
Designing Efficient Source Routing for Mesh Topology Network on Chip Platforms

Saad Mubeen1,2 and Shashi Kumar1
1Department of Electronics and Computer Engineering, Jönköping University, Sweden
2 Mälardalen Real-Time Research Centre (MRTC), Box 883, 721 23, Västerås, Sweden

saad.mubeen@mdh.se, shashi.kumar@jth.hj.se

Abstract—Efficient on-chip communication is very important
for exploiting enormous computing power available on a multi-
core chip. Network on Chip (NoC) has emerged as a
competitive candidate for implementing on-chip
communication. Routing algorithms significantly affect the
performance of a NoC. Most of the existing NoC architectural
proposals advocate distributed routing algorithms for building
NoC platforms. Although source routing offers many
advantages, researchers avoided it due to its apparent
disadvantage of larger header size requirement that results in
lower bandwidth utilization. In this paper we make a strong
case for the use of source routing for NoCs, especially for
platforms with small sizes and regular topologies. We present a
methodology to compute application specific efficient paths for
communication among cores with a high degree of load
balancing. The methodology first selects the most appropriate
deadlock free routing algorithm, from a set of routing
algorithms, based on the application’s traffic patterns. Then
the selected (possibly adaptive) routing algorithm is used to
compute efficient static paths with the goal of link load
balancing. We demonstrate through simulation based
evaluation that source routing has a potential of achieving
higher performance, for example up to 28% lower latency even
at medium load , as compared to distributed routing. A simple
scheme is proposed for encoding of router ports to reduce the
header overhead. A generic simulator was developed for
evaluation and performance comparison between source
routing and distributed routing. We also designed a router to
support source routing for mesh topology NoC platforms.

Keywords-Network on Chip (NoC); Distributed Routing;
Source Routing; Routing Algorithms; Performance Analysis

I. INTRODUCTION
Majority of current embedded systems are using more

than one processor core. This enables the designer to
enhance functionality and performance of existing embedded
systems. The driving force behind this trend is the capacity
of integrated chips which is still growing exponentially
according to Moore’s law. With the current CMOS
technology it is possible to integrate more than a billion
transistors on the same chip. This capacity is enough to
integrate hundreds of computing and memory cores on a
single chip. Designing and using such a system with a large
number of cores offers a large design space and many
research challenges. One such challenge is the design of an
efficient on-chip communication infrastructure for these
Systems on Chip (SoCs). Network on Chip (NoC) paradigm
has emerged as a competitive candidate for implementing
communication in SoCs. In a NoC, cores are interconnected

to each other through packet switched infrastructure
consisting of a network of routers [1][2][3][4][14].

The computation power of a multi-core SoC will depend
on the number and type of computing cores and size of on-
chip memory. The computational capability of such systems
will also be affected by the communication capability of the
on-chip communication infrastructure (NoC). Topology and
routing algorithm are two important features which
distinguish various NoC platforms. Communication
performance of a NoC depends heavily on the routing
algorithm used. Routing methods can be classified into two
types, namely, source routing and distributed routing. In
source routing the information about the whole path from the
source to the destination is pre-computed and provided in the
packet header. In distributed routing, the header contains
destination address only and the path is computed
dynamically by participation of routers on the way to the
destination [5][6][9][10].

Majority of routing algorithms proposed in the literature
so far, fall under distributed routing type. Source routing has
not been considered much for NoCs, due to its apparent large
overhead to store path information in the header. Since the
paths in source routing are pre-computed offline, therefore
source routing can provide no or limited path adaptivity in
the case of faults and traffic congestion. In spite of these
disadvantages, source routing has many advantages over
distributed routing.

Source routing is not perhaps suitable for dynamic
networks where network size and topology are changing. But
in a NoC with fixed size and regular topology like mesh, the
path information can be efficiently encoded with small
number of bits. According to [8], it can be easily shown that
two bits are sufficient to encode every hop in the path. Since
the packet entering a router contains the pre-computed
decision about the output port, the router design is
significantly simplified. Since NoCs used in embedded
systems are expected to be application specific, we can have
a good profile of the communication traffic in the network
[11]. This allows us to analyze the traffic and compute
efficient paths giving the desired performance properties,
like uniform link load distribution. Source routing also
provides possibility of mixing minimal and non-minimal
paths for this purpose. We will discuss the advantages of
source routing in the NoC context in section II.

