
Architecture Knowledge Management during System
Evolution – Observations from Practitioners

Ipek Ozkaya
SEI/CMU

4500 Fifth Ave
Pittsburgh, PA, USA, 15221

+1-412-268-3551

ozkaya@sei.cmu.edu

Peter Wallin
Mälardalen University

P.O Box 883
SE-721 23, Västerås, Sweden

+46 21 103198

peter.wallin@mdh.se

Jakob Axelsson
Mälardalen University

P.O Box 883
SE-721 23, Västerås, Sweden

+46 31 597003

jakob.axelsson@mdh.se

ABSTRACT
It is widely accepted that awareness of architectural decisions
enables better management and planning of system evolution,
refactoring, and modernization efforts. In this paper we report
data from interviews with software architects about how
practitioners utilize architecture during system evolution. Our
results show, despite the widely shared view that long-lived
systems are better off with strong architectures; basic architecture-
centric practices are not followed systematically. The key gap we
observe is in correct and timely communication of architectural
issues. This overall finding is not surprising. However, our data
also contributes to how architecture knowledge management
activities can be focused for most benefit throughout a system’s
lifespan. While the often-referenced problem is lack of time spent
on documentation and design practices, our interviews show that
lack of quality attribute reasoning early on, and during the
lifespan of the system is a key contributor to failing to use
architecture knowledge effectively during evolution.

Categories and Subject Descriptors
D.2.11 [Software Engineering] Software Architectures

General Terms
Management, Design

Keywords
Software architecture, system evolution, architecture-centric
practices, architecture knowledge management

1. INTRODUCTION
The creation and adaptation of software has significantly shifted
to a model where existing systems evolve to meet changing
business needs. There is evidence in literature that supports the
importance of architecture in managing system evolution [5] [6]
[11] [15] [18] [19]. The architectural knowledge (AK)
management research community has also emphasized one of the

key benefits of AK management as supporting system
maintenance and evolution [7] [12] [13].

Understanding the best form of support for system evolution is
challenging, as observing evolution projects requires immersing
within the project for an extended period of time. Issues often do
not come from one source, or can be resolved with one particular
technique, discipline, or strategy alone. While there has been
significant amount of theoretical work in techniques and tool
support for evolution, understanding their use in practice when it
comes to architecture-centric practices has not gained much
empirical attention.

In order to understand the state of practice in utilizing
architecture-centric practices and knowledge for system evolution,
we pose the following questions:

1. Are architecture-centric practices used as means to

guide evolution systematically?

2. Which practices are used?

3. Which practices are systematically omitted?

As our method of investigation, we designed a survey outlined as
a structured interview, conducted one-on-one. The interview
consisted of thirty seven open-ended questions – questions that
required descriptive answers – targeted towards system and
software architects. The questions spanned from the use of key
architecture-centric practices in general to how they were focused
in addressing evolution issues. We present results from nine
architects working in domains ranging from defense,
telecommunications, automotive, healthcare, and manufacturing
automation.

The key issues in use of architecture-centric practices to guide
evolution were common across our interviews. When it comes to
AK management, in contrary to the common perception that
industry views architecture documentation and time spent in
design as possible overhead time, we found that these practices
were among the most common practices. What is revealing from
an AK management perspective is the lack of attention given to
eliciting and utilizing architecturally significant requirements
throughout the systems lifespan, and a lack of focus on quality-
based reasoning.

The problem remains to be the mismatch between the needs of
projects under market, business, economic, and customer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SHARK’10, May 2, 2010, Cape Town, South Africa.
Copyright © 2010 ACM and Carnegie Mellon University
978-1-60558-967-1/10/05 …$10.00.

52

constraints, and the lack of techniques for capturing critical
decisions to impact healthy evolution of systems. The collected
data provides empirical support that systematical use of
architecture-centric practices do not serve as a first class resource
when it comes to collecting and acting upon knowledge during
system evolution in these large-scale projects.

In this paper, we present data and observations from the
interviews conducted. We aim to draw attention to the gap in use
of architecture-centric practices as prescribed versus as practiced
even though architecture knowledge remains to be critically
sought for. The rest of the paper is organized as follows. In
Section 2, we survey related work. We describe the followed
empirical method in Section 3. In Section 4 we present our results.
Section 5 presents key observations and concludes the paper.

