
Findings from introducing state-of-the-art
real-time techniques in vehicle industry

Christer Norström, Mikael Gustafsson*, Kristian Sandström, Jukka Mäki-Turja and Nils-Erik Bånkestad**
Mälardalen Real-Time Research Centre, Department of Computer Engineering

Mälardalen University, Västerås, Sweden
*TietoEnator ArosTech AB, Västerås, Sweden

** Volvo Construction Equipment Components AB, Eskilstuna, Sweden
cen@mdh.se

Abstract
The use of state-of-the-art real-time techniques in
industry is still rare. The reason for this is three-folded:
(1) the lack of commercially available tools, (2) the lack
of methodologies that considers real-time throughout the
complete development process, and (3) the lack of
competence in real-time theory among industrial
practitioners.

In this paper we present a case study of introducing state-
of-the-art real-time techniques in industry. The case
study was done as a collaboration between Mälardalen
University and the industrial partners Volvo Construction
Equipment AB (VCE) and TietoEnator ArosTech. VCE
develops computer control systems for construction
equipment vehicles, such as wheel loaders, graders, and
articulated haulers. TietoEnator ArosTech is a firm of
consultants with expertise competence in the area of
embedded real-time systems.

We will present both the used methodology and the
findings from introducing this methodology in an
industrial project. The methodology emphasis is on
introducing timing requirements early in the design of a
system and it relies on the use of a well defined design
language. We will present our findings categorized into
methodological aspects, technology transfer, and
technical aspects. The main result reported can be
summarized as “people, not paper, transfer technology”.

1 Introduction
Development of complex embedded systems is a growing
area, i.e., we see more and more applications that are
dependent on the use of embedded computers. Examples
include highly complex systems, such as medical control
equipment, mobile phones, and vehicle control systems.

Most of the embedded systems can also be characterised
as real-time systems, which means that their correct
function is dependent on both correct functional results
and that the results are produced at the correct time.

The increased complexity of these systems leads to
increasing demands on issues such as requirements

engineering, high level design, early error detection,
productivity, integration, verification, and maintenance.
This calls for methods and models that enable a
controlled and structured way of working during the
complete life cycle of the system [Kal88].

There exist many design methods for real-time systems
like, UML-RT and HRT-HOOD. However, these
methods often concentrate on the logical and structural
decomposition rather than focusing on the temporal
behaviour. The temporal behaviour is often added on top.
This is not so strange since these methods are based on
general software development methods that are not
focusing on embedded real-time systems. Furthermore,
these methods have no, or limited, support for high level
timing analysis and do not provide support for automatic
mapping from the design to a resource structure. This
often leads to a semantic gap between the design and the
implementation, that is, the code and design description
may not describe the same version of the system. Thus,
classic problems during integration may occur, such as
erroneous synchronisation and communication interfaces
and that the system is hard to maintain.

Therefore, we have developed a model and method
focused on the real-time properties of a system. The key
property of the model and method is specification of a
high level design that includes the specification of
temporal constraints, communication and
synchronisation. Furthermore, the model and method
supports formal verification of these properties, early
system integration, and efficient testing.

The aim of this paper is to briefly present this model and
method, as well as our findings from introducing and
using them in an industrial project. This project was
performed as a cooperation between Mälardalen
University, Volvo Construction Equipment AB (VCE)
and TietoEnator ArosTech.

VCE has had onboard electronics since 1981 for specific
functionality. Currently more and more functionality is
provided by the computer control system. This has led to
an increased number of people involved in the
development of each product, and thus the need for better
development methods and tools.

This was the motivation for the university to participate
in the development of a new computer control system for
the next generation wheel loaders. Since a complete new
architecture was to be developed we were given the
opportunity to introduce new technologies and methods.

Many functions are similar in different vehicles and
therefore it would be a desired property to be able to
reuse existing solutions. This was the starting point for
defining a new architecture that could be used for all
types of future construction equipment. Hence, the result
of this project will act as a basis for extracting a product
line architecture [Bos00]. However, the latter step is
outside the scope of this paper.

Thus, this paper is focused on presenting our findings
from introducing state of the art real-time technology in
an industrial project. The validity of these findings is
based on a single, but extensive, case study of one
industrial project. Some of the findings are strengthened
by similar results in other industrial projects that also
have utilized state of the art real-time technology [Cas98,
Mel98].