A. Related Work
A large number of deadlock free distributed routing

algorithms for NoCs have been proposed in literature
[12][13]. [11] proposes a methodology to compute deadlock

2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools

978-0-7695-4171-6/10 $26.00 © 2010 IEEE

DOI 10.1109/DSD.2010.57

181

free routing algorithms for application specific NoCs with
the goal of maximizing the communication adaptivity.
Deterministic source based routing has been considered
efficient in scalable parallel systems and multiprocessors. It
has been used in IBM SP1 multiprocessor [15]. Although
source routing has been shown to be efficient for general
networks [9], it has not been explored much for NoC
architectures. Recently researchers started considering source
routing as a routing candidate in NoCs.

Source routing based scheme has been proposed in [16]
to provide guaranteed throughput in a streaming
multiprocessor architecture. A class of source routing
switches that can be used to efficiently form arbitrary
network topologies has been presented in [19]. In [17], a
fault tolerant source routing algorithm has been proposed
that demonstrates 50% more fault tolerance as compared to
the conventional algorithms. When source routing is used,
size of routing tables in the network interface is also
considered as an overhead. [18] presents an exploration and
synthesis of low-overhead configurable source routing tables
for network interfaces which results in up to 15 times
reduction in the area cost of the NoC routing tables.

A framework to statically determine deadlock free routes
using an application aware oblivious routing is proposed in
[21]. To support this framework, the authors propose a router
design with virtual channels. A number of benchmarks were
used for the evaluation. A core mapping technique based on
source routing which helps to achieve a mapping with a
constraint over the path length is presented in [20]. It
demonstrates the feasibility of reducing the path length to
just 50% of the diameter thus making core mapping based on
source routing more efficient. This technique highly depends
upon the computation of efficient paths for source routing.

In this paper we describe a method to design application
specific source routing for mesh topology NoC platforms.
Computation of efficient paths for source routing is one of
our major contributions in this paper. We demonstrate that
the proposed source routing methodology has a potential of
achieving better latency performance as compared to the
standard adaptive routing algorithms. As the currently
available NoC simulators can only handle distributed routing
algorithms, therefore, a NoC simulator for evaluating source
routing was developed. Similarly, we have also developed a
tool called MatPC that computes application specific paths
for source routing for a mesh topology NoC resulting in a
balanced link load in the network.

B. Paper Layout
In section II, we illustrate source routing with an

example, present its advantages and disadvantages in NoC
context, and formulate research problem and present solution
methodology. In section III, we present an algorithm for the
selection of a routing algorithm for path computation of
source routing, and present and evaluate path improvement
algorithms. Section IV depicts the performance evaluation of
source and distributed routing and presents the simulation
results. In section V, we describe the implications on router
design and performance. Section VI concludes the paper.

II. SOURCE ROUTING IN THE NOC CONTEXT
When source routing is used in a NoC, each core (or its

interface to the network) contains a table that includes
complete route information to reach all the other cores in the
network to which it needs to communicate. In order to route
a packet through the network, a sender resource looks up the
table and adds complete path from source to destination in
the packet header. The packet is transferred from the source
to the network through resource network interface (RNI).
Each router that receives this packet reads the path field in
the packet header and forwards it to the destined output port.
Unlike a router used in distributed routing, this router does
not require any extra computation for making routing
decisions because the packets already contain pre-computed
decisions.

A. An Illustrative Example
Consider an example of a 4X4 mesh topology NoC as

shown in Fig. 1. Assume that a DSP is connected to the
router (1, 1) has a packet to send to a memory connected to
the router (2, 3) as indicated by an arrow in Fig. 1. Also
consider that XY routing algorithm is used for this
communication. A packet generated by DSP processor will
traverse through routers (1, 1), (1, 2), (1, 3) and (2, 3) before
reaching the destination memory resource. Thus the packet
header will contain the address of all the routers traversed as
shown on the left side of Fig. 2. Similarly, Fig. 2 also depicts
the packet format containing destination address instead of
complete path if distributed routing was used.

DSP
(Source)

1,1

Video
Receiver

1,2

Processor

1,3

Audio
Receiver

1,4

FPGA

2,1

Processor

2,2

Memory
(Destination)

2,3

Processor

2,4

DSP

3,1

M em ory

3,2

Processor

3,3

DSP

3,4

Video
Transmitter

4,1

I/O
Interface

4,2

DSP

4,3

Audio
Transmitter

4,4

Network Interface Switch

Figure 1. Illustrative example of source routing for a 4X4 mesh NoC.

Source Routing Packet Format

Path

1,1

Packet

1,2 1,3 2,3 2,3

Packet

Destination Address

Distributed Routing Packet Format
Figure 2. Packet formats for source and distributed routing.