2. SYSTEM EVOLUTION AND AK

MANAGEMENT
Successful system evolution means ensuring present and future
alignment of the system to business and mission goals in a manner
to maximize value and reduce risk. Architecture-centric practices
enable a product’s definition, development, and evolution.

Existing research on architecture evolution focuses on the use of
complexity metrics to measure architecture evolvability [3] [9];
planning, generation and analysis of architectural evolution paths
[17] [11]; application of economic analysis [23] [3]; and focusing
evaluations to manage evolution, such as within a product line [8].

Empirical work on software evolution has made significant
contributions in improving our understanding of system change
and degradation on long-lived systems [6] [15] [18]. Yet,
evidence on the effectiveness of evolution techniques, tools, and
methods on practice has been sparse at best [16]. A case study at
an automotive OEM indicates drivers, trade-off areas, and
technical solutions related to evolutionary architecting [2]. A
recent questionnaire-based study on risks in software architecture
evolution, report that among IT-professionals they are mostly
observed during planning [22].

In the context of IT application and architecture design, the
concept of “transitional architectures” have been suggested to
realize system architecture on a time continuum [10].
Conceptually, the approach is based on three activities: i)
understand the current state of the architecture, ii) envision a
desired future vision of the architecture, and iii) establish a
sequence of discrete steps by following a gap analysis process
between the current and the envisioned architecture. Such an
approach suggests the creation of an evolution path based on the
envisioned architectural changes.

Another class of work that focuses on the evolution path notion
aims to formalize common evolutions as architecture evolution
styles. Garlan [11] defines an evolution style as a set of evolution
paths among classes of systems, e.g., evolutions from a web-based
architecture to J2EE. Le Goaer et al. [12] define an evolution style
at a much lower level of abstraction in terms of the structural
changes involved.

Architectural knowledge management and design decision support
has recently gained an increased attention in the research
community. Architectural knowledge is defined as the integrated
representation of the software architecture of a software-intensive
system or family of systems along with architectural decisions and

their rationale external influence and development environment
[1]. A key immediate benefit that motivates work in AK
management is the potential support AK can provide during
evolution activities [7] [12] [13].

Work to date in AK management has two leading threads: design
decision modeling and ontological views of AK, and tool support
for visualization and management of AK. Capilla et al. present a
meta-model that integrates project, architecting, and decision
models [7]. It is possible to view the architecting aspect of this
model as a way of capturing the practice-centric view of the
architecting process. Kruchten uses the ontology view to organize
different types of decisions and their attributes [14]. Kruchten [13]
and Babar [4] summarize the framework and tool focused
approaches. Babar highlights that all of the existing efforts focus
on codification of existing knowledge for the goal of storing and
searching, as opposed to personalization that focuses on helping
people communicate knowledge.

3. EMPRICAL SURVEY METHOD
In this section, we describe the research method used to
investigate the questions presented in Section 1.

As our primary approach to collect data, we used structured
interviews with open-ended questions [20]. Structured interviews
can be seen as a guided survey that is conducted face to face or
over telephone. The major drawback of this approach is the
relatively time consuming procedure to perform one-on-one
structured interviews. This reduces the sample size due to the
effort it takes to conduct such interviews. However, there are
several advantages as well [24]:

• One-on-one interviews ensure a high response rate.

• They ensure collecting data for all the questions and reducing
ambiguities.

• The respondents have the opportunity to ask clarification
questions when needed; hence the risk of misinterpreting the
questions is reduced.

• The interviewers can encourage the respondents to elaborate
their answer further.

3.1 Context
The subject of analysis for this study is system and software
architects, describing their use of architecture-centric practices on
a recent or current project. The participants were from a wide
range of companies located in Europe and North America.
Common to all of the projects and companies is that they develop
software or software-intensive products.

In Table 1, we present the demographics of the nine projects we
collected data for. The data is categorized based on the domain
from which the respondents reported their experiences. We have
respondents from telecom (T), automotive (A), health care and
health insurance (H), defense contractor (D), and manufacturing
automation (M). In order to provide insight to the range of
organization, we also report the companies’ footprint. We use the
companies’ ranking on the fortune global list of the largest
companies where applicable, otherwise their number of
employees.

Each respondent focused on a current or recent software
development project, in which evolution was a concern. In order
to provide the context for each project, respondents were asked to
describe their product according to the product’s place in the

53

market, development team size, and size of system. Respondents
used different metrics to categorize the size of their systems.
Since the type of metric give insights about how projects are
managed and planned, we did not enforce one particular metric to
be reported. Instead we asked the respondents to give the key
measurement that describes the size of the project within their
organizations’ context. Development team size, expected
development cost, number of classes, size of documentation, and
expected source lines of code were among the metrics used by the
respondents for describing project size. All of the products that
were subject of discussion had 10 to 20 years of life expectancy.

