
Mälardalen University Licentiate Thesis
No.119

Partitioned Scheduling of
Real-Time Tasks on Multi-core

Platforms

Farhang Nemati

May 2010

Department of Computer Science and Engineering
Mälardalen University

Västerås, Sweden

Copyright c© Farhang Nemati, 2010
ISSN 1651-9256
ISBN 978-91-86135-74-4
Printed by Arkitektkopia, Västerås, Sweden
Distribution: Mälardalen University Press

Populärvetenskaplig
sammanfattning

Klassiska programvarusystem som exempelvis ordbehandlare, bildbehandlare
och webbläsare har typiskt en förväntad funktion att uppfylla, till exempel,
en användare ska kunna producera typsatt skrift under relativt smärtfria for-
mer. Man kan generalisera och säga att korrekt funktion är av yttersta vikt
för hur populär och användbar en viss programvara är medans exakt hur en
viss funktion realiseras är av underordnad betydelse. Tittar man istället på så
kallade realtidssystem så är, utöver korrekt funktionalitet hos programvaran,
också det tidsmässiga utförandet av funktionen av yttersta vikt. Med andra ord
så bör, eller måste, de funktionella resultaten produceras inom vissa specificer-
ade tidsramar. Ett exempel är en airbag som inte får utlösas för tidigt eller för
sent. Detta kan tyckas relativt okomplicerat, men tittar man närmare på hur re-
altidssystem är konstruerade så finner man att ett system vanligtvis är uppdelat
i ett antal delar som körs (exekveras) parallellt. Dessa delar kallas för tasks
och varje task är en sekvens (del) av funktionalitet, eller instruktioner, som
genomförs samtidigt med andra tasks. Dessa tasks exekverar på en processor,
själva hjärnan i en dator. Realtidsanalyser har tagits fram för att förutsäga hur
sekvenser av taskexekveringar kommer att ske givet att antal tasks och deras
karakteristik.

Utvecklingen och modernisering av processorer har tvingat fram så kallade
multicoreprocessorer - processorer med multipla hjärnor (cores). Tasks kan nu,
jämfört med hur det var förr, köras parallellt med varandra på olika cores, vilket
samtidigt förbättrar effektiviteten hos en processor med avseende på hur my-
cket som kan exekveras, men även komplicerar både analys och förutsägbarhet
med avseende på hur dessa tasks körs. Analys behövs för att kunna förutsäga
korrekt tidsmässigt beteende hos programvaran i ett realtidssystem.

i

ii

I denna licentiatavhandling har vi föreslagit en metod att fördela ett re-
altidssystems tasks på ett antal processorer givet en multicorearkitektur. Denna
metod ökar avsevärt både prestation, förutsägbarhet och resursutnyttjandet hos
multicorebaserade realtidsystemet genom att garantera tidsmässigt korrekt ex-
ekvering av programvarusystem med komplexa beroenden vilka har direkt påverkan
på hur lång tid ett task kräver för att exekvera.

Abstract

In recent years multiprocessor architectures have become mainstream, and
multi-core processors are found in products ranging from small portable cell
phones to large computer servers. In parallel, research on real-time systems
has mainly focused on traditional single-core processors. Hence, in order for
real-time systems to fully leverage on the extra capacity offered by new multi-
core processors, new design techniques, scheduling approaches, and real-time
analysis methods have to be developed.

In the multi-core and multiprocessor domain there are mainly two schedul-
ing approaches, global and partitioned scheduling. Under global scheduling
each task can execute on any processor at any time while under partitioned
scheduling tasks are statically allocated to processors and migration of tasks
among processors is not allowed. Besides simplicity and efficiency of parti-
tioned scheduling protocols, existing scheduling and synchronization methods
developed for single-core processor platforms can more easily be extended to
partitioned scheduling. This also simplifies migration of existing systems to
multi-cores. An important issue related to partitioned scheduling is distribu-
tion of tasks among processors which is a bin-packing problem.

In this thesis we propose a partitioning framework for distributing tasks
on the processors of multi-core platforms. Depending on the type of perfor-
mance we desire to achieve, the framework may distribute a task set differently,
e.g., in an application in which tasks process huge amounts of data the goal of
the framework may be to decrease cache misses. Furthermore, we propose a
blocking-aware partitioning heuristic algorithm to distribute tasks onto the pro-
cessors of a multi-core architecture. The objective of the proposed algorithm
is to decrease blocking overhead of tasks which reduces the total utilization
and has the potential to reduce the number of required processors. Finally,
we have implemented a tool to facilitate evaluation and comparison of dif-
ferent multiprocessor scheduling and synchronization approaches, as well as

iii

iv

different partitioning heuristics. We have applied the tool in the evaluation of
several partitioning heuristic algorithms, and the tool is flexible to which any
new scheduling or synchronization protocol as well as any new partitioning
heuristic can easily be added.

Acknowledgments

First, I want to thank my supervisors, Thomas Nolte, Christer Norström, An-
ders Wall for guiding and helping me during my studies. I specially thank
Nolte for all his support and encouragement.

I would like to give many thanks to the people who, with their support, have
made PROGRESS to progress; Hans Hansson, Ivica Crnkovic, Paul Petters-
son, Sasikumar Punnekkat, Björn Lisper, Mikael Sjödin, Kristina Lundkvist,
Jan Gustafsson, Cristina Seceleanu, Frank Lüders, Jan Carlson, Dag Nyström,
Andreas Ermedahl, Radu Dobrin, Daniel Sundmark, Rikard Land and Jukka
Mäki-Turja.

I also thank people at IDT; Gunnar, Malin, Åsa, Harriet, Monica, Jenny,
Monika, Else-Maj, Susanne, Maria and Carola for making many things easier.

During my studies, trips, coffee breaks and parties I have had a lot of fun
and I wish to give many thanks to Aida, Aneta, Séverine, Hongyu, Pasqualina,
Rafia, Kathrin, Ana, Sara, Eun-Young, Adnan, Andreas H., Moris, Hüseyin,
Marcelo, Bob (Stefan), Luis (Yue), Mikael, Jagadish, Nikola, Rui, Holger,
Federico, Saad, Mehrdad, Johan K., Johan F., Juraj, Luka, Leo, Josip, An-
tonio, Tibi, Lars, Rikard Li., Etienne, Thomas Le., Amine, Adam, Andreas G.,
Batu, Fredrik, Jörgen, Giacomo, and others for all the fun and memories.

I want to give my gratitude to my parents for their support and love in my
life.

Last but not least, my special thanks goes to my wife, Samal, for all the
support, love and fun.

This work has been supported by the Swedish Foundation for Strategic
Research (SSF), via the research programme PROGRESS.

Farhang Nemati
Västerås, May, 2010

v

List of Publications

Papers Included in the Licentiate Thesis1

Paper A Efficiently Migrating Real-Time Systems to Multi-Cores. Farhang
Nemati, Moris Behnam, Thomas Nolte. In 14th IEEE International Con-
ference on Emerging Techonologies and Factory (ETFA’09), pages 1205-
1212, September, 2009.

Paper B Blocking-Aware Partitioning for Multiprocessors. Farhang Nemati,
Thomas Nolte, Moris Behnam. Technical Report, MRTC (Mälardalen
Real-Time Research Centre), Mälardalen University, March, 2010.

Paper C Partitioning Real-Time Systems on Multiprocessors with Shared Re-
sources. Farhang Nemati, Thomas Nolte, Moris Behnam. In submission.

Paper D A Flexible Tool for Evaluating Scheduling, Synchronization and Par-
titioning Algorithms on Multiprocessors. Farhang Nemati, Thomas Nolte.
In submission.

1The included articles have been reformatted to comply with the licentiate layout

vii

viii

Additional Papers, not Included in the Licentiate
Thesis

Conferences and Workshops

• Multiprocessor Synchronization and Hierarchical Scheduling. Farhang
Nemati, Moris Behnam, Thomas Nolte. In 38th International Confer-
ence on Parallel Processing (ICPP’09) Workshops, pages 58-64, Septem-
ber, 2009.

• Investigation of Implementing a Synchronization Protocol under Multi-
processors Hierarchical Scheduling. Farhang Nemati, Moris Behnam,
Thomas Nolte, Reinder J. Bril (Eindhoven University of Technology,
The Netherlands). In 14th IEEE International Conference on Emerg-
ing Technologies and Factory (ETFA’09), pages 1670-1673, September,
2009.

• Towards Hierarchical Scheduling in AUTOSAR. Mikael Åsberg, Moris
Behnam, Farhang Nemati, Thomas Nolte. In 14th IEEE International
Conference on Emerging Techonologies and Factory (ETFA’09), pages
1181-1188, September, 2009.

• An Investigation of Synchronization under Multiprocessors Hierarchical
Scheduling. Farhang Nemati, Moris Behnam, Thomas Nolte. In Work-
In-Progress (WIP) Proceedings of the 21st Euromicro Conference on
Real-Time Systems (ECRTS’09), pages 49-52, July, 2009.

• Towards Migrating Legacy Real-Time Systems to Multi-Core Platforms.
Farhang Nemati, Johan Kraft, Thomas Nolte. In Work-In-Progress (WIP)
track of the 13th IEEE International Conference on Emerging Technolo-
gies and Factory Automation (ETFA’08), pages 717-720, September,
2008.

• Validation of Temporal Simulation Models of Complex Real-Time Sys-
tems. Farhang Nemati, Johan Kraft, Christer Norström. In 32nd IEEE
International Computer Software and Application Conference (COMP-
SAC’08), pages 1335-1340, July, 2008.

ix

MRTC reports
• A Framework for Real-Time Systems Migration to Multi-Cores. Farhang

Nemati, Johan Kraft, Thomas Nolte. MRTC report ISSN 1404-3041
ISRN MDH-MRTC-235/2009-1-SE, Mälardalen Real-Time Research Cen-
tre, Mälardalen University, 2009.

Contents

I Thesis 1

1 Introduction 3
1.1 Contributions . 5
1.2 Thesis Outline . 6

2 Background 7
2.1 Real-Time Systems . 7
2.2 Multi-core Platforms . 8
2.3 Real-Time Scheduling on Multiprocessors 9

2.3.1 Partitioned Scheduling 9
2.3.2 Global Scheduling 10
2.3.3 Hybrid Scheduling 10

2.4 Resource Sharing on Multiprocessors 11
2.4.1 The Multiprocessor Priority Ceiling Protocol (MPCP) 12
2.4.2 The Multiprocessor Stack Resource Policy (MSRP) . . 14
2.4.3 The Flexible Multiprocessor Locking Protocol (FMLP) 16

2.5 Assumptions of the Thesis 17

3 Heuristic Methods for Partitioning Task Sets on Multiprocessors 19
3.1 Task and Platform Model . 21
3.2 Partitioning Framework for Multi-cores 21
3.3 Heuristic Partitioning Algorithms with Resource Sharing 23

3.3.1 Blocking-Aware Algorithm (BPA) 24
3.3.2 Synchronization-Aware Algorithm (SPA) 28
3.3.3 Implementation . 29

3.4 Summary . 30

xi

xii Contents

4 Conclusions 31
4.1 Summary . 31
4.2 Future Work . 32

5 Overview of Papers 33
5.1 Paper A . 33
5.2 Paper B . 34
5.3 Paper C . 34
5.4 Paper D . 35
Bibliography . 37

II Included Papers 41

6 Paper A:
Efficiently Migrating Real-Time Systems to Multi-Cores 43
6.1 Introduction . 45

6.1.1 Related Work . 46
6.1.2 Multi-Core Platforms 48

6.2 Task and Platform Model . 49
6.3 The Multiprocessor Priority Ceiling Protocol (MPCP) 50

6.3.1 Definition . 50
6.3.2 Blocking Times of Tasks 51

6.4 Migration Framework . 52
6.4.1 Constraints and Preferences 53
6.4.2 Partitioning Strategies 55
6.4.3 Cost Function . 55

6.5 Partitioning Algorithm . 56
6.6 Reduce Blocking Times under MPCP 57

6.6.1 Partitioning Strategy 57
6.6.2 Example . 58

6.7 Summary and Future Work 60
Bibliography . 63

7 Paper B:
Blocking-Aware Partitioning for Multiprocessors 65
7.1 Introduction . 67

7.1.1 Contributions . 68
7.1.2 Related Work . 68

Contents xiii

7.2 Task And Platform Model . 71
7.3 The Multiprocessor Priority Ceiling Protocol (MPCP) 72

7.3.1 Definition . 72
7.3.2 Blocking Times under MPCP 73

7.4 Partitioning Algorithm . 74
7.4.1 The Algorithm . 76

7.5 Experimental Evaluation . 80
7.5.1 Task Set Generation 80
7.5.2 Results . 81
7.5.3 Combination of Algorithms 84

7.6 Summary and Future Work 85
Bibliography . 87

8 Paper C:
Partitioning Real-Time Systems on Multiprocessors with Shared
Resources 91
8.1 Introduction . 93

8.1.1 Contributions . 94
8.1.2 Related Work . 95

8.2 Task and Platform Model . 98
8.3 The Blocking Aware Partitioning Algorithms 98

8.3.1 Blocking-Aware Partitioning Algorithm (BPA) 98
8.3.2 Synchronization-Aware Partitioning Algorithm (SPA) . 103

8.4 Experimental Evaluation and Comparison of Algorithms . . . 104
8.4.1 Experiment Setup . 107
8.4.2 Results . 108

8.5 Conclusion . 112
Bibliography . 115

9 Paper D:
A Flexible Tool for Evaluating Scheduling, Synchronization and
Partitioning Algorithms on Multiprocessors 119
9.1 Introduction . 121

9.1.1 Related Work . 123
9.2 Task and Platform Model . 125
9.3 Included Partitioning Algorithms 125
9.4 The Tool . 127

9.4.1 The Structure . 127

xiv Contents

9.5 Example: An Evaluation and Comparison of Partitioning Al-
gorithms . 132
9.5.1 Task Set Generation 134

9.6 Conclusion . 136
Bibliography . 137

I

Thesis

1

Chapter 1

Introduction

Inherent in problems with power consumption and related thermal problems,
multi-core platforms seem to be the way towards increasing performance of
processors, and single-chip multiprocessors (multi-cores) are today the domi-
nating technology for desktop computing. The performance achieved by multi-
core architectures was previously only provided by High Performance Com-
puting (HPC) systems. The HPC programmers are required to have a deep
understanding of the respective hardware architecture in order to adjust the
program explicitly for that hardware. This is not a suitable approach in em-
bedded systems development, due to requirements on productivity, portability,
maintainability, and short time to market.

The performance improvements of using multi-core processors depend on
the nature of the applications as well as the implementation of the software.
To take advantage of the concurrency offered by a multi-core architecture, ap-
propriate algorithms have to be used to divide the software into tasks (threads)
and distribute tasks fairly on processors to increase the overall performance.
Real-time systems are typically multi threaded, hence they are easier to adapt
to multi-core platforms than single-threaded, sequential programs. If the tasks
are independent of eachother, they can run concurrently to improve perfor-
mance. Looking at real-time systems, from a practical point of view, a static
and manual assignment of processors is often preferred for predictability rea-
sons. Real-time systems can highly benefit from multi-core architectures, as
critical functionality can have dedicated cores and independent tasks can run
concurrently. Moreover, since the processors are located on the same chip and
typically have shared memory, communication between them is very fast.

3

4 Chapter 1. Introduction

Many of todays existing legacy real-time systems are very large and com-
plex, typically consisting of millions of lines of code which have been devel-
oped and maintained for many years. Due to the huge development investments
made in these legacy systems, it is normally not an option to throw them away
and to develop a new system from scratch. A significant challenge when mi-
grating legacy real-time systems to multi-core platforms is that they have been
developed for uniprocessor (single-core) platforms where the execution model
is actually sequential. Thus the software may need adjustments where assump-
tions of uniprocessor have impact.

Mainly, two approaches for scheduling real-time systems on multiproces-
sors exist [1, 2, 3, 4]; global and partitioned scheduling. Under global schedul-
ing protocols, e.g., Global Earliest Deadline First (G-EDF), tasks are scheduled
by a single scheduler and each task can be executed on any processor. A single
global queue is used for storing tasks. A task can be preempted on a processor
and resumed on another processor, i.e., migration of tasks among cores is per-
mitted. Under a partitioned scheduling protocol, tasks are statically assigned to
processors and the tasks within each processor are scheduled by a uniprocessor
scheduling protocol, e.g., Rate Monotonic (RM) and EDF. Each processor is
associated with a separate ready queue for scheduling task jobs. There are sys-
tems in which some tasks cannot migrate among cores while other tasks can
migrate. For such systems neither global or partitioned scheduling methods
can be used. A two-level hybrid scheduling approach [4], which is a mix of
global and partitioned scheduling methods, is used for those systems.

In the multiprocessor research community, considerable work has been
done on scheduling algorithms where it is assumed that tasks are independent.
However in practice a typical real-time system includes tasks that share re-
sources. On the other hand, synchronization in the multiprocessor context has
not received enough attention. Under partitioned scheduling, if all tasks that
share the same resource can be allocated on the same processor the uniproces-
sor synchronization protocols can be used [5]. This is not always possible, and
some adjustments have to be done to the protocols to support synchronization
of tasks across processors. The uniprocessor lock-based synchronization pro-
tocols have been extended to support inter processor synchronization among
tasks [6, 7, 8]. However, under global scheduling methods, the uniprocessor
synchronization protocols [9, 1] can not be reused without modification. In-
stead, new lock-based synchronization protocols have been developed to sup-
port resource sharing under global scheduling methods [10, 11].

Partitioned scheduling protocols have been used more often and are sup-
ported by commercial real-time operating systems [12], because of their sim-

1.1 Contributions 5

plicity, efficiency and predictability. However, they suffer from the problem
of allocating tasks to processors (partitioning), which is a bin-packing prob-
lem [13] and is known to be a NP-hard problem in the strong sense. Thus, to
take advantage of performance offered by multi-cores, partitioned scheduling
protocols should be coordinated with appropriate partitioning (allocating tasks
on processors) algorithms. Heuristic approaches and sufficient feasibility tests
for bin-packing algorithms have been studied to find a near-optimal partition-
ing [2, 3]. However, the existing partitioning algorithms for multiprocessors
(multi-cores) mostly assume independent tasks while in real applications, tasks
often share resources.

1.1 Contributions
The main contributions of this thesis are as follows.

1. Partitioning Framework
We have proposed a framework that coordinates partitioned scheduling
with allocation of tasks (partitioning) on a multi-core platform. Depend-
ing on the application the coordination may be different, e.g., in an ap-
plication in which tasks process huge amounts of data the goal of coor-
dination may be decreasing cache misses, or in an application in which
tasks heavily share resources, the coordination will be towards decreas-
ing blocking overhead by allocating tasks sharing the same resources to
the same processor as far as possible. Paper A directs this contribution.

2. Partitioning Heuristic
We have proposed a partitioning algorithm, based on bin-packing, for
allocating tasks onto processors of a multi-core platform (Chapter 3).
Tasks can access mutually exclusive resources and the goal of the al-
gorithm is to decrease the overall blocking overhead in the system. This
may consequently increase the schedulability of a task set and reduce the
number of processors. We proposed the the partitioning algorithm in Pa-
per B. In Paper C we have further evaluated our algorithm and compared
it to a similar algorithm originally proposed in [12].

3. Implementation
We have implemented a tool to facilitate evaluation and comparison of
different multiprocessor scheduling and synchronization approaches as
well as different partitioning heuristics. We have implemented our par-
titioning algorithm together with a similar existing algorithm and added

6 Chapter 1. Introduction

them to the tool. By using the tool, we have performed experiments to
evaluate the performance of our heuristic. This tool has been made ex-
tensible to allow easy addition of future protocols and algorithms. This
contribution is directed by Paper D.

1.2 Thesis Outline
The outline of the thesis is as follows. In Chapter 2 we give a background
describing of real-time systems, scheduling, multiprocessors, multi-core archi-
tectures, the problems and the existing solutions, e.g., scheduling and synchro-
nization protocols. Chapter 3 gives an overview of our proposed partition-
ing framework, heuristic algorithm, and the evaluation tool. In Chapter 4 we
present our conclusion and future work. We present the technical overview of
the papers that are included in this thesis in Chapter 5, and we present these
papers in Chapters 6 - 9.

Chapter 2

Background

2.1 Real-Time Systems

In a real-time system, besides the functional correctness of the system, the out-
put should satisfy timing attributes as well [14], e.g., the outputs should be
within deadlines. A real-time system is typically developed following a con-
current programming approach in which a system may be divided into several
parts, called tasks, and each task, which is is a sequence of operations, executes
in parallel with other tasks. A task may issue an infinite number of instances
called jobs during run-time.

Each task has timing attributes, e.g., deadline before which the task should
finish its execution, Worst Case Execution Time (WCET) which is the maxi-
mum time that a task needs to perform and complete its execution when exe-
cuting without interference from other tasks. The execution of a task can be
periodic or aperiodic; a periodic task is triggered with a constant time, denoted
as period, in between instances, and an aperiodic task may be triggered at any
arbitrary time instant.

Real-time systems are generally categorized into two categories; hard real-
time systems and soft real-time systems. In a hard real-time system tasks are
not allowed to miss their deadlines, while in a soft real-time system some tasks
may miss their deadlines. A safety-critical system is a type of hard-real time
system in which missing deadlines of tasks may lead to catastrophic incidents,
hence in such a system missing deadlines are not tolerable.

7

8 Chapter 2. Background

2.2 Multi-core Platforms

A multi-core (single-chip multiprocessor) processor is a combination of two
or more independent processors (cores) on a single chip. The cores are con-
nected to a single shared memory via a shared bus. The cores typically have
independent L1 caches and may share an on-chip L2 cache.

Multi-core architectures are today the dominating technology for desktop
computing and are becoming the defacto processors. The performance of us-
ing multiprocessors, however, depends on the nature of the applications as well
as the implementation of the software. To take advantage of the concurrency
offered by a multi-core architecture, appropriate algorithms have to be used to
divide the software into tasks (threads) and to distribute tasks on cores to in-
crease the system performance. If an application is not (or can not) be fairly
divided into tasks, e.g., one task does all the heavy work, a multi-core will not
help improving the performance significantly. Real-time systems can highly
benefit from multi-core processors, as they are typically multi-threaded, hence
making it easier to adapt them to multi-cores than single-threaded, sequential
programs, e.g., critical functionality can have dedicated cores and independent
tasks can run concurrently to improve performance. Moreover, since the cores
are located on the same chip and typically have shared memory, communica-
tion between cores is very fast.

Multi-core platforms introduce significant challenges, and existing soft-
ware systems need adjustments to be adapted on multi-cores. Many existing
legacy real-time systems are very large and complex, typically consisting of
huge amount of code. It is normally not an option to throw them away and to
develop a new system from scratch. A significant challenge is to adapt them to
work efficiently on multi-core platforms. If the system contains independent
tasks, it is a matter of deciding on which processors each task should be ex-
ecuted. In this case scheduling protocols from single-processor platforms can
easily be reused. However, tasks are usually not independent and they may
share resources. This means that, to be able to adapt the existing systems, syn-
chronization protocols are required to be changed or new protocols have to be
developed.

For hard real-time systems, from a practical point of view, a static assign-
ment of processors, i.e., partitioned scheduling (Section 2.3.1), is often the
more common approach [2], often inherent in reasons of predictability and
simplicity. On the other hand, the well-studied and verified scheduling analy-
sis methods from the single-processor domain has the potential to be reused.
However, fairly allocating tasks onto processors (partitioning) is a challenge,

2.3 Real-Time Scheduling on Multiprocessors 9

which is a bin-packing problem.
Finally, the processors on a multi-core can be identical, which means that

all processors have the same performance, this type of multi-core architec-
tures are called homogenous. However, the architecture may suffer from heat
and power consumption problems. Thus, processor architects have developed
multi-core architectures consisting of processors with different performance in
which tasks can run on appropriate processors, i.e., the tasks that do not need
higher performance can run on processors with lower performance, decreasing
energy consumption.

2.3 Real-Time Scheduling on Multiprocessors

The major approaches for scheduling real-time systems on multiprocessors are
partitioned scheduling, global scheduling, and the combination of these two
called hybrid scheduling [1, 2, 3, 4].

2.3.1 Partitioned Scheduling

Under partitioned scheduling tasks are statically assigned to processors, and
the tasks within each processor are scheduled by a single-processor scheduling
protocol, e.g., RM and EDF [15]. Each task is allocated to a processor on which
its jobs will run. Each processor is associated with a separate ready queue for
scheduling its tasks’ jobs.

A significant advantage of partitioned scheduling is that well-understood
and verified scheduling analysis from the uniprocessor domain can be reused.
Another advantage is the run-time efficiency of these protocols as the tasks
and jobs do not suffer from migration overhead. A disadvantage of partitioned
scheduling is that it is a bin-packing problem which is known to be NP-hard in
the strong sense, and finding an optimal distribution of tasks among processors
(cores) in polynomial time is not generally realistic. Another disadvantage of
partitioned scheduling algorithms is that prohibiting migration of tasks among
processors decreases the utilization bound, i.e., it has been shown [3] that task
sets exist that are only schedulable if migration among processors is allowed.
Non-optimal heuristic algorithms have been used for partitioning a task set on
a multiprocessor platform. An example of a partitioned scheduling algorithm
is Partitioned EDF (P-EDF) [2].

10 Chapter 2. Background

2.3.2 Global Scheduling

Under global scheduling algorithms tasks are scheduled by a single system-
level scheduler, and each task or job can be executed on any processor. A
single global queue is used for storing ready jobs. At any time instant, at most
m ready jobs with highest priority among all ready jobs are chosen to run on a
multiprocessor consisting of m processors. A task or its jobs can be preempted
on one processor and resumed on another processor, i.e., migration of tasks
(or its corresponding jobs) among cores is permitted. An example of a global
scheduling algorithm is Global EDF (G-EDF) [2]. The global scheduling algo-
rithms are not necessarily optimal either, although in the research community
new multiprocessor scheduling algorithms have been developed that are op-
timal. Proportionate fair (Pfair) scheduling approaches are examples of such
algorithms [16, 17]. However, this particular class of scheduling algorithms
suffer from high run-time overhead as they may have to increase the number
of preemptions and migrations significantly.

2.3.3 Hybrid Scheduling

There are systems that cannot be scheduled by either pure partitioned or pure
global scheduling; for example some tasks cannot migrate among cores while
other tasks are allowed to migrate. An example approach for those systems is
the two-level hybrid scheduling approach [4], which is based on a mix of global
and partitioned scheduling methods. In such protocols, at the first level a global
scheduler assigns jobs to processors and at the second level each processor
schedules the assigned jobs by a local scheduler.

Recently more general approaches, such as cluster based scheduling [18,
19], have been proposed which can be categorized as a generalization of par-
titioned and global scheduling protocols. Using such an approach, tasks are
statically assigned to clusters and tasks within each cluster are globally sched-
uled. In turn, clusters are transformed into tasks and are globally scheduled
on a multiprocessor. Cluster-based scheduling can be physical or virtual. In
physical cluster-based scheduling the processors of each cluster are statically
mapped to a subset of processors of the multiprocessor [18]. In virtual cluster-
based scheduling the processors of each cluster are dynamically mapped (one-
to-many) onto processors of the multiprocessor. Virtual clustering is more gen-
eral and less sensitive to task-cluster mapping compared to physical clustering.