B. Advantages and Disadvantages Especially for NoCs
1) Advantages of Source Routing: Source routing has the

following major advantages over distributed routing.
• Simpler, Smaller and Faster Router Design: Since

the packet entering a router contains the pre-
computed decision about the output port, there is no
need for any routing logic or tables in the router and
hence, the router design is significantly simplified

182

and its implementation will also be less costly and
faster as compared to distributed routing.

• Topology Independence: Source routing is suitable
for both regular as well as irregular topologies. This
advantage of source routing is limited by the size of
the source table and the maximum length of a route
allowed.

• Source routing allows possibility of using minimal,
non-minimal or mixed routing paths.

• Network Size Independent Router: Since only a
constant number of bits of the header are used in
every router, its design is independent of the network
size. Routers that use source routing can be used in
arbitrary-sized networks because all the limitations
on network scalability including network size,
source table size, and route length are determined by
the source. We feel this to be a major advantage over
distributed routing where destination address field
will depend on network size and topology.

• Balancing of Link Load for Application Specific
NoC: Since NoCs used in embedded systems are
expected to be application specific, we can get a
good profile of the communication traffic in the
network [11]. This allows us to analyse the traffic
and compute offline, efficient application specific
paths giving the desired performance characteristics
like uniform link load distribution.

• Guaranteed Throughput: Source routing is better
when guaranteed throughput is required especially in
the case of real time traffic. This can be achieved by
assigning “special and exclusive paths” in the
network to such communications [16].

• In-Order Delivery of Packets: The single path for
each pair in the network avoids out of order packet
delivery problem that is exhibited by adaptive
routing algorithms.

2) Disdvantages of Source Routing
• Routing Overhead: Packet header in source routing

is larger compared to that of distributed routing.
Similarly, there is a limitation of the maximum
length of the route i.e. the path may not fit in one flit
unless some special technique is used.

• Static and Non-Adaptive Nature of Source Routing:
Source routing is static in nature. This means that the
path cannot be changed after the packet has left the
source. Source routing does not take into account the
current traffic pattern in the network and it is unable
to work in the presence of faults in the network.

• Limitation of the Size of Source Table: In source
routing, storing large size path tables in sources may
become a cost, size and performance overhead for
resources, especially for resources which are not of
processor type. Solutions have been proposed in
literature to reduce this overhead [18].

C. Overhead of Source Routing
As complete route information should be stored along

with the payload in case of source routing, large

underutilization is expected. In the case of mesh topology
NoC and using 2-bit encoding for the router output ports,
number of bits required for encoding the routing path for
source routing will be double than the network diameter. For
a NXN mesh NoC it will be 2(2N-1). On the other hand, the
number of bits to encode the address of destination is
2*(log2(N)). As the size of NoC increases, number of routing
bits in case of source routing increases at a much higher rate
as compared to that of distributed routing. This comparison
is graphically shown in [8]. This overhead apparently makes
source routing look unusable in practice.

But if the overhead is measured in terms of extra flits or
bytes to be communicated, the difference is rather small.
Source and distributed routing in NoC are compared on the
basis of bandwidth utilization in [8] and it is shown that for
practical size NoCs, bandwidth utilization gap is negligibly
small. Bandwidth utilization is defined as the ratio of the
payload in bytes to be transmitted and the actual number of
bytes to be sent carrying this payload.

D. Problem Formulation and Solution Methodology
Our goal is to find a methodology to offline compute

application specific efficient paths for source routing in mesh
topology NoC leading to a high degree of link load balancing
in the network. The problem is solved using the following
steps. A complete solution methodology is shown in Fig. 3.

Application
Specific

Communication
Profile

Existing Distributed Routing AlgorithmNew Algorithm for Source Routing

Link Utilization Analysis

Path Encoding

Encoded Paths for Source Routing

Select

Topology
of NoC

Uniform Link Load Distribution

Path Computation

Iterative Path Improvement Algorithm

Improved Paths for Application Specific Communication

Path Encoding

Path Computation
&

Path Improvement

Routing Algorithm
Selection

Constructive Path
Improvement

Algorithm

Figure 3. Complete solution methodology.

1) Selection of the most suitable routing algorithm from
a set of available routing algorithm: Communication paths
can be computed using an existing deadlock free algorithm
or one can develop a new application specific routing
algorithm. An issue regarding the first option is that a choice
has to be made for selecting the most suitable routing
algorithm for source routing from many existing deadlock
free distributed routing algorithms. The selected (possibly

183

adaptive) routing algorithm should be able to compute
efficient static paths with the goal of balancing link load in
the network.