Table 1: Summary of participants

R
es

p
o

n
d

en
t

C
o

m
p

a
n

y

fo
o

tp
ri

n
t

P
la

ce
 i

n
 m

a
rk

et

 P
ro

je
ct

te

a
m

si
ze

S
iz

e
o

f
sy

st
em

T-1
Fortune
Global
1000

Top 2 40
Unpredictably

large. No metrics
used.

T-2
Fortune

Global 500
Market
leader

150

6 volumes of
architecture
documents -

smallest 100 pg.

T-3
Fortune

Global 500
Market
leader

60 1-300 processors

A-1
Fortune

Global 500
Strong

follower
150 1 million SLOC

A-2
Fortune

Global 500
Follower 100

Distributed system
with multiple
control units

H-1
Global
~7500

employees

Market
leader

15 $1 million

H-2

North
America
~1000

employees

Market
leader

50
100 KSLOC (In

house developed)

D-1
Fortune

Global 500
Market
leader

80
1,3 million SLOC
total, 580 KSLOC

in-house

M-1
Fortune

Global 500
Follower 5

5 people full time
in 3 years

3.2 Planning and Preparation
We interviewed chief or lead architects. All the respondents had a
long background in designing software intensive systems, most
respondents with more than 15 years of experience. It should be
noted that we report the experiences and views of the interviewed
people and not necessarily the general trend at that particular
business unit or company. However, since many questions relate
to whether a certain practice is used or not it is likely that the
respondent is representative for the organization.

We prepared the questions in two phases. Initially we generated a
list of key questions – this list had 103 initial questions. Since our
goal was to make this a structured interview that busy
professionals were willing to participate in, we went through an

exercise of prioritizing the questions. We concluded that our
purpose would be covered with 37 questions.

3.3 Interviews
All interviews were conducted using the same set of predefined
questions. The order of the questions was consistent for all
interviews. The duration of each interview ranged between 90 to
120 minutes.

No recording devices were used to further ensure that the
respondent spoke as candidly as possible. Two researchers were
present at all interviews; both took notes, and asked clarification
questions. Since all interviews except three were made as a
conference call, the questions were sent to the respondents
beforehand to make the interview process easier. After the
interview was concluded, the notes from the two researchers were
merged, and respondent clarification and approval was collected
were applicable.

The questions were divided into five different categories:
experience; general company and project information; use of
architecture-centric practices; evolution triggers; and evolution
and architecture-centric practices.

3.3.1 Experience
This first category served the purpose to learn about the
experience of the respondent, years with the company, current and
past positions, and experience with software architecting. Since
the interview in many cases was the first contact the respondent
had with the interviewers, the introductory questions also served
as a way to get the respondent comfortable and eased into the
interview.

3.3.2 Company and project information
Company and project information questions aimed to collect
details about the projects that the respondents reported
experiences from. Examples of questions in this section are the
following.

• What is the place of the business unit/company in the

market?

• What is the size of system and software development

unit for the project? (SLOC, number of classes, number

of developers, and/or other descriptive metrics).

In addition, information about the contextual constraints around
the system such as legacy-dependency or product-line
environment was elicited as part of general information. This
section also included questions about project time lines such as
life expectancy of the product and project duration.

3.3.3 Use of architecture-centric practices
The motivation for this section was to get a basic understanding of
the architecture-centric practices used in the particular project
referred to by the respondents. Discussions were around basic
practices starting with how the project elicited architectural
significant requirements, and if they were documented separately
from the functional requirements. In addition, data about how the
architecture was designed and analyzed was collected, together
with questions about architecture documentation, evaluation and
how they ensure conformance between the documentation,
implementation and the work product. Some example questions
are the following:

54

• Do you evaluate architectural designs, and if so, how?

• Is the documentation up to date with the architecture

and the system?

• Who uses the architecture documentation?

• Is there traceability from the architectural model to

work products and how are they kept synchronized?

3.3.4 Triggers for evolution
The triggers for evolution concerns questions that relate to the
causes of system change and how these causes affect the
architecture and the system. Questions aimed to elicit data about
both expected and unexpected triggers for evolution. The
questions in this section were aimed at system evolution to
understand how the discussed project worked with such. Example
questions from this section of the interviews are the following:

• What are the primary causes for evolution/system

change?