The outline of the paper is as follows: Section 2 presents
briefly the characterization of the application. The design
language used is described in Section 3. Section 4
presents briefly the tool that maps the design to a
resource structure. Thereafter, in Section 5, the
development methodology is presented. In Section 6 we
present our findings categorized into findings related to
methodological aspects, technology transfer, and
technical aspects. Finally, in Section 7 some conclusions
are given.

2 Application characteristics
The application is a vehicle control system with high
demands on safety, reliability, and timeliness. The
hardware in the system consists of two nodes that are
connected via redundant buses. The application contains
tasks, running at different period times, which collaborate
to perform certain control functions. The system contains
about 80 tasks with well-defined functionality. Each node
is very I/O intensive. The complete system has about 150
I/O channels connected to it.

The execution times of the tasks in the application range
from about 10 µs to 1 millisecond. The application is,
due to the construction of the hardware, interrupt
intensive. Since this application has many interrupts, the
effect of these interrupts can not be neglected when
scheduling the application tasks.

The worst case utilization of the processors for the
critical part is around 80%, divided into 35% for
interrupts and 45% for application tasks. The spare
capacity left is used by soft real-time tasks. At run-time,

the spare capacity will be more than the remaining 20%
if the load is less than the worst case.

The reason for the extensive use of interrupts is mainly
due to the hardware design. The hardware could not be
modified since it was already designed and certified
when the software development started.

3 Design language
The design language should be simple with a few, but
powerful, constructs with clearly defined syntax and
semantics. The reason for this is twofold: 1) parts of the
implementation can be automatically generated by tools
and, 2) the traceability from specification to
implementation is improved since it is easier to overcome
the semantic gap between design specification and
implementation. The design is tightly coupled to the
implementation; it is easier to fix a bug by correcting the
design than to just make a modification in the code, when
tools generate parts of the implementation directly from
the design specification.

Another important principle is the separation of concerns.
A specific example in the language is to separate
communication and synchronization constructs from the
C-code. This gives advantages in verifying the temporal
behavior of the system (analyzing or estimating the
execution time of the code is easier since it is
independent from other components of the system). The
integration phase also becomes easier when the
interaction and synchronization is specified and analyzed
early in the design.

The most important contribution, however, is that
temporal constraints are defined early in the development
process, which enables an early temporal verification.

The key elements of the language in increasing order of
granularity are:

• Application – defines the top level of a complete
software system.

• Modes and mode transitions – defines a high level
state machine.

• Transactions – describes the functionality in a mode.

• Interaction graphs – describes the interactions
between tasks that make up a transaction.

• Tasks – the computational elements of the design
language.

3.1 Application model
A classical way of attacking problems is by ”divide and
conquer”, i.e., by decomposing the problem into more
manageable sub-problems. This is done here by

hierarchical decomposition, where an application is
broken down into modes. A mode is an operational state
of the application. Different modes contain different
functionality. Each mode should only include the
functionality that is needed for the desired behavior. A
picture of this hierarchy is shown in Figure 1.

Application

Mode 1 Mode 2 Mode 3

Transaction
1

Transaction
2

Transaction
3

Transaction
4

Transaction
5

Figure 1: Application model

3.2 Modes and mode transitions
A mode describes specific functionality in a system state.
If the functionality differs substantially from one state to
another, one should separate them into two different
modes. An example is the control system in a vehicle,
which can have different functionality depending on the
status of the vehicle. If the vehicle is fully functional, the
control system is in full operating mode. If a severe error
occurs the control system can take the vehicle into a
reduced functionality, mode where only the most critical
functions of the control system are provided, so that the
vehicle can be taken for repair.

Modes in the system are described in a mode transition
graph, comparable to a state transition graph, where all
legal transitions between modes are depicted. An
example mode transition graph for our vehicle is
illustrated in Figure 2.

Init

Operating

Failed

Reduced

initOk

fatalFailed

fatalFailure

recovered

failure

reStart

fatalFailure

Figure 2: Mode transition graph for a control system
for a vehicle

Why modes? In almost all application there is some kind
of mode concept, even if implicit. For example when the
system is starting up, initialisation functionality is
provided which is no longer needed when the system is
fully operating. Many systems also have a failure mode
with reduced functionality. If there is no way of
specifying these modes they have to be implemented ad
hoc in the code which makes it hard to understand and
maintain the system.