2) Path Computation: Size of the NoC, information
about which pairs in the network communicate and
communication volumes between pairs are inputs to the
method. We assume that this information is available from
offline profiling of the application. Based on selected routing
algorithm and the inputs, paths for source routing are
computed with a goal of uniform link load distribution.

3) Path Improvement: Once paths for source routing are
computed based on most suitable routing algorithm, the next
problem is the improvement of computed paths with a focus
on more uniformly distributing traffic on links. In this paper,
we propose two path improvement algorithms.

4) Path Encoding: Since routing information in packet
header is an overhead in source routing, an efficient scheme
is also required for encoding of router ports with minimum
number of bits to reduce the header overhead. As a solution,
we use a simple and efficient encoding scheme called “2-Bit
Clockwise Router Port Address Encoding”.

III. COMPUTATION OF EFFICIENT PATHS FOR SOURCE
ROUTING

Path computation refers to finding a complete path or
route from source to destination. In general case, a path
should be computed for each pair of resources in the
network. In an application specific context, the paths are
computed only for those pairs of resources which
communicate. The computed paths must avoid any
possibility of deadlock. It should also try to provide small
packet delay by avoiding link congestion and distributing
traffic uniformly in the network.

A. Routing Algorithm Selection
One can easily think about two distinct options for

computing paths for source routing. First is to compute paths
by using an existing distributed routing algorithm and the
second is to devise a new method or mix existing distributed
routing algorithms. In this paper, we propose a two step
approach. First, initial paths for source routing are computed
by using the most appropriate existing deadlock free
deterministic or partially adaptive distributed routing
algorithms for mesh topology NoC. For the time being we
consider five well known routing algorithms i.e. XY, West-
First, North-Last, Negative-First and Odd-Even. Second,
initial paths are modified to improve link load balancing
which indirectly improves communication performance.

 The basic motivation in the first step is that different
routing algorithms perform best for a set of particular traffic
patterns. Therefore we can select the most appropriate
routing algorithm based on the analysis of the
communication patterns in the application. By empirical
analysis, we observed that each routing algorithm had
different performance for different traffic pattern. The
performance of a routing algorithm was evaluated on the
basis of standard deviation of the link load distribution. Link

load is defined as the amount of data flowing on each link in
NoC. We performed a large number of experiments using a
7x7 mesh topology NoC. In these experiments, link
bandwidth volume of each communication was uniform
randomly selected from 1-10. Communication density was
also uniform randomly selected in such a way that each core
communicates with 2 to 5 other cores in NoC. Locality
biased traffic is used in the application specific case when we
consider east, south and west dominated traffic. Table I
shows the performance comparison of Odd Even routing
algorithm with other routing algorithms in hot spot traffic.

TABLE I. PERFORMANCE COMPARISON OF ODD EVEN ROUTING
ALGORITHM WITH OTHER ROUTING ALGORITHMS IN HOT SPOT TRAFFIC

Results of the experiments lead us to a solution proposal
for the selection of the best routing algorithm for each type
of traffic to compute paths for source routing and it is shown
in Fig.4. A communication graph is obtained after
identifying all the communications among resources for a
specific application and then the traffic is analyzed.
Accordingly, West First, North Last, East First and Odd-
Even algorithms should be selected for east, south [13], and
west dominated and hot spot traffic respectively [8].
Similarly, for any other traffic including random, XY routing
algorithm should be selected.

After selection of routing algorithm, paths from source to
destination for all communicating core pairs can be
computed. Whenever at any intermediate node there is a
choice of multiple output ports, a port is randomly selected.
For this analysis and path computation, we have developed a
Matlab based tool called MatPC [8].

Communication
Graph

Traffic Analysis

Type
Odd-Even

Routing
Algorithm

West First
Routing

Algorithm

East First
Routing

Algorithm

North Last
Routing

Algorithm

XY Routing
Algorithm

West
Dominated

South DominatedEast Dominated

Hot Spot Random
Else

Figure 4. Algorithm for traffic analysis and selection of routing algorithm

for source routing using application specific traffic.

B. Path Improvement
Paths computed for source routing using algorithm

shown in Fig. 4 may not be the best in terms of link load
distribution because real traffic is rarely pure hot spot or
completely directed towards east. The idea in our second step
is to use the adaptivity of the selected routing algorithm to

Routing Algorithm

Performance Comparison of Odd Even
Routing Algorithm for Hot Spot Traffic

XY 16.17 % Better
West First 21.47 % Better
Negative First 25.93 % Better
North Last 15.34 % Better

184

distribute communications uniformly among paths. Two
approaches, namely “constructive” and “iterative” can be
used for this purpose.