• How do you handle unexpected evolutions, such as

market change, technology change, and domain

change?

• Are there commonalities among different evolution

cycles?

3.3.5 Evolution and architecture-centric practices
In the last section, our questions were about how they deal with
evolution issues that the respondents expressed concerns about in
the previous section.

• Is architecture used as a basis for evolution?

• How do you plan for evolution?

• How do you plan and communicate the architecture for

different timelines, 6 months, 1 year, 5 years?

• How often do you need to change the architecture?

Such questions had the purpose of collecting data about the use of
architecture-centric practices before, during, or after key evolution
triggers were met within the project.

3.4 Data Analysis
All data were stored in a spreadsheet. A chain of evidence was
upheld by a case study database as described by Yin [25]. All data
analysis was done by two researchers together enabling discussion
about how to interpret the data.

We used statements from the different respondents to get a
consistent view of how projects handle each of the different topics
from the study. Two of the questions asked were ranking
questions. The results from these questions are presented as
frequency tables. In addition, many questions resulted in key
categories to emerge within the results, we also present this data
by frequency within the categories. In the correlation analysis, we
tried to find correlations between different questions, i.e. is there a
relation between certain architectural practices and if architecture
is used to guide evolution; however, based on the small data set
statistical correlations are not possible to make.

4. RESULTS
We present the results divided into two major categories: use of
architecture-centric practices in general, and use of architecture-
centric practices for evolution.

4.1 State of practice
In Table 2 we summarize the usage of architecture-centric
practices the interviewees talked about. We used three categories
to differentiate to what extent the practices were used: standard

practice, ad-hoc practice and did not use practice. We define
standard practice as a practice carried out in a structured and
systematic way. Ad-hoc refers to practices that are followed in an
unsystematic manner and usually not part of the companies’
process. If a practice was not used at all, it was categorized as did
not use practice.

4.1.1 Architecturally significant requirements
Producing high quality architecture is closely dependent on
understanding architecturally significant requirements [4].
Architecturally significant requirements have direct impact on the
design decisions and tradeoffs made. Methods and tools that are
used for eliciting, documenting, and managing architecturally
significant requirements, such as quality attribute scenarios,
therefore are among the key architecture-centric practice areas.

Table 2. Usage of architectural practices

Architectural practices
Standard

practice

Ad-hoc

practices

Did not

use

practice

Documentation 6 3 0

Evaluation 3 6 0

Reconstruction 0 5 4

Explicit design 7 2 0

Architectural
requirements

2 7 0

Elicitation of business
goals

5 4 0

Noteworthy is that many of the respondents did design an
architecture and document it, but at the same time almost no one
elicited and document architectural significant requirements in an
explicit way. Seven out of the nine participants replied without
hesitation that architecturally significant requirements were only
intuitively known based on the experience of the architects and
developers. The notion of architectural significant requirements
we addressed is not a high-level notion of quality, such as
modifiability, performance, but a specific understanding of
measurable quality drivers beyond functionality. Time to
explicitly elicit architecturally significant requirements was not
allocated. They were extracted from the functional and user
requirements in bits and pieces, but not as key architectural
drivers. The remaining who did allocated time for architecturally
significant requirements followed different practices. In one case
the IEEE 830-1998 requirement specification standard was
followed to provide a taxonomy. Out of the nine, only one
respondent described existence of multiple architect roles within
the organization ranging from enterprise architect, system
architect, and to application architect. In this case architecturally
significant requirements needed to be approved by the enterprise

55

architect; hence explicit practices in their elicitation and
management existed.

In response to the question how often requirements change and
how often architecturally significant requirements change, five of
the participants said that requirements change almost daily and the
remaining said that requirements do change, but did not have a
significant impact on their tasks. The more interesting observation
was on how architecturally significant requirements changed.
While requirements changed for half of our participants, all of our
participants said that architecturally significant requirements do
not change often. Key architectural drivers are there to stay, and
when a change does happen it reflects a significant issue.