3.3 Transactions and interaction
graphs

For each mode a number of functions must be provided,
we call these transactions. A transaction consists of a
collection of tasks that together provide the desired
functionality. The interaction and dependencies between
tasks are described by communication and
synchronisation constructs. Communication is specified
as a directed relation from one task to another.
Synchronisation can be described by precedence
relationships between tasks or by mutual exclusion of
task that share a common resource. The temporal
behaviour of tasks in the transaction is specified by
temporal attributes of single tasks. Besides tasks,
interrupts can also be specified. Including interrupts in
the specification makes it possible to include them in the
analysis.

3.4 Task
A task is the smallest executable unit. A task is described
with a set of functional and temporal parameters:

Functional:

• Entry function. The entry function specifies the
function to perform on each invocation. This,
together with the state and input, defines the
functionality of the task.

• State. A task has some state variables, (comparable
to instance variables of an object), which keep their
values across activations of the task. The variables
constitute the task state.

• Ports. Since communication primitives are not
allowed in the code, communication is specified in
the interaction graph. Each task is equipped with in-
and out-ports. The in-ports acts as input to the entry
function and the result of the entry function is placed
on the out-ports of the task.

Temporal:

• Period time . The period time of the task.

• WCET. Worst Case Execution Time of the entry
function. Note that this value is assessed and used as

an additional design parameter during the design and
verified after implementation.

• Release time . Remember that every task is a
member of a precedence graph and therefore has a
period. The release time is the earliest time the task
can be activated, relative to its period start.

• Deadline . The deadline is the latest time a task is
allowed to terminate, relative to its period start.

The execution semantics of a task is at activation to read
the in-ports, thereafter perform the function, and before
termination write the result to its out-ports. This
construction means that each task can be designed
without knowing where the input data was produced and
where the produced output data will be used.

4 Mapping of the design to a
resource structure

The Configuration Compiler tool maps a textual based
description of the design to a resource structure, as
illustrated in Figure 3. The Configuration Compiler is a
pre-run-time scheduler that generates dispatch tables and
communication infrastructure for each mode. Besides the
mapping of the model, the tool also supports
specification of architecture specific attributes like
performance, the time granularity of the run-time
dispatcher, communication times, and number of nested
pre-emptions allowed. The implementation of the
Configuration Compiler is based on a heuristic tree
search strategy, similar to the one presented in [Ram90].
The major difference is that this scheduler takes
interrupts and architecture specific attributes into
account. The current version of the tool is adapted to the
real-time operating system Rubus1.

Configuration
Specification

Architecture
Specification

Schedule

Configuration Compiler

Communication handling
Pre-run-tme scheduler

Rubus

Figure 3: The Configuration Compiler

1 Rubus and the Configuration Compiler are commercial
products, see www.arcticus.se.

5 Development methodology
The development methodology defines the workflow
when developing an application. The methodology
employed in this project is iterative and quite traditional.
The emphasis in the method is to derive a high level
design that enables early schedulability analysis. To
facilitate this it is required that synchronization,
communication, and temporal attributes are defined early
in the design process, which is of no problem except for
execution times of the tasks. The execution times are
normally derived from the code. However, in this
approach we specify (estimate) an execution time budget
for each task. The execution time budget is later in the
implementation phase used as an implementation
requirement. Estimating the execution time budgets is a
delicate issue that requires highly skilled engineers with a
lot of experience. However, if the estimate can not be
fulfilled a negotiation strategy has to be employed. That
is, execution time may be borrowed from another task,
which does not utilize the allocated execution time. The
development methodology is general and can be adapted
to different design languages (modeling languages). The
method is briefly described in Figure 4 and by the
following text.

I. Requirements engineering . Here are the
requirements formulated by the customer of the
system.

II. Requirements analysis . In this stage the functions
of the application are identified from the
requirements specification. An important aspect
here is also to determine temporal constraints for
these functions.

III. High-level system decomposition. In this stage the
application’s different operational modes are
identified together with valid transitions between
them, by specifying the mode transition graph.

IV. Function decomposition and structuring . The
functions, for each mode, are decomposed into
transactions. Note that one transaction could belong
to several modes. Transactions are decomposed into
smaller units called tasks and their low-level
functions are specified together with the data flow
information between them. Some high level
functions has parts that have a high demand of
responsiveness or are very frequent (but small) so
that implementing them as tasks would be
infeasible. Therefore such low-level functions are
implemented as interrupts. This is formally
described in an interaction graph.