1) Constructive Path Improvement Algorithm: Link
load in the NoC can be balanced to some extent during the
path computation process as shown in Fig.5a. Once all the
cores which are communicating with each other for a
specific application are known, they are ordered before
starting the path computation process. Ordering depends
upon the cost of communication which reflects the effect of
communication volume between pairs and their relative
distance in terms of hops.

Communication Cost = (Communication Bandwidth *
Distance between source and destination)

Current load on the links in NoC is used for choosing a
path for the next communication pair. If any link is found
congested, it is avoided for any further communication if
possible. This is achieved by the adaptivity of routing
algorithm used and hence, alternative routes are used while
computing paths for further communications. Although this
simple heuristic algorithm may not lead to best link load
balancing, we observed that it provides considerable
improvement in link load distribution and communication
performance.

2) Iterative Path Improvement Algorithm: After
analyzing and selecting routing algorithm as shown in Fig. 4,
initial paths are computed for all communications. In the
next step, link load variance is evaluated. If it is acceptably
small then the paths which were computed in the first step
are used for source routing. On the other hand, if link load
variance is not acceptable then the most congested link is
identified. One communication using this link is rerouted on
an alternative path using adaptivity of the routing algorithm.
This may or may not result in better link load distribution.
The above process is iterated until link load distribution
becomes acceptable or it does not show any further
improvement. Hence, the final paths are used for source
routing as shown in Fig. 5b.

Order all the Communications
Ci = 1 to N

i = 1

i < N

Route C i
Using Link Load Information

Output Paths for Source
Routing

Stop

No

Final
Paths for
Source
Routing

Compute Initial Paths and
Analyze Link Loads

Link Load Distribution

Find Most
Congested Link

UnacceptableAcceptable

Analyze Traffic and Select
Routing Algorithm

Reroute
Communication on

Alternative Path

Yes

(a) (b)
Figure 5. Path improvement algorithms: (a) Constructive (b) Iterative.

3) Improved Paths for Source Routing: After
implementing path improvement algorithm, we performed a

large number of experiments using four different traffic
patterns i.e. random, hot spot, east and south dominated. In
each experiment, paths were computed using Odd Even,
West First, North Last and Negative First routing algorithms
with and without path improvement. Percentage path
improvement in terms of standard deviation of link load
distribution for each algorithm is averaged over 20
experiments and is tabulated in Table II. Maximum
percentage path improvement is also shown.
TABLE II. RESULTS: PATH IMPROVEMENT IN EACH ROUTING
ALGORITHM USING VARIOUS TRAFFICS

In case of hot spot traffic, path improvement leads to

10.94% improvement in latency for Odd Even routing
algorithm. In the best case, an improvement of up to 28.63%
was observed. For hot spot traffic, best improvement was
for Odd Even routing algorithm. When south dominated and
east dominated traffics are used, North Last and West First
routing algorithms give highest improved performance of
11.53% and 9% respectively.

IV. PERFORMANCE EVALUATION
For evaluation of source routing, we enhanced an

existing simulator that was earlier developed by [7] for
distributed routing. It takes input from MatPC tool.
A. Comparison with Corresponding Distributed Routing

In this section, we compare the performance of source
and distributed routing using XY and Odd Even routing
algorithms. Average Packet Latency (APL) and throughput
are considered as performance parameters. APL is plotted
against different values of Packet Injection Rate (PIR) in
random traffic using XY routing algorithm for source and
distributed routing and it is shown by solid and dotted curves
respectively in the top graph of Fig. 6. It is evident from the
graph that latency in the case of source routing is much
lower than that of distributed routing.

Two regions in the latency graphs are encircled as (a) and
(b). Region (a) shows the latency for low network load while

185

region (b) shows the latency for the load when the network
starts to saturate. These regions are magnified and shown in
Fig. 7. APL in source routing is about 12 cycles lower than
that of distributed routing at lower network load as shown in
Fig 7a. Lower latency in source routing is because of the
faster router. In the simulator, router delay for source routing
was set to be one clock less than the corresponding
distributed router. The difference in latency keeps on
increasing as the network load is increased until the network
starts to saturate. Fig 7(a) also shows that source routing has
a potential of achieving higher performance comparatively,
for example up to 28% lower APL even at medium load.

Th
ro

ug
hp

ut
A

ve
ra

ge
 P

ac
ke

t L
at

en
cy

PIR

PIR

--- Distributed Routing XY
__ Source Routing XY

--- Distributed Routing XY
__ Source Routing XY

Figure 6. APL vs. PIR and Throughput vs. PIR for a 7x7 NoC for source

& distributed routing using XY routing algorithm.