The results indicate that the notion of architecturally significant
requirements was viewed at a very high-level. As many of our
respondent did not have explicit practices to elicit and manage
them, it is also quite possible that key changes went by unnoticed.
Even if changes happened, these requirements did not change, and
this knowledge was thus not as critical. However, we also observe
a communication gap. Although all of our participants were aware
of notion of architecturally significant requirements and methods
to specifically share the knowledge about them, such as quality
attribute scenarios, they did not use these techniques, resulting in
loss of information and misconceptions that these requirements
did not change in the global sense.

4.1.2 Design and Analysis
The areas we focus on for understanding architecture-centric
design and analysis practices are design of target architecture,
prototyping, reconstruction, conformance, evaluation, and
documentation.

We explicitly asked the question whether the target architecture
was designed and documented. Half of our participants said that
this was done as an up-front effort. The remaining expressed that
architecture was at a very high-level and details emerged
throughout the iterations. However, eight out of nine participants
used prototyping as part of their architecting process, especially
when they needed to understand hardware to software issues
prototyping became a major design technique. Out of these eight,
seven used prototyping as exploratory and throw-away prototypes,
in the last case there was mixed use of throw-away and
evolutionary prototyping. Prototyping was conducted with ad-hoc
practices; knowledge gained during the process was not captured.

Tool-based architecture reconstruction techniques were
unanimously not used. Seven out of nine participants; however,
indicated that evolving legacy software and dependence on legacy
code was a major constraint in the project they reported about. All
of the participants ensured conformance of architecture with
implementation in an ad-hoc manner. They resorted to active
communication by ensuring the participation of the architect
within the development efforts, a clear need where AK were
sought for through ad-hoc methods. One respondent’s description
of their reconstruction technique was representative of how hard a
time architects have when they need to motivate the need for
added work on architecture to collect knowledge.

“The management is more willing to call people back

from retirement to deal with the issues of the legacy

systems than having us spend time on understanding

and reconstructing their architecture. It is not easy to

have them understand we may not be as lucky next

time.”

Similarly, architecture evaluations were informally done in the
majority of the cases: in three projects formal evaluations were
used. Two reported using SEI ATAM and one AT&T’s
questionnaire technique [5]. In two instances, evaluations were
conducted as part of a gated project management process where
project managers or senior engineers needed to approve the
design. In these cases the goal was not to compare different design
alternatives, but to accept the current solution as part of milestone
approval. The remaining four reported not using any evaluation
technique apart from need-based local technical reviews with ad-
hoc means to capture the results.

Four respondents felt comfortable that the documentation was up-
to date with the actual system being deployed. Out of these four;
however, one said it was up-to date because what was referred to
as architecture was very high-level. The other three said updating
the architecture was an enforced requirement of their project
management and customer deliverables requirements. All of these
respondents said that the documentation was used by team
members as a source of architecture knowledge.

What we observe from these responses is an inconsistent state of
practice when it comes to what key architecture-centric practices
are utilized. In many cases we also observed that architecture was
thought of as the high-level contextual picture and all the rest of
the decisions were grouped within implementation and detailed
design tasks, creating a potential knowledge gap where critical
information about elements and their relationships gets
unrecorded.

4.2 Evolution and architecture
We investigated evolution under two categories from the
perspective of architects: triggers of evolution and use of
architecture-centric practices to manage evolution.

Table 3. Primary triggers for evolution

Triggers for evolution # of responses

New features 4

Market change 2

Technology obsolescence 2

Scalability 2

4.2.1 Causes for evolution
Table 3 shows the evolution trigger responses. To get a list of
triggers we asked the respondents to give the primary causes for
system change. We did not provide them with a predetermined
list. The repeated mentioning of scalability is noteworthy. For all
the respondents scalability referred to the ability to add resources
to the infrastructure with ease in order to support a larger
customer base or technology change. Maintainability; hardware
changes; change of requirements due to change of business
drivers; commonality requirement among business units; were
also mentioned as triggers for evolution but only mentioned by
one respondent and therefore not included in Table 3.

We also asked whether such triggers arrived as unexpected
changes and how they were handled. All of the respondents said
that the evolution triggers were often expected or did leave

56

enough time to plan for them. Even those respondents that called
out scalability as a key issue said that to architect for a less
scalable architecture was a decision taken to manage time to
market requirements. They took the route to re-architect the
system during a future release if needed, being aware of the cost
impact of re-architecting.

