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Abstract

An Adaptive Cruise Control (ACC) is a part of an automobile sys-
tem which purpose is to control the vehicle speed with regards to the
surrounding environment. The objective of this report is to evaluate
whether the Architecture and Analysis Description Language (AADL)
is suitable to model an ACC. This report describes an ACC modeled
in AADL with its Behavior and Error Annex.
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1 Introduction

A cruise control system is a rather simply system that keeps the vehicle speed
at a constant level. An Adaptive Cruise Control (ACC) is an extension of
a cruise control system. Its task is to adjust the speed of the vehicle with
regards to other vehicles, the conditions of the road, weather conditions, etc.
In figure 1, the vehicle to the left is equipped with an ACC that keeps track
of the vehicle to the right. The upper vehicle is not detected by the ACC.
If it should change lanes, however, it would be detected.

Figure 1: The left-hand car detects the right-hand car.

In 1987, the European Union’s EUREKA program initiated the Prometheus
project on autonomous vehicles [11]. Its purpose was to enhance traffic secu-
rity by introducing different information systems for automobiles. The first
ACC prototype was developed in the early nineties as part of the EUREKA
program.

An ACC system has two objectives. The first one is to reduce to driver’s
workload and make the drive more comfortable and safe by automatically
adjusting the vehicle speed with regards to obstacles, especially the vehicles
ahead [2, 6]. The second objective is to avoid collisions. The commercial
available ACC systems combine those two objectives.

Section 2 describes the ACC modeled in AADL. Subsection 2.1 gives an
overview of AADL and subsection 2.2 describes the model as it is imple-
mented in AADL, with its two subsystem Console and Controller. Subsec-
tion 2.3 describes the simulation of the model and subsection 2.4 describes
the AADL error model of the two ACC subsystems.

2 AADL

AADL (aadl.info) is a language [4] intended for the design of both the hard-
ware and the software of a system. It is an Society of Automotive Engi-
neers (SAE, www.sae.org) standard and is based on MetaH [10] and UML
2.0 [1, 8, 9].
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2.1 An Overview

The component abstractions of AADL are separated into three categories.
The first category is the application software:

• Thread. A thread can execute concurrently and be organized into
thread groups.

• Thread Group. A thread group is a component abstraction for log-
ically organizing threads or thread groups within a process.

• Process. A process is a protected address space whose boundaries
are enforced at runtime.

• Data. A data component models types and static data.
• Subprogram. A subprogram models a callable piece of source code.

The second category is the execution platform (the hardware):

• Processor. A processor schedules and executes threads.
• Memory. A memory component is used to store code and data.
• Device. A device represents sensors and actuators that interface with

the external environment.
• Bus. A bus interconnects processors, memory, and devices.

The third category contains only one element: the system component.
System components can consist of software and hardware components as
well as other systems.

The components’ types are defined by parameterized sets of properties.
Furthermore, components communicate with each other through ports. It
is possible to define physical port-to-port connections as well as logical flows
through chains of ports. Component definitions are divided into component
types holding the public (visible to other components) features, and compo-
nent implementations that define the private (inner) parts of the component.

The AADL standard [7] includes runtime semantics for mechanisms of
exchange and control of data, including message passing, event passing,
synchronized access to shared components, thread scheduling protocols, and
timing requirements.

AADL can be used to model and analyze systems already in use as
well as to design new systems. AADL can also be used in the analysis of
partially defined architectural patterns. Moreover, AADL supports the early
prediction and analysis of critical system qualities, such as performance,
schedulability, and reliability.

Within the core language, property sets can be declared that add new
properties for components. Additional models and properties can also be
included by utilizing the extension capabilities of the language. The proper-
ties and extensions can be used to incorporate analysis at the architectural
design level.
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AADL components interact through defined interfaces. A component
interface consists of directional flow through data ports for state data, event
data ports for message data, event ports for asynchronous events, subpro-
gram calls, and explicit access to data components. Application components
have properties that specify timing requirements such as period, worst-case
execution time, deadlines, space requirements, and arrival rates [5].

The AADL standard provides the possibility to extend the language
with annexes. Currently, one of them is the Behavior Annex. It models
the behavior of the system as a state machine. Figure 2 shows a high-level
behavior model of an cruise control system, which purpose is to adjust the
actual vehicle speed to the (by the driver) preferred speed. The model of
figure 2 is implemented in listing 1.

In the state machine, SpeedUp and SpeedDown are ports connected to
the throttle. An event is sent by applying a exclamation (!) mark to the
port. An event is received by applying a question (?) mark to the port.

 

ActualSpeed = 

PreferredSpeed 

ActualSpeed <  

PreferredSpeed 

ActualSpeed > 

PreferredSpeed 

ActualSpeed =  

PreferredSpeed 

ActualSpeed <  

PreferredSpeed 

ActualSpeed =  

PreferredSpeed 

ActualSpeed >  

PreferredSpee

d 

Too 

Slow 

Normal Too   

Fast 

Figure 2: A Behavior Model of an Adaptive System.

Listing 1 A Behavior Model of an Adaptive System.

annex b e h a v i o r s p e c i f i c a t i o n
{∗∗

states
Normal : i n i t i a l state ;
TooSlow , TooFast : state ;

state variables
ActualSpeed , Pre fe r redSpeed : Behaviour : : I n t eg e r ;

transitions
Normal −[on ( ActualSpeed = Pre fer redSpeed )]−> Normal {}

Normal −[on ( ActualSpeed < Pre fer redSpeed )]−> TooSlow {SpeedUp !}
TooSlow −[on ( ActualSpeed < Pre fer redSpeed )]−> TooSlow {SpeedUp !}
TooSlow −[on ( ActualSpeed = Pre fer redSpeed )]−> Normal {}

Normal −[on ( ActualSpeed > Pre fer redSpeed )]−> TooFast {SpeedDown !}
TooFast −[on ( ActualSpeed > Pre fer redSpeed )]−> TooFast {SpeedDown !}
TooFast −[on ( ActualSpeed = Pre fer redSpeed )]−> Normal {}

∗∗} ;

Another AADL extension is the Error Annex, which provides the capa-
bility to annotate AADL components with dependability related informa-
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tion. Figure 3 shows an error model for the radar lens of an radar unit. In
cold climate the lens may be covered with ice, which destroys its ability to
measure the distance to the obstacle. However, the error is temporary if the
radar unit is equipped with a thermostat and a heater. When the lens has
thawed, it is operational again. On the other hand, if the lens is hit by a
stone so that the glass cracks, a permanent error has occurred. Finally, the
lens will eventually become worn out.