Function decomposition
and structuring

IV

High level system
decomposition

III

Mapping temporal
constraints to attributes of the

task model V

Definition of
execution time budgets

VI

Feasibility check and
automatic implementation

VII

Implementation and
module testing

VIII

System integration and
verification

 IX

Requirements analysis

II

Requirements engineering

I

Design

Figure 4: The design methodology

V. Mapping temporal constraints to attributes of
the task model. In the previous stage the high level
functions were decomposed into smaller units and
structured according to the interaction between
them. This step has to brake down the high level
temporal requirements into temporal attributes for
these smaller units. The expressiveness of the task
model attributes are different, and lower level, than
specified for the high level functions, so it is
important that this transformation is done in a safe
way, i.e., that the task model attributes does not
violate any of the high level constraints. It is also
important that this mapping does not overconstrain
the system.

VI. Defining Execution Time Budget. Traditionally
the assessment of WCET is done by either

measurements or by statically analyzing the code
produced for each task. In this approach, however,
execution time budgets are defined, these budgets
are later in step VIII used as implementation
requirements. The reason for this is that a feasibility
test for the system, and a possible re-engineering,
can be done at an early stage, and thus provide early
detection of design errors related to resource
utilization, communication and synchronization.

VII. Feasibility check and automatic implementation .
The formally described design can be checked for
temporal correctness even if no actual (low-level)
implementation has been done. This is done by a
static scheduler, which tries to find a feasible
schedule. Besides the schedule, the communication
infrastructure is automatically generated.

VIII. Implementation and module testing . The
implementation of tasks is simply done by
traditional programming (coding). Besides the
traditional functional specification, the programmer
also has the execution time budget as an
implementation requirement, i.e. , the programmer
has to implement the specified function in a way
that it does not violate the budget. The module
testing includes both verifying the functional
behavior as well as that the time budgets are not
violated. If the time budget can not be met a
redesign has to be done.

IX. System integration and verification . The
integration phase is usually done very quickly and
without problems since the actual integration was
done in the design with a strict semantics. The
major work is to do the integration testing.

The above figure and listing defines the activities
performed in each step, and the iteration when using this
method.

6 Findings
In this section we will describe the findings acquired
when introducing and using the design language and
method earlier described in Section 2. The findings are
categorized into those related to development
methodology, technology transfer, and technical issues
respectively. The development methodology covers the
findings based on the use of the design language and
method. The technology transfer part describes issues
regarding the transferring and introduction of new
technology and especially real-time technology into an
organization. The technical issue part presents new or
relevant technical challenges that have been discovered
during this work.

6.1 Design methodology
Finding 1: The design language provides a good basis
for the design description.

Motivation:

Using the design language described in Section 3 gives
three major benefits when designing a system:

1. It gives a skeleton of the application, which can be
analyzed without having a single line of code.

2. The analysis leads to early error detection of
communication, synchronization, and timing errors.

3. Simplified system integration.

Currently we can analyze communication,
synchronization, and timing requirements.
Communication is analyzed in three different aspects.
Firstly, the types of connected ports are checked, which
ensures that the proper data types are passed to the tasks.
Secondly, the analysis will reject a design where the
amount and rate of data passed through the system makes
it infeasible to fulfill the timing requirements. Thirdly,
data consistency is checked. Again, if there is no possible
way of fulfilling all timing requirements and at the same
time guarantee data consistency, the design is rejected.

The analysis of the synchronization makes sure that all
precedence and mutual exclusion relationships between
tasks can be guaranteed in conjunction with guaranteeing
the timing requirements.

Finally the analysis of the timing requirements reveals if
it is possible to find a schedule for the given design and
execution time budgets that fulfills these timing
requirements. If it is impossible to fulfill the timing
requirements the design will be rejected.

The analysis presented above leads to early detection of
errors, in the design, of the properties that are analyzed.
Such errors are otherwise often found in the integration
phase of the project and thereby cost a lot of time and
effort to correct.