One remarkable advantage of source routing can be seen
from the latency graph near saturation region shown in Fig.
6. In case of distributed routing, when PIR value increases
beyond 0.2, the latency increases abruptly and the network
starts to saturate. When source routing is used, the latency
remains low until PIR reaches 0.25 when the network starts
to saturate and latency increases very quickly. The results
show that the saturation load can be significantly higher
while using source routing.

Av
er

ag
e

Pa
ck

et
 L

at
en

cy

Av
er

ag
e

P
ac

ke
t L

at
en

cy

PIR PIR

--- Distributed Routing XY
__ Source Routing XY

Figure 7. Magnified regions (a) and (b) from latency graphs in Figure 6.

Throughput is plotted against PIR for both source and
distributed routing and it is shown by solid and dotted curves
respectively in the bottom graph of Fig. 6. At lower values of
PIR, throughput increases linearly and is equal for both types
of routing. When PIR is increased beyond 0.2, throughput

starts to level off in case of distributed routing and the
network gets saturated. In case of source routing, throughput
keeps on increasing linearly and starts to level off only
beyond PIR equal to 0.27. Thus at higher network load,
source routing provides comparatively higher throughput.

Similarly, APL and throughput graphs for source and
distributed routing using Odd Even routing algorithm in
random traffic are shown in Fig. 8. APL and throughput of
source routing, distributed routing before and after path
improvement is shown by solid, dotted and “+” signs curves
in Fig. 8. Two regions in the latency graphs are encircled as
(a) and (b). Region (a) shows the latency for low network
load while region (b) shows the latency for the load when the
network starts to saturate. These regions are magnified in
Fig.9. Advantage of path improvement in source routing is
obvious at higher network load.

Th
ro

ug
hp

ut
Av

er
ag

e
P

ac
ke

t L
at

en
cy

P IR

PIR

----- D istribu ted R outing:O dd Even
___S ource R ou ting:O dd E ven
-+-+ S ource R outing:O dd E ven Im proved

----- D istribu ted R outing:O dd Even
___S ource R ou ting:O dd E ven
-+-+ S ource R outing:O dd E ven Im proved

Figure 8. APL vs. PIR and Throughput vs. PIR for a 7x7 NoC for source

and distributed routing using Odd Even routing algorithm.

Av
er

ag
e

Pa
ck

et
 L

at
en

cy

Av
er

ag
e

Pa
ck

et
 L

at
en

cy

PIR PIR

----- Distributed Routing
 Odd Even

___Source Routing
 Odd Even

-+-+ Source Routing
 Odd Even Improved

Figure 9. Magnified regions (a) and (b) from latency graphs in Figure 8.

B. Effect of Path Improvement
In this section we demonstrate the simulation based

performance of different partially adaptive routing
algorithms used to compute paths for source routing before
and after path improvement. Due to lack of space, only hot
spot traffic is chosen. Detailed results can be found in [8]. In

186

Fig. 10(a), (b), (c) and (d), graphs are plotted for APL
against PIR in hot spot traffic using West First, Negative
First, Odd Even and North Last routing algorithms for source
routing respectively. Latency graphs before and after path
improvement are shown by dotted and solid curves
respectively. There is no significant improvement in latency
with path improvement for all routing algorithms at lower
load. At higher values of PIR, path improvement results in
lower latency for all routing algorithms except Negative
First. This is because Negative First algorithm is not suitable
for hot spot traffic and path improvement algorithm worsens
its performance. Similarly the saturation also starts at
relatively higher value of PIR when improved paths are used.
In case of hot spot traffic, Odd Even routing algorithm gives
most improvement. These results also support the results
presented in Table 2.

Figure 10. APL plotted against PIR for source routing using various

routing algorithms before and after path improvement in a 7X7 mesh NoC.

C. Paths for Source Routing Using Best Routing Algorithm
Latency and throughput graphs of the above mentioned

routing algorithms in hot spot traffic are shown in Fig. 11. At
lower loads performance of these routing algorithms is
almost same. At higher loads, Odd Even routing algorithm
outperforms the rest by providing lower latency and higher
throughput. These results support our proposal of routing
algorithm selection for source routing as shown in Fig. 4.
Similarly a large number of simulations were performed for
source routing and as expected XY, West First and North
Last routing algorithms performed the best in random, east
dominated and south dominated traffic respectively [8].

V. IMPLICATIONS ON ROUTER DESIGN AND PERFORMANCE
A. Path Encoding

After path computation, paths should be encoded in the
packet header or more precisely in the header flit in such a
way that the routing overhead is minimized and the encoded
information is easy to decode in the routers.