2.4 Resource Sharing on Multiprocessors 11

2.4 Resource Sharing on Multiprocessors

In the multiprocessor domain, considerable work has been done on schedul-
ing protocols, but usually under the assumption that tasks are independent.
However in practice a typical real-time system must allow for resource sharing
among tasks. Generally there are two classes of resource sharing, i.e., lock-
based and lock-free synchronization protocols. In the lock-free approach [20],
operations on simple software objects, e.g., stacks, linked lists, are performed
by retry loops, i.e., operations are retried until the object is accessed success-
fully. The advantages of lock-free algorithms is that they do not require kernel
support and as there is no need to lock, priority inversion does not occur. The
disadvantage of these approaches is that it is not easy to apply them to hard
real-time systems as the worst case number of retries is not easily predictable.
In this thesis we have focused on a lock-based approach, thus in this section
we present an overview of the existing lock-based synchronization methods.

On a multiprocessor platform a job, besides lower priority jobs, can be
blocked by higher priority jobs (those that are assigned to different processors)
as well. This does not rise any problem on uniprocessor platforms. Another
issue, which is not the case in uniprocessor synchronization, is that on a unipro-
cessor, a job Ji can not be blocked by a lower priority job Jj arriving after Ji.
However, on a multiprocessor, assuming jobs Ji and Jj are assigned on differ-
ent processors, the lower priority job Ji can arrive later than the higher priority
job Ji and block Ji. Those cases introduce more complexity and pessimism
into schedulability analysis.

For multiprocessor systems, Rajkumar present MPCP (Multiprocessor Pri-
ority Ceiling Protocol) [6], which extends PCP [9] to multiprocessors allowing
for synchronization of tasks sharing mutually exclusive resources using the
partitioned Fixed Priority Scheduling (FPS) protocol.

Gai et al. [7, 8] present the MSRP (Multiprocessor Stack Resource Policy),
which extends SRP [1] to multiprocessor platforms and works under the P-EDF
scheduling protocol.

Lopez et al. [5] present an implementation of SRP under P-EDF. In this
work they propose a solution in which all tasks that directly or indirectly share
resources are allocated to the same processor and a uniprocessor synchroniza-
tion protocol, i.e., SRP, is used to manage resource sharing within each proces-
sor. However, if all tasks that directly or indirectly share resources can not be
allocated to the same processor the solution can not be used.

Block et al. [10] present FMLP (Flexible Multiprocessor Locking Proto-
col), which is the first synchronization protocol for multiprocessors that can

12 Chapter 2. Background

be applied to both partitioned and global scheduling algorithms, i.e., P-EDF
and G-EDF. An implementation of FMLP has been described in [21] and a
comparison between FMLP and MPCP has been presented in [22].

Recently, Easwaran and Andersson have proposed a synchronization pro-
tocol [11] under global fixed priority scheduling protocol. In this paper they
have derived schedulability analysis of the priority inheritance protocol under
global scheduling algorithms, for the first time.

2.4.1 The Multiprocessor Priority Ceiling Protocol (MPCP)

Definition The MPCP is used for synchronizing a set of tasks sharing lock-
based resources under a partitioned FPS protocol, i.e., RM. Under MPCP, re-
sources are divided into local and global resources. Local resources are shared
only among tasks from the same processor and global resources are shared by
tasks assigned to different processors. The local resources are protected using
a uniprocessor synchronization protocol, i.e., PCP. A task blocked on a global
resource suspends making the processor available for the local tasks. A criti-
cal section in which a task performs a request for a global resource is called a
global critical section (gcs). Similarly a critical section where a task requests
for a local resource is denoted as a local critical section (lcs).

Under MPCP, the blocking time of a task, in addition to local blocking,
has to include remote blocking terms where a task is blocked by tasks (with
any priority) executing on other processors. However, the maximum remote
blocking time of a job is bounded and is a function of the duration of critical
sections of other jobs. This is a consequence of assigning any gcs a ceiling
greater than the priority of any other task, hence a gcs can only be blocked
by another gcs and not by any non-critical section. Assume ρH is the highest
priority among all tasks. The priority of a job Ji executing within a gcs in
which it requests Rk is called remote ceiling of gcs and equals to ρH + 1 +
max{ρj |τj requests Rk and τj is not on Ji’s processor}.

Global critical sections cannot be nested in local critical sections and vice
versa. Global resources potentially lead to high blocking times, thus tasks
sharing the same resources are preferred to be assigned to the same processor
as far as possible. We have proposed an algorithm that attempts to reduce the
blocking times by assigning tasks to appropriate processors (Chapter 3).

To determine the schedulability of each processor under RM scheduling the
following test is performed:

2.4 Resource Sharing on Multiprocessors 13

∀k 1 ≤ i ≤ n,

i∑

k=1

Ck/Tk +Bi/Ti ≤ i(21/i − 1) (2.1)

where n is the number of tasks assigned to the processor, and Bi is the maxi-
mum blocking time of task τi which includes remote blocking factors as well
as local blocking time. However this condition is sufficient but not necessary.
Thus for more precise schedulability, a test of task response time [23] can be
performed.

Blocking times under MPCP Before explaining the blocking factors of the
blocking time of a job, the following terminology has to be explained:

• nG
i : The number of global critical sections of task τi.

• {J ′
i,r}: The set of jobs on processor Pr (other than Ji’s processor) with

global critical sections having priority higher than the global critical sec-
tions of jobs that can directly block Ji.

• NHi,r,k: The number of global critical sections of job Jk ∈ {J ′
i,r}

having priority higher than a global critical section on processor Pr that
can directly block Ji.

• {GRi,k}: The set of global resources that will be locked by both Ji and
Jk.

• NCi,k: The number of global critical sections of Jk in which it request
a global resource in {GRi,k}.

• βlocal
i : The longest local critical section among jobs with a priority lower

than that of job Ji executing on the same processor as Ji which can block
Ji.

• βLglobal
i : The longest global critical section of any job Jk with a priority

lower than that of job Ji executing on a different processor than Ji’s
processor in which Jk requests a resource in {GRi,k}.

• βHglobal
i,k : The longest global critical section of job Jk with a priority

higher than that of job Ji executing on a different processor than Ji’s pro-
cessor. In this global critical section, Jk requests a resource in {GRi,k}.

14 Chapter 2. Background

• β′
i,k

global: The longest global critical section of job Jk ∈ {J ′
i,r} having

priority higher than a global critical section on processor Pr that can
directly block Ji.

• βlg
i,k: The longest global critical section of a lower priority job Jk on the

Ji’s host processor.

The maximum blocking time Bi of task τi is a summation of five blocking
factors:

Bi = Bi,1 +Bi,2 +Bi,3 +Bi,4 +Bi,5

where:

1. Bi,1 = nG
i β

local
i each time job Ji is blocked on a global resource and

suspends, the local lower priority jobs may execute and lock local re-
sources and block Ji when it resumes.

2. Bi,2 = nG
i βL

global
i when a job Ji is blocked on a global resource which

is locked by a lower priority job executing on another processor.

3. Bi,3 =
∑

ρi≤ρk

Jk is not on Ji’s processor
NCi,kdTi/TkeβHglobal

i,k when higher

priority jobs on processors other than Ji’s processor block Ji.

4. Bi,4 =
∑

Jk∈{J ′
i,r}

Pr 6=Ji’s processor
NHi,r,kdTi/Tkeβ′

i,k
global when the gcs’s

of lower priority jobs on processor Pr (different from Ji’s processor) are
preempted by higher priority gcs’s of Jk ∈ {J ′

i,r}.

5. Bi,5 =
∑

ρi≤ρk

Jk is on Ji’s processor
minnG

i + 1, nG
k β

lg
i,k when Ji is blocked

on global resources and suspends a local job Jk can execute and enter
a global section which can preempt Ji when it executes in non-gcs sec-
tions.

2.4.2 The Multiprocessor Stack Resource Policy (MSRP)
Definition The MSRP is used for synchronizing a set of tasks sharing lock-
based resources under a partitioned EDF (P-EDF). The shared resources are
classified as either (i) local resources that are shared among tasks assigned to
the same processor, or (ii) global resources that are shared by tasks assigned
to different processors. Under MSRP, tasks synchronize local resources using
SRP, and access to global resources is guaranteed a bounded blocking time.

2.4 Resource Sharing on Multiprocessors 15

Further, under MSRP, when a task is blocked on a global resource it performs
busy wait (spin lock). This means that the processor is kept busy without do-
ing any work, hence the duration of spin lock should be as short as possible
which means locking a global resource should be reduced as far as possible.
To achieve this goal under MSRP, the tasks executing in global critical sections
become non-preemptive. The tasks blocked on a global resource are added to a
FCFS (First Come First Served) queue. Global critical sections are not allowed
to be nested under MSRP.

Gai et al. in [8] compare their implementation of MSRP to MPCP. They
point out that the complexity of implementation as a disadvantage of MPCP
and that wasting more local processor time (due to busy wait) as a disadvantage
of MSRP. They have performed two case studies for the comparison. The re-
sults show that MPCP works better when the duration of global critical sections
are increased while MSRP outperforms MPCP when critical sections become
shorter. Also in applications where tasks access many resources, and resources
are accessed by many tasks, which lead to more pessimism in MPCP, MSRP
has a significant advantage compared to MPCP.

Blocking times under MSRP Under MSRP, if a task’s job, Ji, attempts to
access a global resource, Rq , it becomes non-preemptive. If the resource Rq

is free it locks the resource, but if Rq is already locked by another job running
on a different processor, Ji performs busy wait. The upper bound of busy wait
time that any job executing on processor Pk can experience to access a global
resource Rq is as follows.

spin(Pk, Rq) =
∑

∀Pl 6=Pk

max
∀Jj on Pl

(|Csj,q|) (2.2)

where |Csj,q| refers to the length of any critical section Csj,q of Jj accessing
Rq.

As a job performs busy wait its global critical sections become longer and
consequently its Worst Case Execution Time (WCET) is increased. Thus, the
worst case time any job, Ji executing on processor Pk, busy waits can be added
to its WCET:

C ′
i = Ci +

∑

∀ global Rq accessed by Ji

spin(Pk, Rq) (2.3)

where C ′
i is the actual worst case execution time of Ji.

16 Chapter 2. Background

According to MSRP (similar to SRP), a job can be blocked only once, and
as it starts executing it cannot be blocked. The worst case blocking time of any
job Ji executing on processor Pk, is calculated as follows:

Bi = max(Blocal
i , Bglobal

i) (2.4)

where Blocal
i and Blocal

i are the worst case blocking overhead from local re-
sources and global resources respectively, and being defined as follows:

Blocal
i = max{|Csj,q| | (Jj is on Pk) ∧ (Rq is local) ∧ (λi > λj) ∧

(λi ≤ ceil(Rq))}
(2.5)

where λi is the static preemption level of Ji [1].

Bglobal
i = max{|Csj,q|+ spin(Pk, Rq) | Jj is not on Pk ∧

Rq is global} (2.6)

2.4.3 The Flexible Multiprocessor Locking Protocol (FMLP)
Definition In FMLP, resources are categorized into short and long resources,
and wether a resource is short or long is user specified. There is no limitation
on nesting resource accesses, except that requests for long resources cannot be
nested in requests for short resources.

Under FMLP, deadlock is prevented by grouping resources. A group in-
cludes either global or local resources, and two resources are in the same group
if a request for one is nested in a request for the other one. A group lock is as-
signed to each group and only one task from the group at any time can hold the
lock.

The jobs that are blocked on short resources perform busy-wait and are
added to a FIFO queue. Jobs that access short resources hold the group lock
and execute non-preemptively. A job accessing a long resource under G-EDF
holds the group lock and executes preemptively using priority inheritance, i.e.,
it inherits the maximum priority of any higher priority job blocked on any
resource within the same group. Tasks blocked on a long resource are added to
a FIFO queue.

Under global scheduling, FMLP actually works under a variant of G-EDF
for Suspendable and Non-preemptable jobs (GSN-EDF) [10] which guarantees
that a job Ji can only be blocked (with a constraint duration) by another non-
preemptable job when Ji is released or resumed.

2.5 Assumptions of the Thesis 17

Blocking times under FMLP In FMLP, any job Ji can face three types of
blocking overhead:

• Busy-wait blocking of job Ji, specified by BWi, is the maximum dura-
tion of time that the job can busy-wait on a short resource.

• Non-preemptive blocking occurs when a preemptable job Ji is one of the
m highest priority jobs but it is not scheduled because a lower priority
job is non-preemptively executing instead. Non-preemptive blocking of
Ji denoted by NPBi is the maximum duration of time that Ji is non-
preemptively blocked.

• Direct blocking occurs when job Ji is one of the m highest priority jobs
but it is suspended because it issues a request for an outermost long re-
source from group G but another job holds a resource from the same
group (holds the group’s lock). Direct blocking of job Ji specified by
DBi is the maximum duration of time that Ji can be direct blocked.

The worst case blocking time of any job Ji is the summation of the three
sources of blocking times:

Bi = BWi +NPBi +DBi (2.7)

The detailed calculations of the three sources of blocking times are pre-
sented in the appendix to the online version of [10]1.

2.5 Assumptions of the Thesis

With respect to the above presented background material, the work presented
in this thesis has been developed under the following limitations:

Real-Time Systems:
We assume hard real-time systems.

Multi-core Architecture:
We assume identical multi-core architectures. However, as future work
we believe that this assumption can be relaxed.

1Available at http://www.cs.unc.edu/˜anderson/papers/rtcsa07along.pdf

18 Chapter 2. Background

Scheduling Protocol:
The focus of this thesis is partitioned scheduling approaches. In the fu-
ture we will extend our research to global and hybrid scheduling proto-
cols as well.

Synchronization Protocol:
We have focused on MPCP as the synchronization protocol under which
our heuristic attempts to decrease blocking overhead, and extending the
heuristic to other protocols remains a future work.

Chapter 3

Heuristic Methods for
Partitioning Task Sets on
Multiprocessors

In this chapter we present a partitioning framework in which a task set is at-
tempted to be efficiently allocated onto a single-chip shared memory multipro-
cessor (multi-core) platform with identical processors.

A scheduling framework for multi-core processors is presented by Ra-
jagopalan et al. [24]. The framework tries to balance between the abstrac-
tion level of the system and the performance of the underlying hardware. The
framework groups dependant tasks, which, for example, share data, to improve
the performance. The paper presents Related Thread ID (RTID) as a mecha-
nism to help the programmers to identify groups of tasks.

An approach for migration to multi-core is presented by Lindhult in [25].
The author presents the parallelization of sequential programs as a way to
achieve performance on multi-core processors. The targeted language is PLEX,
Ericsson’s in-house developed event-driven real-time programming language
used for Ericsson’s telephone exchange system.

The grey-box modeling approach for designing real-time embedded sys-
tems is presented in [26]. In the grey-box task model the focus is on task-level
abstraction and it targets performance of the processors as well as timing con-
straints of the system.

Furthermore,we have proposed a heuristic blocking-aware algorithm to al-

19

20 Chapter 3. Heuristic Methods for Partitioning Task Sets on
Multiprocessors

locate a task set on a multi-core platform to reduce the blocking overhead of
tasks.

Partitioning (allocation tasks on processors) of a task set on a multiproces-
sor platform is a bin-packing problem which is known to be a NP-hard problem
in the strong sense; therefore finding an optimal solution in polynomial time is
not realistic in the general case [13]. Heuristic algorithms have been developed
to find near-optimal solutions.

A study of bin-packing algorithms for designing distributed real-time sys-
tems is presented in [27]. The presented method partitions a software into
modules to be allocated on hardware nodes. In their approach they use two
graphs; a graph which models software modules and a graph that represents
the hardware architecture. The authors extend the bin-packing algorithm with
heuristics to minimize the number of required bins (processors) and the re-
quired bandwidth for the communication between nodes.

Liu et al. [28] present a heuristic algorithm for allocating tasks in multi-
core-based massively parallel systems. Their algorithm has two rounds; in the
first round processes (groups of threads - partitions in this thesis) are assigned
to processing nodes, and the second round allocates tasks in a process to the
cores of a processor. However, the algorithm does not consider synchronization
between tasks.

Baruah and Fisher have presented a bin-packing partitioning algorithm, the
first-fit decreasing (FFD) algorithm, in [29] for a set of independent sporadic
tasks on multiprocessors. The tasks are indexed in non-decreasing order based
on their relative deadlines, and the algorithm assigns the tasks to the processors
in first-fit order. The tasks on each processor are scheduled under uniprocessor
EDF.

Lakshmanan et al. [12] investigate and analyze two alternatives of execu-
tion control policies (suspend-based and spin-based remote blocking) under
MPCP. They have developed a blocking-aware task allocation algorithm, an
extension to the best-fit decreasing (BFD) algorithm, and evaluated it under
both execution control policies. Their blocking-aware algorithm is of great rel-
evance to our proposed algorithm, hence we have presented their algorithm in
more detail in Section 3.3. Together with our algorithm we have also imple-
mented and evaluated their blocking-aware algorithm and compared the per-
formances of both algorithms.

3.1 Task and Platform Model 21

3.1 Task and Platform Model
Our target system is a task set that consists of n sporadic tasks, τi(Ti, Ci, ρi,
{ci,p,q}) where Ti is the minimum inter-arrival time between two successive
jobs of task τi with worst-case execution time Ci and ρi as its priority. The
tasks share a set of resources, R, which are protected using semaphores. The
set of critical sections, in which task τi requests resources in R, is denoted by
{ci,p,q}, where ci,p,q indicates the maximum execution time of the pth critical
section of task τi, in which the task locks resource Rq ∈ R. Critical sections
of tasks should be sequential or properly nested. The deadline of each job is
equal to Ti. A job of task τi, is specified by Ji. The utilization factor of task τi
is denoted by ui where ui = Ci/Ti.

We have also assumed that the multiprocessor (multi-core) platform is com-
posed of identical, unit-capacity processors (cores) with shared memory. The
task set is partitioned into partitions {P1, . . . , Pm}, where m represent the
number of required processors and each partition is allocated onto one pro-
cessor (core).

3.2 Partitioning Framework for Multi-cores
In this section we present our framework in which tasks are grouped into par-
titions and each partition is allocated onto one core (processor). At each step
when a task is assigned to a partition the following requirements should be
satisfied:

1. All partitions are schedulable.

2. The best partition for assigning the task is chosen in a way that the cost
is minimized.

Cost function In the framework a cost function is used to calculate the cost
of assigning a task to a partition. The cost function can be derived from con-
straints and preferences which are extracted from the system as well as those
offered by the system experts. In the proposed framework, we use a set of con-
straints and preferences to derive the cost function and to test the schedulability
of each partition (processor). The following constraints are used:

1. Timing constraints
Specify timing attributes, e.g., deadline, Worst Case Execution Time

22 Chapter 3. Heuristic Methods for Partitioning Task Sets on
Multiprocessors

(WCET). Those constraints are used for schedulability test of each par-
tition.

2. Resource sharing constraints
In a typical real-time system, as tasks share resources the corresponding
constraints should be considered for schedulability analysis. These con-
straints together with the timing constraints may be used for deriving the
cost function as well.

3. Task preferences
This may include more than one category of preferences. Each category
consists (as a matrix) of cost values for each pair of tasks, when they are
co-allocated on the same partition. These preferences facilitate alloca-
tion of tasks on the processors (partitions) by attracting dependent tasks
on the same processor and forcing independent tasks to be allocated on
different processors as far as possible. Each category (matrix) of cost
values represents an aspect of system performance, e.g., an aspect can
be increasing cash hits, or reducing blocking times (Section 3.3). The
importance of each category is indicated by a coefficient. The number
of categories as well as the value of their coefficient (their importance)
depend on the partitioning strategy.

Partitioning strategy A partitioning strategy indicates the importance of the
type of system performance (e.g., increasing cache hits, decreasing blocking
overhead, etc.) we wish to achieve and gives a coefficient parameter to each
matrix. The value of each coefficient depends on the importance of the perfor-
mance that the matrix represents. For example in a system that processes large
amounts of data the partitioning strategy can be that the tasks which share data
heavily are assigned to the same partition to increase cache hits. Similarly in
a system in which tasks share mutually exclusive resources, the target parti-
tioning strategy can be assigning tasks sharing the same resources to the same
processor as far as possible. This is the concrete partitioning strategy of our
blocking-aware algorithm presented in Section 3.3.

Task weight Generally looking at bin-packing algorithms, e.g., the best-fit
decreasing (BFD), objects are allocated into bins in the order of their size, e.g.,
the heavier objects are packed first. In the context of allocation of tasks onto
processors, with independent tasks the utilization of the tasks are considered as
their size. However, with dependent tasks other parameters (depending on the

3.3 Heuristic Partitioning Algorithms with Resource Sharing
23

partitioning strategy) should be considered in their size (weight). The weight of
a task indicates the importance of the task according to the partitioning strategy.
For example in a partitioning strategy for reducing inter-core communication,
the weight of a task may include the total number of messages it sends or
receives during its execution time, or in a partitioning strategy for reducing
blocking times of tasks their weight (size) should include blocking parameters.

3.3 Heuristic Partitioning Algorithms with
Resource Sharing

In this section we present our proposed blocking-aware heuristic algorithm to
allocate tasks onto the processors of a single chip multiprocessor (multi-core)
platform. The algorithm extends a bin-packing algorithm with synchronization
parameters. The results of our experimental evaluation [30] shows significant
performance increment compared to the existing similar algorithm [12] and a
reference blocking-agnostic bin-packing algorithm. The blocking-agnostic al-
gorithm, in the context of this thesis, refers to a bin-packing algorithm that does
not consider blocking parameters to increase the performance of partitioning,
although blocking times are included in the schedulability test.

In our algorithm task constraints are identified, e.g., dependencies between
tasks, timing attributes, and resource sharing preferences, and we extend the
best-fit decreasing (BFD) bin-packing algorithm with blocking time parame-
ters. The objective of the heuristic is (based on the constraints and preferences)
to decrease blocking overheads by assigning tasks to appropriate processors
(partitions).

In a blocking-agnostic BFD algorithm, bins (processors) are ordered in
non-increasing order of their utilization and tasks are ordered in non-increasing
order of their size (utilization). The algorithm attempts to allocate the task from
the top of the ordered task set onto the first processor that fits it (i.e., the first
processor on which the task can be allocated while all processors are schedu-
lable), beginning from the top of the ordered processor list. If none of the pro-
cessors can fit the task, a new processor is added to the processor list. At each
step the schedulability of all processors should be tested, because allocating a
task to a processor can increase the remote blocking time of tasks previously
allocated to other processors and may make the other processors unschedula-
ble. This means, it is possible that some of the previous processors become
unschedulable even if a task is allocated to a new processor, which makes the
algorithm fail.

24 Chapter 3. Heuristic Methods for Partitioning Task Sets on
Multiprocessors

The algorithm proposed in [12] was called Synchronization-Aware Parti-
tioning Algorithm, and we call our algorithm Blocking-Aware Partitioning Al-
gorithm. However, to ease refereing them, from now on we refer them as SPA
and BPA respectively. In practice, industrial systems mostly use Fixed Prior-
ity Scheduling (FPS) protocols. To our knowledge the only synchronization
protocol under fixed priority partitioned scheduling, for multiprocessor plat-
forms, is MPCP. Both our algorithm (BPA) and the existing one (SPA) assume
that MPCP is used for lock-based synchronization. Thus, we derive heuristics
based on the blocking parameters in MPCP. However, our algorithm can be
easily extended to other synchronization protocols, e.g., MSRP.

3.3.1 Blocking-Aware Algorithm (BPA)

The algorithm attempts to allocate a task set onto processors in two rounds.
The output of the round with better partitioning results will be chosen as the
output of the algorithm. In each round the tasks are allocated to the proces-
sors (partitions) in a different way. When a bin-packing algorithm allocates an
object (task) to a bin (processor), it usually attempts to put the object in a bin
that fits it better, and it does not consider the unallocated objects. The rationale
behind the two rounds is that the heuristic tries to consider both past and future
by looking at tasks allocated in the past and those that are not allocated yet. In
the first round the algorithm considers the tasks that are not allocated to any
processor yet; and attempts to take as many as possible of the best related tasks
(based on remote blocking parameters) with the current task. In the second
round it considers the already allocated tasks and tries to allocate the current
task onto the processor that contains best related tasks to the current task. In
the second round, the algorithm performs more like the usual bin packing al-
gorithms (i.e., attempts to find the best bin for the current object). Briefly,
the algorithm in the first round looks at the future and in the second round it
considers the past.

Before starting the two rounds the algorithm performs some basic steps:

• A heuristic weight is assigned to each task which is a function of task’s
utilization as well as the blocking parameters that lead to potential re-

3.3 Heuristic Partitioning Algorithms with Resource Sharing
25

mote blocking time interfered by other tasks:

wi = ui+⌈(∑
ρi<ρk

NCi,kβi,k

⌈
Ti

Tk

⌉
+NCi max

ρi≥ρk

βi,k

)
/Ti

⌉
(3.1)

where, NCi,k is the number of critical sections of τk in which it shares a
resource with τi and βi,k is the longest critical section among them, and
NCi is the total number of critical sections of τi.

Considering the remote blocking terms of MPCP (Section 2.4.1), the
rationale behind the definition of weight is that the tasks that can be
punished more by remote blocking become heavier. Thus, they can be
allocated earlier and attract as many as possible of the tasks with which
they share resources.

• Next, the macrotasks are generated. A macrotask includes tasks that di-
rectly or indirectly share resources, e.g., if tasks τi and τj share resource
Rp and tasks τj and τk share resource Rq , all three tasks belong to the
same macrotask. A macrotask has two alternatives; it can either be bro-
ken or unbroken. A macrotask is set as broken if it cannot fit in one
processor (i.e., it can not be scheduled by a single processor even if no
other task is allocated onto the processor), otherwise it is set as unbroken.
If a macrotask is unbroken, the partitioning algorithm always allocate all
tasks in the macrotask to the same partition (processor). Thus, all re-
sources shared by tasks within the macrotask will be local. However,
tasks within a broken macrotask have to be distributed into more than
one partition. Similar to tasks, a weight is assigned to each macrotask,
which equals to the sum of weights of its tasks.

• After generationg the macrotasks, the unbroken macrotasks along with
the tasks not belonging to any unbroken macrotasks (i.e., the tasks that
either do not share any resource or they belong to a broken macrotask)
are ordered in a single list in non-increasing order of their weights. We
denote this list the mixed list.

In the both rounds the strategy of task allocation depends on attraction be-
tween tasks. In the partitioning framework in Section 3.2 co-allocation of tasks
is based on a cost function. In our blocking-aware algorithm we denote the
function attraction function which has the same role in partitioning tasks. The

26 Chapter 3. Heuristic Methods for Partitioning Task Sets on
Multiprocessors

attraction of task τk to a task τi is defined based on the potential remote block-
ing overhead that task τk can introduce to task τi if they are allocated onto
different processors. We represent the attraction of task τk to task τi as vi,k:

vi,k =

{
NCi,kβi,k

⌈
Ti

Tk

⌉
ρi < ρk;

NCiβi,k ρi ≥ ρk
(3.2)

The rationale behind the attraction function is to allocate the tasks which
may remotely block a task, τi, to the same processor as of τi (in order of the
amount of remote blocking overhead) as far as possible.

The definition of weight (Equation 3.1) and attraction function (Equation 3.2)
are heuristics to guide the algorithm under MPCP. These function may differ
under other synchronization protocols, e.g., MSRP, which have different re-
mote blocking terms.

After the basic steps the algorithm continues with the rounds:

First Round The following steps are repeated within the first round until all
tasks are allocated to processors (partitions):

• All processors are ordered in non-increasing order of their size (utiliza-
tion).

• The object (a task or an unbroken macrotask) at the top of the mixed list
is picked to be allocated.

(i) If the object is a task and it does not belong to any broken macrotask
it will be allocated onto the first processor that fits it (all processors are
schedulable), beginning from the top of the ordered processor list. If
none of the processors can fit the task a new processor is added to the list
and the task is allocated onto it.