4.2.2 Evolution and architecture
Given our insights in architecture-centric practices, we focused on
evolution planning, economic trade-off analysis and using
architecture for evolution. We initially focused on architecturally
significant requirements that could be significant for evolution.
We asked the participants to rank architecturally significant
requirements that have been previously determined to be
significant within the evolution context [19]. The respondents
were given a list of requirements and asked to rank them Low (L),
Medium (M), or High (H) respectively. In order to avoid semantic
mismatches we provided the participants with definitions for these
key quality attributes. Note that these may not be the most
important quality attributes for the project, but they were ranked
in comparison to each other. Stability and maintainability were the
key requirements that were ranked as high by most participants as
shown in Table 4.

Table 4. Architecturally significant requirements for evolution

Architecture significant requirements L M H

Stability 1 2 6

Maintenance 1 3 5

Flexibility 2 3 4

Extensibility 2 4 3

Modifiability 2 4 3

Reusability 3 3 3

Evolvability 2 5 2

All of the respondents worked with 12-18 month major external
release cycles. Typically within a 12 month period, they aimed for
one major and 2-4 minor releases. In addition, for all of the
respondents, planning at the level of architecture was conducted
only for the current major external release cycle. While some high
level decisions were known, very little was done within the
current release cycle to support a long term plan. Planning around
architecture was best described by one of our respondents as:

“When I am planning ahead 6 months, I am being very

strategic.”

None of the respondents used architecture-level quantitative cost-
benefit analysis. All of them mentioned that if schedule and
budget slips were an issue, resources were cut from architecting,
and they had little to no chances of obtaining funding for
architecture-level projects where obviously observable one-to-one
mapping with current feature needs did not exist. In essence, this
ruled out activities, such as refactoring, reconstruction, or
evaluation creating major knowledge gaps. One architect gave us
interesting insights about the impression of value, cost, and
architecture at the management level.

“Many of our evolutionary changes could not be

labeled as architecture changes because the moment

you tag a change as architectural the connotations it ad

in the organization was that it would be costly, it would

be time-consuming, and it would still be late to market.

This created major issues in the project as the problems

could never be addressed adequately.”

The bottom line of what we heard is that architecture knowledge
is important, but practitioners do not utilize architecture-centric
practices consistently in regular project life cycles to manage key
architectural decisions, let alone when evolution challenges hit.
And surprisingly, the main gap was not in foregoing
documentation or architecting – which was our assumption going
in – but in spending time with understanding architecturally
significant requirements both during the initial phases of projects
and when evolution issues hit.

4.3 Validity
An important aspect of interview studies is to ensure that both the
method and conclusions made from the result are valid [24] [25].
Although the sample size is fairly small, we still argue that it is
large enough for our conclusions. We base this on five key
elements:

• Broad span of domain, and international markets. We had
respondents from seven different key domains that represent
high market share. Also, most companies that the projects
were drawn from are multi-national and are considerably
important players within their domain.

• Evolution scope of projects. All the projects had similar long
life expectancy with both evolution and maintenance
concerns where architecture knowledge is needed.

• Broad span of complexity of the projects. As shown in Table
1, the size and complexity of projects ranged in various
dimensions.

• Respondents experience. All respondents had extensive
experience in system and software architecture development.
All interviewees had also been with that particular company
for a long time and should be well aware of the practices
used to apply in their current context.

• Theoretical saturation. After a number of interviews the
responses started to get repetitive and towards the end of the
series close to no differentiating answers were collected. As
explained in [21], when responses start repeating any new
data would only add, in a minor way, to the many variations
of major patterns. Our sample size provided us data to
observe key patterns to address our initial questions.

5. DISCUSSION AND CONCLUSION
Despite the extensive research and theory and strong impression
of professionals that architectural thinking is important in
defining, developing, and evolving large-scale long-lived systems,
architecture-centric practices are still not systematically followed.
Yet, AK continues to be important, team members strive to
convince management for resources to spend more time in
activities to obtain AK. There is clearly a mismatch. When
resource constraints hit, architecture-centric practices are the first
to be omitted from project planning, resulting in key decisions to
be communicated ad hoc.

In summary, based on this study we answer our initial questions
as the following.

57

1. Are architecture-centric practices used as means to

guide evolution systematically?

Architecture-centric practices are not followed systematically.
Within the projects we surveyed, architectural success of products
relies heavily on the experience of the architects assigned to
projects, rather than on the outcomes of systematic practice. When
such is the case, AK is managed in an ad hoc manner. Research-
based architecture tools and methods, and common mature
architecture-centric practices are known about, but are not used.