1) 2-Bit Clockwise Router Port Address Encoding
Scheme: In order to minimize the route information
overhead in the head flit, we implement a 2-bit clockwise
router port address encoding scheme [8]. We assume that a

flit cannot be forwarded to the same channel from where it
came. Hence, a flit can only be forwarded to any of four out
of five output ports in a router for a 2-D mesh NoC. Address
of each output port of a router is encoded with two bits.
Accordingly, “00”, “01”, “10” and “11” represent the
addressees of output ports which are one, two, three and
four steps away respectively in the clockwise direction with
respect to the input port where flit was received.

Th
ro

ug
hp

ut
A

ve
ra

ge
 P

ac
ke

t L
at

en
cy

P IR

PIR

--o--o- XY
-+-+ Negative First after Path Im provement
-+-+ W est First after Path Improvement
--x--x North Last after Path Im provement
___Odd Even after Path Im provement

--o--o- XY
-+-+ Negative First after Path Improvem ent
-+-+ W est First after Path Improvem ent
--x--x North Last after Path Improvem ent
___Odd Even after Path Improvement

Figure 11. APL and Throughput vs. PIR in hot spot traffic using various

routing algorithms after path improvement in a 7X7 mesh NoC.
Consider the example illustrated in Section II-A. The

packet header will contain addresses of all the routers
traversed as is shown in Fig. 12a. Corresponding encoded
packet header with 2-bit clockwise router port address
encoding scheme is depicted in Fig 12b. A packet coming
from DSP resource to router (1, 1) is to be routed to router
(1, 2) and which is connected to the east port of router (1, 1).
East port of this router is three steps in the clockwise
direction with respect to the incoming port as shown in Fig.
12c. Thus first position of packet header is encoded as binary
“10”and shown in Fig. 12b. Similarly, at router (1, 1) the
packet is to be routed again to east port where router (1, 3) is
connected. Hence, east port is two steps in clockwise
direction with respect to the packet incoming port as shown
in Fig. 16d. Thus, second position of packet header is
encoded as binary “01”. Rest of the positions in the packet
header is also encoded in the same fashion.

B. Router Architecture
Router design for source routing is much simpler than the

router design to handle distributed routing. It does not need
to compute a routing function to select the output port for an
incoming packet. This pre-decided information is available
in the header flit. The router decodes the 2-bit clockwise port
address and forwards the head flit to the desired port. Other
flits of the same packet follow the head flit if wormhole
switching is used. This router still needs to implement other
functions like packet buffering, credit-based flow control and
arbitration to resolve port conflicts when two or more
packets contend for the same output port. Simplicity of the
source router makes it relatively smaller and faster. We

187

designed and implemented a source router, with our own
encoding scheme, whose detailed architecture and design
decisions were presented in [8]. The schematic diagram of
source router is depicted in Fig. 13.

10

P acket

01 10 10

P ath

1,1

P acket

1 ,2 1,3 2,3

Encoded Path

C
S

E
W

N

C
S

EW

N

C
S

EW

N

C
S

E
W

N

(c) (d) (e) (f)

(a) (b)

Figure 12. (a,b) 2-bit clockwise router ports address encoding in a packet

header (c,d,e,f) Packet arrival input port and destination output port in each
router for the communication shown in Fig. 1.

Switch Control

2-Bit
Counter

Flit Type and
Route Decoder

Cross Bar

RNI
Next Router

Next
Router

Next
Router

Next Router

4-Flit Input
Buffer

1-Flit Output
Buffer

2-Bit
Counter

2-Bit
Counter

2-Bit
Counter

1-Bit Flag

Credit

Credit

Credit

Credit

Ready

Route
Rotator Arbiter

Figure 13. Schematic diagram of a NoC Router for Source routing.

VI. CONCLUSION AND FUTURE WORK
In this paper we have made a case for the use of source

routing in mesh topology NoC. Because of the small and
fixed size of practical NoCs, the overhead of source routing
is negligible and it is easily compensated by a large number
of its advantages, including lower router cost and higher
communication speed of the router. We have proposed an
efficient two step method to compute application specific
paths for source routing. A Matlab based tool called MatPC
has been developed for this purpose. We have demonstrated
the efficacy of using two step approach of path computation.
There is a lot of scope for using better heuristics for
improving the second step. We have also proposed a very
simple but efficient method for encoding ports of the router.

For evaluation of our source routing approach, we
developed a simulator. Evaluation results show that source
routing gives higher latency and throughput performance as
compared to corresponding distributed routing. We also
designed a router to support our source routing ideas.