We can also define the probability for each event to occur. The proba-
bility is given with the keyword fixed or poisson, where a fixed value denotes
the probability between 0 and 1 and a poisson value λ denotes a probability
of −e−λt. The fixed value is used in situations where the event probability
is randomly distributed, such as the broken lens probability. The poisson
value is used in situations where the probability increases over time, such as
the worn out probability. The model of figure 3 is implemented in listing 2.
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Lens Frozen 
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Figure 3: An Error Model of the Radar Lens.

Listing 2 An Error Model of the Radar Lens.

annex e r r o r s p e c i f i c a t i o n
{∗∗

error model LensError
features

Ok: i n i t i a l error state ;
PermanentError , TemporaryError : state ;
RadarLensBroken , RadarLensFrozen ,
RadarLensThawed , RadarLensWornOut : error event ;

end LensError ;

error model implementation LensError . impl
transitions

Ok−[RadarLensBroken]−>PermanentError ;
Ok−[RadarLensWornOut]−>PermanentError ;
Ok−[RadarLensFrozen]−>TemporaryError ;
TemporaryError [ RadarLensThawed]−>Ok;

properties
Occurance => poisson 0 .001 applies to RadarLensWornOut ;
Occurance => fixed 0 .01 applies to RadarLensBroken ;
Occurance => fixed 0 .1 applies to RadarLensFrozen ;
Occurance => fixed 0 .9 applies to RadarLensThawed ;

end LensError . impl ;
∗∗} ;
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2.2 The Model

The ACC system in this model comprises the two subsystems Controller
and Console, which communicate by a Lan bus (see figure 4).

 
 
 
 

 

Console Controller 

LanBus 

 

Figure 4: The ACC System.

2.2.1 The Console System

The console subsystem consists of a processor, a RAM memory with a mem-
ory bus, the panel and display devices, and a process that runs threads that
sample the input from the panel, calculate the speed, and send the speed to
the display (see figure 5 and listing 3). Its task is to receive instructions from
the driver concerning the preferred speed and displaying it to the driver on
the dashboard. The panel device is equipped with an on/off button and two
buttons marked plus and minus. The driver can adjust the preferred speed
and turn the ACC system on or off by pressing the buttons. The panel
device notifies the console process, which delegates the calculation of the
new preferred speed to the sampling and computation threads (see section
2.2.2).
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Figure 5: The Console Subsystem.

2.2.2 The Controller System

The controller system is constituted by a processor, a RAM memory with
a memory bus, the radar, steering wheel, and speedometer devises as well
as break and throttle actuators and a device bus. The processor runs four
threads: three threads that samples the input data from the radar and
speedometer devices as well as the console system. The fourth thread of
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Listing 3 The Console System implemented in AADL.

system ConsoleSystem
features

outToggle : out event port ;
outData : out data port AccTypes : : Stream ;
memoryBus : requires bus access MemoryBus ;
deviceBus : requires bus access DeviceBus ;
lanBus : provides bus access LanBus ;

end ConsoleSystem ;

system implementation ConsoleSystem . impl
subcomponents

con so l eProce s s : process Conso leProcess . impl ;
c on so l eProc e s s o r : processor Conso leProcessor . impl ;
ramMemory : memory RamMemory ;
panelDevice : device PanelDevice ;

connections
event port panelDevice . outToggle −> outToggle ;
data port conso l eProce s s . outSpeed −> outData ;
event port panelDevice . outPlus −> conso l eProce s s . inPlus ;
event port panelDevice . outMinus −> conso l eProce s s . inMinus ;

properties
Actua l Proce s so r B ind ing => reference con so l eProc e s s o r

applies to conso l eProce s s ;
Actual Memory Binding => reference ramMemory

applies to conso l eProce s s ;
end ConsoleSystem . impl ;

the process calculates the proper degree of break and throttle application
and notifies the break and throttle actuators, respectively (see figure 6 and
listing 4).

The radar device is located at the front of the car. Besides the radar
itself, the device also holds a unit capable of moving the line of sight in
the horizontal direction. This is necessary in order to aim the radar beam
correctly in curves. The radar measures the distance to the nearest obstacle
and sends the information to the computation unit.

The radar sends two signals to the controller process: a boolean value
which is true if an obstacle has been detected and, in that case, the distance
between the vehicle and the obstacle. The speedometer sends the current
vehicle speed to the process. The steering wheel measures the curvature of
the vehicle and sends the information directly to the radar in order to adjust
the radar beam to the curvature of the road.

As the information sent by the device bus, it can only be read and written
one byte at a time. Therefore, there are threads reading (sampling) the bus
information from the radar and speedometer.

2.3 Implementation

The computation unit of the controller subsystem saves the previous distance
to the nearest obstacle and compares it to the current distance in order to

Modeling an Adaptive Cruise Controller in the AADL: A Case Study
Page 8
Prepared by: Stefan Björnander, Lars Grunske
30th November 2008



 

Radar 
Device 

Steering 
Wheel Device 

Speedometer 
Device 

Device Bus Process 

Memory Bus 
RAM Memory Processor 

Radar 
Sampling 

Speedometer 
Sampling 

Console 
Sampling 

Computation Break 
Actuator Throttle 

Actuator 

Figure 6: The Controller Subsystem.

determine the relative speed between the vehicle and the obstacle. That
information is used in several ways. If the distance has decreased, the brakes
are applied in order to slow down the vehicle. If the distance has increased,
the electronic throttle system is engaged in order to increase the vehicle
speed. If the distance has decreased radically and the obstacle has entered
an unsafe range (normally 10 meters), the system applies full brakes in order
to stop the vehicle. If no obstacle is detected, the vehicle speed is adjusted
to the speed preferred by the driver.

2.3.1 The Theoretical Foundation

In this model, a vehicle follows an obstacle (normally another vehicle). The
main point of this section is to make sure that when an obstacle is detected,
the vehicle shall be able to break enough to avoid a collision. Informally,
the task is performed by reducing the speed with a constant deceleration
(negative acceleration) so that the vehicle speed is equal to the obstacle
speed (the relative speed is zero).

In the trivial case when the vehicle and the obstacle travel at constant
speed, that action would be enough to avoid a collision. However, in the
general case when the vehicle and the obstacle vary their speeds and accel-
erations, the distance between them must be continuously monitored by the
ACC in order to properly adjust the vehicle speed.

This section introduces the formal definitions and theorems necessary to
establish that the ACC will make sure that the vehicle avoids a collision.