System integration is also simplified by the early
analysis. If the implementation of the code of each task
comply with the interface given by the design, i.e.,
retrieving data only from the in-ports, performing the
desired function within the given execution time budget,
and producing data only to the out-ports, then the
integrated system will fulfil the design and thus satisfy
the requirements. Thus, a step of the development
process, that often tends to be quite troublesome and
leading to costly delays in the project, are simplified.

Note that the only thing that has to be added to
implement the design is the task code, everything else is
automatically generated, i.e., communication,
synchronization and an execution scenario (schedule).

Finding 2: The use of a precise design language

a) Enables parallel implementation and testing of the
tasks.

b) Facilitates efficient integration of new personnel into
the project.

Motivation:

a) The task model stipulates tasks, which have no
synchronization or communication within the code.
Recall from section 2, that each task uses a
computational model based on input - calculation -
output. That leads to that each task can be
implemented and tested in parallel since each task is
only dependent on its own state and the values of its
in-ports to make a calculation. The module testing is,
thus, very simple to make, just feeding values to the
in-ports and monitoring the output. This also allows
regression testing of modules.

b) One small group of people, who have good
knowledge about the system and a good feeling of
future demands on the systems, develops the design.
The design they come up with must be stable, that is,
not too many major changes are allowed to occur
after the implementation phase start. If that is
accomplished, it is easy to introduce new personnel
into the implementation phase since each new
employee or consultant only has to understand the
design language and obey the given interface to be
able to start to implement and test. The design
language has decreased the introduction time for new
employees substantially.

Finding 3: The methodology increases the time spent in
the design phase but shortens the implementation time.

Motivation:

We feel that the time to complete the design phase has
increased compared to similar projects, which have used
traditional informal techniques (such as structured
analysis and design). This is not surprising since a
precise design with analysis is harder to come up with,
compared to a design that just is based on written
documents. However, we feel also that the precise design
has lead to shorter time spent on implementation, test,
and integration due to reasons described earlier in this
section. We also believe that it will be much easier to
maintain a system based on a precise design compared to
a traditional system. This is mainly due to two reasons:

1. Normally the implementation and the design tend to
diverge which makes it hard to foresee the impact of
changes and added functionality. This can be avoided
by the fact that the tools are useful and actually
produces verified functionality. It is for example quite
natural and widely accepted to use the compiler

instead of adding object code here and there. Another
restraining factor can be the fear of disturbing the
order laid out by the tools, again compare with the
compiler example.

2. Even if there is a good match between the design
documents and the implementation it is not easy to
foresee the impact of changes and added
functionality. In our case several properties of the
altered design can be analyzed, as discussed earlier,
already in the design phase. So changes or add-ons
that does not comply with the implemented
functionality will be detected.

Finding 4: Execution time budgets for tasks turned out to
be good as a design tool and implementation
requirement.

Motivation:

To be able to make an early capacity analysis of the
resources in the system, like processors and buses, each
task has to have an execution time budget. This budget
states how much of the processor capacity the task is
allowed to utilize. The difficulty in specifying this budget
is to relate the execution time budget to the functional
requirements of the task, e.g., for a controller it should be
possible to fulfil the desired control performance within
the specified time budget. If it is not possible this time
budget is erroneous. The execution time budgets are then
used as implementation requirements.

In this project we were really surprised that these budget
estimations where so good. However, the engineers that
specified these budgets had many years of experience in
control system design and good knowledge about
hardware close programming.

To verify that the implementation fulfils the requirements
the execution time for the tasks was measured and
sometime calculated.

6.2 Technology transfer
Finding 5: To be able to transfer real-time technology to
industry; tools, education (courses, tutorials), carriers,
and adapters are required.

Motivation:

Tools:

When transferring theories to the industry it is necessary
that the theory is encapsulated in a tool, which shows the
practical use of the theory [Sch96], unless the theory is
very simple [Bat99]. A good example of a tool that
encapsulates advanced technology well is a traditional
compiler. In this case the tool was in the first version an
application written in a high level language that was easy
to adapt to up-coming requirements from the industry. To

handle these up-coming requirements in an efficient way
is important to succeed in the transfer, a part where the
carrier described below play a significant role. The tool
was later ported to a low-level language to get an
efficient implementation.

Courses:

We have found out that an engineer requires at least two
days of training to understand the basic real-time theory
and the added methodology to be able to work with
design of new systems. So in reality for an experienced
engineer it will take about one week including the
training course to be productive, from the model and
methodology point.