(ii) If the object is an unbroken macrotask, all its tasks will be allocated
onto the first processor that fits them (all processors can successfully
be scheduled). If none of the processors can fit the tasks (at least one
processor becomes unschedulable), they will be allocated onto a new
processor.

(iii) If the object is a task that belongs to a broken macrotask, the algo-
rithm orders the tasks (those that are not allocated yet) within the macro-
task in non-increasing order of attraction to the task based on Equa-
tion 3.2. We denote this list as attraction list of the task. The task itself
will be on the top of its attraction list. Although creation of a attraction

3.3 Heuristic Partitioning Algorithms with Resource Sharing
27

list begins from a task, in continuation tasks are added to the list that are
most attracted to all of the tasks in the list, i.e., the sum of its attraction
to the tasks in the list is maximized. The best processor for allocation
which is the processor that fits the most tasks from the attraction list is
selected, beginning from the top of the list. If none of the existing pro-
cessors can fit any of the tasks, a new processor is added and as many
tasks as possible from the attraction list are allocated to the processor.
However, if the new processor cannot fit any task from the attraction list,
i.e., at least one of the processors become unschedulable, the first round
fails and the algorithm moves to the second round.

Second Round The following steps are repeated until all tasks are allocated
to processors:

• The object at the top of the mixed list is picked.

(i) If the object is a task and it does not belong to any broken macrotask,
this step is performed the same way as in the first round.

(ii) If the object is an unbroken macrotask, in this step the algorithm
performs the same way as in the first round.

(iii) If the object is a task that belongs to a broken macrotask, the ordered
list of processors is a concatenation of two ordered lists of processors.
The top list contains the processors that include some tasks from the
macrotask of the picked task; this list is ordered in non-increasing order
of processors’ attraction to the task based on Equation 3.2, i.e., the pro-
cessor which has the greatest sum of attractions of its tasks to the picked
task is the most attracted processor to the task. The second list of pro-
cessors is the list of the processors that do not contain any task from the
macrotask of the picked task and are ordered in non-increasing order of
their utilization. The picked task will be allocated onto the first proces-
sor from the processor list that will fit it. The task will be allocated to a
new processor if none of the existing ones can fit it. The second round
of the algorithm fails if allocating the task to the new processor makes at
least one of the processors unschedulabe.

If both rounds fail to schedule a task set the algorithm fails. If one of the rounds
fails the result will be the output of the other round. Finally, if both rounds
succeed to schedule the task set, the one with less partitions (processors) will
be the output of the algorithm.

28 Chapter 3. Heuristic Methods for Partitioning Task Sets on
Multiprocessors

3.3.2 Synchronization-Aware Algorithm (SPA)
In this section we present the partitioning algorithm originally proposed by
Lakshmanan et al. in [12].

• Similar to BPA, the macrotasks are generated (in [12], macrotasks are
denoted as bundles). A number of processors (enough processors that fit
the total utilization of the task set, i.e., duie) are added.

• The utilization of macrotasks and tasks are considered as their size and
all the macrotasks together with all other tasks are ordered in a list in
non-increasing order of their utilization. The algorithm attempts to al-
locate each macrotask onto a processor. Without adding any new pro-
cessor, all macrotasks and tasks that fit are allocated onto the processors
and the macrotasks that cannot fit are put aside. After each allocation,
the processors are ordered in their non-increasing order of utilization.

• The remaining macrotasks are ordered in the order of the cost of breaking
them. The cost of breaking a macrotask is defined based on the estimated
cost (blocking time) introduced into the tasks by transforming a local
resource into a global resource (i.e., the tasks sharing the resource are
allocated to different processors). The estimated cost of transforming a
local resource Rq into a global resource is defined as follows.

Cost(Rq) = Global Overhead − Local Discount (3.3)

The Global Overhead is calculated as follows.

Global Overhead = max(|Csq|)/min
∀τi

{ρi} (3.4)

where max(|Csq|) is the length of longest critical section accessing Rq .

And the Local Discount is defined as follows.

Local Discount = max
∀τi accessing Rq

(max(|Csi,q|)/ρi) (3.5)

where max(|Csi,q|) is the length of longest critical section of τi access-
ing Rq .

The cost of breaking any macrotask, mTaskk, is calculated as the maxi-
mum of blocking overhead caused by transforming its accessed resources
into global resources.

3.3 Heuristic Partitioning Algorithms with Resource Sharing
29

Cost(mTaskk) =∑

∀Rq accessed by mTaskk

Cost(Rq) (3.6)

• The macrotask with minimum breaking cost is picked and is broken in
two pieces such that the size of one piece is as close as the largest utiliza-
tion available among processors. This means, tasks within the selected
macrotask are ordered in decreasing order of their size (utilization) and
the tasks from the ordered list are added to the processor with the largest
available utilization as far as possible. In this way, the macrotask has
been broken in two pieces; (1) the one including the tasks allocated to
the processor and (2) the tasks that could not fit in the processor. If the
fitting is not possible a new processor is added and the whole algorithm
is repeated again.

The SPA algorithm does not consider any blocking parameters while it al-
locates the current task to a processor, but only its utilization, i.e., the tasks are
ordered in order of their utilization only. The BPA, on the other hand, assigns
a heuristic weight (Equation 3.1) which besides the utilization includes the
blocking parameters as well. Another issue is that no relationship (e.g., based
on blocking parameters) among individual tasks within a macrotask is consid-
ered which (as in the BPA) could help to allocate tasks from a broken bun-
dle to appropriate processors to decreases the blocking times. The attraction
function (Equation 3.2) facilitates the BPA, to allocate the most attracted tasks
from the current task’s broken macrotask, on a processor. As the experimen-
tal results in [30] show, considering these issues can improve the partitioning
significantly.

3.3.3 Implementation
As the scheduling and synchronization protocols together with partitioning
heuristics are being developed in the research community, the industry needs
to evaluate the different methods to choose appropriate methods for migrating
to multi-core platforms. This arises the need for developing tools to facilitate
investigation and evaluation of different approaches and compare them to each
other according to different factors.

We have developed a tool for evaluation of different scheduling and syn-
chronization protocols as well as different partitioning algorithms. The output
of the tool includes different information and graphs to facilitate evaluation and

30 Chapter 3. Heuristic Methods for Partitioning Task Sets on
Multiprocessors

comparison of different approaches. Furthermore the tool can assist practition-
ers (given a scheduling and synchronization protocol as well as a partitioning
heuristic) to find an appropriate solution for distributing a task set onto the
processors of a multi-core platform.

We have implemented our blocking-aware partitioning algorithm together
with the algorithm proposed in [12] and added both approaches to the tool. The
tool has been developed in a modular manner to which any new scheduling
and synchronization algorithms as well as any new partitioning heuristic can
easily be added. However, the focus of the tool is partitioned scheduling and
synchronization approaches as well as partitioning heuristics while extending
the tool to global scheduling methods remains as a future work.

3.4 Summary
In this chapter we presented an overview of the contributions of the thesis,
which is the development of a partitioning framework, a partitioning heuristic,
and a tool to evaluate different scheduling, synchronization and partitioning
algorithms for multi-cores. The target multi-core architecture is identical, unit
capacity, shared memory multi-core platforms. Regarding the scheduling algo-
rithm, the focus in this thesis is partitioned scheduling, and finally concerning
the synchronization protocol, we have focused on MPCP.

In the framework, a task set is partitioned on a multi-core in a way to max-
imize the desired system performance. Tasks are grouped together based on
timing constraints, resource sharing constraints, and task preferences. In the
partitioning process, the framework uses a cost function to calculate the cost of
allocating a task to a partition.

The heuristic algorithm for partitioning specifically focuses on decreasing
the blocking overhead when allocating a task set on a multi-core platform.
We have developed and implemented the blocking-aware heuristic algorithm
together with a similar existing algorithm and a reference blocking-agnostic
algorithm.

We have implemented a tool to evaluate different techniques of partitioned
scheduling and synchronization, as well as task allocation algorithms. The tool
has been developed in a modular manner to which new protocols and algo-
rithms can easily be add in the future.

Chapter 4

Conclusions

4.1 Summary
In this thesis we have pointed out the increasing interest in multi-core archi-
tectures, and we have explained some of the challenges regarding migrating to
these platforms. We have briefly discussed the existing scheduling approaches,
e.g., partitioned and global scheduling. We have also presented an overview
of the existing synchronization protocols for lock-based resource sharing on
multiprocessor platforms, e.g., MPCP and FMLP.

We have proposed a general partitioning framework for distribution of a
task set on a multi-core platform, which includes a heuristic algorithm that
extends a bin-packing algorithm with a cost function based on task constraints
and preferences.

We have also proposed a heuristic blocking-aware partitioning algorithm
which extends a bin-packing algorithm with synchronization factors. The al-
gorithm allocates a task set onto the processors of an identical multi-core plat-
form. The objective of the algorithm is to decrease blocking times of tasks by
means of allocating the tasks that directly or indirectly share resources onto
the same processors as far as possible. This generally increases shedulability
of a task set and can lead to fewer required processors compared to a blocking-
agnostic bin-packing algorithm. Since in practice most systems use fixed pri-
ority scheduling protocols, we have developed our algorithm under MPCP, the
only existing synchronization protocol for multiprocessors (multi-cores) which
works under fixed priority scheduling [6]. However, this protocol introduces
large amounts of blocking time overheads especially when the critical sections

31

32 Chapter 4. Conclusions

(in which a task accesses to resources) are relatively long and the accessing
ratio to the resources is high.

Finally, we have implemented a tool to facilitate evaluation and comparison
of different multiprocessor scheduling and synchronization approaches as well
as different partitioning heuristics.

4.2 Future Work
In the future we plan to work further on the resource sharing issue in the multi-
core domains and we will investigate the possibility of improvement of the
existing protocols as well as development of new approaches.

One future work will be to extend our partitioning algorithm to other syn-
chronization protocols, e.g., MSRP and FMLP for partitioned scheduling. An-
other interesting future work is to apply our approach to real systems, and to
study the performance gained by the algorithm on these systems.

In the domain of multiprocessor scheduling and synchronization our future
work also includes investigating global and hierarchical scheduling protocols
and appropriate synchronization protocols.

Looking at the tool that we have developed, the focus of the tool is currently
partitioned scheduling approaches, and extending the tool to global scheduling
protocols is another interesting future work.

Chapter 5

Overview of Papers

5.1 Paper A

Farhang Nemati, Moris Behnam, Thomas Nolte. Efficiently Migrating Real-
Time Systems to Multi-Cores. In 14th IEEE International Conference on Emerg-
ing Techonologies and Factory (ETFA’09), pages 1205-1212, September, 2009.

Summary Power consumption and thermal problems limit a further increase
of speed in single-core processors. Multi-core architectures have therefore re-
ceived significant interest. However, a shift to multi-core processors is a big
challenge for developers of embedded real-time systems, especially consider-
ing existing ”legacy” systems which have been developed with uniprocessor
assumptions. These systems have been developed and maintained by many
developers over many years, and cannot easily be replaced due to the huge
development investments they represent. An important issue while migrating
to multi-cores is how to distribute tasks among cores to increase performance
offered by the multi-core platform. In this paper we propose a partitioning
algorithm to efficiently distribute legacy system tasks along with newly de-
veloped ones onto different cores. The target of the partitioning is increasing
system performance while ensuring correctness.

My contribution The basic idea of this paper was suggested by Farhang Ne-
mati. Farhang was the main driver in writing and finalization of the paper.

33

34 Chapter 5. Overview of Papers

5.2 Paper B
Farhang Nemati, Thomas Nolte and Moris Behnam. Blocking-Aware Parti-
tioning for Multiprocessors. Technical Report, MRTC (Mälardalen Real-Time
Research Centre), Mälardalen University, March, 2010.

Summary In the multi-core and multiprocessor domain there are two schedul-
ing approaches, global and partitioned scheduling. Under global scheduling
each task can execute on any processor while under partitioned scheduling
tasks are allocated to processors and migration of tasks among processors is not
allowed. Under global scheduling the higher utilization bound can be achieved,
but in practice the overheads of migrating tasks is high. On the other hand,
besides simplicity and efficiency of partitioned scheduling protocols, existing
scheduling and synchronization methods developed for uniprocessor platforms
can more easily be extended to partitioned scheduling. This also simplifies
migration of existing systems to multi-cores. An important issue related to
partitioned scheduling is how to distribute tasks among processors/cores to in-
crease performance offered by the platform. However, existing methods mostly
assume independent tasks while in practice a typical real-time system contains
tasks that share resources and they may block each other. In this paper we
propose a blocking-aware partitioning algorithm to distribute tasks onto dif-
ferent processors. The proposed algorithm allocates a task set onto processors
in a way that blocking times of tasks are decreased. This reduces the total
utilization which has the potential to decrease the total number of needed pro-
cessors/cores.

My contribution The idea of this paper was suggested by Farhang Nemati.
Farhang was the main driver in writing the paper and he was responsible for
implementation and evaluation of the algorithm proposed in the paper.

5.3 Paper C
Farhang Nemati, Thomas Nolte and Moris Behnam. Partitioning Real-Time
Systems on Multiprocessors with Shared Resources. In submission.

Summary There are two main approaches to task scheduling on
multiprocessor/multi-core platforms; 1) global scheduling, under which migra-
tion of tasks among processors is allowed, and 2) partitioned scheduling under

5.4 Paper D 35

which tasks are allocated onto processors and task migration is not allowed.
Under global scheduling a higher utilization bound can be achieved, but in
practice the overheads of migrating tasks is high. On the other hand under par-
titioned scheduling, besides simplicity and efficiency, existing scheduling and
synchronization methods developed for uniprocessor platforms can more eas-
ily be extended to partitioned scheduling. However the partitioned scheduling
protocols suffer from the problem of partitioning tasks among processors/cores
which is a bin-packing problem. Therefore, several heuristic algorithms have
been developed for partitioning a task set on multiprocessor platforms. How-
ever, these algorithms typically assume independent tasks while in practice
real-time systems often contain tasks that share resources and hence may block
each other.

In this paper we propose a blocking-aware partitioning algorithm which
allocates a task set onto processors in a way that the overall amount of block-
ing times of tasks are decreased. The algorithm reduces the total utilization
which, in turn, has the potential to decrease the total number of required pro-
cessors (cores). In this paper we evaluate our algorithm and compare it with
an existing similar algorithm. The comparison criteria includes both number
of schedulable systems as well as processor reduction performance.

My contribution Farhang Nemati was the main driver in writing the paper
and he was responsible for further evaluation of the algorithm. He was also
responsible for implementing an algorithm similar to the algorithm proposed
in Paper B, and comparing the two algorithms.

5.4 Paper D
Farhang Nemati, Thomas Nolte. A Flexible Tool for Evaluating Scheduling,
Synchronization and Partitioning Algorithms on Multiprocessors. In submis-
sion.

Summary Multi-core platforms seem to be the way towards increasing per-
formance of processors. Single-chip multiprocessors (multi-cores) are today
the dominating technology for desktop computing. As the multi-cores are
becoming the defacto processors, the need for new scheduling and resource
sharing protocols has arisen. There are two major types of scheduling under
multiprocessor/multi-core platforms. Global scheduling, under which migra-
tion of tasks among processors is allowed, and partitioned scheduling under

36 Chapter 5. Overview of Papers

which tasks are allocated onto processors and task migration is not allowed.
The partitioned scheduling protocols suffer from the problem of partitioning
tasks among processors/cores, which is a bin-packing problem. Heuristic algo-
rithms have been developed for partitioning a task set on multiprocessor plat-
forms. However, taking such technology to an industrial setting, it needs to be
evaluated such that appropriate scheduling, synchronization and partitioning
algorithms are selected.

In this paper we present our work on a tool for investigation and evalua-
tion of different approaches to scheduling, synchronization and partitioning on
multi-core platforms. Our tool allows for comparison of different approaches
with respect to a number of parameters such as number of schedulable systems
and number of processors required for scheduling. The output of the tool in-
cludes a set of information and graphs to facilitate evaluation and comparison
of different approaches.

My contribution Farhang Nemati was the main driver in writing the paper
and he was responsible for implementation of the tool.

Bibliography

[1] T. Baker. Stack-based scheduling of real-time processes. Journal of Real-
Time Systems, 3(1):67–99, 1991.

[2] T. Baker. A comparison of global and partitioned EDF schedulability test
for multiprocessors. Technical report, 2005.

[3] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor scheduling prob-
lems and algorithms. In Handbook on Scheduling Algorithms, Methods,
and Models. Chapman Hall/CRC, Boca, 2004.

[4] U. Devi. Soft real-time scheduling on multiprocessors. In PhD thesis,
available at www.cs.unc.edu/˜anderson/diss/devidiss.pdf, 2006.

[5] J. M. López, J. L. Dı́az, and D. F. Garcı́a. Utilization bounds for EDF
scheduling on real-time multiprocessor systems. Journal of Real-Time
Systems, 28(1):39–68, 2004.

[6] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheri-
tance Approach. Kluwer Academic Publishers, 1991.

[7] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory utilization
of real-time task sets in single and multi-processor systems-on-a-chip.
In proceedings of 22nd IEEE Real-Time Systems Symposium (RTSS’01),
pages 73–83, 2001.

[8] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca.
A comparison of MPCP and MSRP when sharing resources in the janus
multiple processor on a chip platform. In proceedings of 9th IEEE Real-
Time And Embedded Technology Application Symposium (RTAS’03),
pages 189–198, 2003.

37

38 Bibliography

[9] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. Journal of IEEE Transactions
on Computers, 39(9):1175–1185, 1990.

[10] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In proceedings of 13th
IEEE Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA’07), pages 47–56, 2007.

[11] A. Easwaran and B. Andersson. Resource sharing in global fixed-priority
preemptive multiprocessor scheduling. In proceedings of 30th IEEE Real-
Time Systems Symposium (RTSS’09), pages 377–386, 2009.

[12] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task schedul-
ing, allocation and synchronization on multiprocessors. In proceedings
of 30th IEEE Real-Time Systems Symposium (RTSS’09), pages 469–478,
2009.

[13] D. S. Johnson. Near-optimal bin packing algorithms. Massachusetts
Institute of Technology, 1973.

[14] J. A. Stankovic and K. Ramamritham, editors. Tutorial: hard real-time
systems. 1989.

[15] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of ACM, 20(1):46–61,
1973.

[16] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Propor-
tionate progress: A notion of fairness in resource allocation. Journal of
Algorithmica, 15(6):600–625, 1996.

[17] J. Anderson, P. Holman, and A. Srinivasan. Fair scheduling of real-time
tasks on multiprocessors. In Handbook of Scheduling, 2005.

[18] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger. A hybrid
real-time scheduling approach for large-scale multicore platforms. In
proceedings of 19th IEEE Euromicro Conference on Real-time Systems
(ECRTS’07), pages 247–258, 2007.

[19] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework
for virtual clustering of multiprocessors. In proceedings of 20th IEEE

Bibliography 39

Euromicro Conference on Real-time Systems (ECRTS’08), pages 181–
190, 2008.

[20] U. Devi, H. Leontyev, and J. Anderson. Efficient synchronization under
global EDF scheduling on multiprocessors. In proceedings of 18th IEEE
Euromicro Conference on Real-time Systems (ECRTS’06), pages 75–84,
2006.

[21] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson.
Synchronization on multiprocessors: To block or not to block, to suspend
or spin? In proceedings of 14th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS’08), pages 342–353, 2008.

[22] B. B. Brandenburg and J. H. Anderson. A comparison of the M-PCP ,
D-PCP , and FMLP on LITMUSRT. In proceedings of the 12th Inter-
national Conference on Principles of Distributed Systems (OPODIS’08),
pages 105–124, 2008.

[23] A. Burns. Preemptive priority based scheduling: An appropriate engi-
neering approach. In Principles of Real-Time Systems, pages 225–248.
Prentice Hall, 1994.

[24] M. Rajagopalan, B. T. Lewis, and T. A. Anderson. Thread scheduling for
multi-core platforms. In proceedings of the 11th Workshop on Hot Topics
in Operating Systems (HotOS’07), 2007.

[25] J. Lindhult. Operational semantics for plex a basis for safe parallelization.
In Licentiate thesis, Mälardalen University Press, 2008.

[26] A. Prayati, C. Wong, P. Marchal, F. Catthoor, H. de Man, N. Cossement,
R. Lauwereins, D. Verkest, and A. Birbas. Task concurrency management
experiment for power-efficient speed-up of embedded mpeg4 im1 player.
In proceedings of International Conference on Parallel Processing Work-
shops (ICPPW’00), pages 453–460, 2000.

[27] D. de Niz and R. Rajkumar. Partitioning bin-packing algorithms for dis-
tributed real-time systems. Journal of Embedded Systems, 2(3-4):196–
208, 2006.

[28] Y. Liu, X. Zhang, H. Li, and D. Qian. Allocating tasks in multi-core
processor based parallel systems. In proceedings of Network and Paral-
lel Computing Workshops, in conjunction with IFIP’07, pages 748–753,
2007.

[29] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of
sporadic task systems. In proceedings of 26th IEEE Real-Time Systems
Symposium (RTSS’05), pages 321–329, 2005.

[30] F. Nemati, T. Nolte, and M. Behnam. Partitioning real-time systems on
multiprocessors with shared resources. In In submition, 2010.

II

Included Papers

41

Chapter 6

Paper A:
Efficiently Migrating
Real-Time Systems to
Multi-Cores

Farhang Nemati, Moris Behnam and Thomas Nolte
In ETFA’09 Conference, pages 1205–1212, 2009

43

Abstract

Power consumption and thermal problems limit a further increase of speed
in single-core processors. Multi-core architectures have therefore received sig-
nificant interest. However, a shift to multi-core processors is a big challenge
for developers of embedded real-time systems, especially considering existing
”legacy” systems which have been developed with uniprocessor assumptions.
These systems have been developed and maintained by many developers over
many years, and cannot easily be replaced due to the huge development invest-
ments they represent. An important issue while migrating to multi-cores is how
to distribute tasks among cores to increase performance offered by the multi-
core platform. In this paper we propose a partitioning algorithm to efficiently
distribute legacy system tasks along with newly developed ones onto different
cores. The target of the partitioning is increasing system performance while
ensuring correctness.

6.1 Introduction 45

6.1 Introduction

Due to the problems with power consumption and related thermal problems,
multi-core platforms seem to be the way towards increasing performance of
processors. Multi-core is today the dominating technology for desktop com-
puting.

The performance improvements of using multi-core processors depend on
the nature of the applications as well as the implementation of the software. To
take advantage of the concurrency offered by a multi-core architecture, appro-
priate algorithms have to be used to divide the software into tasks (threads) and
distribute tasks fairly on cores to increase the performance. Real-time systems
can highly benefit from the multi-core processors, as critical functionality can
have dedicated cores and independent tasks can run concurrently to improve
performance and thereby enable new functionality. Moreover, since the cores
are located on the same chip and typically have shared memory, communica-
tion between cores is very fast. Since embedded real-time systems are typically
multi threaded, they are easier to adapt to multi-core than single-threaded, se-
quential programs, which need to be parallelized into multiple threads to bene-
fit from multi-core. If the tasks are independent, it is simply a matter of decid-
ing on which core each task should execute. For embedded real-time systems,
a static and manual assignment of cores is often preferred for predictability
reasons. However, many of today’s existing ”legacy” real-time systems are
very large and complex, typically consisting of millions of lines of code which
have been developed and maintained for many years. Due to the huge devel-
opment investments, it is normally not an option to throw them away and to
develop a new system from scratch. However introducing new functionalities
into the legacy systems may require more powerful processors, therefore, to
benefit from multi-core processors, they need to be migrated from single-core
architectures to multi-core architectures.

A significant challenge when migrating legacy real-time systems to multi-
core processors is that they have been developed for single-core processors
where the execution model is actually sequential. This assumption may intro-
duce complications in a migration to multi-core [1]. Thus the software may
need adjustments where assumptions of single-core have impact, e.g., non-
preemptive execution may not be sufficient to protect shared resources.

Migrating legacy systems to multi-core processors is discussed in [2]. Ad-
vantages and disadvantages of different target architectures of multi-core pro-
cessors are compared.

In this paper we present an algorithm for migration based on a heuristic par-

46 Paper A

titioning which allocates tasks to the cores. Tasks can be both legacy tasks ex-
tracted from the legacy system as well as newly developed ones. The algorithm
identifies task constraints, e.g., dependencies between tasks, timing attributes,
and resource sharing, which impact multi-core migration. The algorithm tries
to increase the performance by reducing the overheads (e.g., blocking times
and cache miss overheads) by assigning tasks to appropriate partitions. Parti-
tioning is a bin-packing problem which is known to be a NP-hard problem in
the strong sense; therefore finding an optimal solution in polynomial time is
not realistic in the general case. Heuristic functions have been considered to
find near-optimal solutions. In this paper we extend a bin-packing algorithm
with task constraints which considers performance as well as schedulability of
partitions assigned to the cores.

6.1.1 Related Work
An approach for migration to multi-core is presented by Lindhult in [3]. The
author presents the parallelization of sequential programs as a way to achieve
performance on multi-core processors. The targeted language is PLEX, Eric-
sson’s in-house developed event-driven real-time programming language used
for Ericsson’s telephone exchange system.

A work related to ours is presented in [4] where a scheduling framework
for multi-core processors is presented. The framework tries to balance between
the abstraction level of the system and the performance of the underlying hard-
ware. The framework groups dependant tasks, which for example share data,
to improve the performance. The paper presents Related Thread ID (RTID) as
a mechanism to help the programmers to identify groups of tasks. However the
framework targets new development systems and does not mention migration
of existing legacy systems with single-core assumptions.

Liu et al. [5] present a heuristic algorithm for allocating tasks in multi-core
based massively parallel systems. Their algorithm has two rounds; in the first
round processes (groups of threads - partitions in this paper) are assigned to
processing nodes, the second round allocates tasks in a process to the cores of
a processor.

The grey-box modeling approach for designing real-time embedded sys-
tems [6] is of relevance to our work. In the grey-box task model the focus is
on task-level abstraction and it targets performance of the processors as well
as timing constraints of the system. In this approach the design problems that
are targeted at task-level are (1) task concurrency extraction from the system
specifications, (2) automatic scheduling algorithm selection, (3) allocation and

6.1 Introduction 47

assignment of processors, and (4) resource estimators, high level timing esti-
mators and interface refinement. However, in our approach, except specifica-
tions of the new tasks, the legacy system is used as the main source of task
concurrency and resource sharing information.

A study of bin-packing algorithms for designing distributed real-time sys-
tems is presented in [7]. The method partitions software into modules to be
allocated on hardware nodes. In their approach they use two graphs; a graph
which models software modules and a graph that represents the hardware ar-
chitecture. The authors extend the bin-packing algorithm with heuristics to
minimize the number of bins (processors) needed and the bandwidth required
for the communication between nodes.

Baruah and Fisher have presented a bin-packing partitioning algorithm
(first-fit decreasing (FFD) algorithm) in [8] for a set of sporadic tasks on mul-
tiprocessors. The tasks are indexed in non-decreasing order based on their
relative deadlines and the algorithm assigns the tasks to the processors in first-
fit order. The algorithm assigns each task τi to the first processor, Pk, for
which both of following conditions, under the Earliest Deadline First (EDF)
scheduling, hold:

Di −
∑

τj∈Pk

DBF ∗(τj , Di) ≥ Ci

and

1−
∑

τj∈Pk

uj ≥ ui

where Ci and Di specify worst-case execution time (WCET) and deadline of
task τi respectively, ui = Ci

Ti
, and

DBF ∗(τi, t) =
{

0 if t < Di;
Ci + ui(t−Di) otherwise.