The vehicle speed, measured by the speedometer device, is denoted vv

and the obstacle distance (the distance between the vehicle and the obsta-
cle), measured by the radar device, is denoted d. By comparing the current
vehicle speed and obstacle distance with the previous vehicle speed vv

′ and
the previous distance d′, the obstacle speed vo = vv − vv

′ + d−d′
T (T is the
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Listing 4 The Controller System implemented in AADL.

system Contro l l e rSystem
features

inConsoleToggle : in event port ;
inConsoleData : in data port AccTypes : : Stream ;
LanBus : requires bus access LanBus ;

end Contro l l e rSystem ;

system implementation Contro l l e rSystem . impl
subcomponents

computeProcess : process Cont ro l l e rP roc e s s . impl ;
computeProcessor : processor Cont ro l l e rP ro c e s s o r . impl ;
ramMemory : memory RamMemory ;
deviceBus : bus DeviceBus ;
memoryBus : bus memoryBus ;
radarDevice : device RadarDevice ;
speedomoterDevice : device SpeedometerDevice ;
wheelDevice : device Steer ingWheelDevice ;
brakeDevice : device BrakeDevice ;
t h r o t t l eDev i c e : device Thrott l eDev ice ;

connections
bus access memoryBus −> computeProcessor . memoryBus ;
bus access memoryBus −> ramMemory . memoryBus ;
bus access deviceBus −> computeProcessor . deviceBus ;
bus access deviceBus −> radarDevice . deviceBus ;
bus access deviceBus −> speedomoterDevice . deviceBus ;
bus access deviceBus −> wheelDevice . deviceBus ;
bus access deviceBus −> brakeDevice . deviceBus ;
bus access deviceBus −> t h r o t t l eDev i c e . deviceBus ;
event port inConso leToggle −> computeProcess . inConsoleToggle ;
data port inConsoleData −> computeProcess . inConsoleData ;
event port radarDevice . outError −> computeProcess . inRadarError

{Actual Connect ion Binding => reference deviceBus ; } ;
data port radarDevice . outData −> computeProcess . inRadarData

{Actual Connect ion Binding => reference deviceBus ; } ;
data port speedomoterDevice . outData −>

computeProcess . inSpeedometerData
{Actual Connect ion Binding => reference deviceBus ; } ;

data port wheelDevice . outData −> radarDevice . inData
{Actual Connect ion Binding => reference deviceBus ; } ;

event port computeProcess . outBrake −> brakeDevice . inBrake ;
event port computeProcess . outThrot t l e −> t h r o t t l eDev i c e . i nThro t t l e ;

end Contro l l e rSystem . impl ;

radar device period) and the relative speed between the vehicle and the
obstacle vr = vo − vv is calculated.

In the same manner, the vehicle acceleration av = vv−vv
′

T and obstacle
acceleration ao = vo−vo

′
T as well as their relative acceleration ar = ao − av is

calculated (see figure 7).

Definition 1. Given a vehicle and an obstacle with distance, speeds, and
accelerations as above, the function brake calculating the deceleration nec-
essary for breaking the vehicle in order to avoid a collision is given by:

brake (d, vr, ar) = ar − v2
r

d
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Figure 7: The vehicle and obstacle speed and acceleration.

Definition 2. Given a vehicle and an obstacle with distance, speeds, and
accelerations as above and with breaking deceleration ab, stop (d, vr, ar, ab)
is true if the vehicle is able to slow down enough to avoid colliding with the
obstacle.

Theorem 1. stop (d, vr, ar, ab) (A) is true iff v2
r

ar−ab
≤ d (B).

Proof. A ⇒ B: If stop (d, vr, ar, ab) is true, then the distance dn needed to
slow down the vehicle speed to the obstacle speed with constant (negative)
acceleration ar − ab must be less or equal to the distance d between the
vehicle and the obstacle. The distance is given by:

vr = (ar − ab) t ⇒ t =
vr

ar − ab

dn = vrt =
v2
r

ar − ab

This gives that if stop (d, vr, ar, ab) is true then

dn =
v2
r

ar − ab
≤ d

B ⇒ A: The right hand side expression v2
r

ar+ab
denotes the distance dn

needed to slow down the vehicle speed to the obstacle’s speed with constant
(negative) acceleration ar + ab. If it less or equal to the distance d between
the vehicle and the obstacle, the vehicle manages to slow down enough to
avoid a collision and stop (d, vr, ar, ab) is true.

Theorem 2. stop (d, vr, ar, ab) (A) is true iff brake (d, vr, ar) ≥ ab (B).

Proof. A ⇒ B: stop (d, vr, ar, ab) is true ⇒ v2
r

ar−ab
≤ d ⇒ v2

r
d ≤ ar − ab ⇒

ab ≤ ar − v2
r
d = brake (d, vr, ar).

B ⇒ A: brake (d, vr, ar) ≥ ab ⇒ v2
r

ar+brake(d,vr,ar) ≤ v2
r

ar+ab
≤ d ⇒

stop (d, vr, ar, ab) is true.

Theorem 3. stop (d, vr, ar, brake (d, vr, ar)) is true.
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Proof. Definition 1 defined break as ar − v2
r
d and theorem 2 implies that

stop (d, vr, ar, brake (d, vr, ar)) is true if v2
r

ar−brake(d,vr,ar) ≤ d. This gives that

the assumption is true if v2
r

ar−
(

ar− v2
r
d

) ≤ d:

v2
r

ar −
(
ar − v2

r
d

) =
v2
r

ar − ar + v2
r
d

=
v2
r

v2
r
d

= d ≤ d

2.3.2 The ACC Algorithm

In this section, algorithm 1 is introduced. By keeping track of the distance,
speeds, and accelerations of the vehicle and the obstacle as well as applying
the function break from section 2.3.1 every time the radar device detects an
obstacle, a collision is avoided in accordance to theorem 3.

If the radar device does not detect an obstacle, it instead strives to adjust
the vehicle speed in accordance with the speed preferred by the driver.

2.3.3 The Behavior Model

As part of the case study, the behavior of the ACC is implemented as an
abstract state machine with the AADL Behavior Annex (see listing 5).

The model has five states:

• Normal. No obstacle is detected and the vehicle is travel at the (by
the driver) preferred speed.

• Too Slow. No obstacle is detected but the vehicle is travel at a speed
lower than the (by the driver) preferred speed. The throttle is applied
in order to increase the speed.

• Too Fast. No obstacle is detected but the vehicle is travel at a speed
higher than the (by the driver) preferred speed. The throttle is reduced
in order to decrease the speed.