Carrier:

The success of this transfer is mainly because one person,
that worked in the research group where the ideas where
developed, started to work as a consultant for
TietoEnator ArosTech at VCE. Regardless how many
good reports we write we need people that carries the
results [Dal94]. A related example is the development of
the control system for Volvo S80 where Ken Tindell and
others carried the response time analysis for the CAN bus
into a tool and implanted that tool into Volvo Car
Cooperation organization [Cas98, Mel98].

Citation: "Tech transfer is a contact sport. People not
paper transfer technology" [Fol96].

Adapters:

Even if we have carriers we need early adapters at the
company that take the technology into the company and
its organization. These people need to be authoritative to
be able to sell the new technology in the organization.
There is always a healthy conservatism in all
organization. Therefore one must find people that are
ready to invest enough time and energy to find out if the
technology is applicable and gives an added value to the
development of their products or not [Ben96].

Finding 6: The major problems when introducing real-
time technology in an organization is to change the
requirements caption process to include timing
requirements.

Motivation:

Several independent sources have given the same
statement (Volvo Car and Volvo Construction
Equipment). Especially since all engineering disciplines
within a company has to change their way of specifying
requirements on the electronics. The main problem is that
once a timing requirement for a high-level function has
been derived, it is very hard to reconsider it later on. It
seems that a timing requirement becomes more and more
truthful the older the timing constraint becomes. This
really comes to the surface when a new function is added

and the schedulabilty test is negative depending on that
the utilization of the system is too high. To add this
function anyway you need to find either execution time
budgets that are too generous or timing requirements that
are too strict. Assuming the overestimation of execution
times is neglectable, the timing requirements have to be
reconsidered. To find out which timing requirements that
have to be relaxed there must exist a notion of confidence
of the timing requirements. As an example, the time from
pressing a particular lamp switch until the light is turned
on should it take 200 ms or 300 ms, if the requirements
say that the confidence in specifying 200 ms is low this
timing requirement could be considered to be relaxed.
Thus the results from the requirements caption process
must be clearly expressed and well motivated since it will
be used during the complete life cycle of the system.

6.3 Technical issues
Finding 7: The task model used (described in Section 2)
is in some cases too restricted when handling control
jitter for simple controllers and especially for multirate
controllers.

Motivation

The limited expressiveness in the used task model is
related to the jitter problem and multirate communication
problem. Specifying release times and deadlines of the
tasks involved in the computation can be used to fulfil for
example jitter requirements. However, this is a problem
since the engineer has to distribute the release times and
deadlines at the timeline to not overload a specific
window of the timeline. This means that the engineer has
to act as a pre scheduler to the scheduler, which is not
efficient. Instead, a desired property of the task model
would be to have the possibility to specify relative timing
constraints. For example, a sampling task is required to
run with a certain period time and have a tolerance of a
specific amount (Period time ± tolerance). Relative
timing constraints could also be used for specifying
latency constraints, e.g., the time between sampling and
actuation. Furthermore, when a controller consists of
several entities that run with different period times, i.e.,
multirate control, one would also like to have the
possibility to specify latency constraints. If the used task
model supported this it would be much simpler to specify
a system. Extending the task model is an easy task but to
come up with useful tools to schedule a system based on
such a task model is not an easy task.

Finding 8: Task model and scheduling techniques
reported in literature has to be extended to take real-
world requirements into consideration.

Motivation:

When the scheduling tool for this task model was
developed we had to take several important aspects into
account to be able to get a tool that utilized the resources
of the target system efficient. The two aspects we will
cover here are schedule representation and taking
interrupt overhead into account when constructing the
same schedule.

Schedule representation . A common representation of a
static schedule is a vector, where one position in the
vector represents a discrete point in time at which the
execution of a task can start. The granularity of time has
to be matched with the frequency of the periodic clock
that drives the dispatcher, which will execute the tasks
according to the schedule. If the execution time of a task
is less than this granularity, or if it exceeds a multiple of
the granularity with a small fraction, then the utilization
of the CPU resource will decrease. This because there
will be time intervals that can not be used to execute
tasks. An apparent solution to this is to increase the
granularity (frequency) of the periodic clock. However,
with a higher frequency of the clock the dispatcher will
instead use more of the CPU resources, since it will
execute more often.

0

3000
D

CBA

Figure 5: The representation of a schedule.