Our current approach restricts the computed paths in both
steps to be of minimum length. We plan to extend our
approach for allowing non-minimal paths also in the second
step. Development of a routing scheme which combines
source and distributed routing will be another interesting

direction for future research. We also plan to prototype a
small NoC platform based on source routing to work out and
compare router’s hardware cost with the cost of the router in
a corresponding platform using distributed routing.

REFERENCES
[1] Dally W.J. and Towles B. “Route packets, not wires: on-chip

interconnection networks”, in Design Automation Conference, Las
Vegas, Nevada, USA, 2001, pp. 684-689.

[2] Kumar S. et. al., “A network on chip architecture and design
methodology”. in IEEE Computer Society Annual Symposium on
VLSI, Pittsburgh, April 2002, pp. 117-124.

[3] Benini L., Micheli G.D., “Networks on chips: a new SoC paradigm”.,
IEEE Computer Society, 2002.

[4] J. Duato et al., “Interconnection network: an engineering approach”,
Elsevier Health Sciences, UK, (9781558608528), 2002.

[5] Dally W.J. and Towles B., “Principles and Practices of
Interconnection Networks”, Morgan Kaufmann Publishers an Imprint
of Elsevier Inc, ISBN: 0-12-200751-4, 2004.

[6] Axel Jantsch and Hannu Tenhunen, “Networks on chip”, Kluwer
Academic Publishers, ISBN: 1-4020-7392-5, 2003.

[7] Holsmark R. and Högberg M. “Modeling and prototyping of network
on chip”. M.S. thesis, Jönköping University, Sweden, 2002.

[8] Mubeen S., “Evaluation of source routing for mesh topology network
on chip platforms”. M.S. thesis, Jönköping University, Sweden, 2009.
Permanent link: http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-9591.

[9] J. Flich, P. lopez, M. P. Malumbers and J. Duato, “Improving the
performance of regular networks with source routing”. In the IEEE
International Conference on Parallel Processing. 21-24 Aug, 2000.

[10] Y. Aydogan, C.B. Stunkel, C. Aykanat, B. Abali., “Adaptive source
routing in multistage interconnection networks” in Proceedings of
IPPS '96, the 10th International Parallel Processing Symposium., 15-
19 April 1996, pp. 258 – 267.

[11] Palesi M., Holsmark R., Kumar S. and Catania V., “Application
specific routing algorithms for networks on chip”, IEEE Transactions
on Parallel and Distributed Systems, vol.20, No.3, March, 09.

[12] Ge-Ming Chiu. “The odd-even turn model for adaptive routing”.
IEEE Transactions on Parallel and Distributed Systems, vol. 11, No.
7, July 2000.

[13] A. Patooghy, H. Sarbazi-Azad, “Performance comparison of partially
adaptive routing algorithms”. In 20th International Conference on
Advanced Information Networking and Applications, April 2006.

[14] Evgeny Bolotin, Israel Cidon, Ran Ginosar, Avinoam Kolodny.
“QNoC: QoS architecture and design process for network on chip”.
Journal of Systems Architecture 50 (2004), pp.105–128.

[15] Stunkel, C.B. Shea, D.G. Grice, D.G. Hochschild, P.H. Tsao, M. “The
SP1 high-performance switch”, in Proceedings of the Scalable High-
Performance Computing Conference, 23-25 May, 1994.

[16] Kavaldjiev N. et. Al. “Routing of guaranteed throughput traffic in a
network-on-chip”. Available at: http://doc.utwente.nl/54538/.

[17] Young Bok Kim, Yong-Bin Kim, "Fault tolerant source routing for
network-on-chip". In 22nd IEEE Symposium on Defect and Fault-
Tolerance in VLSI Systems (DFT 2007), 2007. pp.12-20.

[18] Loi, I.; Angiolini, F.; Benini, L. “Synthesis of low-overhead
configurable source routing tables for network interfaces”. In Design,
Automation & Test in Europe Conference, 2009. pp: 274-279.

[19] Ma Liwei and Sun Yihe. “On-chip network design automation with
source routing switches”. Tsinghua Science and Technology, volume
12, issue 1, February 2007. pp 77-85.

[20] Tornero R., Kumar S., Mubeen S. and Orduna J.M. “Distance
constrained mapping to support NoC platforms based on source
routing”. In 3rd Workshop on Highly Parallel Processing on a Chip in
conjunction with Euro-Par 2009. 25-28 August , 2009.

[21] Kinsy, M. A. et al. “Application-aware deadlock-free oblivious
routing.” In the 36th Annual international Symposium on Computer
Architecture ISCA 2009. June 20 - 24, 2009.

188