The algorithm, however, assumes that tasks are independent while in prac-
tice tasks share resources and therefore blocking time overheads must be con-
sidered while schedulability of tasks assigned to the a core is checked. Our
algorithm not only considers resource sharing when distributing tasks but it
tries to reduce blocking times along with other costs. On the other hand their
algorithm works under the EDF scheduling protocol while most of legacy real-
time systems use fixed priority scheduling policies. Our proposed algorithm
works under fixed priority scheduling protocols as well as other policies.

48 Paper A

6.1.2 Multi-Core Platforms

A multi-core processor is a combination of two or more independent cores on
a single chip. They are connected to a single shared memory via a shared bus.
The cores typically have independent L1 caches and share an on-chip L2 cache.
Figure 6.1 depicts an example of the architecture.

There are two approaches for scheduling sporadic and periodic task sys-
tems on multi-core systems [9, 8, 10, 11] which are inherited from multipro-
cessor systems; global and partitioned scheduling.

Under global scheduling, e.g., Global Earliest Deadline First (G-EDF),
tasks are scheduled by a single scheduler based on their priorities and each
task can be executed on any core. A single global queue is used for storing
jobs. A task as well as a job can be preempted on a core and resumed on
another core (migration of tasks among cores is permitted).

Under partitioned scheduling tasks are statically assigned to cores and tasks
within each core are scheduled by uniprocessor scheduling protocols, e.g., Rate
Monotonic (RM) and EDF. Each core is associated with a separate ready queue
for scheduling task jobs.

However there are systems in which some tasks cannot migrate among
cores while other tasks can migrate. For such systems neither of global or par-
titioned scheduling methods can be used. A two-level hybrid scheduling [11]
which is a mix of global and partitioned scheduling methods is used for those
systems.

Partitioned scheduling protocols have been used more often, as they are
more predictable. However, finding an optimal partitioning of tasks on the
cores is known to be NP-hard. Thus heuristic approaches and sufficient feasi-
bility tests for bin-packing algorithms have been studied to find a near-optimal
partitioning [9, 10].

While in practice tasks share resources, many of scheduling protocols for
multiprocessors (multi-cores) assume independent tasks. However, synchro-
nization which is not less important than scheduling has received less attention.

Most legacy systems use Fixed Priority Scheduling (FP) protocols. To
our knowledge the only synchronization protocol under fixed priority schedul-
ing, for multiprocessor platforms is Multiprocessor Priority Ceiling Protocol
(MPCP) which was proposed by Rajkumar in [12]. Thus the protocol is suit-
able for legacy systems when migrating to multi-cores. Our algorithm assumes
that MPCP is used for lock-based synchronization. Hence, we will discuss this
protocol in more details in Section 7.3.

The rest of the paper is as follows: we present the task and platform model

6.2 Task and Platform Model 49
. . . Core 1

L 2

L 1

Core N

L 1

Figure 6.1: Multi-core architecture

in Section 9.2, describe the MPCP in Section 7.3. We present the migration
framework and the partitioning algorithm in Sections 6.4 and 6.5 respectively.
In Section 9.5 we use our algorithm to reduce blocking time overheads under
MPCP.

6.2 Task and Platform Model

We will assume a task set (tasks extracted from legacy system along with new
tasks) that consists of n sporadic tasks, τi(Ti, Ci, ρi, {ci,p,q}) where Ti is the
minimum inter-arrival time between two successive jobs of task τi with worst-
case execution time Ci and ρi as its priority. The tasks share a set of resources,
R which are protected using semaphores. The set of critical sections in which
task τi requests resources in R is denoted by {ci,p,q}, where ci,p,q indicates the
maximum execution time of the pth critical section of task τi in which the task
locks resource Rq ∈ R. Critical sections of tasks can be sequential or properly
nested. The deadline of each job is equal to Ti. A job of task τi, is specified by
Ji. The utilization factor of task τi is denoted by ui where ui = Ci/Ti.

We will also assume that the multi-core platform is composed of m iden-
tical, unit-capacity processors (cores). The task set is partitioned into m parti-
tions {P1, . . . , Pm}, and each partition is allocated on one core.

50 Paper A

6.3 The Multiprocessor Priority Ceiling Protocol
(MPCP)

6.3.1 Definition
The MPCP was proposed by Rajkumar in [12] for synchronizing a set of tasks
sharing lock-based resources under partitioned FP scheduling, i.e., RM. Under
MPCP, resources are divided into local and global resources. Local resources
are shared only among tasks from the same processor and global resources
are shared by tasks assigned to different processors. The local resources are
protected using a uniprocessor synchronization protocol, i.e., priority ceiling
protocol (PCP)[13]. A task blocked on a global resource suspends and makes
the processor available for the local tasks. A critical section in which a task
performs a request for a global resource is called global critical sections (gcs).
Similarly a critical section where a task requests for local resource is local
critical sections (lcs).

The blocking time of a task in addition to local blocking, needs to include
remote blocking where a task is blocked by tasks (with any priority) executing
on other processors (cores). However, the maximum remote blocking time of
a job is bounded and is a function of the duration of critical sections of other
jobs. This is a consequence of assigning any gcs a ceiling greater than priority
of any other task, hence a gcs can only be blocked by another gcs and not
by any non-critical section. If ρH is the highest priority among all tasks, the
ceiling of any global resource Rk will be ρH + 1 + max{ρj |τj requests Rk}.
The priority of a job executing within a gcs is the ceiling of the global resource
it requests in the gcs.

Global critical sections cannot be nested in local critical sections and vice
versa. Global resources potentially lead to high blocking times, thus tasks
sharing the same resources are preferred to be assigned to the same processor
as far as possible. In Section 9.5, our proposed algorithm attempts to reduce
the blocking times by assigning tasks to appropriate processors.

To determine the schedulability of each processor under RM scheduling the
following test is performed:

∀k 1 ≤ i ≤ n,

i∑

k=1

Ck/Tk +Bi/Ti ≤ i(21/i − 1) (6.1)

where n is the number of tasks assigned to the processor, and Bi is the maxi-
mum blocking time of task τi which includes remote blocking factors as well

6.3 The Multiprocessor Priority Ceiling Protocol (MPCP) 51

as local blocking time.
However this condition is sufficient but not necessary. Thus for schedula-

bility test of tasks the response time analysis may be used to test if the condi-
tion 7.1 is not true for some tasks.

6.3.2 Blocking Times of Tasks

Before explaining the blocking factors of blocking time of a job, we have to
explain the following terminology:

• nG
i : The number of global critical sections of task τi.

• NLi,r: The number of jobs with priority lower than the priority of Ji
executing on processor Pr.

• {J ′
i,r}: The set of jobs on processor Pr (other than Ji’s processor) with

global critical sections having priority higher than the global critical sec-
tions of jobs that can directly block Ji.

• NHi,r,k: The number of global critical sections of job Jk ∈ {J ′
i,r}

having priority higher than a global critical section on processor Pr that
can directly block Ji.

• {GRi,k}: The set of global resources that will be locked by both Ji and
Jk.

• NCi,k: The number of global critical sections of Jk in which it request
a global resource in {GRi,k}.

• βlocal
i : The longest local critical section among jobs with a priority lower

than that of job Ji executing on the same processor as Ji which can block
Ji.

• βLglobal
i,k : The longest global critical section of job Jk with a priority

lower than that of job Ji executing on a different processor than Ji’s
processor in which Jk requests a resource in {GRi,k}.

• βHglobal
i,k : The longest global critical section of job Jk with a priority

higher than that of job Ji executing on a different processor than Ji’s pro-
cessor. In this global critical section, Jk requests a resource in {GRi,k}.

52 Paper A

• β′
i,k

global: The longest global critical section of job Jk ∈ {J ′
i,r} having

priority higher than a global critical section on processor Pr that can
directly block Ji.

• βlg
i,k: The longest global critical section of a lower priority job Jk on the

Ji’s host processor.

The maximum blocking time Bi of task τi is a summation of five blocking
factors:

Bi = Bi,1 +Bi,2 +Bi,3 +Bi,4 +Bi,5

where:

1. Bi,1 = nG
i β

local
i each time job Ji is blocked on a global resource and

suspends the local lower priority jobs may execute and lock local re-
sources and block Ji when it resumes.

2. Bi,2 = nG
i βL

global
i when a job Ji is blocked on a global resource which

is locked by a lower priority job executing on another processor.

3. Bi,3 =
∑

ρi≤ρk

Jk is not on Ji’s processor
NCi,kdTi/TkeβHglobal

i,k when

higher priority jobs on processors other than Ji’s processor block Ji.

4. Bi,4 =
∑

Jk∈{J ′
i,r}

Pr 6=Ji’s processor
NHi,r,kdTi/Tkeβ′

i,k
global when the gcs’s

of lower priority jobs on processor Pr (different from Ji’s processor) are
preempted by higher priority gcs’s of Jk ∈ {J ′

i,r}.

5. Bi,5 =
∑

ρi≤ρk

Jk is on Ji’s processor
minnG

i + 1, nG
k β

lg
i,k when Ji is blocked

on global resources and suspends a local job Jk can execute and enter
a global section which can preempt Ji when it executes in non-gcs sec-
tions.

6.4 Migration Framework
We propose an algorithm that groups tasks into partitions and allocates each
partition to a core. At each step when the algorithm assigns a task to a partition
the following requirements should be satisfied:

1. Schedulability of the partition is guaranteed.

6.4 Migration Framework 53

 …
 - 34 … 16 … 0

 34 - … 8 … 6

… … … … … … …

 13 32 … … 57

… … … … … … …

 0 6 … 11 … -
Figure 6.2: Task preferences constraints

2. The cost of assigning the task to the partition is minimized.

We derive a cost function that calculates the cost value based on a set of
task constraints and preferences which should be extracted from the system as
well as those offered by the system experts (Figure 6.3). Task constraints and
preferences are defined in next Section.

6.4.1 Constraints and Preferences
The partitioning algorithm uses the cost function to efficiently distribute tasks
among partitions. The cost function is based on following constraints and pref-
erences:

1. Resource sharing constraints:
These constraints indicate the critical sections of, and the resources ac-
cessed by each task.

2. Task constraints:
Specify timing attributes, e.g., deadline, worst-case execution
time (WCET). Those constraints together with resource sharing con-
straints are used to check the schedulability of each partition.

3. Task preferences:
A preference category for the task set is represented as a matrix. Fig-
ure 6.2 shows an example of such constraints. A cost given to a pair of
tasks, τi and τj is denoted by vij and indicates the cost when they are
assigned to the same partition, i.e., if two tasks are completely indepen-
dent and can execute in parallel the cost is set to a large value, and for

54 Paper A

two tasks that are highly recommended to belong to the same partition
the cost is set to a very small value. Each matrix, Mk, represents an as-
pect of preferences (e.g. communication costs) and has a coefficient Ek

which represents the importance of the preference category. Coefficient
values depend on the partitioning strategies (Section 6.4.2).

Extracting preference matrices is not easy and for complex systems it may
require a lot of engineering skills and system knowledge. Hence, the extraction
complexity may differ for different matrices. For example Suppose in a system,
tasks share large amounts of data, hence increasing cache hits is important.
The values in the related matrix could be a function of amount of shared data
between task pairs.

Partitioning
Algorithm

Task Set

Cost Function Partitioning
Strategies

Partition Set

Hardware
Specification Extract Constraints

Legacy System
New

Tasks/Functionalities

Constraints & Preferences
added by experts

Figure 6.3: A framework for partitioning

6.4 Migration Framework 55

6.4.2 Partitioning Strategies

Depending on the nature of a system the strategy of partitioning may differ
and result in different partitions. A strategy indicates how tasks are grouped
together and based on that the coefficient parameters are given to different
preference matrices. For example in a system that processes large amounts of
data it is important that the tasks that share data heavily are assigned to the
same partition to increase cache hits. On the other hand for a system in which
tasks share small amounts of data or are independent, it is important that the
tasks are assigned to different partitions to increase parallelism.

The partitioning strategy in Section 9.5 represents extracting a matrix from
resource sharing constraints which is used by partitioning algorithm. The par-
titioning strategy in Section 9.5 is to reduce blocking times under MPCP.

6.4.3 Cost Function

Considering z task preference matrices, the cost function for a partition is for-
mulated based on the task preferences. Let Ml(vij) denote the cost of task τi
and τj being assigned to the same partition in preference matrix Ml with co-
efficient value El. For any partition Pk (where 1 ≤ k ≤ m and m is the total
number of partitions/cores), cost(Pk) denotes the total cost of the partition:

cost(Pk) = uα
k

z∑

l=1

El

∑

τi∈Pk
τj∈Pk

Ml(vij)/2

 (6.2)

where, uk =
∑

τi∈Pk

ui , and α is the utilization parameter.

The utilization parameter, α, where α = 0 or α = 1, indicates the im-
portance of task utilizations in the cost function. By setting the utilization
parameter to 0 (α = 0), the cost function will only depend on the preference
matrices. On the other hand by setting α = 1 the cost function will also depend
on utilization factor of the partition which will increase evenly distribution of
tasks among partitions. The total cost of the system is the summation of costs
of all partitions.

56 Paper A

6.5 Partitioning Algorithm
Now we present an extension to the First-Fit bin-packing algorithm for parti-
tioning sporadic task systems, similar to the algorithm presented in [8]. The
major goal of bin-packing algorithms is minimizing the number of needed bins
(cores). However our aim is to increase performance while guaranteeing cor-
rectness. Thus, we extend the bin-packing algorithm with task preferences
(cost function) as well as resource sharing constraints.

The algorithm assumes that tasks are ordered non-increasingly based on
their weights. The weight of a task τi, denoted by wi indicates the importance
of the task according to the partitioning strategy. For example in the partition-
ing strategy for reducing inter-core communication, the weight of a task may
be the total number of messages it sends or receives during its execution time.
Figure 6.4 depicts the pseudo-code for the partitioning algorithm.

// The task set is to be assigned into m partitions, , which will
// be allocated on m identical cores.
1 order the task set based on their weights;
2 for each partition // m partitions
3 empty ;
4 end for
5 for i = 1 to n // n is th enumber of tasks
6 pick the task from the top of the ordered list;
7 order partitions by ascending order in cost increment assuming is assigned to them;
8 for j = 1 to m // i ranges over the ordered partitions
9 calculate blocking times of all tasks in all partitions according to MPCP;
10 if all tasks in all partitions satisfy condition (1) then
11 assign to ;
12 end if
10 end for
13 end for
14 if all tasks are assigned to partitions then
15 partitioning succeeded;
16 goto line 19
17 end if
18 partitioning failed;
19 end

Figure 6.4: Partitioning algorithm

The schedulability test 7.1 (Section 7.3) is used for schedulability analysis
of any partition, Pk. At each step that the algorithm assigns a task to a partition,
Pk, the schedulability test should be performed for all other partitions as well,
since the remote blocking term of any task in any partition may be affected.

The algorithm is not limited to FPS and MPCP, and the schedulability test
can be extended to other scheduling and resource sharing protocols, e.g., for
Partitioned Earliest Deadline First (P-EDF) using the Multiprocessor Stack-

6.6 Reduce Blocking Times under MPCP 57

based Resource sharing Protocol (MSRP)[14], the following schedulability test
from[15] may be used:

∑
Ci/Ti +max

τi
(Bi/Ti) ≤ 1 (6.3)

6.6 Reduce Blocking Times under MPCP

6.6.1 Partitioning Strategy
In this section we present a partitioning strategy that targets reducing the block-
ing times under MPCP. We will use our algorithm to assign tasks to partitions
according to the partitioning strategy.

Considering the blocking factors of tasks under MPCP, tasks with more
and longer global critical sections lead to more blocking times. This is also
shown by experiments presented in [14]. The goal is to (i) decrease the global
critical sections by assigning the tasks sharing resources to the same partition
as far as possible, (ii) decrease the ratio and time of holding global resources by
assigning the tasks that request the resources more often and hold them longer
to the same partition as long as possible.

The algorithm (Section 6.5) assumes that the tasks are ordered according
to their weights. Since the partitioning strategy is to reduce blocking times, the
tasks that may cause higher blocking times should get higher weights. Thus
the weight of task τi should be a function of the number of its critical sections
as well as the length of its largest critical sections:

wi =

|R|∑
q=1

(n∀ csp{ci,p,q} ×m∀ csp{ci,p,q})/Ti (6.4)

where n{ci,p,q} is the number of critical sections in which τi requests resource
Rq, m{ci,p,q} denotes the largest critical section of τi requesting Rq , and |R|
is the total number of resources in R.

The tasks will be ordered based on their weights and each time the algo-
rithm attempts to assign a task to a partition it will pick the first task (with the
highest weight).

Now we will derive a preference matrix which will contain the pair costs
(vij) for each task pair τi and τj (Section 6.4.3). First, for any resource Rq

we derive an individual matrix in which the cost of pair τi and τj denoted as
vij,q will be a function of the number of critical sections as well as the length
of largest critical sections of tasks τi and τj :

58 Paper A

vij,q = −n{ci,p,q} ×m{ci,p,q} × n{cj,k,q} ×m{cj,k,q}+ 1 (6.5)

As the number and the maximum length of critical sections of task pairs
increases the cost of assigning them to the same partition should decrease.
This is why that first term of the cost in 6.5 has a negative form. If two tasks
do not share resource Rq the first term of vij,q will be 0, hence vij,q = 1 which
means if they are assigned to the same partition the cost of the partition should
be increased. This is logical because regarding Rq they are independent and
are not recommended to be assigned to the same partition.

Task Period
Ci in non-critical
sections n

{c
i,
p
,1
}

m
{c

i,
p
,1
}

n
{c

i,
p
,2
}

m
{c

i,
p
,2
}

n
{c

i,
p
,3
}

m
{c

i,
p
,3
}

n
{c

i,
p
,4
}

m
{c

i,
p
,4
}

n
{c

i,
p
,5
}

m
{c

i,
p
,5
}

τ1 39 4 1 1 0 0 1 1 0 0 0 0
τ2 41 5 0 0 1 1 1 1 0 0 0 0
τ3 42 4 0 0 0 0 0 0 1 1 0 0
τ4 48 3 0 0 1 2 0 0 1 1 0 0
τ5 52 5 0 0 0 0 1 2 0 0 1 1
τ6 57 5 0 0 0 0 0 0 1 1 1 1
τ7 58 6 1 1 0 0 0 0 2 1 0 0
τ8 63 8 0 0 0 0 0 0 0 0 0 0

Table 6.1: The task set to be partitioned

The individual matrices for each resource are then used to derive the pref-
erence matrix in which vij (the cost of pair τi and τj if they are assigned to the
same partition) will be as follows:

vij =
∑

Rq∈R

vij,q (6.6)

The partitioning algorithm will use the obtained preference matrix for as-
signing the tasks to partitions.

6.6.2 Example
In this section we present an example in which our algorithm will attempt to
reduce blocking times while partitioning a task set onto different cores of a

6.6 Reduce Blocking Times under MPCP 59

multi-core processor. The partitioning is performed based on the partitioning
strategy in Section 6.6.1.

In this example we set α = 0 in the cost function so that the cost only
depends on blocking time costs. We attempt to assign a task set consisting of
eight tasks (Table 6.1) into four partitions which will be assigned onto a pro-
cessor with four cores. There are five resources, {R1, R2, R3, R4, R5} which
are shared among tasks and are protected by semaphores. The tasks in Ta-
ble 6.1 are indexed based on their periods (priority). For each task τi, the table
contains the period, WCET of non-critical sections, the number of critical sec-
tions in which the task request Rq (n{ci,p,q}) and WCET of the largest critical
section for resource Rq (m{ci,p,q}).

Task Period
τ4 0.063
τ5 0.058
τ1 0.053
τ7 0.052
τ2 0.049
τ6 0.035
τ3 0.024
τ8 0

Table 6.2: The task weights

First, the weights of tasks are calculated based on formula 6.4. Table 6.2
shows the ordered list of tasks based on the calculated weights. For each re-
source a matrix was created which contains the costs for each task pairs calcu-
lated by formula 6.5 and the final preference matrix was obtained based on the
resource matrices. Table 6.3 shows the preference matrix which includes the
costs for each pair of tasks. Since we only have one preference matrix we set
the coefficient of the matrix, E1, to 1 (E1 = 1).

While partitioning the task set using the bin-packing algorithm without
considering the blocking costs does not result in a schedulable system, our
algorithm, based on the preference matrix, successfully partitions the task set
onto four partitions. Task sets {τ4, τ2}, {τ5, τ3}, {τ1, τ8}, and {τ7, τ6} are as-
signed to partitions P1, P2, P3, and P4 respectively. Table 6.4 shows the five
blocking factors and total blocking time for each task in the obtained system.

60 Paper A

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8
τ1 - 4 5 5 3 5 4 5
τ2 4 - 5 3 3 5 5 5
τ3 5 5 - 4 5 4 3 5
τ4 5 3 4 - 5 4 3 5
τ5 3 3 5 5 - 4 5 5
τ6 5 5 4 4 4 - 3 5
τ7 4 5 3 3 5 3 - 5
τ8 5 5 5 5 5 5 5 -

Table 6.3: The preference matrix

Task Bi,1 Bi,2 Bi,3 Bi,4 Bi,5 Bi

τ1 0 4 0 0 0 4
τ2 2 2 2 0 1 7
τ3 0 1 0 4 4 9
τ4 0 1 2 4 0 7
τ5 0 2 4 1 0 7
τ6 0 0 6 10 3 19
τ7 0 0 6 6 0 12
τ8 0 0 0 0 0 0

Table 6.4: The blocking times of tasks

6.7 Summary and Future Work

In this paper we have mentioned the major challenges (targeting performance
and correctness) of migrating a legacy real-time system to multi-core archi-
tectures where it will execute along with other systems, e.g., how to take ad-
vantage of performance offered by multi-core platforms while guaranteeing
correctness. We have proposed a framework for migrating legacy real-time
systems to multi-core processors, which includes a heuristic algorithm that ex-
tends a bin-packing algorithm with a cost function based on preference matri-
ces. Each obtained partition will be mapped on one core.

Since most legacy real-time systems use fixed priority scheduling proto-
cols, we have developed our framework based on MPCP, the only existing
synchronization protocol for multiprocessors (multi-cores) which works under
fixed priority scheduling. However, this protocol introduces large amounts of

6.7 Summary and Future Work 61

blocking time overheads especially when the global resources are relatively
long and the access ratio to them is high. As an example we have presented a
partitioning strategy and we have obtained preference matrices based on critical
sections. The cost function is calculated based on the obtained preference ma-
trix and finally, the algorithm uses the cost function to reduce blocking times.

Our algorithm depends on attributes of tasks, and for legacy systems some
information about tasks should be extracted from the existing system. In the
future we will study and investigate techniques including reverse engineering
methods such as static and dynamic analysis. We will use these methods to
extract required information from the legacy system, e.g., information about
shared resources, and timing attributes.

A future work will be evaluation of our framework by means of simulation
and applying it to a real system. We also plan to study industrial legacy real-
time systems and investigate the challenges and possibility of migrating these
systems to multi-core architectures. Our future work also includes investigat-
ing global and hierarchical scheduling protocols and appropriate synchroniza-
tion protocols.

Bibliography

[1] R. Craig and P. N. Leroux. Case study - making a successful transition to
multi-core processors. In QNX Software Systems GmbH & Co. KG, 2006.

[2] P. N. Leroux and R. Craig. Migrating legacy applications to multicore
processors. In Military Embedded Systems available at http://www.mil-
embedded.com /pdfs/QNX.Sum06.pdf, 2006.

[3] J. Lindhult. Operational semantics for plex a basis for safe parallelization.
In Licentiate thesis, Mälardalen University Press, 2008.

[4] M. Rajagopalan, B. T. Lewis, and T. A. Anderson. Thread scheduling for
multi-core platforms. In proceedings of the 11th Workshop on Hot Topics
in Operating Systems (HotOS’07), 2007.

[5] Y. Liu, X. Zhang, H. Li, and D. Qian. Allocating tasks in multi-core
processor based parallel systems. In proceedings of Network and Paral-
lel Computing Workshops, in conjunction with IFIP’07, pages 748–753,
2007.

[6] A. Prayati, C. Wong, P. Marchal, F. Catthoor, H. de Man, N. Cossement,
R. Lauwereins, D. Verkest, and A. Birbas. Task concurrency management
experiment for power-efficient speed-up of embedded mpeg4 im1 player.
In proceedings of International Conference on Parallel Processing Work-
shops (ICPPW’00), pages 453–460, 2000.

[7] D. de Niz and R. Rajkumar. Partitioning bin-packing algorithms for dis-
tributed real-time systems. Journal of Embedded Systems, 2(3-4):196–
208, 2006.

63

[8] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of
sporadic task systems. In proceedings of 26th IEEE Real-Time Systems
Symposium (RTSS’05), pages 321–329, 2005.

[9] T. Baker. A comparison of global and partitioned EDF schedulability test
for multiprocessors. Technical report, 2005.

[10] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor scheduling prob-
lems and algorithms. In Handbook on Scheduling Algorithms, Methods,
and Models. Chapman Hall/CRC, Boca, 2004.

[11] U. Devi. Soft real-time scheduling on multiprocessors. In PhD thesis,
available at www.cs.unc.edu/˜anderson/diss/devidiss.pdf, 2006.

[12] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheri-
tance Approach. Kluwer Academic Publishers, 1991.

[13] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. Journal of IEEE Transactions
on Computers, 39(9):1175–1185, 1990.

[14] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca.
A comparison of MPCP and MSRP when sharing resources in the janus
multiple processor on a chip platform. In proceedings of 9th IEEE Real-
Time And Embedded Technology Application Symposium (RTAS’03),
pages 189–198, 2003.

[15] T. Baker. Stack-based scheduling of real-time processes. Journal of Real-
Time Systems, 3(1):67–99, 1991.

Chapter 7

Paper B:
Blocking-Aware Partitioning
for Multiprocessors

Farhang Nemati, Thomas Nolte and Moris Behnam
MRTC Technical Report, 2010

65

Abstract

In the multi-core and multiprocessor domain there are two scheduling ap-
proaches, global and partitioned scheduling. Under global scheduling each
task can execute on any processor while under partitioned scheduling tasks
are allocated to processors and migration of tasks among processors is not al-
lowed. Under global scheduling the higher utilization bound can be achieved,
but in practice the overheads of migrating tasks is high. On the other hand,
besides simplicity and efficiency of partitioned scheduling protocols, existing
scheduling and synchronization methods developed for uniprocessor platforms
can more easily be extended to partitioned scheduling. This also simplifies
migration of existing systems to multi-cores. An important issue related to
partitioned scheduling is how to distribute tasks among processors/cores to in-
crease performance offered by the platform. However, existing methods mostly
assume independent tasks while in practice a typical real-time system contains
tasks that share resources and they may block each other. In this paper we
propose a blocking-aware partitioning algorithm to distribute tasks onto dif-
ferent processors. The proposed algorithm allocates a task set onto processors
in a way that blocking times of tasks are decreased. This reduces the total
utilization which has the potential to decrease the total number of needed pro-
cessors/cores.

7.1 Introduction 67

7.1 Introduction

Multi-core (single chip multiprocessor) is today the dominating technology for
desktop computing and the performance of using multiprocessors depend on
the nature of the applications as well as the implementation of the software.
To take advantage of the concurrency offered by a multi-core architecture, ap-
propriate algorithms have to be used to divide the software into tasks (threads)
and distribute tasks on cores to increase the performance. Real-time systems
can highly benefit from multi-core processors, as critical functionality can have
dedicated cores and independent tasks can run concurrently to improve perfor-
mance and thereby enable new functionality. Moreover, since the cores are lo-
cated on the same chip and typically have shared memory, communication be-
tween cores is very fast. Since embedded real-time systems are typically multi
threaded, they are easier to adapt to multi-core than single-threaded, sequen-
tial programs. If the tasks are independent, it is a matter of deciding on which
core each task should execute. For embedded real-time systems, practically, a
static and manual assignment of processors is often preferred for predictability
reasons.