Another way of representing a schedule is as a list of
rows, see Figure 5, where each row represents a point in
time at which the dispatcher is to start the execution of a
sequence of one or more tasks. The first task in this
sequence, or chain, is started at the given point in time.
All other tasks in the chain are started as soon as the
preceding task in the sequence has completed its
execution, without need for the clock to trigger the
dispatcher. This representation will allow several tasks to
be executed during an interval less than the period time
of the dispatcher clock. Hence, the dispatcher overhead
can be kept low at the same time, as the utilization of the
CPU resource is high.

Interrupt overhead. Typically, pre-run-time scheduling
does not account for interrupts, assuming their execution
can be ignored or incorporated into task execution times.
In many applications, the interrupts are, however, non-
negligible and inclusion in task execution is too
pessimistic and inefficient. Furthermore, as inter-arrival
and execution times of interrupts are smaller than the
granularity of the online dispatcher and the arrival times
are unknown, interrupt-handling routines cannot be

modeled as pre scheduled tasks. The application of server
algorithms, e.g., sporadic server [Spr89] total bandwidth
server [Spr95], and slack stealing [Leh92] are not
feasible due to the short response times that are required.

The key issue for static scheduling accounting for
interrupts is the consideration of the overhead. If
interrupts occur at run-time, interrupt-handling routines
are executed. The delay this poses on task execution must
be accounted for when the system is scheduled.
Evidently, an inherent, minimum amount - the worst case
penalty - to handle a worst case scenario has to be
reserved, according to minimum inter-arrival times and
execution times. Any amount exceeding this, however, is
overhead imposed by the used method. It is this overhead
that has to be kept small for efficient utilization of the
processor. During this project we had to develop a
method that handled interrupts in an efficient manner.
This method combines a tree search algorithm with
response time analysis, see the paper by Sandström et al
[San98].

Finding 9: To make a pre-run-time scheduler tool really
useful, feedback has to be provided to the user when the
system is not schedulable.

Motivation

When applying scheduling in industrial projects,
engineers are faced with a problem that only to a very
limited degree has been attacked by the real-time
research community, namely how to provide constructive
feedback to the user in cases when a feasible schedule
can not be found.

Specification file Schedules

Happy
designer

Pre run-time
scheduler

feasible
system

unfeasible system

NULLConfused
designer

Figure 6: Pre run-time scheduling: present situation

This limited feedback problem leads to confused
designers, as illustrated in Figure 6, which more or less at
random have to optimize and modify the specification.
However, to help the designer to come up with a
specification for which the pre-run-time scheduler can
find a feasible schedule, there is a need for heuristics that
analyze the specification for semantic problems and give
constructive feedback to the user. That is, the user should
be provided hints to how the problem can be resolved,

i.e., how the specification can be modified to allow the
generation of a feasible schedule.

We have developed a method to provide feedback to the
user by calculating a load function for the system. By
identifying bottlenecks in the system specification we can
guide the designer in modifying the input to the pre-run-
time scheduler. The underlying hypothesis is that there is
a correlation between the points in time when the load
function has a high value, and the locality of the
bottlenecks in the specification that leads to an infeasible
schedule, [All96].

Finding 10: To minimize the verification effort when
only small updates have been done to the application an
incremental scheduling is needed.

Motivation

When an application has been tested and used in a
vehicle for some time without any problems, the
application is accepted and released. If then later some
new functionality is added one wants to keep as much as
possible of the execution order in the application to avoid
major re-verification efforts.

This is not possible today, that is, when adding new
functionality to the application a completely new
schedule has to be generated. The major drawback of this
approach is that the application verification and
validation has to be completely redone to guarantee the
functionality.

A desired feature of a scheduler would be to have the
possibility to incrementally add new tasks to the
application without affecting the already verified and
unchanged part. A scheduler that takes both the updated
design specification and the old verified schedule as
input could solve this problem. The scheduler could try
to find space in the old schedule for the new tasks or if
not minimize the number of changes.

We believe that it is more important to keep the order
than keeping the exact start times of the tasks, as long as
the timing requirements are fulfilled. We believe this
because there often are margins in the execution
windows for the tasks while a change of order could have
severe impact for example on multirate transactions,
which often are sensitive on data age.