• Detected. An obstacle is detected and the vehicle is adjusting its
speed in accordance to the distance to the obstacle and their relative
speed by applying algorithm 1.

• Emergency. This state is included as a precaution. If the obstacle
appears inside a certain unsafe range (normally 10 meters from the
vehicle), full brakes is applied in order to avoid a collision.

When an obstacle is detected, the idea is that the vehicle immediate
shall adjust its speed. As it in practice is very hard to calculate a suitable
reduction of the speed, the speed adjusting process is modeled as a feed-back
system.

Modeling an Adaptive Cruise Controller in the AADL: A Case Study
Page 12
Prepared by: Stefan Björnander, Lars Grunske
30th November 2008



Algorithm 1 The ACC Algorithm
Require:

f : The radar’s frequency (the number of times per second it reports the distance).
T : The radar period, the time interval between the radar readings (T = 1/f).
d, vv , av , vo, ao, vv

′, vo
′: Variables defined in section 2.3.1.

break: The function defined in definition 1.
aacc, adec: The vehicle’s maximal acceleration and deceleration (both values are positive).

vv
′ ← 0

vo
′ ← 0

loop
vv ← Speedometer.Speed()

if Radar.Detected() then
d ← Radar.Distance()

if d ≤ SecurityDistance then
/*An obstacle has been detected inside the unsafe range, and we apply full brake.*/
Break.ApplyFull()

else
/*An obstacle has been detected, the speed is reduced in order to avoid a collision.*/

av ← vv−vv
′

T

vo ← vv − vv
′ + d−d′

T

ao ← vo−vo
′

T

/*We reduce the throttle in proportion as the deceleration.*/
Throttle.Reduce (break (d, vo − vv, ao − av))

/*Finally, we save the previous values.*/
vv
′ ← vv

vo
′ ← vo

end if
else if DriverConsole.IsOn() then

/*If no obstacle has been detected, the speed is adjusted to the (by the driver) preferred
speed.*/
vp ← DriverConsole.PreferredSpeed()

if vv < vp then

ap ← vp−vv

T
Throttle.Apply (min (aacc, ap))

else if vv > vp then

ap ← vv−vp

T
Throttle.Reduce (min (adec, ap))

else
/*If the vehicle travels at preferred speed with no obstacle detected, no action is
taken.*/

end if
end if

end loop
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Listing 5 A Behavior Model of an Adaptive System.

annex b e h a v i o r s p e c i f i c a t i o n
{∗∗

states
Normal : i n i t i a l state ;
Detected , TooSlow , TooFast , Emergency : state ;

transitions
Normal −[on ( Obstac leDetected ?) and

( Obstac leDis tance ? < UNSAFE RANGE)]−> Emergency {}
TooFast −[on ( Obstac leDetected ?) and

( Obstac leDis tance ? < UNSAFE RANGE)]−> Emergency {}
TooSlow −[on ( Obstac leDetected ?) and

( Obstac leDis tance ? < UNSAFE RANGE)]−> Emergency {}
Emergency −[on ( Obstac leDetected ?) and ( Obstac leDis tance ? <

UNSAFE RANGE)]−> Emergency {FullBreak !}
Emergency −[on ( ActualSpeed = 0)]−> Normal {}

Normal −[on ( Obstac leDetected ?) and
( ActualSpeed ? > ObstacleSpeed?)]−> Detected {}

TooFast −[on ( Obstac leDetected ?) and
( ActualSpeed > ObstacleSpeed?)]−> Detected {}

TooSlow −[on ( Obstac leDetected ?) and
( ActualSpeed > ObstacleSpeed?)]−> Detected {}

Detected −[on ( Obstac leDetected ?) and
( ActualSpeed ? > ObstacleSpeed?)]−>Detected {SpeedDown !}

Detected −[on (not Obstac leDetected ?) and ( ConsoleOn ?) and
( Pre fer redSpeed ? > ActualSpeed?)]−> TooFast {}

Detected −[on (not Obstac leDetected ?) and ( ConsoleOn ?) and
( Pre fer redSpeed ? < ActualSpeed?)]−> TooSlow {}

Detected −[on ! ( Obstac leDetected ?) and ( (not ConsoleOn ?) or
( Pre fer redSpeed ? = ActualSpeed ?))]−> Normal {}

Normal −[on ( ConsoleOn ?) and
( ActualSpeed ? < Pre fer redSpeed ?)]−> TooSlow {}

TooSlow −[on ( ConsoleOn ?) and
( ActualSpeed ? > Pre fer redSpeed ?)]−> TooFast {}

TooSlow −[on (not ConsoleOn ?) or
( ActualSpeed ? = Pre fer redSpeed ?)]−> Normal {}

TooSlow −[on ( ConsoleOn ?) and
( ActualSpeed ? < Pre fer redSpeed ?)]−> TooSlow{SpeedUp !}

Normal −[on ( ConsoleOn ?) and
( ActualSpeed ? > Pre fer redSpeed ?)]−> TooFast {}

TooFast −[on ( ConsoleOn ?) and
( ActualSpeed ? < Pre fer redSpeed ?)]−> TooSlow {}

TooFast −[on (not ConsoleOn ?) or
( ActualSpeed ? = Pre fer redSpeed ?)]−> Normal {}

TooFast −[on ( ConsoleOn ?) and
( ActualSpeed ? > Pre fer redSpeed ?)]−> TooFast{SpeedDown !}

Normal −>[on ! ( Obstac leDetected ?) and ( (not ConsoleOn ?) or
( Pre feredSpeed ? = ActualSpeed ? ) ) ] −> Normal {}

∗∗} ;

When the machine is in the detected state, the speed is reduced. Should
the vehicle come to close to the obstacle, so it enters the unsafe range, full
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brakes is applied until the vehicle is stationary.

2.4 The Error Model

In addition to the behavior model, there is also an error model [3] in AADL.
Each of the two subsystems Console and Controller has its own error han-
dling.

2.4.1 The Console System

The point of the Console error model is that it shall work even though one
or several components malfunction. The model has four states:

• Ok. All parts of the system works.
• PanelDown. The panel has malfunctioned.
• DisplayDown. The display has malfunctioned.
• PanelDisplayDown. The panel and the display have malfunctioned.