There are two approaches for scheduling task systems on multiprocessors
systems [1, 2, 3, 4]; global and partitioned scheduling. Under global schedul-
ing, e.g., Global Earliest Deadline First (G-EDF), tasks are scheduled by a
single scheduler based on their priorities and each task can be executed on any
core. A single global queue is used for storing jobs. A task as well as a job
can be preempted on a core and resumed on another core (migration of tasks
among cores is permitted).

Under partitioned scheduling tasks are statically assigned to processors and
tasks within each processor are scheduled by uniprocessor scheduling proto-
cols, e.g., Rate Monotonic (RM) and EDF. Each processor is associated with a
separate ready queue for scheduling task jobs.

However there are systems in which some tasks cannot migrate among
cores while other tasks can migrate. For such systems neither of global or par-
titioned scheduling methods can be used. A two-level hybrid scheduling [4]
which is a mix of global and partitioned scheduling methods is used for those
systems.

Partitioned scheduling protocols have been used more often and are sup-
ported (with fixed priority scheduling) widely by commercial real-time operat-
ing systems[5], because of their simplicity, efficiency and predictability. How-
ever, partitioning, which allocates tasks to processors, is a bin-packing problem
which is known to be a NP-hard problem in the strong sense; therefore finding

68 Paper B

an optimal solution in polynomial time is not realistic in the general case. Thus
heuristic approaches and sufficient feasibility tests for bin-packing algorithms
have been studied to find a near-optimal partitioning [1, 3].

While in real applications tasks often share resources, many of the schedul-
ing protocols and existing partitioning algorithms for multiprocessors (multi-
cores) assume independent tasks.

7.1.1 Contributions
The first contribution of this paper is to propose a blocking-aware heuristic
algorithm to allocate tasks onto the processors of a single chip multiproces-
sor (multi-core) platform. The algorithm extends a bin-packing algorithm with
synchronization parameters. The second contribution is to implement and eval-
uate the algorithm and compare it to the blocking-agnostic bin-packing parti-
tioning algorithm. Blocking-agnostic algorithm, in the context of this paper
refers to a bin packing algorithm that does not consider blocking parameters to
increase the performance of partitioning, although blocking times are included
in the schedulability test. The new algorithm identifies task constraints, e.g.,
dependencies between tasks, timing attributes, and resource sharing, and ex-
tends the best-fit decreasing (BFD) bin-packing algorithm with blocking time
parameters. The objective of the algorithm is to decrease blocking overheads
by assigning tasks to appropriate processors (partitions).

In practice, industrial systems mostly use Fixed Priority Scheduling (FPS)
protocols. To our knowledge the only synchronization protocol under fixed
priority partitioned scheduling, for multiprocessor platforms is Multiprocessor
Priority Ceiling Protocol (MPCP) which was proposed by Rajkumar in [6].
Our algorithm assumes that MPCP is used for lock-based synchronization.
Hence, we will discuss this protocol in more details in Section 7.3.

The rest of the paper is as follows: we present the task and platform model
in Section 9.2, describe the MPCP in Section 7.3. We present the partition-
ing algorithm in Section 6.5. In Section 8.4 the experimental results of our
algorithm are presented and the results are compared to the blocking-agnostic
BFD.

7.1.2 Related Work
A study of bin-packing algorithms for designing distributed real-time systems
is presented in [7]. The method partitions software into modules to be allocated
on hardware nodes. In their approach they use two graphs; a graph which

7.1 Introduction 69

models software modules and a graph that represents the hardware architec-
ture. The authors extend the bin-packing algorithm with heuristics to minimize
the number of bins (processors) needed and the bandwidth required for the
communication between nodes. However, their partitioning method assumes
independent tasks.

Liu et al. [8] present a heuristic algorithm for allocating tasks in multi-
core-based massively parallel systems. Their algorithm has two rounds; in the
first round processes (groups of threads - partitions in this paper) are assigned
to processing nodes, and the second round allocates tasks in a process to the
cores of a processor. However, the algorithm does not consider synchronization
between tasks.

Baruah and Fisher have presented a bin-packing partitioning algorithm
(first-fit decreasing (FFD) algorithm) in [9] for a set of sporadic tasks on mul-
tiprocessors. The tasks are indexed in non-decreasing order based on their
relative deadlines and the algorithm assigns the tasks to the processors in first-
fit order. The algorithm assigns each task τi to the first processor, Pk, for
which both of following conditions, under the Earliest Deadline First (EDF)
scheduling, hold:

Di −
∑

τj∈Pk

DBF ∗(τj , Di) ≥ Ci

and

1−
∑

τj∈Pk

uj ≥ ui

where Ci and Di specify Worst Case Execution Time (WCET) and deadline of
task τi respectively, ui = Ci

Ti
, and

DBF ∗(τi, t) =
{

0 if t < Di;
Ci + ui(t−Di) otherwise.

The algorithm, however, assumes independent tasks while in practice tasks
often share resources and therefore blocking time overheads must be consid-
ered while schedulability of tasks assigned to a processor is checked. Our
algorithm not only considers resource sharing when distributing tasks but it
tries to reduce blocking times as well. On the other hand their algorithm works
under the EDF scheduling protocol while most existing real-time systems use
fixed priority scheduling policies. Our proposed algorithm works under fixed

70 Paper B

priority scheduling protocols, although it can easily be extended to other poli-
cies.

Of great relevance to our work presented in this paper is the work presented
by Lakshmanan et al. in [5]. In the paper they investigate and analyze two al-
ternatives of execution control policies (suspend-based and spin-based remote
blocking) under MPCP. They have developed a blocking-aware task allocation
algorithm (an extension to BFD) and evaluated it under both execution control
policies.

In their partitioning algorithm, the tasks that directly or indirectly share
resources are put into what they call bundles (we call them macrotasks) and
each bundle is tried to be allocated onto a processor. The bundles that can not
fit into any existing processors are ordered by their cost, which is the blocking
overhead that they introduce into the system. Then the bundle with minimum
cost is broken and the algorithm is run from the beginning. However, their
algorithm does not consider blocking parameters when it allocates the current
task to a processor, but only its size (utilization). Furthermore, no relationship
(e.g., as a cost based on blocking parameters) among individual tasks within a
bundle is considered which could help to allocate tasks from a broken bundle
to appropriate processors to decreases the blocking times.

However, their experimental results show that a blocking-aware bin-packing
algorithm for suspend-based execution control policy does not have significant
benefits compared to a blocking-agnostic bin-packing algorithm. Firstly, for
the comparison, they have only focused on the processor reduction issue; they
suppose that the algorithm is better if it reduces the number of processors. In
this perspective they claim that in the worst case the number of needed pro-
cessors would be equal to the number of tasks, while the worst case could be
the case that an algorithm fails to schedule a task set. In our experimental
evaluation, besides processor reduction, we have considered this issue as well.
If an algorithm can schedule some task sets while others fail, we consider it
as a benefit. Secondly, in their experiments they have not investigated the ef-
fect of some parameters such as the different number of resources, variation in
the number and length of critical sections of tasks. By considering these pa-
rameters, our experimental results show that in most cases our blocking-aware
algorithm has significantly better results than blocking-agnostic algorithms.

In the context of multiprocessor synchronization, the first protocol was
MPCP presented by Rajkumar in [6], which extends PCP to multiprocessors
hence allowing for synchronization of tasks sharing mutually exclusive re-
sources using partitioned FPS. Our partitioning algorithm attempts to decrease
blocking times under MPCP and consequently decrease worst case response

7.2 Task And Platform Model 71

times which in turn may reduce the number of needed processors. Gai et
al. [10, 11] present MSRP (Multiprocessor SRP), which is a P-EDF (Parti-
tioned EDF) based synchronization protocol for multiprocessors. The shared
resources are classified as either (i) local resources that are shared among tasks
assigned to the same processor, or (ii) global resources that are shared by tasks
assigned to different processors. In MSRP, tasks synchronize local resources
using SRP [2], and access to global resources is guaranteed a bounded blocking
time. Lopez et al. [12] present an implementation of SRP under P-EDF. Devi
et al. [13] present a synchronization technique under G-EDF. The work is re-
stricted to synchronization of non-nested accesses to short and simple objects,
e.g., stacks, linked lists, and queues. In addition, the main focus of the method
is on soft real-time systems.

Block et al. [14] present FMLP (Flexible Multiprocessor Locking Proto-
col), which is the first synchronization protocol for multiprocessors that can be
applied to both partitioned and global scheduling algorithms, i.e., P-EDF and
G-EDF. An implementation of FMLP has been described in [15]. However,
although in a longer version of [14]1, the blocking times have been calculated,
but to our knowledge there is no schedulability test for FMLP.

Recently, a synchronization protocol under fixed priority scheduling, has
been proposed by Easwaran and Andersson in [16], however, they focus on a
global scheduling approach.

7.2 Task And Platform Model
In this paper we assume a task set that consists of n sporadic tasks, τi(Ti, Ci, ρi,
{ci,p,q}) where Ti denotes the minimum inter-arrival time between two succes-
sive jobs of task τi with worst-case execution time Ci and ρi as its priority. The
tasks share a set of resources, R, which are protected using semaphores. The
set of critical sections, in which task τi requests resources in R is denoted by
{ci,p,q}, where ci,p,q indicates the maximum execution time of the pth critical
section of task τi in which the task locks resource Rq ∈ R. Critical sections
of tasks should be sequential or properly nested. The deadline of each job is
equal to Ti. A job of task τi, is specified by Ji. The utilization factor of task τi
is denoted by ui where ui = Ci/Ti.

We also assume that the multiprocessor (multi-core) platform is composed
of identical, unit-capacity processors (cores) with shared memory. The task
set is partitioned into partitions {P1, . . . , Pm}, and each partition is allocated

1Available at http://www.cs.unc.edu/˜anderson/papers/rtcsa07along.pdf

72 Paper B

onto one processor (core), thus m represent the minimum number of processors
needed.

7.3 The Multiprocessor Priority Ceiling Protocol
(MPCP)

7.3.1 Definition

The MPCP was proposed by Rajkumar in [6] for synchronizing a set of tasks
sharing lock-based resources under partitioned FP scheduling, i.e., RM. Under
MPCP, resources are divided into local and global resources. Local resources
are shared only among tasks from the same processor and global resources
are shared by tasks assigned to different processors. The local resources are
protected using a uniprocessor synchronization protocol, i.e., Priority Ceiling
Protocol (PCP)[17]. A task blocked on a global resource suspends and makes
the processor available for the local tasks. A critical section in which a task
performs a request for a global resource is called global critical sections (gcs).
Similarly a critical section where a task requests for local resource is local
critical sections (lcs).

The blocking time of a task in addition to local blocking, needs to include
remote blocking where a task is blocked by tasks (with any priority) executing
on other processors (cores). However, the maximum remote blocking time of
a job is bounded and is a function of the duration of critical sections of other
jobs. This is a consequence of assigning any gcs a ceiling greater than priority
of any other task, hence a gcs can only be blocked by another gcs and not
by any non-critical section. If ρH is the highest priority among all tasks, the
ceiling of any global resource Rk will be ρH + 1 + max{ρj |τj requests Rk}.
The priority of a job executing within a gcs is the ceiling of the global resource
it requests in the gcs.

Global critical sections cannot be nested in local critical sections and vice
versa. Global resources potentially lead to high blocking times, thus tasks
sharing the same resources are preferred to be assigned to the same processor
as far as possible. In Section 9.5, our proposed algorithm attempts to reduce
the blocking times by assigning tasks to appropriate processors.

To determine the schedulability of each processor under RM scheduling the
following test is performed:

7.3 The Multiprocessor Priority Ceiling Protocol (MPCP) 73

∀k 1 ≤ i ≤ n,

i∑

k=1

Ck/Tk +Bi/Ti ≤ i(21/i − 1) (7.1)

where n is the number of tasks assigned to the processor, and Bi is the maxi-
mum blocking time of task τi which includes remote blocking factors as well
as local blocking time. However this condition is sufficient but not necessary.
Thus for more precise schedulability test of tasks our algorithm performs re-
sponse time analysis [18].

7.3.2 Blocking Times under MPCP
Before explaining the blocking factors of the blocking time of a job, the fol-
lowing terminology has to be explained:

• nG
i : The number of global critical sections of task τi.

• {J ′
i,r}: The set of jobs on processor Pr (other than Ji’s processor) with

global critical sections having priority higher than the global critical sec-
tions of jobs that can directly block Ji.

• NHi,r,k: The number of global critical sections of job Jk ∈ {J ′
i,r}

having priority higher than a global critical section on processor Pr that
can directly block Ji.

• {GRi,k}: The set of global resources that will be locked by both Ji and
Jk.

• NCi,k: The number of global critical sections of Jk in which it request
a global resource in {GRi,k}.

• βlocal
i : The longest local critical section among jobs with a priority lower

than that of job Ji executing on the same processor as Ji which can block
Ji.

• βLglobal
i : The longest global critical section of any job Jk with a priority

lower than that of job Ji executing on a different processor than Ji’s
processor in which Jk requests a resource in {GRi,k}.

• βHglobal
i,k : The longest global critical section of job Jk with a priority

higher than that of job Ji executing on a different processor than Ji’s pro-
cessor. In this global critical section, Jk requests a resource in {GRi,k}.

74 Paper B

• β′
i,k

global: The longest global critical section of job Jk ∈ {J ′
i,r} having

priority higher than a global critical section on processor Pr that can
directly block Ji.

• βlg
i,k: The longest global critical section of a lower priority job Jk on the

Ji’s host processor.

The maximum blocking time Bi of task τi is a summation of five blocking
factors:

Bi = Bi,1 +Bi,2 +Bi,3 +Bi,4 +Bi,5

where:

1. Bi,1 = nG
i β

local
i each time job Ji is blocked on a global resource and

suspends the local lower priority jobs may execute and lock local re-
sources and block Ji when it resumes.

2. Bi,2 = nG
i βL

global
i when a job Ji is blocked on a global resource which

is locked by a lower priority job executing on another processor.

3. Bi,3 =
∑

ρi≤ρk

Jk is not on Ji’s processor
NCi,kdTi/TkeβHglobal

i,k when higher

priority jobs on processors other than Ji’s processor block Ji.

4. Bi,4 =
∑

Jk∈{J ′
i,r}

Pr 6=Ji’s processor
NHi,r,kdTi/Tkeβ′

i,k
global when the gcs’s

of lower priority jobs on processor Pr (different from Ji’s processor) are
preempted by higher priority gcs’s of Jk ∈ {J ′

i,r}.

5. Bi,5 =
∑

ρi≤ρk

Jk is on Ji’s processor
minnG

i + 1, nG
k β

lg
i,k when Ji is blocked

on global resources and suspends a local job Jk can execute and enter
a global section which can preempt Ji when it executes in non-gcs sec-
tions.

7.4 Partitioning Algorithm
In this section we present a partitioning algorithm that groups tasks into par-
titions so that each partition can be allocated and scheduled on one processor.
The objective of the algorithm is to decrease the blocking times of tasks. This
generally increases the schedulability of a task set which may reduce the num-
ber of partitions (processors).

7.4 Partitioning Algorithm 75

Considering the blocking factors of tasks under MPCP, tasks with more and
longer global critical sections lead to more blocking times. This is also shown
by experiments presented in [11]. Our goal is to (i) decrease the number of
global critical sections by assigning the tasks sharing resources to the same
partition as far as possible, (ii) decrease the ratio and time of holding global
resources by assigning the tasks that request the resources more often and hold
them longer to the same partition as long as possible.

In our previous work [19, 20] we have proposed a partitioning algorithm
in which tasks are grouped together based on task preferences and constraints.
The algorithm partitions tasks based on a cost function which is derived from
task preferences and constraints. In [19] the resource sharing is only local by
means of allocating the tasks that directly or indirectly share resources onto
the same processor. Tasks that directly or indirectly share resources are called
macrotasks, e.g. if tasks τi and τj share resource Rp and tasks τj and τk share
resource Rq , all three tasks belong to the same macrotask. However if a macro-
task does not fit in one processor (is not schedulable) the algorithm fails. In [20]
tasks belonging to the same macrotask can be allocated to different partitions
(processors), thus it is more flexible but it introduces remote blocking overhead
into the systems. The goal of the algorithm is to put the tasks into appropriate
partitions so that the costs are minimized. The algorithm may have different
partitioning strategies, e.g., increasing cash hits, decreasing blocking times,
etc. The strategy of partitioning may differ, depending on the nature of a sys-
tem, and result in different partitions. In current work, however, we focus on
decreasing remote blocking overheads of tasks which leads to increasing the
schedulability of a task set and possibly reducing the number of processors
needed for scheduling the task set.

We have developed a blocking-aware algorithm that is an extension to the
BFD algorithm. In a blocking agnostic BFD algorithm, bins (processors) are
ordered in non-increasing order of their utilization and tasks are ordered in
non-increasing order of their size (utilization). The algorithm tries to allocate
the task from the top of the ordered task set onto the first processor that fits it,
beginning from the top of the ordered processor list. If none of the processors
can fit the task, a new processor is added to the processor list. At each step the
schedulability of all processors should be tested, because allocating a task to a
processor can increase the remote blocking time of tasks previously allocated
to other processors and may make the other processors unschedulable. This
means that it is possible that even if a task is allocated to a new processor, some
of the previous processors become unschedulable which makes the algorithm
fail.

76 Paper B

7.4.1 The Algorithm
The algorithm performs partitioning of a task set in two parallel alternatives
and the result will be the output of the alternative with better partitioning re-
sults. However, the algorithm performs a few common steps before starting to
perform the parallel alternatives. Each alternative allocates tasks to the proces-
sors (partitions) in a different strategy. When a bin-packing algorithm allocates
an object (task) to a bin (processor), it usually puts the object in a bin that fits
it better, and it does not consider the unallocated objects that will be allocated
after the current object. However, the first alternative of our algorithm con-
siders the tasks that are not allocated to any processor yet; and tries to take as
many as possible of the best related tasks (based on remote blocking parame-
ters) with the current task. On the other hand, the second alternative considers
the already allocated tasks and tries to allocate the current task onto the proces-
sor that contains best related tasks to the current task. The second alternative
performs more like the usual bin packing algorithms, although it considers the
remote blocking parameters while allocating a task to a processor.

The common steps of the algorithm before the two alternatives are per-
formed in parallel are as follows.

1. Each task is assigned a weight. The weight of each task, besides its
utilization, depends on parameters that lead to potential remote blocking
time caused by other tasks:

wi =

d(Ci +
∑

ρi<ρk

NCi,kβi,kd Ti

Tk
e+NCi max

ρi≥ρk

βi,k)/Tie (7.2)

where, βi,k is the longest critical section of task τk in which it shares a
resource with τi, and NCi is the total number of critical sections of τi.

2. Macrotasks are generated; the tasks that directly or indirectly share re-
sources are put into the same macrotask. A macrotask has two alterna-
tives; it can either be broken or unbroken. If a macrotask cannot fit (can-
not be scheduled) in one processor, it is assigned as broken, otherwise
it is denoted as unbroken. If a macrotask is unbroken, the partitioning
algorithm always allocate all tasks in the macrotask to the same parti-
tion (processor). This means that all tasks in the macrotask will share
resources locally relieving tasks from remote blocking. However, tasks

7.4 Partitioning Algorithm 77

within a broken macrotask will be distributed into more than one parti-
tion. Similar to tasks, a weight is assigned to each unbroken macrotask,
which equals to the sum of weights of its tasks.

3. The unbroken macrotasks together with the tasks that do not belong to
any unbroken macrotasks are ordered in a single list in non-increasing
order of their weights. We call this list the mixed list.

The strategy of allocation of tasks in both alternatives depends on attraction
between tasks. The attraction function of task τk to a task τi is defined based
on the potential remote blocking overhead that task τk can introduce to task τi
if they are allocated onto different processors. We represent the attraction of
task τk to task τi as vi,k which is defined as follows:

vi,k =

{
NCi,kβi,kd Ti

Tk
e ρi < ρk;

NCiβi,k ρi ≥ ρk
(7.3)

Now we present the continuation of each alternative separately.

Alternative 1: After step 3 the following steps are repeated by alternative 1
until all tasks are allocated to processors (partitions):

1. All processors are ordered in their non-increasing order of utilization.

2. The object at the top of the mixed list is picked.

(a) If the object is a task and it does not belong to a broken macrotask it
will be allocated onto the first processor that fits it, beginning from
the top of the ordered processor list (similar to blocking-agnostic
BFD). If none of the processors can fit the task a new processor is
added to the list and the task is allocated onto it. In this case if one
or more of the processors becomes unschedulable this alternative
of the algorithm fails.

(b) If the object is an unbroken macrotask, all its tasks will be allocated
onto the first processor that fits them. If none of the processors can
fit the tasks, they will be allocated onto a new processor and in this
case, if one or more of the processors becomes unschedulable the
Alternative 1 fails.

78 Paper B

(c) If the object is a task that belongs to a broken macrotask, the algo-
rithm orders the tasks (those that are not allocated yet) within the
macrotask in non-increasing order of attraction to the task based
on equation 8.2. We call this list the attraction list of the task. The
task itself will be on the top of its attraction list. The best processor
for allocation is selected, which is the processor that fits the most
tasks from the attraction list, beginning from the top of the list. If
none of the existing processors can fit any of the tasks, a new pro-
cessor is added and as many tasks as possible from the attraction
list are allocated to the processor. However, if the new processor
cannot fit any task from the attraction list, i.e., one or more of the
processors become unschedulable, the Alternative 1 fails.

Alternative 2: The following steps are repeated until all tasks are allocated to
processors:

1. The object at the top of the mixed list is picked.

(a) If the object is a task and it does not belong to a broken macrotask it
will be allocated onto the first processor that fits it, beginning from
the top of the ordered processor list (similar to blocking-agnostic
BFD). If none of the processors can fit the task a new processor is
added to the list and the task is allocated onto it. In this case if one
or more of the processors becomes unschedulable the Alternative 2
fails.

(b) If the object is an unbroken macrotask, all its tasks will be allocated
onto the first processor that fits them. If none of the processors can
fit the tasks, they will be allocated onto a new processor and in this
case, if one or more of the processors becomes unschedulable the
Alternative 2 fails.

(c) If the object is a task that belongs to a broken macrotask, the or-
dered list of processors is a concatenation of two ordered lists of
processors. The top list contains the processors that include some
tasks from the macrotask of the task; this list is ordered in non-
increasing order of processors’ attraction to the task based on equa-
tion (3), i.e. the processor which has the greatest sum of attractions
of its tasks to the picked task is the most attracted processor to the
task. The second list of processors is the list of those processors
that do not contain any task from the macrotask of the picked task

7.4 Partitioning Algorithm 79

and are ordered in non-increasing order of their utilization. The
picked task will be allocated onto the first processor from the pro-
cessor list that will fit it. The task will be allocated to a new pro-
cessor if none of the existing ones can fit it. And this alternative of
the algorithm fails if allocating the task to the new processor makes
some of the processors unschedulabe.

(a) 3 tasks per processor

(b) 6 tasks per processor

Figure 7.1: Total number of task sets that the algorithms successfully schedule
(task sets generated from 3 fully utilized processors).

The algorithm fails if both alternatives fail to schedule a task set. If one of
the alternatives fails the result will be the output of the other one. Finally if
both succeed to schedule the task set, the one with less partitions (processors)
will be the output of the algorithm.

80 Paper B

7.5 Experimental Evaluation

In this section we present our experimental results of the blocking-aware bin-
packing algorithm together with the blocking-agnostic algorithm. For a num-
ber of systems (task sets), we have compared the performance of the algorithms
in two different aspects; 1) The total number of systems that each of the algo-
rithms can schedule, 2) The total number of systems that one of the algorithms
schedules with fewer processors when both succeed.

(a) Workload: 6 fully utilized processors, 3 tasks per processor

(b) Workload: 8 fully utilized processors, 6 tasks per processor

Figure 7.2: Total number of task sets that the algorithms successfully schedule.

7.5.1 Task Set Generation

We generated systems (task sets) for different workloads; we denote workload
as a defined number of fully utilized processors. Given a workload, the full
capacity of each processor (utilization of 1) is randomly divided into a defined
number of tasks utilizations. Usually for generating systems, utilization and

7.5 Experimental Evaluation 81

periods are randomly assigned to tasks and worst case execution times of tasks
are calculated based on them. However, in our system generation, the worst
case execution times (WCET) of tasks are randomly assigned and the period
of each task is calculated based on its utilization and WCET. The reason is that
we had to restrict that the WCET of a task not to be less than the total length
of its critical sections. Since we have limited the maximum number of critical
sections to 10 and the maximum length of any critical section to 10 time units,
hence the WCET of each task should be greater than 100(10× 10) time units.
The WCET of each task was randomly chosen between 100 and 150 time units.
The system generation was based on different settings; the input parameters for
settings are as follows.

1. Workload (3, 4, 6, or 8 fully utilized processors),

2. The number of tasks per processor (3 or 6 tasks per processor),

3. The number of resources (2, 4, 6, or 8),

4. The range of the number of critical sections per task (1 to 2, 3 to 4 or 5
to 6 critical sections per task),

5. The range of length of critical sections (1 to 2, 3 to 4, or 5 to 6).

For each setting, we generated 100.000 systems, and combining the param-
eters of settings (288 different settings), the total number of systems generated
for the experiment were 28.800.000.

With the generated systems we were able to evaluate our partitioning al-
gorithm with respect to different factors, i.e., various workloads (number of
fully utilized processors), number of tasks per processor, number of shared
resources, number of critical sections per task, and length of critical sections.

7.5.2 Results
In this section we present the evaluation results of our blocking-aware algo-
rithm. We compare them to the results of the blocking-agnostic bin-packing
algorithm.

The first aspect of comparison of the results from the two algorithms is the
total number of systems that each algorithm succeeds to schedule. Comparison
for 3 fully utilized processors is represented in Figure 7.1. Figures 8.1 and 8.2
represent the results for 3 task per processor and 6 tasks per processors respec-
tively. The vertical axis shows the total number of systems that the algorithms

82 Paper B

(a) 3 fully utilized processors, 3 tasks per processor

(b) 3 fully utilized processors, 6 tasks per processor

(c) 6 fully utilized processors, 3 tasks per processor

Figure 7.3: Total number of task sets that either of algorithms schedule with
fewer processors than the other.

could schedule successfully. The horizontal axis shows three factors in three
different lines; the bottom line shows the number of shared resources within
systems (Res. Num.), the second line shows the number of critical sections
per task (Cs. Num.), and the top line represents the length of critical sections

7.5 Experimental Evaluation 83

within each task (Cs. Len.), e.g., Res. Num.= 4, Cs. Num.= 1 − 2, and Cs.
Len.= 1− 2 represents the systems that share 4 resources, the number of crit-
ical sections are between 1 and 2, and the length of these critical sections are
between 1 and 2.

Figure 7.4: Total number of task sets that the algorithms exclusively schedule
successfully (workload of 3 fully utilized processors, 6 tasks per processor).