7 Conclusion and Future
research

We believe the presented project has been successful in
transferring real-time technology from a university to an
industrial partner. As a result, the industrial partner has
adopted a more systematic and formalized design
process, which have shortened the overall development

cycle compared to similar previous projects. It also seems
that the quality of the products has met the requirements.

However this transfer goes both ways, industry has also
provided new relevant challenges for academia. An
example of this is the limited expressiveness of the task
model for real world constraints including specification
of jitter constraints and specifying relative timing
constraints (suited for multi rate control systems). It
would be quite easy to extend the task model with such
attributes, but the mapping of these to an implementation
and the feasibility check, including schedule
construction, is not a trivial task. Another example is the
limited feedback problem of the static scheduler when it
is unable to find a feasible schedule. There is a lot to gain
if information can be given to the designer where to find
the bottlenecks in the design and specification. The need
of a incremental scheduler is also pointed out, which
would be very useful when maintaining the application.

Remember: tech transfer is a contact sport, people not
paper transfers technology!

Acknowledgements: We would like to thank Jack
Stankovic, Hans Hansson, Sasikumar Punnekat, and Ivica
Crnkovic for valuable discussions and for reviewing
earlier versions of this paper. We would also like to thank
Krithi Ramamritham for encouraging us to write this
paper.

Mälardalen Real-Time research Centre (MRTC;
www.mrtc.mdh.se) is a research centre in Västerås,
Sweden, supported by Swedish industry, the Swedish
Foundation for Knowledge and Competence
Development (KK-stiftelsen) and Mälardalen University.

References
[Ben96] J. L. Bennett. Building Relationships for Technology

Transfer. Communications of the ACM, Volume 39
Number 9. Sep. 1996.

[Spr94] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic Task
Scheduling for Hard-Real-Time Systems. The
Journal of Real-Time Systems 1, 27-60 (1989)

[Leh92] J. P. Lehoczky and S. Ramos-Thuel. An optimal
algorithm for scheduling soft aperiodic tasks in fixed
priority preemptive systems. In Proc. IEEE Real-
Time Systems Symposium. Dec. 1992.

[All96]B. Allwin, K. Sandström, and C. Eriksson. Constructive
Feedback Turn Failure into Sucess for Pre-Run_time
Schduled Systems. 11th Euromicro Workshop on
real-time systems.

[Spu94] M. Spuri and G. C. Buttazzo . Efficient Aperiodic
Service under Earliest Deadline Scheduling. In Proc.
IEEE Real-Time Systems Symposium. Dec. 1994.

[San98] K Sandström, C. Eriksson, and G. Fohler. Handling
Interrupts with Static Scheduling in an Automotive
Vehicle Control System. In Proceedings of the fifth

International Conferance on Real-Time Computing
Systems and Applications, pp. 158-165, October
1998. ISBN 0-8186-9209-X.

[Cas98] Jim Foley. Technology Transfer from University to
Industry. Communications of the ACM, Volume 39
Number 9. Sep. 1996.

[Cas98] L. Casparsson, A. Rajnak, K. Tindell, and P.
Malmberg Volcano a revolution in on-board
communications. Volvo Technology Report. 98-12-
10.

[Mel98] K. Melin . Volvo S80: Electrical system of the future
Volvo Technology Report. 98-12-11.

[Bos00] J Bosch. Design and Use of Software Architectures,
Adopting and Evolving a Product-Line Approach
Addison Wesley. ISBN 0-201-67494-7, June 2000
(forthcoming)

[Kal88] D. Kalinsky and J. Ready. Distinctions between
requirements specification and design of real-time
systems. Conference proceedings on TRI-Ada '88 ,
1988, Pages 426 – 432.

[Dal94] M Dalziel. Effective university-industry technology
transfer. Canadian Conference on Electrical and
Computer Engineering, 1994 , Conference
Proceedings, Page(s): 743-746 vol.2

[Bat99] I Bate and A. Burns. An Approach to Task Attribute
Assignment for Uniprocessor Systems. Proceedings
of the 11th Euromicro Conference on Resal-Time
Systems, York, England, UK, June, 1999

[Sch96] J. Scholtz. Technology Transfer through Prototypes.
Communications of the ACM, Volume 39 Number 9.
Sep. 1996.

[Ram90] K. Ramamritham. Allocation and Scheduling of
Complex Periodic Tasks. In 10th Int. Conf. on
Distributed Computing Systems, pages 108-115,
1990.