Listing 6 An Error Model of the Console System.

annex e r r o r s p e c i f i c a t i o n
{∗∗

error model ConsoleError
features

Ok: i n i t i a l error state ;
PanelDown , DisplayDown , PanelDisplayDown : error state ;
Pane lFai lure , D i sp l ayFa i lu r e : error event ;

end ConsoleError ;

error model implementation ConsoleError . impl
transitions

Ok−[ Pane lFa i lu re ]−>PanelDown ;
DisplayDown−[ Pane lFa i lu re ]−>PanelDisplayDown ;
Ok−[ D i sp l ayFa i lu r e ]−>DisplayDown ;
PanelDown−[ D i sp l ayFa i lu r e ]−>PanelDisplayDown ;

properties
Occurance => fixed 0 .01 applies to Pane lFa i lu re ;
Occurance => fixed 0 .1 applies to Disp layFa i lu r e ;

end ConsoleError . impl ;
∗∗} ;

2.4.2 The Controller System

The only component that can be expected to work again after it malfunc-
tion is the radar, since its lens may be frozen (see figure 3 and listing 2).
Therefore, in order to provide the model with a way to return to an error
free state regarding the radar device, the error state RadarUp is included.
One peculiar thing about the Error Annex is that even thought RadarUp is
an error-free state, it is still modeled as an error state.
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The first transition looks up the last valid detected notice from the radar.
If an obstacle was detected during the previous scanning cycle and the radar
malfunctions during the current cycle, the vehicle is immediate stopped. If
no obstacle was detected, only a warning signal is given and the ACC is
transferred to manual drive. A similar action is taken if the speedometer
malfunctions.

If the throttle malfunctions the vehicle is stopped and if the brakes mal-
functions the vehicle is stopped by the throttle.

• Ok. All system works.
• RadarDown. The radar is down but the speedometer works.
• SpeedDown. The speedometer is down but the radar works.
• RadarSpeedDown. The radar and speedometer are down.
• FailSafe. Such a serious error has occurred that the vehicle has been

completely stopped.

3 Conclusions

In the model of this paper, almost all of the AADL features has been applied.
The data features is used to define the data that is sent over the buses.
The model is constituted by the two systems Console and Controller. Each
system consists of several devices and processor with a memory and a process
divided into several threads. However, thread groups and subprograms are
not represented in this model.

The support for both software and hardware components entails that
AADL is a powerful language suitable for modeling and reason about large
systems. Moreover, the behavioral annex adds logical power while the error
annex adds dependability to the system model.

A Source Code

package AccTypes
public

data I n t eg e r
properties

Source Data S ize => 32 b i t s ;
end I n t eg e r ;

subprogram Se t In t eg e r
features

Input : in parameter I n t e g e r ;
end Se t In t eg e r ;

subprogram GetInteger
features

Output : out parameter I n t eg e r ;
end GetInteger ;
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Listing 7 An Error Model of the Controller System.

annex e r r o r s p e c i f i c a t i o n
{∗∗

error model Cont ro l l e rEr ro r
features

Ok: i n i t i a l error state ;
RadarDown , SpeedDown , RadarSpeedDown , Fa i l S a f e : error state ;
RadarFailure , RadarWorks , SpeedometerFai lure ,
BreaksFai lure , Thro t t l eFa i l u r e : error event ;

end Cont ro l l e rEr ro r ;

error model implementation Cont ro l l e rEr ro r . impl
transitions

Ok−[ Obstac leDetected ? and RadarFai lure]−>Fa i l Sa f e {FullBrake !}
Ok−[not Obstac leDetected ? and RadarFai lure]−>NoRadarDrive{Whistle !}
NoSpeedDrive−[ Obstac leDetected ? and RadarFai lure]−>
Fa i l Sa f e {FullBrake !}
NoSpeedDrive−[not Obstac leDetected ? and RadarFai lure]−>
NoRadarSpeedDrive {Whistle !}

Ok−[SpeedometerDown]−>NoSpeedDrive {Whistle !}
RadarDown−[SpeedometerDown]−>NoRadarSpeedDrive {Whistle !}

NoRadarDrive−[RadarWorks]−>Ok.
NoRadarSpeedDrive−[RadarWorks]−>NoSpeedDrive .

Ok−[BreaksDown]−>Fa i l Sa f e {Ful lReducedThrott le !}
Ok−[ThrottleDown]−>Fa i l Sa f e {FullBrake !}

properties
Occurance => fixed 0 .5 applies to RadarWorks ;
Occurance => fixed 0 .1 applies to RadarFai lure ;
Occurance => fixed 0 .05 applies to SpeedometerFai lure ;
Occurance => fixed 0 .01 applies to Thro t t l eFa i l u r e ;
Occurance => fixed 0 .001 applies to BreaksFa i lure ;

end Cont ro l l e rEr ro r . impl ;
∗∗} ;

data Float
properties

Source Data S ize => 64 b i t s ;
end Float ;

subprogram SetFloat
features

Input : in parameter Float ;
end SetFloat ;

subprogram GetFloat
features

Output : out parameter Float ;
end GetFloat ;

data Boolean
properties

Source Data S ize => 8 b i t s ;
end Boolean ;
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data Veh i c l e In f o
features

SetPrev iousVehic l eSpeed : subprogram Se t In t eg e r ;
GetPreviousVehic leSpeed : subprogram GetInteger ;

end Veh i c l e I n f o ;

data implementation Veh i c l e In f o . impl
subcomponents

PreviousVehic leSpeed : data I n t eg e r ;
end Veh i c l e I n f o . impl ;

data Stream
end Stream ;

data implementation Stream . impl
properties

Source Data S ize => 8 b i t s ;
end Stream . impl ;

end AccTypes ;

bus MemoryBus
end MemoryBus ;

bus DeviceBus
end DeviceBus ;

bus LanBus
end LanBus ;

memory RamMemory
features

memoryBus : requires bus access MemoryBus ;
end RamMemory ;

memory implementation RamMemory . impl
properties

Word Size => 8 b i t s ;
end RamMemory . impl ;

processor Conso leProcessor
features

memoryBus : requires bus access MemoryBus ;
deviceBus : requires bus access DeviceBus ;

end Conso leProcessor ;

processor implementation Conso leProcessor . impl
properties

Schedu l ing Protoco l => (RMS, EDF, Sporad i c se rve r , S lackServer , ARINC653 ) ;
end Conso leProcessor . impl ;

thread ComputeSpeedThread
features

inPlus : in event port ;
inMinus : in event port ;
outSpeedDisplay : out data port AccTypes : : I n t eg e r ;
outSpeedSend : out data port AccTypes : : I n t eg e r ;

end ComputeSpeedThread ;

thread implementation ComputeSpeedThread . impl
properties

Period => 100ms ;
end ComputeSpeedThread . impl ;
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thread SendSpeedThread
features