2. Which practices are used?

The architecture-centric practices that are most commonly used
are high-level architectural design and documentation.
Documentation is used advantageously as needed. The documents
may be out of sync with the system. Prototyping appears to be a
key practice used to focus design. Our results did not converge on
common techniques across different projects for these practice
areas.

While this is encouraging, what architecture means varies
significantly in terms of the level of detail expected from
architectural decisions. Hence, often such documents are useless
for carrying AK.

3. Which practices are systematically omitted?

While extensive requirement elicitation and representation
practices exist, architecturally significant requirements are not
elicited and managed explicitly. Such management is left to the
experience of the architects. Similarly, architecture-level planning
is conducted at best with ad hoc approaches and is not utilized
commonly to manage evolution.

In this study, we took the view that since architecture as an
artifact describes the structure of a system, a key aspect of a
system’s lifespan where architecture and AK would be essential is
during evolution. Therefore, practices that are used for creating
and evolving systems are essential in eliciting, communicating,
and using AK.

Our observations from these interviews are still convincing that
architecture-based system evolution is critical.

• Systems are expected to be in service and maintained for
extended periods of time.

• Architecture stability and scalability to meet future needs are
key drivers for organizations.

• Projects will continue to depend on existing products and
evolve from them.

Even though all the respondents emphasized architecture work as
an important success factor for their products, they still seem to
need to justify the time spent on architecting and associated
architecture-centric practices. Consequently, AK knowledge is
managed ad hoc or companies rely heavily on experience.

Based on the result in Section 4, we observe:

AK to support effective evolution is not explicitly managed.
Six of the nine respondents had uncertainty of market among
their top three uncertainties. Also, the main triggers for
evolution are external factors such as new features, market
changes, and technology obsolescence. This could indicate
that putting a lot of effort into the architecture evolution
before needed is not top priority. On the other hand, the
majority of key architectural concerns were to achieve

stability, which requires AK about what is achieved and what
is put-off to be explicitly recorded.

• There is a high reliance on experience when it comes to

architecting and AK management. Experience and following
practices were almost at odds in our interviews. The more
experienced people the less they put emphasis on the
processes and practices, yet they were able to put successful
systems out of the door. One of our respondents even said,
“If you were not around when the technology emerged in the
market and followed how it evolved you can never be an
architect for this kind of a system.”

• Architecturally significant decisions are not recognized as

architecturally significant during evolution. Many
architecturally significant decisions are either postponed to
development time or completely omitted. This is evidenced
by the fact that key requirement changes do not change
architectural concerns and change does not affect the
document since the documents are just high-level. It is also
evident by the reluctance to call out architectural change in a
fear that it will be tagged too costly and timely.

• There is no success criteria explicitly related to architecture,

hence reducing the perceived importance and value of AK.
Revenue is the leading project success criteria for all the
products in review. However, none tracked project success
and revenue through the architecture. On the other hand,
architectural change as all of our respondents alluded to is
something that they want to stay away from because it is
costly and hard to get acceptance for. The mismatch between
success and architecture requirements is clearly one of the
underlying causes for neglecting architecture practices.

Arguing that practitioners are to blame for not systematically
adopting architecture-centric practices is clearly not the issue
here. Neither is the issue going back to the drawing board and
tweaking existing practices to increase adoption rate. In this
regard, the results of our interviews are not surprising at all. What
is evident; however, is despite the lack of systematically following
architectural practices, AK is created and used, large systems are
in service for long periods of time, even if with suboptimal use of
resources to support system evolution. Yet, practitioners still do
not have the vocabulary to talk about and motivate key
architectural decisions and their impact to their management. The
results of our study emphasize the need to focus methods, tools,
and practices from the perspective of their support for AK
management and decision support perspective that is critical for
evolving systems. This, we believe will also impact transitioning
more architecture-centric practices to routine software engineering
to improve how systems are created and evolved.

6. ACKNOWLEDGMENTS
We thank the participants to our interviews. We also thank Len
Bass from the Software Engineering Institute, Stig Larsson from
the ABB Group, and anonymous reviewers for their valuable
comments.

58

7. REFERENCES
[1] Avgeriou, P. et al., 2007. Sharing and Reusing Architectural

Knowledge--Architecture, Rationale, and Design Intent. In
Companion to the proceedings of the 29th International
Conference on Software Engineering. IEEE Computer
Society, 109-110.

[2] Axelsson, J. 2009. Evolutionary Architecting of Embedded
Automotive Product Lines: An Industrial Case Study. In
Proc. WICSA 2009.

