recommendation CR-ws-cdl-10-
20051109, November 2005.

[12] Business Process Modeling Notation (BPMN) version
1.1., Object Management Group (OMG), January 2008.
[Online]. Available: http://www.omg.org/spec/BPMN/1.1/

[13] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara,
M. Stollberg, A. Polleres, C. Feier, C. Bussler, and
D. Fensel, “Web service modeling ontology,”Applied On-
tology, vol. 1, no. 1, pp. 77–106, 2005.

[14] M. Rychl, “Behavioural modeling of services: from service-
oriented architecture to component-based system,” inSoft-
ware Engineering Techniques in Progress. Wroclaw Uni-
versity of Technology, 2008, pp. 13–27.

[15] C. Seceleanu, A. Vulgarakis, and P. Pettersson, “Remes:
A resource model for embedded systems,” inIn Proc. of
the 14th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS 2009). IEEE
Computer Society, June 2009.