inSpeed : in data port AccTypes : : I n t eg e r ;
outSpeed : out data port AccTypes : : Stream ;

end SendSpeedThread ;

thread implementation SendSpeedThread . impl
properties

Period => 100ms ;
end SendSpeedThread . impl ;

thread DisplaySpeedThread
features

inSpeed : in data port AccTypes : : I n t eg e r ;
end DisplaySpeedThread ;

thread implementation DisplaySpeedThread . impl
properties

Period => 100ms ;
end DisplaySpeedThread . impl ;

process Conso leProcess
features

inPlus : in event port ;
inMinus : in event port ;
outSpeed : out data port AccTypes : : Stream ;

annex e r r o r s p e c i f i c a t i o n
{∗∗

error model ConsoleError
features

Ok: i n i t i a l error state ;
PanelDown , DisplayDown , PanelDisplayDown : error state ;
Pane lFai lure , D i sp l ayFa i lu r e : error event ;

end ConsoleError ;

error model implementation ConsoleError . impl
transitions

Ok−[ Pane lFa i lu re ]−>PanelDown ;
DisplayDown−[ Pane lFa i lu re ]−>PanelDisplayDown ;
Ok−[ D i sp l ayFa i lu r e ]−>DisplayDown ;
PanelDown−[ D i sp l ayFa i lu r e ]−>PanelDisplayDown ;

properties
Occurance => fixed 0 .01 applies to Pane lFa i lu re ;
Occurance => fixed 0 .1 applies to Disp layFa i lu r e ;

end ConsoleError . impl ;
∗∗} ;

end Conso leProcess ;

process implementation Conso leProcess . impl
subcomponents

computeSpeedThread : thread ComputeSpeedThread . impl ;
sendSpeedThread : thread SendSpeedThread . impl ;
displaySpeedThread : thread DisplaySpeedThread . impl ;

connections
event port inPlus −> computeSpeedThread . inPlus ;
event port inMinus −> computeSpeedThread . inMinus ;
data port computeSpeedThread . outSpeedDisplay −> displaySpeedThread . inSpeed ;
data port computeSpeedThread . outSpeedSend −> sendSpeedThread . inSpeed ;
data port sendSpeedThread . outSpeed −> outSpeed ;

end Conso leProcess . impl ;
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device PanelDevice
features

outPlus : out event port ;
outMinus : out event port ;
outToggle : out event port ;

end PanelDevice ;

system ConsoleSystem
features

outToggle : out event port ;
outData : out data port AccTypes : : Stream ;
memoryBus : requires bus access MemoryBus ;
deviceBus : requires bus access DeviceBus ;
lanBus : provides bus access LanBus ;

end ConsoleSystem ;

system implementation ConsoleSystem . impl
subcomponents

con so l eProce s s : process Conso leProcess . impl ;
c on so l eProc e s s o r : processor Conso leProcessor . impl ;
ramMemory : memory RamMemory ;
panelDevice : device PanelDevice ;

connections
event port panelDevice . outToggle −> outToggle ;
data port conso l eProce s s . outSpeed −> outData ;
event port panelDevice . outPlus −> conso l eProce s s . inPlus ;
event port panelDevice . outMinus −> conso l eProce s s . inMinus ;

properties
Actua l Proce s so r B ind ing => reference con so l eProc e s s o r

applies to conso l eProce s s ;
Actual Memory Binding => reference ramMemory

applies to conso l eProce s s ;
end ConsoleSystem . impl ;

device SpeedometerDevice
features

outData : out data port AccTypes : : Stream ;
deviceBus : requires bus access DeviceBus ;

end SpeedometerDevice ;

device Steer ingWheelDevice
features

outData : out data port AccTypes : : Stream ;
deviceBus : requires bus access DeviceBus ;

end Steer ingWheelDevice ;

property set RadarPropert ies i s
RangeType : type aadlinteger units (m) ;
RadarRange : RadarPropert ies : : RangeType applies to (device RadarDevice ) ;

end RadarPropert ies ;

device RadarDevice
features

outData : out data port AccTypes : : Stream ; −− Detected , Distance
inData : in data port AccTypes : : Stream ; −− Radar Angle
outError : out event port ;
deviceBus : requires bus access DeviceBus ;

end RadarDevice ;

device implementation RadarDevice . impl
properties

RadarPropert ies : : RadarRange => 200m;
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end RadarDevice . impl ;

device BrakeDevice
features

inBrake : in event port ;
deviceBus : requires bus access DeviceBus ;

end BrakeDevice ;

device Thrott l eDev ice
features

i nThro t t l e : in event port ;
deviceBus : requires bus access DeviceBus ;

end Thrott l eDev ice ;

thread RadarSampleThread
features

inData : in data port AccTypes : : Stream ;
outObstac leDetected : out data port AccTypes : : Boolean ;
outObstac leDistance : out data port AccTypes : : I n t e g e r ;

end RadarSampleThread ;

thread implementation RadarSampleThread . impl
properties

Period => 100ms ;
end RadarSampleThread . impl ;

thread SpeedometerSampleThread
features

inData : in data port AccTypes : : Stream ;
outActualSpeed : out data port AccTypes : : I n t eg e r ;

end SpeedometerSampleThread ;

thread implementation SpeedometerSampleThread . impl
properties

Period => 200ms ;
end SpeedometerSampleThread . impl ;

thread ConsoleSampleThread
features

inData : in data port AccTypes : : Stream ;
outPre fer redSpeed : out data port AccTypes : : I n t e g e r ;

end ConsoleSampleThread ;

thread implementation ConsoleSampleThread . impl
properties

Period => 200ms ;
end ConsoleSampleThread . impl ;

thread ComputeActionThread
features

inObstac leDetected : in data port AccTypes : : Boolean ;
inObstac l eDi s tance : in data port AccTypes : : I n t e g e r ;
inPre f e r r edSpeed : in data port AccTypes : : I n t eg e r ;
inActualSpeed : in data port AccTypes : : I n t eg e r ;
outBrake : out event port ;
outThrot t l e : out event port ;

annex b e h a v i o r s p e c i f i c a t i o n
{∗∗

states
Normal : i n i t i a l state ;
Detected , TooSlow , TooFast , Emergency : state ;
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transitions
Normal −[on ( Obstac leDetected ?) and

( Obstac leDis tance ? < UNSAFE RANGE)]−> Emergency {}
TooFast −[on ( Obstac leDetected ?) and

( Obstac leDis tance ? < UNSAFE RANGE)]−> Emergency {}
TooSlow −[on ( Obstac leDetected ?) and