As depicted in Figure 7.1, considering the total number of systems that each
algorithm succeeds to schedule, our blocking aware algorithm performs better
(more systems are schedulable) compared to the blocking-agnostic algorithm.
By increasing the number of resources, the number of successfully scheduled
systems in both algorithms is slightly increased. The reason for this behavior
is that with fewer resources, more tasks share the same resource introducing
more blocking overheads which leads to fewer schedulable systems. However,
it is shown that the blocking-aware algorithm performs better as the number
of resources is increased. It is also shown that increasing the number and/or
the length of critical sections significantly reduces the number of schedulable
systems in both algorithms. As the number of tasks per processor is increased
from 3 (Figure 8.1) to 6 (Figure 8.2), the blocking-aware algorithm performs
significantly better (schedules more systems) than the blocking-agnostic algo-
rithm.

As the workload (the number of fully utilized processors) is increased, al-
though the blocking aware algorithm still performs better than the blocking-
agnostic algorithm, the number of schedulable systems by both algorithms is
reduced (Figure 7.2). The reason for this behavior is that the number of tasks
within systems are relatively many (48 tasks per each system in Figure 7.3(b))
and the workload is high (8 fully utilized processors in Figure 7.3(b)), and all
the tasks within systems share resources. This introduces a lot of interdepen-

84 Paper B

dencies among tasks and consequently a huge amount of blocking overheads,
making fewer systems schedulable. In practice in big systems with many tasks,
not all of the tasks share resources, which leads to fewer interdependencies
among tasks and less blocking times. However, we continued the experiment
with higher workload in the same way as the other experiments (that all tasks
share resources) to be able to compare the results with the previous results. We
believe that realistic systems, even with high workload and many tasks can sig-
nificantly benefit from our partitioning algorithm to increase the performance.

The second aspect for comparison of performance of the algorithms is the
total number of systems that each algorithm schedules with fewer processors
than the other one (better in processor reduction). The results show (Figure 7.3)
that our blocking aware algorithm mostly performs significantly better than the
blocking-agnostic bin packing algorithm, especially given a lower number of
critical sections per task and shorter critical sections. However, for lower num-
ber of shared resources (e.g., 2 shared resources) especially for higher work-
loads (e.g., 6 fully utilized processors) the blocking aware algorithm does not
always perform better (Figure 7.3).

In the experiment we also studied the results of both alternatives of the
algorithm separately. The results show that the alternative 1 mostly performs
significantly better than the alternative 2, although in some cases the alternative
2 performs better especially as the number and the length of critical sections
increase.

7.5.3 Combination of Algorithms

The results in Section 7.5.2 show that our blocking aware partitioning algo-
rithm mostly performs significantly better in both increasing the number of
schedulable systems as well as processor reduction. However, finding an op-
timal solution with a bin packing algorithm is not realistic (bin packing is a
NP-hard problem in the strong sense), hence there may exist schedulable sys-
tems that our algorithm fails to schedule. As illustrated in Figure 7.4, the num-
ber of systems that our algorithm can exclusively schedule (i.e., the blocking
agnostic algorithm fails to schedule them) are significantly higher compared
to the number of systems exclusively schedulable by the blocking agnostic al-
gorithm. However, there are still some systems that are only schedulable by
the blocking agnostic algorithm. Thus, combination of both algorithms can be
convenient to improve the overall results. It can also be noticed in Figure 7.1
that combining the results of both algorithms leads to more schedulable sys-
tems (Total successes). Furthermore, as shown in Figure 7.2, there are some

7.6 Summary and Future Work 85

systems that the blocking agnostic algorithm schedules with fewer processors
(it performs better in processor reduction). Hence a combined approach will
lead to an improvement in processor reduction as well.

7.6 Summary and Future Work
In this paper we have proposed a heuristic blocking aware algorithm, for real-
time multiprocessor systems, which extends a bin-packing algorithm with syn-
chronization parameters. The algorithm allocates a task set onto the proces-
sors of a single-chip multiprocessor (multi-core) with shared memory. The
objective of the algorithm is to decrease blocking times of tasks by means of
allocating the tasks that directly or indirectly share resources onto appropriate
processors. This generally increases shedulability of a task set and can lead to
fewer processors compared to blocking-agnostic bin-packing algorithms.

Since in practice most systems use fixed priority scheduling protocols, we
have developed our algorithm under MPCP, the only existing synchronization
protocol for multiprocessors (multi-cores) which works under fixed priority
scheduling. This protocol introduces large amounts of blocking time overheads
especially when the global resources are relatively long and the access ratio to
them is high.

Our experimental results confirm that our algorithm mostly performs sig-
nificantly better with respect to system schedulability and processor reduction.
However, given a NP-hard problem, a bin packing algorithm may not achieve
the optimal solution, i.e., our results show that, although our algorithm mostly
performs significantly better, there still exist some cases that can only be solved
by the blocking agnostic approach. Thus we show that a combination of both
algorithms improves the results with respect to the total number of schedulable
systems and processor reduction.

A future work will be extending our partitioning algorithm to other syn-
chronization protocols, e.g., MSRP and FMLP for partitioned scheduling. An-
other interesting future work is to apply our approach to real systems and study
the performance gained by the algorithm on these systems. In the domain of
multiprocessor scheduling and synchronization our future work also includes
investigating global and hierarchical scheduling protocols and appropriate syn-
chronization protocols.

Bibliography

[1] T. Baker. A comparison of global and partitioned EDF schedulability test
for multiprocessors. Technical report, 2005.

[2] T. Baker. Stack-based scheduling of real-time processes. Journal of Real-
Time Systems, 3(1):67–99, 1991.

[3] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor scheduling prob-
lems and algorithms. In Handbook on Scheduling Algorithms, Methods,
and Models. Chapman Hall/CRC, Boca, 2004.

[4] U. Devi. Soft real-time scheduling on multiprocessors. In PhD thesis,
available at www.cs.unc.edu/˜anderson/diss/devidiss.pdf, 2006.

[5] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task schedul-
ing, allocation and synchronization on multiprocessors. In proceedings
of 30th IEEE Real-Time Systems Symposium (RTSS’09), pages 469–478,
2009.

[6] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheri-
tance Approach. Kluwer Academic Publishers, 1991.

[7] D. de Niz and R. Rajkumar. Partitioning bin-packing algorithms for dis-
tributed real-time systems. Journal of Embedded Systems, 2(3-4):196–
208, 2006.

[8] Y. Liu, X. Zhang, H. Li, and D. Qian. Allocating tasks in multi-core
processor based parallel systems. In proceedings of Network and Paral-
lel Computing Workshops, in conjunction with IFIP’07, pages 748–753,
2007.

87

88 Bibliography

[9] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of
sporadic task systems. In proceedings of 26th IEEE Real-Time Systems
Symposium (RTSS’05), pages 321–329, 2005.

[10] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory utilization
of real-time task sets in single and multi-processor systems-on-a-chip.
In proceedings of 22nd IEEE Real-Time Systems Symposium (RTSS’01),
pages 73–83, 2001.

[11] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca.
A comparison of MPCP and MSRP when sharing resources in the janus
multiple processor on a chip platform. In proceedings of 9th IEEE Real-
Time And Embedded Technology Application Symposium (RTAS’03),
pages 189–198, 2003.

[12] J. M. López, J. L. Dı́az, and D. F. Garcı́a. Utilization bounds for EDF
scheduling on real-time multiprocessor systems. Journal of Real-Time
Systems, 28(1):39–68, 2004.

[13] U. Devi, H. Leontyev, and J. Anderson. Efficient synchronization under
global EDF scheduling on multiprocessors. In proceedings of 18th IEEE
Euromicro Conference on Real-time Systems (ECRTS’06), pages 75–84,
2006.

[14] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In proceedings of 13th
IEEE Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA’07), pages 47–56, 2007.

[15] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson.
Synchronization on multiprocessors: To block or not to block, to suspend
or spin? In proceedings of 14th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS’08), pages 342–353, 2008.

[16] A. Easwaran and B. Andersson. Resource sharing in global fixed-priority
preemptive multiprocessor scheduling. In proceedings of 30th IEEE Real-
Time Systems Symposium (RTSS’09), pages 377–386, 2009.

[17] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. Journal of IEEE Transactions
on Computers, 39(9):1175–1185, 1990.

[18] A. Burns. Preemptive priority based scheduling: An appropriate engi-
neering approach. In Principles of Real-Time Systems, pages 225–248.
Prentice Hall, 1994.

[19] F. Nemati, M. Behnam, and T. Nolte. Multiprocessor synchronization and
hierarchical scheduling. In proceedings of 38th International Conference
on Parallel Processing (ICPP’09) Workshops, pages 58–64, 2009.

[20] F. Nemati, M. Behnam, and T. Nolte. Efficiently migrating real-time sys-
tems to multi-cores. In proceedings of 14th IEEE Conference on Emerg-
ing Techonologies and Factory (ETFA’09), 2009.

Chapter 8

Paper C:
Partitioning Real-Time
Systems on Multiprocessors
with Shared Resources

Farhang Nemati, Thomas Nolte and Moris Behnam
In submission

91

Abstract

There are two main approaches to task scheduling on multiprocessor/multi-
core platforms; 1) global scheduling, under which migration of tasks among
processors is allowed, and 2) partitioned scheduling under which tasks are
allocated onto processors and task migration is not allowed. Under global
scheduling a higher utilization bound can be achieved, but in practice the over-
heads of migrating tasks is high. On the other hand under partitioned schedul-
ing, besides simplicity and efficiency, existing scheduling and synchronization
methods developed for uniprocessor platforms can more easily be extended to
partitioned scheduling. However the partitioned scheduling protocols suffer
from the problem of partitioning tasks among processors/cores which is a bin-
packing problem. Therefore, several heuristic algorithms have been developed
for partitioning a task set on multiprocessor platforms. However, these algo-
rithms typically assume independent tasks while in practice real-time systems
often contain tasks that share resources and hence may block each other.

In this paper we propose a blocking-aware partitioning algorithm which
allocates a task set onto processors in a way that the overall amount of block-
ing times of tasks are decreased. The algorithm reduces the total utilization
which, in turn, has the potential to decrease the total number of required pro-
cessors (cores). In this paper we evaluate our algorithm and compare it with
an existing similar algorithm. The comparison criteria includes both number
of schedulable systems as well as processor reduction performance.

8.1 Introduction 93

8.1 Introduction

Single-chip multiprocessors (multi-cores) are becoming defacto processors in
practice. The performance improvements of using multi-core processors de-
pend on the nature of the applications as well as the implementation of the
software. To take advantage of the concurrency offered by a multi-core ar-
chitecture, appropriate algorithms have to be used to divide the software into
tasks (threads) and distribute tasks fairly on cores to increase the performance.
Real-time systems are typically multi threaded, hence they are easier to adapt
to multi-core than single-threaded, sequential programs. If the tasks are inde-
pendent, it is a matter of deciding on which core each task should execute. For
real-time systems, from a practical and complexity point of view, a static and
manual assignment of processors is often preferred for predictability reasons.

Two main approaches for scheduling real-time systems on multiprocessors
exist; global and partitioned scheduling [1, 2, 3, 4]. Under global schedul-
ing, e.g., Global Earliest Deadline First (G-EDF), tasks are scheduled by a
single scheduler and each task can be executed on any processor. A single
global queue is used for storing jobs. A job can be preempted on a processor
and resumed on another processor, i.e., migration of tasks among processors
is permitted. Under a partitioned scheduling, tasks are statically assigned to
processors and tasks within each processor are scheduled by a uniprocessor
scheduling protocol, e.g., Rate Monotonic (RM) and EDF. Each processor is
associated with a separate ready queue for scheduling task jobs.

Partitioned scheduling protocols have been used more often and are sup-
ported (with fixed priority scheduling) widely by commercial real-time op-
erating systems [5], inherent in their simplicity, efficiency and predictability.
Besides, the well studied uniprocessor scheduling and synchronization meth-
ods can be reused for multiprocessors with fewer changes (or no changes).
However, partitioning (allocating tasks to processors) is known to be a bin-
packing problem which is a NP-hard problem in the strong sense; hence find-
ing an optimal solution in polynomial time is not realistic in the general case.
Thus, to take advantage of the performance offered by multi-cores, schedul-
ing protocols should be coordinated with appropriate partitioning algorithms.
Heuristic approaches and sufficient feasibility tests for bin-packing algorithms
have been developed to find a near-optimal partitioning [1, 3]. However, the
scheduling protocols and existing partitioning algorithms for multiprocessors
(multi-cores) mostly assume independent tasks while in real applications, tasks
often share resources.

We have developed a heuristic partitioning algorithm [6], under which our

94 Paper C

system assumptions include presence of mutually exclusive shared resources.
The heuristic partitions a system (task set) on an identical shared memory
single-chip multiprocessor platform. The objective of the algorithm is to de-
crease blocking overheads by assigning tasks to appropriate processors (parti-
tions). This consequently increases the schedulability of the system and may
reduce the number of processors. Our heuristic identifies task constraints, e.g.,
dependencies between tasks, timing attributes, and resource sharing, and ex-
tends the best-fit decreasing (BFD) bin-packing algorithm with blocking time
parameters. In practice, industrial systems mostly use Fixed Priority Schedul-
ing (FPS) protocols. To our knowledge the only synchronization protocol un-
der fixed priority partitioned scheduling, for multiprocessor platforms, is Mul-
tiprocessor Priority Ceiling Protocol (MPCP) which was proposed by Rajku-
mar in [7]. Both our algorithm and an existing similar algorithm proposed
in [5] assume that MPCP is used for lock-based synchronization. We have in-
vestigated MPCP in more details in [6]. The algorithm proposed in [5] is named
the Synchronization-Aware Partitioning Algorithm (SPA), and our algorithm is
named the Blocking-Aware Partitioning Algorithm (BPA). From now on we
refer them as SPA and BPA respectively.

8.1.1 Contributions

The contributions of this paper are threefold:

• Firstly, we propose a blocking-aware heuristic algorithm to allocate tasks
onto the processors of a single chip multiprocessor (multi-core) platform.
The algorithm extends a bin-packing algorithm with synchronization pa-
rameters.

• Secondly, we implement our algorithm together with the best known
existing heuristic [5]1. The implementation is modular in which any
new partitioned scheduling and synchronization protocol as well as any
new partitioning heuristic can easily be inserted.

• Thirdly, we evaluate our algorithm together with the existing heuristic
and compare the two approaches to each other as well as to an blocking-
agnostic bin-packing partitioning algorithm, used as reference. The
blocking-agnostic algorithm, in the context of this paper, refers to a bin-
packing algorithm that does not consider blocking parameters to increase

1Best paper award at IEEE Real-Time Systems Symposium RTSS 2009

8.1 Introduction 95

the performance of partitioning, although blocking times are included in
the schedulability test.

The rest of the paper is as follows: we present the task and platform model
in Section 9.2. We explain the existing algorithm (SPA) and present our parti-
tioning algorithms (BPA) in Section 9.3. In Section 8.4 the experimental results
of both algorithms are presented and the results are compared to each other as
well as to the blocking-agnostic algorithm.

8.1.2 Related Work
A study of bin-packing algorithms for designing distributed real-time systems
is presented in [8]. The method partitions software into modules to be allocated
on hardware nodes. In their approach they use two graphs; a graph which
models software modules and a graph that represents the hardware architec-
ture. The authors extend the bin-packing algorithm with heuristics to minimize
the number of bins (processors) needed and the bandwidth required for the
communication between nodes. However, their partitioning method assumes
independent tasks.

Liu et al. [9] present a heuristic algorithm for allocating tasks in multi-
core-based massively parallel systems. Their algorithm has two rounds; in the
first round processes (groups of threads - partitions in this paper) are assigned
to processing nodes, and the second round allocates tasks in a process to the
cores of a processor. However, the algorithm does not consider synchronization
between tasks.

Baruah and Fisher have presented a bin-packing partitioning algorithm
(first-fit decreasing (FFD) algorithm) in [10] for a set of sporadic tasks on mul-
tiprocessors. The tasks are indexed in non-decreasing order based on their
relative deadlines and the algorithm assigns the tasks to the processors in first-
fit order. The algorithm assigns each task τi to the first processor, Pk, for
which both of following conditions, under the Earliest Deadline First (EDF)
scheduling, hold:

Di −
∑

τj∈Pk

DBF ∗(τj , Di) ≥ Ci

and

1−
∑

τj∈Pk

uj ≥ ui

96 Paper C

where Ci and Di specify Worst Case Execution Time (WCET) and deadline of
task τi respectively, ui = Ci

Ti
, and

DBF ∗(τi, t) =
{

0 if t < Di;
Ci + ui(t−Di) otherwise.

The algorithm, however, assumes independent tasks while in practice tasks
often share resources and therefore blocking time overheads must be consid-
ered while schedulability of tasks assigned to a processor is checked. Our
algorithm not only considers resource sharing when distributing tasks but it
tries to reduce blocking times as well. On the other hand their algorithm works
under the EDF scheduling protocol while most existing real-time systems use
fixed priority scheduling policies. Our proposed algorithm works under fixed
priority scheduling protocols, although it can easily be extended to other poli-
cies.

Of great relevance to our work presented in this paper is the work presented
by Lakshmanan et al. in [5]. In the paper they investigate and analyze two al-
ternatives of execution control policies (suspend-based and spin-based remote
blocking) under MPCP. They have developed a blocking-aware task allocation
algorithm (an extension to BFD) and evaluated it under both execution control
policies.

In their partitioning algorithm, the tasks that directly or indirectly share re-
sources are put into what they call bundles (in this paper we call them macro-
tasks) and each bundle is tried to be allocated onto a processor. The bundles
that cannot fit into any existing processors are ordered by their cost, which
is the blocking overhead that they introduce into the system. Then the bun-
dle with minimum cost is broken and the algorithm is run from the beginning.
However, their algorithm does not consider blocking parameters when it allo-
cates the current task to a processor, but only its size (utilization). Further-
more, no relationship (e.g., as a cost based on blocking parameters) among in-
dividual tasks within a bundle is considered which could help to allocate tasks
from a broken bundle to appropriate processors to decrease the blocking times.
However, their experimental results show that a blocking-aware bin-packing
algorithm for suspend-based execution control policy does not have signifi-
cant benefits compared to a blocking-agnostic bin-packing algorithm. Firstly,
for the comparison, they have only focused on the processor reduction issue;
they suppose that the algorithm is better if it reduces the number of proces-
sors. They have not considered the worst case as it could be the case that an
algorithm fails to schedule a task set. In our experimental evaluation, besides
processor reduction, we have considered this issue as well. If an algorithm can

8.1 Introduction 97

schedule some task sets while others fail, we consider it as a benefit. Secondly,
in their experiments they have not investigated the effect of some parameters
such as the different number of resources, variation in the number and length
of critical sections of tasks. By considering these parameters, our experimental
results show that in most cases our blocking-aware algorithm has significantly
better results than blocking-agnostic algorithms. However, according to our
experimental results, their heuristic performs slightly better than the blocking-
agnostic algorithm, and our algorithm performs significantly better than both.

In the context of multiprocessor synchronization, the first protocol was
MPCP presented by Rajkumar in [7], which extends PCP to multiprocessors
hence allowing for synchronization of tasks sharing mutually exclusive re-
sources using partitioned FPS. Our partitioning algorithm attempts to decrease
blocking times under MPCP and consequently decrease worst case response
times which in turn may reduce the number of needed processors. Gai et
al. [11, 12] present MSRP (Multiprocessor SRP), which is a P-EDF (Parti-
tioned EDF) based synchronization protocol for multiprocessors. The shared
resources are classified as either (i) local resources that are shared among tasks
assigned to the same processor, or (ii) global resources that are shared by tasks
assigned to different processors. In MSRP, tasks synchronize local resources
using SRP [2], and access to global resources is guaranteed a bounded blocking
time. Lopez et al. [13] present an implementation of SRP under P-EDF. Devi
et al. [14] present a synchronization technique under G-EDF. The work is re-
stricted to synchronization of non-nested accesses to short and simple objects,
e.g., stacks, linked lists, and queues. In addition, the main focus of the method
is on soft real-time systems.

Block et al. [15] present FMLP (Flexible Multiprocessor Locking Proto-
col), which is the first synchronization protocol for multiprocessors that can be
applied to both partitioned and global scheduling algorithms, i.e., P-EDF and
G-EDF. An implementation of FMLP has been described in [16]. However,
although in a longer version of [15]2, the blocking times have been calculated,
but to our knowledge there is no schedulability test for FMLP.

Recently, a synchronization protocol under fixed priority scheduling, has
been proposed by Easwaran and Andersson in [17], however, they focus on a
global scheduling approach.

2Available at http://www.cs.unc.edu/˜anderson/papers/rtcsa07along.pdf

98 Paper C

8.2 Task and Platform Model
In this paper we assume a task set that consists of n sporadic tasks, τi(Ti, Ci, ρi,
{ci,p,q}) where Ti denotes the minimum inter-arrival time between two succes-
sive jobs of task τi with worst-case execution time Ci and ρi as its priority. The
tasks share a set of resources, R, which are protected using semaphores. The
set of critical sections, in which task τi requests resources in R is denoted by
{ci,p,q}, where ci,p,q indicates the maximum execution time of the pth critical
section of task τi in which the task locks resource Rq ∈ R. Critical sections
of tasks should be sequential or properly nested. The deadline of each job is
equal to Ti. A job of task τi, is specified by Ji. The utilization factor of task τi
is denoted by ui where ui = Ci/Ti.

We also assume that the multiprocessor (multi-core) platform is composed
of identical, unit-capacity processors (cores) with shared memory. The task
set is partitioned into partitions {P1, . . . , Pm}, and each partition is allocated
onto one processor (core), thus m represent the minimum number of processors
needed.

8.3 The Blocking Aware Partitioning Algorithms

8.3.1 Blocking-Aware Partitioning Algorithm (BPA)
In this section we propose a partitioning algorithm that groups tasks into par-
titions so that each partition can be allocated and scheduled on one processor.
The objective of the algorithm is to decrease the overall blocking times of tasks.
This generally increases the schedulability of a task set which may reduce the
number of required partitions (processors).

Considering the blocking factors of tasks under MPCP, tasks with more and
longer global critical sections lead to more blocking times. This is also shown
by experiments presented in [12]. Our goal is to (i) decrease the number of
global critical sections by assigning the tasks sharing resources to the same
partition as far as possible, (ii) decrease the ratio and time of holding global
resources by assigning the tasks that request the resources more often and hold
them longer to the same partition as long as possible.

In our previous work [18, 19] we have presented a partitioning algorithm
in which tasks are grouped together based on task preferences and constraints.
The algorithm partitions tasks based on a cost function which is derived from
task preferences and constraints. In [19] the resource sharing is only local by
means of allocating the tasks that directly or indirectly share resources onto

8.3 The Blocking Aware Partitioning Algorithms 99

the same processor. Tasks that directly or indirectly share resources are called
macrotasks, e.g., if tasks τi and τj share resource Rp and tasks τj and τk share
resource Rq , all three tasks belong to the same macrotask. However the algo-
rithm fails if a macrotask does not fit in one processor (i.e., assuming that the
tasks in the macrotask are the only tasks allocated on a processor, still it can
not be scheduled by the processor). In [18] tasks belonging to the same macro-
task can be allocated to different partitions (processors), thus the approach is
more flexible but it introduces remote blocking overhead into the system. The
goal of the algorithm is to put the tasks into appropriate partitions so that the
costs are minimized. The algorithm may have different partitioning strategies,
e.g., increasing cash hits, decreasing blocking times, etc. The strategy of parti-
tioning may differ, depending on the nature of a system, and result in different
partitions. In current work, however, we focus on decreasing remote blocking
overheads of tasks which leads to increasing the schedulability of a task set and
possibly reducing the number of processors needed for scheduling the task set.

We have developed a blocking-aware algorithm that is an extension to the
BFD algorithm. In a blocking-agnostic BFD algorithm, bins (processors) are
ordered in non-increasing order of their utilization and tasks are ordered in non-
increasing order of their size (utilization). The algorithm attempts to allocate
the task from the top of the ordered task set onto the first processor that fits it
(i.e., the first processor on which the task can be allocated while all processors
are schedulable), beginning from the top of the ordered processor list. If none
of the processors can fit the task, a new processor is added to the processor
list. At each step the schedulability of all processors should be tested, because
allocating a task to a processor can increase the remote blocking time of tasks
previously allocated to other processors and may make the other processors
unschedulable. This means, it is possible that some of the previous processors
become unschedulable even if a task is allocated to a new processor, which
makes the algorithm fail.

The Algorithm

The algorithm performs partitioning of a task set in two rounds and the result
will be the output of the round with better partitioning results. However, the
algorithm performs a few common steps before starting to perform the rounds.
Each round allocates tasks to the processors (partitions) in a different strategy.
When a bin-packing algorithm allocates an object (task) to a bin (processor),
it usually puts the object in a bin that fits it better, and it does not consider the
unallocated objects that will be allocated after the current object. The rational

100 Paper C

behind the two rounds is that the heuristic tries to consider both past and future
by looking at tasks allocated in the past and those that are not allocated yet. In
the first round the algorithm considers the tasks that are not allocated to any
processor yet; and tries to take as many as possible of the best related tasks
(based on remote blocking parameters) with the current task. On the other
hand, in the second round it considers the already allocated tasks and tries to
allocate the current task onto the processor that contains best related tasks to the
current task. In the second round, the algorithm performs more like the usual
bin packing algorithms (i.e., tries to find the best bin for the current object),
although it considers the remote blocking parameters while allocating a task
to a processor. Any time the algorithm performs schedulability test, for more
precise schedulability analysis, it always performs response time analysis [20].
The common steps of the algorithm before the two rounds are performed are
as follow:
1. Each task is assigned a weight. The weight of each task, besides its utiliza-
tion, should depend on parameters that lead to potential remote blocking time
caused by other tasks:

wi = ui+

d(
∑

ρi<ρk

NCi,kβi,kd Ti

Tk
e+NCi max

ρi≥ρk

βi,k)/Tie (8.1)

where, βi,k is the longest critical section of task τk in which it shares a resource
with τi, and NCi is the total number of critical sections of τi.

Considering the remote blocking terms of MPCP [6], the rational behind
the definition of weight is that the tasks that can be punished more by remote
blocking become heavier. Thus, they can be allocated earlier and attract as
many as possible of the tasks with which they share resources.

2. Macrotasks are generated, i.e., the tasks that directly or indirectly share re-
sources are put into the same macrotask. A macrotask has two alternatives; it
can either be broken or unbroken. If a macrotask cannot fit in one processor,
(i.e., it is not possible to schedule the macrotask on a single processor even if
there is no any other tasks), it is set as broken, otherwise it is denoted as un-
broken. Please observe that the test of fitting a macrotask in a single processor
(to set it as broken or unbroken) is only done at the beginning. Later on at
any time the algorithm tests fitting an unbroken macrotask in a processor, the
macrotask may co-exist with other tasks and macrotasks on the same processor.
In this case fitting on a processor means that all processors (under partitioned
scheduling) are schedulable.

8.3 The Blocking Aware Partitioning Algorithms 101

If a macrotask is unbroken, the partitioning algorithm always allocate all
tasks in the macrotask to the same partition (processor). This means that all
tasks in the macrotask will share resources locally relieving tasks from remote
blocking. However, tasks within a broken macrotask will be distributed into
more than one partition. Similar to tasks, a weight is assigned to each unbroken
macrotask, which equals to the sum of weights of its tasks.

3. The unbroken macrotasks together with the tasks that do not belong to any
unbroken macrotasks are ordered in a single list in non-increasing order of their
weights. We denote this list the mixed list.