[3] Bahsoon, R., Emmerich, W., and Macke, J. 2005. Using Real
Options to Select Stable Middleware-Induced Software
Architectures. IEE Proc. Software, 152(4).

[4] Babar, M.A. and Gorton, I. 2007. Architecture Knowledge
Management: Challenges, Approaches, and Tools. In:
Proceedings of the 29th IEEE International Conference on
Software Engineering. (ICSE07) Companion, May 20-26.

[5] Bass, L., Clements, P., and Kazman, R. 2003. Software
Architecture in Practice, Second Edition. Boston, MA:
Addison-Wesley.

[6] Belady L., Lehman M.M. 1976. A Model of Large Program
Development. IBM Systems Journal 15 (1), 225 -252.

[7] Capilla, R., Nava, F. & Duenas, J.C., 2007. Modeling and
Documenting the Evolution of Architectural Design
Decisions. In Proceedings of the Second Workshop on
Sharing and Reusing architectural Knowledge Architecture,
Rationale, and Design Intent. IEEE Computer Society, 9.

[8] Del Rosso, C. 2006. Continuous evolution through software
architecture evaluation: a case study. J. of Software
Maintenance: Research and Practice, vol. 18. 351-383.

[9] Eden, A. H., and Mens, T. 2006. Measuring Software
Flexibility, IEEE Software, 153(3), 113–126.

[10] Erder, M. and Pureur, P. P. 2006. Transitional Architectures
for Enterprise Evolution. IT Professional, May/Jun (2006)
8(3), 10-17.

[11] Garlan, D., M. Barnes, J., Schmerl, B., and Celiku, O. 2009.
Evolution Styles: Foundations and Tool Support for Software
Architecture Evolution. In Proceedings of WICSA 2009.

[12] Goaer, L., Tamzalit, O., Oussalah, M. D., and Seriai, A.
2008. Evolution Styles to the Rescue of Architectural
Evolution Knowledge. In Proceedings of the Third
Workshop on Sharing and Reusing architectural Knowledge
Architecture, Rationale, and Design Intent.

[13] Kruchten, P., Capilla, R., and Dueas, J., 2009. The Decision
View's Role in Software Architecture Practice. IEEE
Software, 26(2), 36-42.

[14] Kruchten, P. 2004. An ontology of architectural design
decisions in software intensive systems. In 2nd Groningen
Workshop on Software Variability, 54--61.

[15] Lehman, M.M. 1980. Programs, Life Cycles, and Laws of
Software Evolution. Proc. IEEE Special Issue on Softw.
Eng., 68(9), 1060 – 1076.

[16] Mittermeir, R. T., 2001. Software Evolution Let’s Sharpen
the Terminology before sharpening (out-of-scope) tools.
International Workshop on Principles of Software Evolution

[17] Ozkaya, I., Diaz-Pace A., Gurfinkel, A., and Chaki, S., 2010.
Using Architecturally Significant Requirements for Guiding
System Evolution. In Proceedings of 14th European
Conference on Software Maintenance and Reengineering.

[18] Parnas D.L. 1994. Software Aging. Proc. In Proceedings of
the 16th International Conference on Software Engineering.
(ICSE94) ICSE, 279- 287.

[19] Pei-Breivold, H., Crnkovic, I., 2009. Analysis of Software
Evolvability in Quality Models, 35th Euromicro Conference
on Software Engineering and Advanced Applications
(SEAA), Software Process and Product Improvement (SPPI)
Track, IEEE, Patras, Greece.

[20] Robson, C. 2002. Real World Research. 2nd ed. Blackwell
Publishing.

[21] Strauss, A. and Corbin, J. 1998. Basics of qualitative
research. SAGE Publications, p 292.

[22] Slyngstad, O. et al., 2008. Risks and Risk Management in
Software Architecture Evolution: An Industrial Survey. In
Software Engineering Conference. APSEC '08. 15th Asia-
Pacific. 101-108.

[23] Sullivan, K., Griswold, W., Cai, Y., and Hallen, B.. 2001.
The Structure and Value of Modularity in Software Design.
In Proc. of FSE’01.

[24] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell,
B., and Wesslén, A. 2000. Experimentation in Software
Engineering: An Introduction. 2nd ed. Springer.

[25] Yin, R.K. 2002. Case Study Research: Design and Methods.
3rd ed. Sage Publications.

59