( Obstac leDis tance ? < UNSAFE RANGE)]−> Emergency {}
Emergency −[on ( Obstac leDetected ?) and ( Obstac leDis tance ? <

UNSAFE RANGE)]−> Emergency {FullBreak !}
Emergency −[on ( ActualSpeed = 0)]−> Normal {}
Normal −[on ( Obstac leDetected ?) and

( ActualSpeed ? > ObstacleSpeed?)]−> Detected {}
TooFast −[on ( Obstac leDetected ?) and

( ActualSpeed > ObstacleSpeed?)]−> Detected {}
TooSlow −[on ( Obstac leDetected ?) and

( ActualSpeed > ObstacleSpeed?)]−> Detected {}
Detected −[on ( Obstac leDetected ?) and

( ActualSpeed ? > ObstacleSpeed?)]−>Detected {SpeedDown !}
Detected −[on (not Obstac leDetected ?) and ( ConsoleOn ?) and

( Pre fer redSpeed ? > ActualSpeed?)]−> TooFast {}
Detected −[on (not Obstac leDetected ?) and ( ConsoleOn ?) and

( Pre fer redSpeed ? < ActualSpeed?)]−> TooSlow {}
Detected −[on ! ( Obstac leDetected ?) and ( (not ConsoleOn ?) or

( Pre fer redSpeed ? = ActualSpeed ?))]−> Normal {}
Normal −[on ( ConsoleOn ?) and

( ActualSpeed ? < Pre fer redSpeed ?)]−> TooSlow {}
TooSlow −[on ( ConsoleOn ?) and

( ActualSpeed ? > Pre fer redSpeed ?)]−> TooFast {}
TooSlow −[on (not ConsoleOn ?) or

( ActualSpeed ? = Pre fer redSpeed ?)]−> Normal {}
TooSlow −[on ( ConsoleOn ?) and

( ActualSpeed ? < Pre fer redSpeed ?)]−> TooSlow{SpeedUp !}
Normal −[on ( ConsoleOn ?) and

( ActualSpeed ? > Pre fer redSpeed ?)]−> TooFast {}
TooFast −[on ( ConsoleOn ?) and

( ActualSpeed ? < Pre fer redSpeed ?)]−> TooSlow {}
TooFast −[on (not ConsoleOn ?) or

( ActualSpeed ? = Pre fer redSpeed ?)]−> Normal {}
TooFast −[on ( ConsoleOn ?) and

( ActualSpeed ? > Pre fer redSpeed ?)]−> TooFast{SpeedDown !}
Normal −>[on ! ( Obstac leDetected ?) and ( (not ConsoleOn ?) or

( Pre feredSpeed ? = ActualSpeed ? ) ) ] −> Normal {}
∗∗} ;

end ComputeActionThread ;

thread implementation ComputeActionThread . impl
subcomponents

PreviousVehic leSpeed : data AccTypes : : I n t eg e r ;
Prev iousDis tance : data AccTypes : : I n t eg e r ;

properties
Period => 50ms ;

end ComputeActionThread . impl ;

process Cont ro l l e rP ro c e s s
features

inRadarError : in event port ;
inRadarData : in data port AccTypes : : Stream ;
inConsoleToggle : in event port ;
inConsoleData : in data port AccTypes : : Stream ;
inSpeedometerData : in data port AccTypes : : Stream ;
outBrake : out event port ;
outThrot t l e : out event port ;

Modeling an Adaptive Cruise Controller in the AADL: A Case Study
Page 22
Prepared by: Stefan Björnander, Lars Grunske
30th November 2008



annex e r r o r s p e c i f i c a t i o n
{∗∗

error model Cont ro l l e rEr ro r
features

Ok: i n i t i a l error state ;
RadarDown , SpeedDown , RadarSpeedDown , Fa i l S a f e : error state ;
RadarFailure , RadarWorks , SpeedometerFai lure ,
BreaksFai lure , Thro t t l eFa i l u r e : error event ;

end Cont ro l l e rEr ro r ;

error model implementation Cont ro l l e rEr ro r . impl
transitions

Ok−[ Obstac leDetected ? and RadarFai lure]−>Fa i l Sa f e {FullBrake !}
Ok−[not Obstac leDetected ? and RadarFai lure]−>NoRadarDrive{Whistle !}
NoSpeedDrive−[ Obstac leDetected ? and RadarFai lure]−>
Fa i l Sa f e {FullBrake !}
NoSpeedDrive−[not Obstac leDetected ? and RadarFai lure]−>
NoRadarSpeedDrive {Whistle !}

Ok−[SpeedometerDown]−>NoSpeedDrive {Whistle !}
RadarDown−[SpeedometerDown]−>NoRadarSpeedDrive {Whistle !}

NoRadarDrive−[RadarWorks]−>Ok.
NoRadarSpeedDrive−[RadarWorks]−>NoSpeedDrive .

Ok−[BreaksDown]−>Fa i l Sa f e {Ful lReducedThrott le !}
Ok−[ThrottleDown]−>Fa i l Sa f e {FullBrake !}

properties
Occurance => fixed 0 .5 applies to RadarWorks ;
Occurance => fixed 0 .1 applies to RadarFai lure ;
Occurance => fixed 0 .05 applies to SpeedometerFai lure ;
Occurance => fixed 0 .01 applies to Thro t t l eFa i l u r e ;
Occurance => fixed 0 .001 applies to BreaksFa i lure ;

end Cont ro l l e rEr ro r . impl ;
∗∗} ;

end Cont ro l l e rP ro c e s s ;

process implementation Cont ro l l e rP ro c e s s . impl
subcomponents

radarSampleThread : thread RadarSampleThread in modes
(RADAR UP CONSOLE UP, RADAR UP CONSOLE DOWN) ;

consoleSampleThread : thread ConsoleSampleThread in modes
(RADAR UP CONSOLE UP, RADAR DOWN CONSOLE UP) ;

speedometerSampleThread : thread SpeedometerSampleThread in modes (RADAR UP CONSOLE UP,
RADAR UP CONSOLE DOWN, RADAR DOWN CONSOLE UP) ;

computeActionThread : thread ComputeActionThread in modes (RADAR UP CONSOLE UP,
RADAR UP CONSOLE DOWN, RADAR DOWN CONSOLE UP) ;

connections
data port inRadarData −> radarSampleThread . inData in modes

(RADAR UP CONSOLE UP, RADAR UP CONSOLE DOWN) ;
data port radarSampleThread . outObstac leDetected −>