The strategy of allocation of tasks in both rounds depends on attraction
between tasks. The attraction function of task τk to a task τi is defined based
on the potential remote blocking overhead that task τk can introduce to task τi
if they are allocated onto different processors. We represent the attraction of
task τk to task τi as vi,k which is defined as follows:

vi,k =

{
NCi,kβi,kd Ti

Tk
e ρi < ρk;

NCiβi,k ρi ≥ ρk
(8.2)

The rationale of the attraction function is to allocate the tasks that may re-
motely block a task, τi, to the same processor as of τi (in order of the amount
of remote blocking overhead) as far as possible. Please notice, the definition
of weight (Equation 8.1) and attraction function (Equation 8.2) guide the algo-
rithm under MPCP. However, these function may differ under other synchro-
nization protocols, e.g., MSRP, which have different remote blocking terms.

Now we present the continuation of the algorithm in two rounds.

First Round
After the common steps the following steps are repeated within the first round
until all tasks are allocated to processors (partitions):
1. All processors are ordered in their non-increasing order of utilization.
2. The object at the top of the mixed list is picked. (i) If the object is a task
and it does not belong to a broken macrotask (it does not share any resource) it
will be allocated onto the first processor that fits it (all processors are schedula-
ble), beginning from the top of the ordered processor list (similar to blocking-
agnostic BFD). If none of the processors can fit the task (at least one becomes
unschedulable) a new processor is added to the list and the task is allocated
onto it. In this case if one or more of the processors become(s) unschedulable
this round of the algorithm fails and the algorithm moves to the second round.

102 Paper C

(ii) If the object is an unbroken macrotask, all its tasks will be allocated onto
the first processor that fits them (all processors are schedulable). If none of the
processors can fit the macrotasks, it (all its tasks) will be allocated onto a new
processor and in this case, if one or more of the processors becomes unschedu-
lable the first round fails and the algorithm starts the second round. (iii) If the
object is a task that belongs to a broken macrotask, the algorithm orders the
tasks (those that are not allocated yet) within the macrotask in non-increasing
order of attraction to the task based on equation 8.2. We call this list the at-
traction list of the task. The task itself will be on the top of its attraction list.
The best processor for allocation is selected, which is the processor that fits the
most tasks from the attraction list, beginning from the top of the list. As many
as possible of the tasks from the attraction list are then allocated to the proces-
sor. If none of the existing processors can fit any of the tasks, a new processor
is added and as many tasks as possible from the attraction list are allocated to
the processor. However, if the new processor cannot fit any task from the at-
traction list, i.e., at least one of the processors become unschedulable, the first
round fails and the second round is started.

Second Round
The following steps are repeated until all tasks are allocated to processors:
1. The object at the top of the mixed list is picked. (i) If the object is a task
and it does not belong to a broken macrotask, this step is performed the same
way as in the first round. If the second round fails here and if the first round
has also failed the algorithm fails. (ii) If the object is an unbroken macrotask,
in this the algorithm performs the same way as in the first round. If the second
round fails and if the first round has also failed the algorithm fails. (iii) If the
object is a task that belongs to a broken macrotask, the ordered list of proces-
sors is a concatenation of two ordered lists of processors. The top list contains
the processors that include some tasks from the macrotask of the task; this list
is ordered in non-increasing order of processors’ attraction to the task based
on equation 8.2, i.e., the processor which has the greatest sum of attractions
of its tasks to the picked task is the most attracted processor to the task. The
second list of processors is the list of those processors that do not contain any
task from the macrotask of the picked task and are ordered in non-increasing
order of their utilization. The picked task will be allocated onto the first pro-
cessor from the processor list that will fit it. The task will be allocated to a new
processor if none of the existing ones can fit it. And the second round of the
algorithm fails if allocating the task to the new processor makes some of the
processors unschedulable.

8.3 The Blocking Aware Partitioning Algorithms 103

If both rounds fail to schedule a task set the algorithm fails. If one of the
rounds fails the result will be the output of the other one. If both rounds succeed
to schedule the task set, the one with fewer partitions (processors) will be the
output of the algorithm.

8.3.2 Synchronization-Aware Partitioning Algorithm (SPA)
We have implemented the best known existing partitioning algorithm proposed
in [5] in our experimental evaluation framework. The implementation of the
algorithm required details of the algorithm which were not presented in [5],
hence, in this section we present the algorithm in more details.

1. First, the macrotasks are generated. In [5], macrotasks are denoted as bun-
dles. A number of processors (enough processors that fit the total utilization of
the task set) are added.

2. The macrotasks together with other tasks are ordered in a list in non-
increasing order of their utilization. The algorithm attempts to allocate each
macrotask (i.e., allocate all tasks within the macrotask) onto a processor. With-
out adding any new processor, all macrotasks and tasks that fit are allocated
onto the processors. The macrotasks that can not fit are put aside. After any al-
location, the processors are ordered in their non-increasing order of utilization.

3. The remaining macrotasks are ordered in the order of the cost of breaking
them. The cost of breaking a macrotask is defined based on the estimated cost
(blocking overhead) introduced into the tasks by transforming a local resource
into a global resource (i.e., the tasks sharing the resource are allocated to dif-
ferent processors). The estimated cost of transforming a local resource Rq into
a global resource is calculated as follows:

Cost(Rq) = Global Overhead − Local Discount (8.3)

The Global Overhead is calculated as follows:

Global Overhead = max(|Csq|)/min
∀τi

{ρi} (8.4)

where max(|Csq|) is the length of longest critical section accessing Rq .
The Local Discount is defined as follows:

Local Discount = max
∀τi accessing Rq

(max(|Csi,q|)/ρi) (8.5)

104 Paper C

where max(|Csi,q|) is the length of longest critical section of τi accessing Rq .
The cost of breaking any macrotask, mTaskk, is calculated as the maxi-

mum of blocking overhead caused by transforming its accessed resources into
global resources.

Cost(mTaskk) =∑

∀Rq accessed by mTaskk

Cost(Rq) (8.6)

4. The macrotask with minimum breaking cost is picked and is broken in
two pieces such that the size of one piece is as close as the largest utilization
available among processors. This means, tasks within the selected macrotask
are ordered in decreasing order of their size (utilization) and the tasks from
the ordered list are added to the processor with the largest available utilization
as far as possible. In this way, the macrotask has been broken in two pieces;
(i) the one including the tasks allocated to the processor and (ii) the tasks that
could not fit in the processor. If the fitting is not possible a new processor is
added and the whole algorithm is repeated again.

Firstly, as one can see, the SPA algorithm does not consider blocking pa-
rameters when it allocates the current task to a processor, but only its utiliza-
tion, i.e. the tasks are ordered in order of their utilization only. However,
our algorithm assigns a weight (Equation 8.1) which besides the utilization
includes the blocking terms as well. Secondly, no relationship (e.g., as a cost
based on blocking parameters) among individual tasks within a bundle (macro-
task) is considered which could help to allocate tasks from a broken bundle to
appropriate processors to decreases the blocking times. In our heuristic, we
have defined an attraction function (Equation 8.2), which attempts to allocate
the most attracted tasks from the current task’s broken macrotask, on a pro-
cessor. As the experimental evaluation in Section 8.4 shows, considering these
issues can improve the partitioning significantly.

8.4 Experimental Evaluation and Comparison of
Algorithms

In this section we present our experimental results of our blocking-aware bin-
packing algorithm (BPA) together with the blocking-aware algorithm recently
proposed in [5] (SPA), as well as the reference blocking-agnostic algorithm.
For a number of systems (task sets), we have compared the performance of the

8.4 Experimental Evaluation and Comparison of Algorithms 105

algorithms in two different aspects; (1) Given a number of systems, the total
number of systems that each of the algorithms can schedule, (2) The processor
reduction aspect of algorithms.

0100002000030000400005000060000700008000090000100000

1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-21-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-62 4 6 8

BPA SPA Agnostic

Cs. Len.Cs. Num.Res. Num.
Sys. Num.

Figure 8.1: Total number of task sets each algorithm schedules. Workload: 3
processors, 3 tasks per processor

0100002000030000400005000060000700008000090000100000

1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-21-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-62 4 6 8

BPA SPA Agnostic

Cs. Len.Cs. Num.Res. Num.
Sys. Num.

Figure 8.2: Total number of task sets each algorithm schedules. Workload: 3
processors, 6 tasks per processor

106 Paper C

0100002000030000400005000060000700008000090000100000

1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-21-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-62 4 6 8

BPA SPA Agnostic

Cs. Len.Cs. Num.Res. Num.
Sys. Num.

Figure 8.3: Total number of task sets each algorithm schedules. Workload: 3
processors, 9 tasks per processor

02000400060008000100001200014000160001800020000
1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-21-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-62 4 6 8

BPA SPA Agnostic

Cs. Len.Cs. Num.Res. Num.
Sys. Num.

Figure 8.4: Total number of task sets each algorithm schedules. Workload: 6
processors, 6 tasks per processor

8.4 Experimental Evaluation and Comparison of Algorithms 107

8.4.1 Experiment Setup

We generated systems (task sets) for different workloads; we denote workload
as a defined number of fully utilized processors. Given a workload, the full
capacity of each processor (utilization of 1) is randomly divided into a defined
number of tasks utilizations. Usually for generating systems, utilization and pe-
riods are randomly assigned to tasks, and worst case execution times of tasks
are calculated based on them. However, in our system generation, the worst
case execution times (WCET) of tasks are randomly assigned and the period
of each task is calculated based on its utilization and WCET. The reason is that
we had to restrict that the WCET of a task not to be less than the total length
of its critical sections. Since we have limited the maximum number of critical
sections to 6 and the maximum length of any critical section to 6 time units,
hence the WCET of each task should be greater than 36 (6 × 6) time units.
The WCET of each task was randomly chosen between 36 and 150 time units.
The system generation was based on different settings; the input parameters for
settings are as follows:
1. Workload (3, 4, 6, or 8 fully utilized processors).
2. The number of tasks per processor (3, 6 or 9 tasks per processor).
3. The number of resources (2, 4, 6, or 8). For each alternative, the resource
accessed by each critical section is randomly chosen among the resources, e.g,
given the alternative with 2 resources (R1 and R2), the resource accessed by
any critical section is randomly chosen from {R1, R2}.
4. The range of the number of critical sections per task (1 to 2, 3 to 4 or 5 to
6 critical sections per task). For an alternative (e.g., 1 to 2 critical sections per
task), the number of critical sections of any task τi is randomly chosen among
{1, 2}.
5. The range of length of critical sections (1 to 2, 3 to 4, or 5 to 6). The length
of each critical section is chosen the same way as the number of critical sec-
tions per task.

For each setting, we generated 100.000 systems, and combining the param-
eters of settings (432 different settings) the total number of systems generated
for the experiment were 43.200.000.

With the generated systems we were able to evaluate the partitioning al-
gorithms with respect to different factors, i.e., various workloads (number of
fully utilized processors), number of tasks per processor, number of shared
resources, number of critical sections per task, and length of critical sections.

108 Paper C

8.4.2 Results

In this section we present the evaluation results of our proposed blocking-
aware algorithm (BPA), an existing blocking-aware algorithm [5] (SPA) and
the blocking-agnostic algorithm.

The first aspect of comparison of the results from the algorithms is, given
a number of systems, the total number of systems each algorithm successfully
schedules (Figures 8.1, 8.2, 8.3 and 8.4). Figures 8.1, 8.2 and 8.3 represent the
results for 3, 6 and 9 tasks per processor respectively. The vertical axis shows
the total number of systems that the algorithms could schedule successfully.
The horizontal axis shows three factors in three different lines; the bottom line
shows the number of shared resources within systems (Res. Num.), the second
line shows the number of critical sections per task (Cs. Num.), and the top
line represents the length of critical sections within each task (Cs. Len.), e.g.,
Res. Num.=4, Cs. Num.=1-2, and Cs. Len.=1-2 represents the systems that
share 4 resources, the number of critical sections per each task are between 1
and 2, and the length of these critical sections are between 1 and 2 time units.

As depicted in Figures 8.1, 8.2, 8.3 and 8.4, considering the total number
of systems that each algorithm succeeds to schedule, our blocking-aware al-
gorithm (BPA) performs better (can schedule more systems) compared to the
SPA and the blocking-agnostic algorithm. However the SPA performs better
than the blocking-agnostic algorithm. As shown in the figure, by increasing
the number of resources, the number of successfully scheduled systems in all
algorithms is increased. The reason for this behavior is that with fewer re-
sources, more tasks share the same resource introducing more blocking over-
heads which leads to fewer schedulable systems. However, it is illustrated that
the blocking-aware algorithms perform better as the number of resources is
increased. It is also shown that increasing the number and/or the length of
critical sections generally reduces the number of schedulable systems signifi-
cantly. The reason is that more and longer critical sections introduce greater
blocking overhead into the tasks making fewer systems schedulable.

As the number of tasks per processor is increased from 3 (Figure 8.1) to 6
(Figure 8.2) and to 9 (Figure 8.3), the BPA performs significantly better (i.e.,
schedules significantly more systems) than the SPA and blocking-agnostic bin-
packing. However, as one can see, the SPA does not perform significantly
better than the blocking-agnostic algorithm as the number of tasks per proces-
sor are increased. Increasing the number of tasks per processor lead to smaller
tasks (tasks with smaller ui). The BPA allocates tasks from a broken macrotask
based on Equations 8.1 and 8.2, which are functions of the blocking parame-

8.4 Experimental Evaluation and Comparison of Algorithms 109

ters (the number and length of critical sections) as well as the size of the tasks.
On the other hand, with the smaller size of tasks, the blocking parameters have
a bigger role in these functions, hence more dependent tasks are allocated to
the same processor. This lead to less blocking overhead and increased schedu-
lability, hence more systems are scheduled by BPA as the tasks per processor
are increased. On the other hand, in SPA, allocation of tasks from a broken
macrotask is only based on their size, and this does not necessarily allocates
highly dependent tasks to the same processor.

0%5%10%15%20%25%30%35%40%45%50%55%60%65%70%75%80%85%90%95%100%

3 4 5 6 7 8 9

BPA SPA Agnostic

Processors
Scheduled Syste
ms

Figure 8.5: Percentage of systems each algorithm schedules, ordered by re-
quired number of processors for 3 tasks per processor

As the workload (the number of fully utilized processors) is increased, al-
though the BPA still performs better than the SPA and the blocking-agnostic
algorithm, generally the number of schedulable systems by all algorithms is
significantly reduced (Figure 8.4). The reason for this behavior is that the
number of tasks within systems are relatively many (36 tasks per each sys-
tem in Figure 8.4) and the workload is high (6 fully utilized processors), and
all the tasks within systems share resources. On the other hand, the MPCP
is very pessimistic. This introduces a lot of interdependencies among tasks
and consequently a huge amount of blocking overheads, making fewer sys-
tems schedulable. In practice in big systems with many tasks, not all of the
tasks share resources, which leads to fewer interdependencies among tasks and
less blocking times. However, we continued the experiment with higher work-
load in the same way as the other experiments (that all tasks share resources)
to be able to compare the results with the previous results. We believe that re-

110 Paper C

0%5%10%15%20%25%30%35%40%45%50%55%60%65%70%75%80%85%90%95%100%

3 4 5 6 7 8

BPA SPA Agnostic

Processors
Scheduled Syste
ms

Figure 8.6: Percentage of systems each algorithm schedules, ordered by re-
quired number of processors for 6 tasks per processor

0%5%10%15%20%25%30%35%40%45%50%55%60%65%70%75%80%85%90%95%100%

3 4 5 6 7 8

BPA SPA Agnostic

Processors
Scheduled Syste
ms

Figure 8.7: Percentage of systems each algorithm schedules, ordered by re-
quired number of processors for 9 tasks per processor

alistic systems, even with high workload and many tasks can benefit from our
partitioning algorithm to increase the performance.

The second aspect for comparison of performance of the algorithms is the
processor reduction aspect. To show this, for each algorithm, we ordered the
total schedulable systems in order of the number of required processors. Fig-
ures 8.5, 8.6 and 8.7 illustrates the results for the workload of 3 fully packed
processors and different number of tasks (3, 6 and 9) per processor. For each

8.4 Experimental Evaluation and Comparison of Algorithms 111

0100002000030000400005000060000700008000090000100000

1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-21-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-62 4 6 8

4 processors 5 processors 6 processors

Scheduled Syste
ms

Cs. Len.Cs. Num.Res. Num.
Figure 8.8: BPA. The number of systems scheduled by different number of
processors. Workload: 3 processors, 6 tasks per processor.

0100002000030000400005000060000700008000090000100000

1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-21-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-62 4 6 8

4 processors 5 processors 6 processors

Scheduled Syste
ms

Cs. Len.Cs. Num.Res. Num.
Figure 8.9: SPA. The number of systems scheduled by different number of
processors. Workload: 3 processors, 6 tasks per processor.

algorithm, the schedulable systems by each number of processors are shown
as percentage of the total scheduled systems by that algorithm. As the results
show, for 3 tasks per processor all three algorithms perform almost the same
(Figure 8.5), i.e., each algorithm schedules around 80% of its schedulable sys-
tems by 4 processors, 15% to 18% by 5 processors and less than 3% by 6
processors, etc. The reason is that the tasks are large (the utilization of a pro-
cessor is divided among 3 task), thus the blocking-aware algorithms do not

112 Paper C

0100002000030000400005000060000700008000090000100000

1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-21-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-62 4 6 8

4 processors 5 processors 6 processors

Scheduled Syste
ms

Cs. Len.Cs. Num.Res. Num.
Figure 8.10: Blocking-agnostic. The number of systems scheduled by different
number of processors. Workload: 3 processors, 6 tasks per processor.

have much possibility to increase the performance. However as the number
of tasks per processor is increased (Figures 8.6 and 8.7 for 6 and 9 tasks per
processor respectively), the blocking-aware algorithms, generally, perform bet-
ter in processor reduction aspect. Especially the BPA, performs significantly
better than the the SPA and the blocking-agnostic algorithm.

In the experiments we investigated the processor reduction aspect of the
algorithms against the number of shared resources, the number of critical sec-
tions per task and the length of critical sections. The results show (Figures 8.8,
8.9 and 8.10) as the number of resources are increased the performance of the
BPA is higher than the SPA in processor reduction. Furthermore, given a num-
ber of shared resources, increasing the number of critical sections per task and
the length of them, the BPA performs better than SPA.

8.5 Conclusion
In this paper we have proposed a heuristic blocking-aware algorithm, for iden-
tical unit-capacity multiprocessor systems, which extends a bin-packing algo-
rithm with synchronization parameters. The algorithm allocates a task set onto
the processors of a single-chip multiprocessor (multi-core) with shared mem-
ory. The objective of the algorithm is to decrease blocking times of tasks by
means of allocating the tasks that directly or indirectly share resources onto
appropriate processors. This generally increases schedulability of a task set

8.5 Conclusion 113

and may lead to fewer required processors compared to blocking-agnostic bin-
packing algorithms. We have also presented and implemented an existing sim-
ilar blocking-aware algorithm originally proposed in [5].

Since in practice most systems use fixed priority scheduling protocols, we
have developed our algorithm under MPCP, the only existing synchronization
protocol for multiprocessors (multi-cores) which works under fixed priority
scheduling, although our algorithm can easily be extended to other synchro-
nization protocols such as MSRP. The MPCP is pessimistic and introduces
large amounts of blocking time overheads especially when the global resources
are relatively long and the access ratio to them is high.

Our experimental results confirm that our algorithm mostly performs sig-
nificantly better than the blocking-agnostic as well as the existing heuristic with
respect to the number of schedulable systems and the number of required pro-
cessors. However, given a NP-hard problem, a bin-packing algorithm may not
achieve the optimal solution, i.e, there can exist systems that only one of the
algorithms can schedule. Thus using a combination of heuristic improves the
results with respect to the total number of schedulable systems and processor
reduction.

A future work will be extending our partitioning algorithm to other syn-
chronization protocols, e.g., MSRP and FMLP for partitioned scheduling. An-
other interesting future work is to apply our approach to real systems and study
the performance gained by the algorithm on these systems. In the domain of
multiprocessor scheduling and synchronization our future work also includes
investigating global and hierarchical scheduling protocols and appropriate syn-
chronization protocols.

Acknowledgments
The authors wish to thank Karthik Lakshmanan for fruitful discussions, helping
out in improving the quality of this paper.

Bibliography

[1] T. Baker. A comparison of global and partitioned EDF schedulability test
for multiprocessors. Technical report, 2005.

[2] T. Baker. Stack-based scheduling of real-time processes. Journal of Real-
Time Systems, 3(1):67–99, 1991.

[3] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor scheduling prob-
lems and algorithms. In Handbook on Scheduling Algorithms, Methods,
and Models. Chapman Hall/CRC, Boca, 2004.

[4] U. Devi. Soft real-time scheduling on multiprocessors. In PhD thesis,
available at www.cs.unc.edu/˜anderson/diss/devidiss.pdf, 2006.

[5] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task schedul-
ing, allocation and synchronization on multiprocessors. In proceedings
of 30th IEEE Real-Time Systems Symposium (RTSS’09), pages 469–478,
2009.

[6] F. Nemati, T. Nolte, and M. Behnam. Blocking-aware partitioning
for multiprocessors. Technical report, Mälardalen Real-Time research
Centre (MRTC), Mälardalen University, March 2010. Available at
http://www.mrtc.mdh.se/publications/2137.pdf.

[7] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheri-
tance Approach. Kluwer Academic Publishers, 1991.

[8] D. de Niz and R. Rajkumar. Partitioning bin-packing algorithms for dis-
tributed real-time systems. Journal of Embedded Systems, 2(3-4):196–
208, 2006.

115

116 Bibliography

[9] Y. Liu, X. Zhang, H. Li, and D. Qian. Allocating tasks in multi-core
processor based parallel systems. In proceedings of Network and Paral-
lel Computing Workshops, in conjunction with IFIP’07, pages 748–753,
2007.

[10] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of
sporadic task systems. In proceedings of 26th IEEE Real-Time Systems
Symposium (RTSS’05), pages 321–329, 2005.

[11] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory utilization
of real-time task sets in single and multi-processor systems-on-a-chip.
In proceedings of 22nd IEEE Real-Time Systems Symposium (RTSS’01),
pages 73–83, 2001.

[12] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca.
A comparison of MPCP and MSRP when sharing resources in the janus
multiple processor on a chip platform. In proceedings of 9th IEEE Real-
Time And Embedded Technology Application Symposium (RTAS’03),
pages 189–198, 2003.

[13] J. M. López, J. L. Dı́az, and D. F. Garcı́a. Utilization bounds for EDF
scheduling on real-time multiprocessor systems. Journal of Real-Time
Systems, 28(1):39–68, 2004.

[14] U. Devi, H. Leontyev, and J. Anderson. Efficient synchronization under
global EDF scheduling on multiprocessors. In proceedings of 18th IEEE
Euromicro Conference on Real-time Systems (ECRTS’06), pages 75–84,
2006.

[15] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In proceedings of 13th
IEEE Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA’07), pages 47–56, 2007.

[16] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson.
Synchronization on multiprocessors: To block or not to block, to suspend
or spin? In proceedings of 14th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS’08), pages 342–353, 2008.

[17] A. Easwaran and B. Andersson. Resource sharing in global fixed-priority
preemptive multiprocessor scheduling. In proceedings of 30th IEEE Real-
Time Systems Symposium (RTSS’09), pages 377–386, 2009.

[18] F. Nemati, M. Behnam, and T. Nolte. Efficiently migrating real-time sys-
tems to multi-cores. In proceedings of 14th IEEE Conference on Emerg-
ing Techonologies and Factory (ETFA’09), 2009.

[19] F. Nemati, M. Behnam, and T. Nolte. Multiprocessor synchronization and
hierarchical scheduling. In proceedings of 38th International Conference
on Parallel Processing (ICPP’09) Workshops, pages 58–64, 2009.

[20] A. Burns. Preemptive priority based scheduling: An appropriate engi-
neering approach. In Principles of Real-Time Systems, pages 225–248.
Prentice Hall, 1994.

Chapter 9

Paper D:
A Flexible Tool for
Evaluating Scheduling,
Synchronization and
Partitioning Algorithms on
Multiprocessors

Farhang Nemati and Thomas Nolte
In submission

119

Abstract

Multi-core platforms seem to be the way towards increasing performance of
processors. Single-chip multiprocessors (multi-cores) are today the dominat-
ing technology for desktop computing. As the multi-cores are becoming the
defacto processors, the need for new scheduling and resource sharing protocols
has arisen. There are two major types of scheduling under multiprocessor/multi-
core platforms. Global scheduling, under which migration of tasks among
processors is allowed, and partitioned scheduling under which tasks are al-
located onto processors and task migration is not allowed. The partitioned
scheduling protocols suffer from the problem of partitioning tasks among pro-
cessors/cores, which is a bin-packing problem. Heuristic algorithms have been
developed for partitioning a task set on multiprocessor platforms. However,
taking such technology to an industrial setting, it needs to be evaluated such
that appropriate scheduling, synchronization and partitioning algorithms are
selected.

In this paper we present our work on a tool for investigation and evalua-
tion of different approaches to scheduling, synchronization and partitioning on
multi-core platforms. Our tool allows for comparison of different approaches
with respect to a number of parameters such as number of schedulable systems
and number of processors required for scheduling. The output of the tool in-
cludes a set of information and graphs to facilitate evaluation and comparison
of different approaches.

9.1 Introduction 121

9.1 Introduction

The multiprocessor architectures are getting an increasing interest as the multi-
cores offer higher performance and are becoming defacto processors in prac-
tice. This arises the need for new methods to take advantage of the multi-core
platforms. A multi-core processor is a combination of two or more indepen-
dent processors (cores) on a single chip, also called single-chip multiproces-
sors. The different cores are connected to a single shared memory via a shared
bus. The cores typically have independent L1 caches and share an on-chip L2
cache. However, previously well-known and verified scheduling and synchro-
nization protocols with an assumption of uniprocessors can not work properly
on multi-cores, especially with the presence of shared resources. The indus-
try has already begun to migrate towards multi-cores, although the existing
scheduling and synchronization protocols are not yet mature enough to take
advantage of the performance offered by multi-cores.

There have been several scheduling and synchronization protocols devel-
oped in the domain of multiprocessors. Mainly, two approaches for scheduling
real-time systems on multiprocessors exist; global and partitioned scheduling
[1, 2, 3, 4]. Under global scheduling, e.g., Global Earliest Deadline First (G-
EDF), tasks are scheduled by a single scheduler and each task can be executed
on any processor. A single global queue is used for storing jobs and a job can
be preempted on a processor and resumed on another processor, i.e., migration
of tasks among processors is permitted. Under a partitioned scheduling, tasks
are statically assigned to processors and tasks within each processor are sched-
uled by a uniprocessor scheduling protocol, e.g., Rate Monotonic (RM) and
EDF. Each processor is associated with a separate ready queue for scheduling
task jobs.

Partitioned scheduling protocols have been used more often and are sup-
ported (with fixed priority scheduling) widely by commercial real-time operat-
ing systems [5], because of their simplicity, efficiency and predictability. Be-
sides, the well studied uniprocessor scheduling and synchronization methods
can be reused for multiprocessors with less changes (or no changes). How-
ever, partitioning (allocating tasks to processors) is known to be a bin-packing
problem which is a NP-hard problem in the strong sense; hence finding an op-
timal solution in polynomial time is not realistic in the general case. Thus,
to take advantage of performance offered by multi-cores, scheduling protocols
should be coordinated with appropriate partitioning algorithms. Heuristic ap-
proaches and sufficient feasibility tests for bin-packing algorithms have been
developed to find a near-optimal partitioning [1, 3]. However, the schedul-

122 Paper D

ing protocols and existing partitioning algorithms for multiprocessors (multi-
cores) mostly assume independent tasks while in real applications, tasks often
share resources.