computeActionThread . inObstac leDetected in modes
(RADAR UP CONSOLE UP, RADAR UP CONSOLE DOWN) ;

data port radarSampleThread . outObstac leDistance −>
computeActionThread . inObstac l eDi s tance in modes
(RADAR UP CONSOLE UP, RADAR UP CONSOLE DOWN) ;

data port inConsoleData −> consoleSampleThread . inData in modes
(RADAR UP CONSOLE UP, RADAR DOWN CONSOLE UP) ;

data port consoleSampleThread . outPre fer redSpeed −>
computeActionThread . inPre f e r r edSpeed in modes
(RADAR UP CONSOLE UP, RADAR DOWN CONSOLE UP) ;
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event port computeActionThread . outBrake −> outBrake in modes
(RADAR UP CONSOLE DOWN, RADAR UP CONSOLE UP) ;

event port computeActionThread . outThrott l e −> outThrott l e in modes
(RADAR UP CONSOLE UP, RADAR DOWN CONSOLE UP) ;

data port inSpeedometerData −> speedometerSampleThread . inData in modes
(RADAR UP CONSOLE UP, RADAR UP CONSOLE DOWN, RADAR DOWN CONSOLE UP) ;

data port speedometerSampleThread . outActualSpeed −>
computeActionThread . inActualSpeed in modes
(RADAR UP CONSOLE UP, RADAR UP CONSOLE DOWN, RADAR DOWN CONSOLE UP) ;

modes
RADAR UP CONSOLE UP: i n i t i a l mode ;
RADAR UP CONSOLE DOWN : mode ;
RADAR DOWN CONSOLE UP: mode ;
RADARDOWNCONSOLEDOWN: mode ;
RADAR UP CONSOLE UP −[ inRadarError]−> RADAR DOWN CONSOLE UP;
RADAR UP CONSOLE DOWN −[ inRadarError]−> RADARDOWNCONSOLEDOWN;
RADAR UP CONSOLE DOWN −[ inConso leToggle ]−> RADAR DOWN CONSOLE UP;
RADAR UP CONSOLE UP −[ inConso leToggle ]−> RADARDOWNCONSOLEDOWN;

properties
Required Connect ion => fa l se applies to inRadarError in modes

(RADAR DOWN CONSOLE UP, RADARDOWNCONSOLEDOWN) ;
Required Connect ion => fa l se applies to inRadarData in modes

(RADAR DOWN CONSOLE UP, RADARDOWNCONSOLEDOWN) ;
Required Connect ion => fa l se applies to outBrake in modes

(RADAR DOWN CONSOLE UP, RADARDOWNCONSOLEDOWN) ;
Required Connect ion => fa l se applies to inConso leToggle in modes

(RADAR UP CONSOLE DOWN, RADARDOWNCONSOLEDOWN) ;
Required Connect ion => fa l se applies to inConsoleData in modes

(RADAR UP CONSOLE DOWN, RADARDOWNCONSOLEDOWN) ;
Required Connect ion => fa l se applies to outThrott l e in modes

(RADAR UP CONSOLE DOWN, RADARDOWNCONSOLEDOWN) ;
Required Connect ion => fa l se applies to inSpeedometerData in modes

(RADARDOWNCONSOLEDOWN) ;
end Cont ro l l e rP ro c e s s . impl ;

processor Cont ro l l e rP ro c e s s o r
features

memoryBus : requires bus access MemoryBus ;
deviceBus : requires bus access DeviceBus ;

end Cont ro l l e rP ro c e s s o r ;

processor implementation Cont r o l l e rP ro c e s s o r . impl
properties

Schedu l ing Protoco l => (RMS, EDF, Sporad i c se rve r , S lackServer , ARINC653 ) ;
end Cont ro l l e rP ro c e s s o r . impl ;

system Contro l l e rSystem
features

inConsoleToggle : in event port ;
inConsoleData : in data port AccTypes : : Stream ;
LanBus : requires bus access LanBus ;

end Contro l l e rSystem ;

system implementation Contro l l e rSystem . impl
subcomponents

computeProcess : process Cont ro l l e rP roc e s s . impl ;
computeProcessor : processor Cont ro l l e rP ro c e s s o r . impl ;
ramMemory : memory RamMemory ;
deviceBus : bus DeviceBus ;
memoryBus : bus memoryBus ;
radarDevice : device RadarDevice ;
speedomoterDevice : device SpeedometerDevice ;
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wheelDevice : device Steer ingWheelDevice ;
brakeDevice : device BrakeDevice ;
t h r o t t l eDev i c e : device Thrott l eDev ice ;

connections
bus access memoryBus −> computeProcessor . memoryBus ;
bus access memoryBus −> ramMemory . memoryBus ;
bus access deviceBus −> computeProcessor . deviceBus ;
bus access deviceBus −> radarDevice . deviceBus ;
bus access deviceBus −> speedomoterDevice . deviceBus ;
bus access deviceBus −> wheelDevice . deviceBus ;
bus access deviceBus −> brakeDevice . deviceBus ;
bus access deviceBus −> t h r o t t l eDev i c e . deviceBus ;
event port inConso leToggle −> computeProcess . inConsoleToggle ;
data port inConsoleData −> computeProcess . inConsoleData ;
event port radarDevice . outError −> computeProcess . inRadarError

{Actual Connect ion Binding => reference deviceBus ; } ;
data port radarDevice . outData −> computeProcess . inRadarData

{Actual Connect ion Binding => reference deviceBus ; } ;
data port speedomoterDevice . outData −>

computeProcess . inSpeedometerData
{Actual Connect ion Binding => reference deviceBus ; } ;

data port wheelDevice . outData −> radarDevice . inData
{Actual Connect ion Binding => reference deviceBus ; } ;

event port computeProcess . outBrake −> brakeDevice . inBrake ;
event port computeProcess . outThrot t l e −> t h r o t t l eDev i c e . i nThro t t l e ;

end Contro l l e rSystem . impl ;

system AccSystem
end AccSystem ;

system implementation AccSystem . impl
subcomponents

consoleSystem : system ConsoleSystem ;
computeSystem : system Contro l l e rSystem ;
lanBus : bus LanBus ;

connections
bus access consoleSystem . lanBus −> computeSystem . lanBus ;
event port consoleSystem . outToggle −> computeSystem . inConsoleToggle

{Actual Connect ion Binding => reference lanBus ; } ;
data port consoleSystem . outData −> computeSystem . inConsoleData

{Actual Connect ion Binding => reference lanBus ; } ;
end AccSystem . impl ;
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