We have proposed a blocking-aware partitioning algorithm [6, 7]. The as-
sumption include presence of mutually exclusive shared resources. The heuris-
tic partitions a system (task set) on an identical shared memory single-chip
multiprocessor (multi-core) platform. In the context of this paper the blocking-
aware algorithm refers to an algorithm that attempts to decrease blocking over-
heads by assigning tasks to appropriate processors (partitions). This conse-
quently increases the schedulability of the system and may reduce the num-
ber of processors. In contrast, a blocking-agnostic algorithm refers to a bin-
packing algorithm that does not consider blocking parameters and does not
attempt to decrease the blocking overhead, although blocking times are in-
cluded in the schedulability test. Our blocking-aware algorithm identifies task
constraints, e.g., dependencies between tasks, timing attributes, and resource
sharing, and extends the best-fit decreasing (BFD) bin-packing algorithm with
blocking time parameters. A similar heuristic has been proposed in [5].

As the scheduling and synchronization protocols together with partition-
ing algorithms are being developed, the industry needs to evaluate the different
methods to choose appropriate methods and apply them in their applications.
This arises the need for development of tools to facilitate investigation and
evaluation of different approaches and compare them to each other accord-
ing to different parameters. Hence, in this paper we present a tool which we
have developed for evaluation of different scheduling, synchronization proto-
cols coordinated with different partitioning algorithms. The output of the tool
includes a set of information and graphs to facilitate evaluation and comparison
of different approaches. We have implemented our blocking-aware partitioning
algorithm together with the algorithm proposed in [5] and added them to the
tool. The tool is modular making it possible to easily add any new scheduling,
synchronization and partitioning algorithm. However, in this paper the focus
of the tool has been directed to partitioned scheduling and synchronization ap-
proaches as well as partitioning heuristics while extending the tool to global
scheduling methods remains as a future work.

The rest of the paper is as follows: we present the task and platform model
in Section 9.2. We briefly explain our partitioning algorithms together with
the existing algorithm in Section 9.3. In Section 9.4 we present the tool. In
Section 9.5 we present some examples of the outputs of the tool in which we
have compared different partitioning algorithms.

9.1 Introduction 123

9.1.1 Related Work
A study of bin-packing algorithms for designing distributed real-time systems
is presented in [8]. The method partitions software into modules to be allocated
on hardware nodes. In their approach they use two graphs; a graph which
models software modules and a graph that represents the hardware architec-
ture. The authors extend the bin-packing algorithm with heuristics to minimize
the number of bins (processors) needed and the bandwidth required for the
communication between nodes. However, their partitioning method assumes
independent tasks.

Liu et al. [9] present a heuristic algorithm for allocating tasks in multi-
core-based massively parallel systems. Their algorithm has two rounds; in the
first round processes (groups of threads - partitions in this paper) are assigned
to processing nodes, and the second round allocates tasks in a process to the
cores of a processor. However, the algorithm does not consider synchronization
between tasks.

Baruah and Fisher have presented a bin-packing partitioning algorithm
(first-fit decreasing (FFD) algorithm) in [10] for a set of sporadic tasks on mul-
tiprocessors. The tasks are indexed in non-decreasing order based on their
relative deadlines and the algorithm assigns the tasks to the processors in first-
fit order. The algorithm assigns each task τi to the first processor, Pk for which
both of following conditions, under the Earliest Deadline First (EDF) schedul-
ing, hold:

Di −
∑

τj∈Pk

DBF ∗(τj , Di) ≥ Ci

and
1−

∑

τj∈Pk

uj ≥ ui

where Ci and Di specify Worst Case Execution Time (WCET) and deadline of
task τi respectively, ui = Ci

Ti
, and

DBF ∗(τi, t) =
{

0 if t < Di;
Ci + ui(t−Di) otherwise.

The algorithm, however, assumes independent tasks.
In the work presented by Lakshmanan et al. in [5] they investigate and

analyze two alternatives of execution control policies (suspend-based and spin-
based remote blocking) under multiprocessor Multiprocessor Priority Ceiling
Protocol (MPCP) [11]. They have developed a blocking-aware task allocation

124 Paper D

algorithm (an extension to BFD) and evaluated it under both execution control
policies.

In their partitioning algorithm, the tasks that directly or indirectly share re-
sources are put into what they call bundles (in this paper we call them macro-
tasks) and each bundle is tried to be allocated onto a processor. The bundles
that can not fit into any existing processors are ordered by their cost, which
is the blocking overhead that they introduce into the system. Then the bun-
dle with minimum cost is broken and the algorithm is run from the beginning.
However, their algorithm does not consider blocking parameters when it allo-
cates the current task to a processor, but only its size (utilization). Furthermore,
no relationship (e.g., as a cost based on blocking parameters) among individual
tasks within a bundle is considered which could help to allocate tasks from a
broken bundle to appropriate processors to decrease the blocking times. How-
ever, according to our experimental results performed by the our tool, their
heuristic performs slightly better than blocking-agnostic algorithm, and our al-
gorithm performs significantly better than both.

In the context of multiprocessor synchronization, the first protocol was
MPCP presented by Rajkumar in [11], which extends PCP [12] to multipro-
cessors hence allowing for synchronization of tasks sharing mutually exclusive
resources using partitioned Fixed Priority Scheduling (FPS) protocols. Our
partitioning algorithm attempts to decrease blocking times under MPCP and
consequently decrease worst case response times which in turn may reduce the
number of needed processors. Gai et al. [13, 14] present MSRP (Multiproces-
sor SRP), which is a P-EDF (Partitioned EDF) based synchronization protocol
for multiprocessors. The shared resources are classified as either (i) local re-
sources that are shared among tasks assigned to the same processor, or (ii)
global resources that are shared by tasks assigned to different processors. In
MSRP, tasks synchronize local resources using SRP [2], and access to global
resources is guaranteed a bounded blocking time. Lopez et al. [15] present
an implementation of SRP under P-EDF. Devi et al. [16] present a synchro-
nization technique under G-EDF. The work is restricted to synchronization of
non-nested accesses to short and simple objects, e.g., stacks, linked lists, and
queues. In addition, the main focus of the method is on soft real-time systems.

Block et al. [17] present FMLP (Flexible Multiprocessor Locking Proto-
col), which is the first synchronization protocol for multiprocessors that can be
applied to both partitioned and global scheduling algorithms, i.e., P-EDF and
G-EDF. An implementation of FMLP has been described in [18]. However,

9.2 Task and Platform Model 125

although in a longer version of [17]1, the blocking times have been calculated,
but to our knowledge there is no schedulability test for FMLP.

Recently, a synchronization protocol under fixed priority scheduling, has
been proposed by Easwaran and Andersson in [19], but they focus on a global
scheduling approach.

9.2 Task and Platform Model

The tool is capable of performing evaluations by both fixed priority and dy-
namic scheduling scheduling protocols. The tasks can also share resources.
Thus the task model is assumed as a task set that consists of n sporadic tasks,
τi(Ti, Ci, ρi, {ci,p,q}) and τi(Ti, Ci, {ci,p,q}) for dynamic and fixed priority
scheduling protocols respectively, where Ti is the minimum inter-arrival time
between two successive jobs of task τi with worst-case execution time Ci and
ρi (in fixed priority scheduling task model) as its priority. The tasks share a
set of resources, R = {Rq} which are protected using semaphores. The set of
critical sections, in which task τi requests resources in R is denoted by {ci,p,q},
where ci,p,q indicates the maximum execution time of the pth critical section
of task τi in which the task locks resource Rq ∈ R. Critical sections of tasks
should be sequential or properly nested. The deadline of each job is equal to Ti.
A job of task τi, is specified by Ji. The utilization factor of task τi is denoted
by ui where ui = Ci/Ti.

The tool also assumes that the multiprocessor (multi-core) platform is com-
posed of identical, unit-capacity processors (cores) with shared memory. The
task set is partitioned into partitions {P1, . . . , Pm}, and each partition is al-
located onto one processor (core), thus m represent the minimum number of
required processors.

9.3 Included Partitioning Algorithms

In this section we briefly present the partitioning algorithms we have developed
and added to the tool. Please observe that the tool is flexible and any new
partitioning algorithm can be added to the tool easily.

We have implemented and added three partitioning algorithms: (i) a
blocking-aware algorithm which we proposed in [7], (ii) a similar blocking-

1Available at http://www.cs.unc.edu/˜anderson/papers/rtcsa07along.pdf

126 Paper D

aware algorithm proposed in [5] and (iii) a blocking-agnostic algorithm. We
have explained these algorithms in details in [7].

Our blocking-aware algorithm is an extension to the BFD algorithm. In
a blocking-agnostic BFD algorithm, bins (processors) are ordered in non-
increasing order of their utilization and tasks are ordered in non-increasing
order of their size (utilization). The algorithm attempts to allocate the task
from the top of the ordered task set onto the first processor that fits it (i.e.,
the first processor on which the task can be allocated while all processors are
schedulable), beginning from the top of the ordered processor list. If none
of the processors can fit the task, a new processor is added to the processor
list. At each step the schedulability of all processors should be tested, because
allocating a task to a processor can increase the remote blocking time of tasks
previously allocated to other processors and may make the other processors
unschedulable. This means, it is possible that some of the previous processors
become unschedulable even if a task is allocated to a new processor, which
makes the algorithm fail.

Our algorithm attempts to decrease the blocking times of tasks by partition-
ing a task set on processors based on heuristics. This generally increases the
schedulability of a task set which may reduce the number of partitions (pro-
cessors). The algorithm attempts to allocate the tasks that directly or indirectly
share resources onto the same processor. Tasks that directly or indirectly share
resources are called macrotasks, e.g., if tasks τi and τj share resource Rp and
tasks τj and τk share resource Rq , all three tasks belong to the same macrotask.

The algorithm performs partitioning of a task set in two rounds and the re-
sult will be the output of the round with better partitioning results. Each round
allocates tasks to the processors in a different strategy. When a bin-packing
algorithm allocates an object (task) to a bin (processor), it usually allocates the
object in a bin that fits it better, and it does not consider the unallocated ob-
jects that will be allocated after the current object. The rational behind the two
rounds is that the heuristic tries to consider both past and future by looking at
tasks allocated in the past and those that are not allocated yet. In the first round
the algorithm considers the tasks that are not allocated to any processor yet;
and tries to take as many as possible of the best related tasks (based on remote
blocking parameters) with the current task. On the other hand, in the second
round it considers the already allocated tasks and tries to allocate the current
task onto the processor that contains best related tasks to the current task. In
our tool, for more precise schedulability analysis, it always performs response
time analysis [20] to check schedulability test of a task set.

We have also implemented and added the partitioning algorithm proposed

9.4 The Tool 127

in [5] which is similar to our blocking-aware algorithm. Their algorithm, simi-
larly to our algorithm, attempts to group tasks in macrotasks and allocate each
macrotask on a processor. The macrotasks that can not fit onto processors are
ordered in the order of the cost of breaking them. The cost of breaking a macro-
task is defined based on the estimated cost (blocking overhead) introduced into
the tasks by transforming a local resource into a global resource (i.e., the tasks
sharing the resource are allocated to different processors). The macrotask with
minimum breaking cost is picked and is broken in two pieces such that the size
of one piece is as close as the largest utilization available among processors.
If the fitting is still not possible a new processor is added and the whole algo-
rithm is repeated again. However, their algorithm does not consider blocking
parameters when it allocates a task from a broken macrotask to a processor,
but only its utilization, i.e. the tasks are ordered in order of their utilization
only. On the other hand, our algorithm assigns a weight which besides the
utilization includes the blocking terms as well. Besides, in our heuristic, we
have defined an attraction function, which attracts the most attracted tasks to
the picked task from its broken macrotask, and attempts to allocate them on the
same processor.

9.4 The Tool
In this section we present our evaluation and partitioning tool.

9.4.1 The Structure

The tool has been developed in an object-oriented manner and every concept
has been treated as an object, e.g., tasks, critical sections, resources, processors,
etc.

We aimed to make the tool flexible to be able to easily add any partitioning,
scheduling and synchronization (lock-based) algorithm. Thus, we have sepa-
rated the development in three major parts (packages) as shown in Figure 9.1;
Scheduling Analysis package, Partitioning Algorithms package, and Task Gen-
eration package.

When a partitioning algorithm attempts to assign a task to a processor it
should test the schedulability of the all processors, hence it uses the classes in
the scheduling analysis to perform the test. As the schedulability analysis is
different depending on different scheduling or synchronization protocols (e.g.,
different blocking time terms), several classes are provided in the scheduling

128 Paper D

Scheduling Analysis

Partitioning Algorithms Task Generation

Figure 9.1: The three major packages

analysis package to facilitate the schedulability test in an object-oriented man-
ner. This makes the package reusable and extendable as the new scheduling
and synchronization protocols are added.

The Scheduling Analysis package

This package contains classes associated with scheduling protocols, e.g., RM,
as well as synchronization protocols, e.g., MPCP. Besides classes used for
schedulability test for each scheduling protocol, the package contains classes
to facilitate calculation of blocking times of tasks to be used in the schedula-
bility analysis. Under a multiprocessor synchronization protocol, any task, τi,
may face mainly two types of blocking times; (i) the local blocking times by
interference from the lower priority tasks assigned to the same processor as
τi’s processor, (ii) the remote blocking times introduced by the tasks (with any
priority) assigned to different processors than of τi’s processor.

To easily and in a modular manner calculate the local and remote blocking
times of each task, in this package a task class includes a local processor class
and a set of remote processors, i.e., the local processor is the processor that
the task is assigned to and the rest of processors are contained in the remote
processors set. Under partitioned scheduling approaches the total blocking
time of a task is the summation of the local and the global blocking terms.

9.4 The Tool 129

Depending on the used synchronization protocol, the local and remote blocking
terms of the task on each processor may be different, e.g., under MPCP the
total blocking time (Bi) of task τi, consists of five blocking terms, of which
one is local and four different remote blocking terms [11]. Figure 9.2 shows
the local processor and the remote processors associated with the task class.
This structure facilitates calculating each term of the blocking time of a task
from each processor, i.e., the local blocking terms introduced from the local
tasks (tasks allocated on the same processor as τi’s processor) are calculated
using local processor class and the remote blocking terms from remote tasks
(tasks allocated on a different processor than of τi’s processor) are calculated
by the remote processors. Each scheduling and synchronization protocol uses
these classes differently as they may have different blocking time terms.Task+Bi()Local Processor+LocalBlocking() Remote Processor Set+TotalGlobalBlocking()Remote Processor+GlobalBlocking()

Figure 9.2: The local and remote blocking times calculation

For more precise schedulability test in scheduling protocols, in this package
response times analysis is performed by calculating the worst case response
time of each task. Thus, another output of the package is the worst case re-

130 Paper D

sponse times of the tasks within a task set.

The Partitioning Algorithms package

This package is used to partition a task set to be allocated onto a multiprocessor
platform. Any partitioning algorithm can easily be plugged into the package.
The only requirement of the a new algorithm is that it has to have the task
set, the target scheduling and synchronization protocols as inputs. The output
of the algorithm will be a set processors each of which contains the allocated
tasks. Each allocated task contains its calculated worst case response time.

The purpose of a partitioning may be different. The goal can be to plug in
a partitioning heuristic to reduce the required number of processors. On the
other hand, the goal of a partitioning algorithm may be to distribute the tasks
fairly onto processors to balance the utilization of processors, thus, the output
of each algorithm include the utilization of each processor as well.

We have developed a blocking-aware partitioning heuristic (Section 9.3).
We have implemented our algorithm together with a similar blocking-aware
algorithm and plugged into the partitioning algorithms package. The objective
of those algorithms is to reduce the blocking times of tasks by co-allocating
the tasks sharing the same resources as far as possible. Furthermore, we have
implemented a BFD bin-packing algorithm (blocking-agnostic algorithm) and
inserted this algorithm into the package.

Any partitioning algorithm needs to test schedulability of each processor
each time it allocates a task or a group of tasks on a processor. The algorithms,
within this package use the schedulability analysis provided in the scheduling
analysis package. This separates the partitioning algorithms from the schedu-
lability analysis making it easy to develop any new partitioning algorithms and
scheduling protocols independently and insert them into the tool.

The Task Generation package

This package is used for task set generation in two different ways. The tool can
be used for two different purposes; (i) the schedulability analysis and partition-
ing of a task set defined by a user, or (ii) evaluation and comparison of different
scheduling, synchronization and partitioning algorithms according to a number
of randomly generated task sets. This package provides two different ways of
task set generation. One way is to provide the user to enter the tasks, critical
sections, resources, and relationships between tasks and resources. In this case
the tool partitions the task set using the selected partitioning algorithm and the

9.4 The Tool 131

selected schedulability test. The second way is to generate a number of task
sets according to several given parameters (Figure 9.3). In this case the tool
uses the generated task sets to perform evaluation and comparison of different
scheduling, synchronization and partitioning algorithms.

As shown in Figure 9.3, for the random task set generation two groups of
parameters are provided. The first group includes the desired number of task
sets, total workload, the number of tasks per processor and maximum execu-
tion time of each task (maximum WCET). The minimum WCET is limited by
the maximum number and length of critical sections per each task, e.g., with
maximum number of critical section set to 5 and maximum length of any crit-
ical section set to 6 the minimum execution time of any task will be 30. The
second group of parameters for the task sets are resource sharing parameters,
i.e., the number of resources shared among tasks of each task set, minimum
number, maximum number of critical sections per each task, minimum length
and maximum length of each critical section. The random task generation pro-
vides the possibility of generating task sets by combination of the parameters
which can be used to evaluate algorithms.

The random task generation process performed by this package is as follows.

The total workload presents the number of fully utilized processors (e.g.,
Total Utilization = 300 means 3 fully utilized processors). The utilization of
each of the processors (utilization = 100%) is randomly divided among the
given number of tasks per processor, e.g., for 3 tasks per processor a possible
utilization assignment of the tasks of a processor can be 25%, 45% and 30%
respectively. Usually for generating task sets, utilization and periods are ran-
domly assigned to tasks and worst case execution times of tasks are calculated
based on them. However, in our random task set generation package, the worst
case execution times (WCET) of tasks are randomly assigned and the period of
each task is calculated based on its utilization and WCET. The reason is that we
had to restrict that the WCET of a task not to be less than the maximum length
of its critical sections restricted by the maximum number of critical sections
per each tasks and the maximum length of each critical section.

The number of critical sections for each task is randomly chosen from the
range between the defined minimum and maximum number of critical sections.
The length of each critical section is chosen the same way. For each critical
section the accessed resource is randomly chosen from the defined resources,
e.g, given the number of resources = 2 (R1 and R2), the resource accessed by
any critical section is randomly chosen from {R1, R2}.

132 Paper D

Figure 9.3: The randon task generation

9.5 Example: An Evaluation and Comparison of
Partitioning Algorithms

In this section we present an experimental example which we have performed
by our tool. In this example we have compared the outputs of the two blocking-
aware heuristics as well as the blocking-agnostic bin-packing algorithm. To
ease referring to our blocking-aware algorithm and the similar algorithm pro-
posed in [5] in this example we refer them as BPA and SPA respectively. The
scheduling and synchronization protocols under which the algorithms were
evaluated were the RM and the MPCP respectively.

For a number of systems (task sets), we have compared the performance of
the algorithms in two aspects; (i) Given a number of systems, what is the total
number of systems that each of the algorithms can schedule, (ii) what is the

9.5 Example: An Evaluation and Comparison of Partitioning Algorithms
133

processor reduction aspect of the two algorithms.

0100002000030000400005000060000700008000090000100000

1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-21-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-62 4 6 8

BPA SPA Agnostic

Cs. Len.Cs. Num.Res. Num.
Sys. Num.

(a) Workload: 3 processors, 3 tasks per processor

0100002000030000400005000060000700008000090000100000

1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-2 1-2 3-4 5-6 1-2 3-4 1-21-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-6 1-2 3-4 5-62 4 6 8

BPA SPA Agnostic

Cs. Len.Cs. Num.Res. Num.
Sys. Num.

(b) Workload: 3 processors, 6 tasks per processor

Figure 9.4: Output the tool for performance of the algorithms with respect to
task sets each algorithm schedules.

134 Paper D

9.5.1 Task Set Generation
Using the random task set generation, we generated systems (task sets) for
different workloads. Since we have limited the maximum number of critical
sections to 6 and the maximum length of any critical section to 6 time units,
hence the execution time of each task should be greater than 36 time units. The
maximum execution time of any task was defined as 150 time units.

We ran the evaluation tool with respect to different configurations with the
input parameters as follows.

• Workload (3, 4, 6, or 8 fully utilized processors).

• The number of tasks per processor (3, 6 or 9 tasks per processor).

• The number of resources (2, 4 or 6).

• The range of the number of critical sections per task (1 to 2, 3 to 4 or 5
to 6 critical sections per task).

• The range of length of critical sections (1 to 2, 3 to 4, or 5 to 6).

For each configuration, we chose the number of systems to be 100.000, and
combining the parameters of configurations (432 different configurations), the
total number of systems generated for the experiment sums up to 43.200.000.

With the generated systems we were able to evaluate the partitioning al-
gorithms with respect to different factors, i.e., various workloads (number of
fully utilized processors), number of tasks per processor, number of shared
resources, number of critical sections per task, and length of critical sections.

Figure 9.4 shows the examples of the output regarding the number of schedu-
lable systems by each algorithm, i.e., the first aspect of comparison of the par-
titioning algorithms. The vertical axis shows the total number of systems that
the algorithms could schedule successfully. The horizontal axis shows three
factors in three different lines; the bottom line shows the number of shared
resources within systems (Res. Num.), the second line shows the number of
critical sections per task (Cs. Num.), and the top line represents the length of
critical sections within each task (Cs. Len.), e.g., Res. Num.=4, Cs. Num.=1-
2, and Cs. Len.=1-2 represents the systems that share 4 resources, the number
of critical sections per each task are between 1 and 2, and the length of these
critical sections are between 1 and 2 time units.

The second aspect for comparison of performance of the algorithms is the
processor reduction aspect. The examples of the output of the tool for illustrat-
ing this aspect are shown in Figure 9.5. For each algorithm, the total number

9.5 Example: An Evaluation and Comparison of Partitioning Algorithms
135

050000100000150000200000250000300000350000400000450000500000

3 4 5 6 7 8

BPA SPA Agnostic

Processors
Scheduled Syste
ms

(a) 6 tasks per processor

0%5%10%15%20%25%30%35%40%45%50%55%60%65%70%75%80%85%90%95%100%

3 4 5 6 7 8

BPA SPA Agnostic

Processors
Scheduled Syste
ms

(b) 9 tasks per processor (as percentage of the total scheduled systems)

Figure 9.5: Task sets each algorithm schedules, ordered by required number of
processors. Workload: 3 processors.

of schedulable systems are ordered in order of the number of required proces-
sors. The schedulable systems of an algorithm with each number of processors
can also be illustrated as percentage of the total scheduled systems.

136 Paper D

9.6 Conclusion
In this paper we have presented our work on a tool that we have developed for
evaluation of different scheduling and synchronization protocols coordinated
with different partitioning algorithms. The output of the tool includes a set
of information and graphs to facilitate evaluation and comparison of different
approaches.

Moreover, we briefly presented our blocking-aware partitioning algorithm
proposed in [7] together with a similar algorithm proposed in [5]. We have im-
plemented the two approaches together with an usual bin-packing (blocking-
agnostic) algorithm and added all three approaches to the tool. The tool has
the possibility to evaluate and compare different multiprocessor scheduling,
synchronization and partitioning algorithms. The tool has been developed in
an object-oriented manner making the tool flexible. Any new scheduling, syn-
chronization or partitioning algorithm can be developed and added to the tool
easily. We have presented a few examples of the illustrated outputs of the tool
for evaluation and comparison of the partitioning algorithms included in the
tool.

The focus of the tool is currently multiprocessor partitioned scheduling
protocols and extending the tool to global scheduling and synchronization pro-
tocols remains as a future work. Another plan for future work is to extend
the tool to simulate the execution of a task set on a multi-core platform and
visualize the simulated timing behavior of the task set. In the domain of mul-
tiprocessor scheduling and synchronization we will also work on investigating
global and hierarchical scheduling protocols and appropriate synchronization
protocols.

Bibliography

[1] T. Baker. A comparison of global and partitioned EDF schedulability test
for multiprocessors. Technical report, 2005.

[2] T. Baker. Stack-based scheduling of real-time processes. Journal of Real-
Time Systems, 3(1):67–99, 1991.

[3] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and
S. Baruah. A categorization of real-time multiprocessor scheduling prob-
lems and algorithms. In Handbook on Scheduling Algorithms, Methods,
and Models. Chapman Hall/CRC, Boca, 2004.

[4] U. Devi. Soft real-time scheduling on multiprocessors. In PhD thesis,
available at www.cs.unc.edu/˜anderson/diss/devidiss.pdf, 2006.

[5] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task schedul-
ing, allocation and synchronization on multiprocessors. In proceedings
of 30th IEEE Real-Time Systems Symposium (RTSS’09), pages 469–478,
2009.

[6] F. Nemati, T. Nolte, and M. Behnam. Blocking-aware partitioning
for multiprocessors. Technical report, Mälardalen Real-Time research
Centre (MRTC), Mälardalen University, March 2010. Available at
http://www.mrtc.mdh.se/publications/2137.pdf.

[7] F. Nemati, T. Nolte, and M. Behnam. Partitioning real-time systems on
multiprocessors with shared resources. In In submition, 2010.

[8] D. de Niz and R. Rajkumar. Partitioning bin-packing algorithms for dis-
tributed real-time systems. Journal of Embedded Systems, 2(3-4):196–
208, 2006.

137

138 Bibliography

[9] Y. Liu, X. Zhang, H. Li, and D. Qian. Allocating tasks in multi-core
processor based parallel systems. In proceedings of Network and Paral-
lel Computing Workshops, in conjunction with IFIP’07, pages 748–753,
2007.

[10] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of
sporadic task systems. In proceedings of 26th IEEE Real-Time Systems
Symposium (RTSS’05), pages 321–329, 2005.

[11] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheri-
tance Approach. Kluwer Academic Publishers, 1991.

[12] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. Journal of IEEE Transactions
on Computers, 39(9):1175–1185, 1990.

[13] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory utilization
of real-time task sets in single and multi-processor systems-on-a-chip.
In proceedings of 22nd IEEE Real-Time Systems Symposium (RTSS’01),
pages 73–83, 2001.

[14] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca.
A comparison of MPCP and MSRP when sharing resources in the janus
multiple processor on a chip platform. In proceedings of 9th IEEE Real-
Time And Embedded Technology Application Symposium (RTAS’03),
pages 189–198, 2003.

[15] J. M. López, J. L. Dı́az, and D. F. Garcı́a. Utilization bounds for EDF
scheduling on real-time multiprocessor systems. Journal of Real-Time
Systems, 28(1):39–68, 2004.

[16] U. Devi, H. Leontyev, and J. Anderson. Efficient synchronization under
global EDF scheduling on multiprocessors. In proceedings of 18th IEEE
Euromicro Conference on Real-time Systems (ECRTS’06), pages 75–84,
2006.

[17] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In proceedings of 13th
IEEE Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA’07), pages 47–56, 2007.

[18] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson.
Synchronization on multiprocessors: To block or not to block, to suspend
or spin? In proceedings of 14th IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS’08), pages 342–353, 2008.

[19] A. Easwaran and B. Andersson. Resource sharing in global fixed-priority
preemptive multiprocessor scheduling. In proceedings of 30th IEEE Real-
Time Systems Symposium (RTSS’09), pages 377–386, 2009.

[20] A. Burns. Preemptive priority based scheduling: An appropriate engi-
neering approach. In Principles of Real-Time Systems, pages 225–248.
Prentice Hall, 1994.

